

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT 100 WEST OGELTHORPE AVENUE SAVANNAH GEORGIA 31401

SAS-OD-RC

April 22, 2024

MEMORANDUM FOR RECORD

SUBJECT: US Army Corps of Engineers (Corps) Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023),¹ SAS-2021-01042

BACKGROUND. An Approved Jurisdictional Determination (AJD) is a Corps document stating the presence or absence of waters of the United States on a parcel or a written statement and map identifying the limits of waters of the United States on a parcel. AJDs are clearly designated appealable actions and will include a basis of JD with the document.² AJDs are case-specific and are typically made in response to a request. AJDs are valid for a period of five years unless new information warrants revision of the determination before the expiration date or a District Engineer has identified, after public notice and comment, that specific geographic areas with rapidly changing environmental conditions merit re-verification on a more frequent basis.³ For the purposes of this AJD, we have relied on section 10 of the Rivers and Harbors Act of 1899 (RHA),⁴ the Clean Water Act (CWA) implementing regulations published by the Department of the Army in 1986 and amended in 1993 (references 2.a. and 2.b. respectively), the 2008 Rapanos-Carabell guidance (reference 2.c.), and other applicable guidance, relevant case law and longstanding practice, (collectively the pre-2015 regulatory regime), and the Sackett decision (reference 2.d.) in evaluating jurisdiction.

This Memorandum for Record (MFR) constitutes the basis of jurisdiction for a Corps AJD as defined in 33 CFR §331.2. The features addressed in this AJD were evaluated consistent with the definition of "waters of the United States" found in the pre-2015 regulatory regime and consistent with the Supreme Court's decision in *Sackett*. This AJD did not rely on the 2023 "Revised Definition of 'Waters of the United States," as amended on 8 September 2023 (Amended 2023 Rule) because, as of the date of this decision, the Amended 2023 Rule is not applicable Georgia due to litigation.

¹ While the Supreme Court's decision in *Sackett* had no effect on some categories of waters covered under the CWA, and no effect on any waters covered under RHA, all categories are included in this Memorandum for Record for efficiency.

² 33 CFR 331.2.

³ Regulatory Guidance Letter 05-02.

⁴ USACE has authority under both Section 9 and Section 10 of the Rivers and Harbors Act of 1899 but for convenience, in this MFR, jurisdiction under RHA will be referred to as Section 10.

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

- 1. SUMMARY OF CONCLUSIONS.
 - a. Provide a list of each individual feature within the review area and the jurisdictional status of each one (i.e., identify whether each feature is/is not a water of the United States and/or a navigable water of the United States).

Name of Aquatic Resource	JD or Non-JD	Section 404/Section 10
Wetland A	JD	Section 404
Wetland AA	Non-JD	N/a
Wetland B	JD	Section 404
Wetland BB	Non-JD	N/a
Wetland CC	Non-JD	N/a
Wetland D	JD	Section 404
Wetland E	JD	Section 404
Wetland G	JD	Section 404
Wetland H	JD	Section 404
Wetland J	Non-JD	N/a
Wetland K	Non-JD	N/a
Wetland L	Non-JD	N/a
Wetland M	Non-JD	N/a
Wetland O	Non-JD	N/a
Wetland P	Non-JD	N/a
Wetland Q	Non-JD	N/a
Wetland R	Non-JD	N/a
Wetland S	Non-JD	N/a
Wetland T	Non-JD	N/a
Wetland U	Non-JD	N/a
Wetland V	Non-JD	N/a
Wetland W	Non-JD	N/a
Wetland X	Non-JD	N/a
Wetland Y	Non-JD	N/a
Wetland Z	Non-JD	N/a

2. REFERENCES.

- a. Final Rule for Regulatory Programs of the Corps of Engineers, 51 FR 41206 (November 13, 1986).
- b. Clean Water Act Regulatory Programs, 58 FR 45008 (August 25, 1993).
- c. U.S. EPA & U.S. Army Corps of Engineers, Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in *Rapanos v. United States & Carabell v. United States* (December 2, 2008)
- d. Sackett v. EPA, 598 U.S. _, 143 S. Ct. 1322 (2023)
- e. 2008 Rapanos Guidance

SAS-OD-RC SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

- f. Joint Policy Memo: NWO-2003-60436, dated 12/18/2023
- 3. REVIEW AREA.
 - A. Project Area Size (in acres): 323.18
 - B. Center Coordinates of the Project Site (in decimal degrees)
 - Latitude: 32.015455 Longitude: -81.286523
 - C. Nearest City or Town: City of Savannah
 - D. County: Chatham
 - E. State: Georgia
 - F. Other associated Jurisdictional Determinations (including outcomes)

Regulatory File No.	Туре	Outcome
SAS-2004-13640	AJD/PJD	This approval showed all wetland boundaries within the review area. This project was adjacent to the project under review and these confirmed wetland boundaries were used to follow the flow path of aquatic resources offsite.
SAS-2018-00685	ARDR	This approval showed all wetland boundaries within the review area. This project was adjacent to the project under review and these confirmed wetland boundaries were used to follow the flow path of aquatic resources offsite.

G. Any additional, relevant site-specific information: This project has been historically managed for timber harvest. Logging roads have been observed predated 1974 on aerial imagery thus the site has had significant manipulation over time.

- 4. NEAREST TRADITIONAL NAVIGABLE WATER (TNW), INTERSTATE WATER, OR THE TERRITORIAL SEAS TO WHICH THE AQUATIC RESOURCE IS CONNECTED.
 - A. Name of nearest downstream TNW, Territorial Sea or interstate water: The Ogeechee River is a TNW that is ~0.75 miles southwest of the project site. The Little Ogeechee is a TNW that is ~1.25 miles east of the project site.

B. Determination based on: This determination was made based on a review of desktop data resources listed in Section 9 of this memorandum, a review of the SAS Section 10 list (for a water body that is navigable-in-fact under federal law for any purpose (such as Section 10, RHA), that water body categorically qualifies as a Section 404 "traditional navigable water" subject to CWA jurisdiction under 33 CFR 328.3(a)(1)).

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

5. FLOWPATH FROM THE SUBJECT AQUATIC RESOURCES TO A TNW, INTERSTATE WATER, OR THE TERRITORIAL SEAS

The wetlands meet the hydrophytic vegetation, wetland hydrology, and hydric soil criteria of the 1987 Corps of Engineers Wetland Delineation Manual and the Atlantic Gulf Coastal Plain Regional Supplement Regional Supplement.

Wetland B continues to flow north off site where it is part of a larger wetland system and continues to flow east for 0.5 miles where it flows through a culvert under a road crossing and then continues to flow east for 1.15 miles where the wetland and its flow continues through a culvert under Little Neck Road and then continues another 0.20 miles where the wetland abuts the Little Ogeechee River.

Wetlands A, D and G are located on the western side of the project review area. These wetlands all join and are part of the same wetland system off site to the south of the project review area. The wetlands abut to a relatively permanent water (RPW), an Unnamed Tributary to the Ogeechee River (Wetland A ties into a previously delineated wetland approved under SAS-2018-00685. Additionally, the RPW-UNT was identified and reviewed under the same project and identified as a canal). This UNT continues southwest for 0.30 miles where is flows through a culvert under Fort Argyle Road and continues into a wetland system for 1.06 miles and abuts the Ogeechee River (TNW).

Wetland E and H are located on the eastern side of the project review area and flow west. These two wetlands flow offsite and join together as part of the same wetland system. The wetlands continue southwest and abut the same system referenced above for Wetlands A, D and G. Essentially all these wetlands (Wetlands A, D, E, G and H) are part of the same wetland system.

6. SECTION 10 JURISDICTIONAL WATERS⁵: Describe aquatic resources or other features within the review area determined to be jurisdictional in accordance with Section 10 of the Rivers and Harbors Act of 1899. Include the size of each aquatic resource or other feature within the review area and how it was determined to be jurisdictional in accordance with Section 10.⁶

⁵ 33 CFR 329.9(a) A waterbody which was navigable in its natural or improved state, or which was susceptible of reasonable improvement (as discussed in § 329.8(b) of this part) retains its character as "navigable in law" even though it is not presently used for commerce, or is presently incapable of such use because of changed conditions or the presence of obstructions.

⁶ This MFR is not to be used to make a report of findings to support a determination that the water is a navigable water of the United States. The district must follow the procedures outlined in 33 CFR part 329.14 to make a determination that water is a navigable water of the United States subject to Section 10 of the RHA.

SAS-OD-RC SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

- 7. SECTION 404 JURISDICTIONAL WATERS: Describe the aquatic resources within the review area that were found to meet the definition of waters of the United States in accordance with the pre-2015 regulatory regime and consistent with the Supreme Court's decision in *Sackett*. List each aquatic resource separately, by name, consistent with the naming convention used in section 1, above. Include a rationale for each aquatic resource, supporting that the aquatic resource meets the relevant category of "waters of the United States" in the pre-2015 regulatory regime. The rationale should also include a written description of, or reference to a map in the administrative record that shows, the lateral limits of jurisdiction for each aquatic resource, including how that limit was determined, and incorporate relevant references used. Include the size of each aquatic resource in acres or linear feet and attach and reference related figures as needed.
 - a. TNWs (a)(1): N/a
 - b. Interstate Waters (a)(2): N/a
 - c. Other Waters (a)(3): N/a
 - d. Impoundments (a)(4): N/a
 - e. Tributaries (a)(5): N/a
 - f. The territorial seas (a)(6): N/a

Name of Aquatic Resource	Size (in acres)	Contiguous with or abutting? If so, list water	Describe continuous surface connection
Wetland A	27.01	Yes, abutting to	 Wetland G is located to the southwest of Wetland A. Wetland G continues off site to the south where it connects to Wetland A and these two wetlands are part of the same wetland system. Wetland A flows to the south of the project area and continues offsite where it abuts to a relatively permanent water (RPW), an Unnamed Tributary to the Ogeechee River (Wetland A is part of a previously delineated wetland approved under SAS-2018-00685. Additionally, the RPW-UNT was identified and reviewed under the same project and identified as a canal). This UNT continues southwest for 0.30 miles where its flows through a culvert under Fort Argyle Road and continues into a wetland system for 1.06 miles and abuts the Ogeechee River (TNW).
Wetland G	4.03	Ogeechee River	

g. Adjacent wetlands (a)(7):

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

Wetland B	14.6	Yes, abutting to Little Ogeechee River	Wetland B continues to flow north off site where it connects to a larger wetland system and continues to flow east for 0.5 miles where it flows through a culvert under a road crossing and then continues to flow east for 1.15 miles where the wetland and its flow continues through a culvert under Little Neck Road and then continues another 0.20 miles where the wetland abuts the Little Ogeechee River.
Wetland D	14.3	Yes, abutting to the Ogeechee River	Wetland D has an existing at grade logging road built through the wetland. There are two locations where the road goes through the wetland. The road width between the two wetland crosses ranges from 7' to 13'. Based on the information provided in the wetland delineation report and the best available desktop information, the wetland to the north and south of the access road is palustrine forested wetlands with similar vegetation. USDA-NRCS Web Soil Survey soils maps indicate similar hydric soils throughout the area in question. Additionally, surface water is seen downslope of the road and coming out from underneath the southern edge of the road indicating flow from the upslope portion of the wetland. Topography and elevation maps do not show any elevation change between the two wetlands along the access road. This information indicates that these wetlands are functioning as one wetland system.
			Wetland D flows to the south of the project area and continues offsite where it abuts to a relatively permanent water (RPW), an Unnamed Tributary to the Ogeechee River (Wetland A is part of a previously delineated wetland approved under SAS-2018-00685. Additionally, the RPW-UNT was identified and reviewed under the same project and identified as a canal). This UNT continues southwest for 0.30 miles where its flows through a culvert under Fort Argyle Road and continues into a wetland system for 1.06 miles and abuts the Ogeechee River (TNW). Wetland A and D are part of the same wetland system
Wetland E	29.08	Yes, abutting to the Ogeechee River	south of the project area. Wetlands E has an existing at grade logging road through the wetland. There are two locations where the road goes through the wetland. The road width between the two wetland crosses ranges from 7' to 13'. Based on the information provided in the wetland delineation report, the wetland to the north and south of the access road is palustrine forested wetlands with similar vegetation. USDA-NRCS Web Soil Survey soils maps indicate similar hydric soils throughout the area in question. Inundation can be seen in some aerial photography (surface water can be seen in aerial imagery in 1999, 2003 and 2020). Topography and elevation maps do not show any elevation change between the two wetlands along the access road. Due

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

			to the road not resulting in fill placement or upgrade and changing elevations, the road crossings at these two locations indicate that these wetlands are functioning as one wetland.
			Wetland E continues southwest offsite and abuts an UNT to the Ogeechee River (an RPW). This UNT continues southwest for 0.30 miles where it flows through a culvert under Fort Argyle Road and continues into a wetland system for ~1.06 miles where it abuts the Ogeechee River (TNW).
Wetland H	3.15	Yes, abutting to the Ogeechee River	Wetland H is located east of wetland E. Wetland H flows south off the property and continues flowing south where it eventually connects to Wetland E above. Wetland H and Wetland E are functioning as one wetland system. Wetland H was previously delineated and approved under project number SAS-2004-13640 on 12/1/2016 (under this project Wetland H was referred to as Wetland A). Wetland H follows the same flow path to the Ogeechee River as outlined above for Wetland E's flow path to the Ogeechee River.

8. NON-JURISDICTIONAL AQUATIC RESOURCES AND FEATURES

- a. Describe aquatic resources and other features within the review area identified as "generally non-jurisdictional" in the preamble to the 1986 regulations (referred to as "preamble waters").⁷ Include size of the aquatic resource or feature within the review area and describe how it was determined to be non-jurisdictional under the CWA as a preamble water. N/a
- b. Describe aquatic resources and features within the review area identified as "generally not jurisdictional" in the *Rapanos* guidance. Include size of the aquatic resource or feature within the review area and describe how it was determined to be non-jurisdictional under the CWA based on the criteria listed in the guidance. N/a
- c. Describe aquatic resources and features identified within the review area as waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of CWA. Include the size of the waste treatment system within the review area and describe how it was determined to be a waste treatment system. N/a
- d. Describe aquatic resources and features within the review area determined to be prior converted cropland in accordance with the 1993 regulations (reference

⁷ 51 FR 41217, November 13, 1986.

SAS-OD-RC SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of Sackett v. EPA, 143 S. Ct. 1322 (2023), SAS-2021-01042

2.b.). Include the size of the aquatic resource or feature within the review area and describe how it was determined to be prior converted cropland.

- e. Describe aquatic resources (i.e., lakes and ponds) within the review area, which do not have a nexus to interstate or foreign commerce, and prior to the January 2001 Supreme Court decision in "*SWANCC*," would have been jurisdictional based solely on the "Migratory Bird Rule." Include the size of the aquatic resource or feature, and how it was determined to be an "isolated water" in accordance with *SWANCC*. N/a
- f. Describe aquatic resources and features within the review area that were determined to be non-jurisdictional because they do not meet one or more categories of waters of the United States under the pre-2015 regulatory regime consistent with the Supreme Court's decision in *Sackett* (e.g., tributaries that are non-relatively permanent waters; non-tidal wetlands that do not have a continuous surface connection to a jurisdictional water).

Name of excluded	Size (in	Type of resource generally not jurisdictional
Wetland AA	0.12	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland BB	0.10	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland CC	0.05	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland J	1.42	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland K	1.11	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland L	0.91	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

Wetland M	0.77	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland O	0.56	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland P	0.50	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland Q	0.44	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland R	0.37	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland S	0.36	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland T	0.30	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland U	0.26	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland V	0.23	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland W	0.21	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland X	0.20	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

Wetland Y	0.18	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.
Wetland Z	0.14	Wetland is a depressional wetland surrounded by uplands. Review of lidar and contour elevations indicates that uplands around the wetland are higher in elevation. There is no discrete feature that would constitute a continuous surface connection to a jurisdictional water.

- 9. DATA SOURCES. List sources of data/information used in making determination. Include titles and dates of sources used and ensure that information referenced is available in the administrative record.
 - a. 1. Date of Office (desktop review): March/April 2024
 - 2. Date(s) of Field Review (if applicable): Applicant site visit 3/20/2024
 - b. Data sources used to support this determination (included in the administrative record).
 - Aquatic Resources delineation submitted by, or on behalf of, the requestor: Delineation Report Submitted with AJD submittal on January 12, 2024
 - ☑ Wetland field data sheets prepared by the Corps: Provided by applicant dated 11/16/2021
 - Photographs: Applicant Site Visit photos from 3/20/2024
 - Aerial Imagery: aerial provided from applicant 2015 Ortho Aerial, dated 11/29/2021, Google Earth Aerial 1993,
 - LIDAR: maps generated from ARCPRO and data from NOAA. Lidar and Lidar Hillshade
 - ☑ USDA NRCS Soil Survey: provided by applicant; NRCS Soil Map Hill Durrence Tract dated 11/29/2021
 - ☑ USFWS NWI maps: National Wetlands Inventory dated 11/29/2021
 - ☑ USGS topographic maps: USGS Topographic Map dated 11/29/2021
 - ☑ USGS NHD data/maps: NHD
 - Section 10 resources used: SAS Section 10 List
 - Antecedent Precipitation Tool Analysis: 3/24/2024
 - ☑ Other sources of Information: Wetland B Flowpath Map, Wetlands A, D, G and H Flowpath Map

10. OTHER SUPPORTING INFORMATION. N/A

11.NOTE: The structure and format of this MFR were developed in coordination with the EPA and Department of the Army. The MFR's structure and format may be subject to future modification or may be rescinded as needed to implement

SUBJECT: Pre-2015 Regulatory Regime Approved Jurisdictional Determination in Light of *Sackett v. EPA*, 143 S. Ct. 1322 (2023), SAS-2021-01042

additional guidance from the agencies; however, the approved jurisdictional determination described herein is a final agency action.

Featu	ire	Size (Acres)	Featu	Size (Acres)	
Wetland	Α	27.01	Wetland	R	0.37
Wetland	AA	0.12	Wetland	S	0.36
Wetland	В	14.6	Wetland	Т	0.3
Wetland	BB	0.1	Wetland	U	0.26
Wetland	CC	0.05	Wetland	V	0.23
Wetland	D	14.3	Wetland	W	0.21
Wetland	E	29.08	Wetland	X	0.2
Wetland G		4.03	Wetland	Y	0.18
Wetland	Н	3.15	Wetland	0.14	
Wetland	J	1.42	TOTA	AL .	100.39
Wetland	К	1.11	Upland	Α	182.03
Wetland	L	0.91	Upland	В	4.7
Wetland	M 0.77		Upland	С	27.97
Wetland	0	0.56	Upland	D	3.62
Wetland	Р	0.5	TOTA	222.79	
Wetland Q		0.44	0.44 PROJECT AREA		323.18

26

В

Z

К

A

X

P

AA

													i
Point Y	X	Point	Y X Point Y	X	Point	Y X Point	Y X	Point Y X Poir	t Y X	Point Y X Point	Y X Po	pint Y X	
0 32.02061199	3 -81.2735702	90	32.01566987 -81.2823317 180 32.01331 32.01556987 -81.2823317 180 32.01331	671 -81.2908456	270	32.01654908 -81.2889036 360	32.01820356 -81.2787623	450 32.01688768 -81.2759603 540 451 22.01712446 91.2759900 541	32.01824112 -81.2810504	630 32.01422143 -81.2872941 720 631 23.01441797 91.287466 731	32.01097978 -81.2922678 81	10 32.01249006 -81.2919508	
2 32.0158684	1 -81.2759019	92	32.01554871 -81.2819943 182 32.0131	146 -81.2905538	272	32.016611 -81.2884492 362	32.01856671 -81.2788661	451 32.01735084 -81.276151 542	32.01826877 -81.2807891	632 32.01420105 -81.2876895 722	32.01076924 -81.2922449 81	112 32.01233477 -61.2910401	
3 32.0150949	-81.276961	93	32.01547246 -81.2817437 183 32.01306	565 -81.2904962	273	32.01639532 -81.2883856 363	32.01876491 -81.2790416	453 32.017466 -81.276243 543	32.01808356 -81.2807975	633 32.01427565 -81.2878678 723	32.01068726 -81.2923261 8	13 32.01228924 -81.2915385	
5 32.0151200	8 -81,2771384	94	32.01531016 -81.2816636 184 32.01300	144 -81.2904336	275	32.0162.2023 -81.2882418 364 32.01613871 -81.2881042 365	32.018/4988 -81.2/92248	454 32.0173197 -81.280/914 544	32.0180/241 -81.28066/5	634 32.0144616 -81.2879438 724 635 32.01466249 -81.2880854 725	32.01061349 -81.2923077 8	14 32.01214367 -81.2914493 15 32.01208416 -81.2913246	
6 32.0150509	7 -81.2771981	96	32.01499162 -81.2817238 186 32.01287	081 -81.2904192	276	32.01622347 -81.2878314 366	32.01845442 -81.2795589	456 32.01748915 -81.2807646 546	32.01827539 -81.2763905	636 32.01488689 -81.2882695 726	32.01099635 -81.2946303 81	16 32.01209992 -81.2911918	
7 32.0149534	2 -81.2771547	97 98	32.01478994 -81.2817844 187 32.01286 32.01462502 -81.2819197 188 32.01286	233 -81.2905798 487 -81.2907021	277	32.01639667 -81.2878905 367 32.01653791 -81.2879634 368	32.01831123 -81.2796749 32.01819833 -81.279578	457 32.0174012 -81.2809997 547 458 32.01741209 -81.2811208 548	32.01840968 -81.2762291	637 32.01509891 -81.2884109 727 638 32.01527474 -81.2884303 728	32.01204434 -81.2931348 81 32.01204118 -81.2931203 81	117 32.0120118 -81.2911009 118 32.01192396 -81.2909559	
9 32.0135729	-81.2790634	99	32.01443526 -81.2819218 189 32.01289	026 -81.2908399	279	32.01662507 -81.2880814 369	32.01810453 -81.2793905	459 32.01740196 -81.2812926 549	32.01861876 -81.2763189	639 32.01544008 -81.2885374 729	32.01201686 -81.2930217 81	19 32.01185185 -81.290842	
10 32.0136932	-81.2792267 8 -81.279361	100	32.01441415 -81.2821045 190 32.01297 32.01442773 -81.2823417 191 32.01297	152 -81.2908633 944 -81 2909512	280	32.01672625 -81.2881743 370 32.01688115 -81.2882701 371	32.01780789 -81.2793401	460 32.01741569 -81.2814065 550 461 32.01748223 -81.2815014 551	32.01860385 -81.2764186	640 32.01545892 -81.2887246 730 641 32.01545257 -81.2888834 731	32.01202101 -81.292921 82	20 32.01179651 -81.2907487 21 32.01178132 -81.2907174	
12 32.01397256	6 -81.2795449	102	32.01454755 -81.2824709 192 32.01304	912 -81.2910387	282	32.01704294 -81.2882626 372	32.01767887 -81.2793356	462 32.017619 -81.2816314 562	2 32.01563078 -81.2893434	642 32.01560455 -81.2889242 732	32.01182492 -81.292803 82	22 32.01213538 -81.2930048	
13 32.0140288	3 -81.2797539	103	32.01457501 -81.2826214 193 32.01311 32.01451414 -81.2827654 194 32.01321	493 -81.2910959	283	32.01721146 -81.2882251 373 32.01732802 -81.2884467 374	32.01764705 -81.2794637	463 32.01760899 -81.2817041 553	32.01543708 -81.289481	643 32.01567777 -81.2891396 733 644 32.01479768 -81.2845698 734	32.01173816 -81.2927671 82	23 32.01283811 -81.2938097 24 32.01219683 -81.2947608	
15 32.0142932	1 -81.2799256	105	32.01440007 -81.2828327 195 32.01325	766 -81.2913052	285	32.01747848 -81.2882441 375	32.01730738 -81.2795708	465 32.01737644 -81.2818083 555	32.01535681 -81.2894061	645 32.01468386 -81.2843937 735	32.01180078 -81.2925878 82	25 32.01223956 -81.2949386	
16 32.01447617	7 -81.2799531	106	32.01428411 -81.2826911 196 32.01330 22.01411799 91.2929026 107 22.01330	016 -81.2914292	286	32.01765586 -81.2883099 376 22.01772014 91.2883755 377	32.01715946 -81.2798422	466 32.01733927 -81.281936 556	32.01543649 -81.2892185	646 32.01475247 -81.2842333 736 647 22.01479451 91.284156 727	32.01185217 -81.2924989 82	26 32.01231238 -81.2950198	
18 32.0149226	5 -81.2796986	5 108	32.01404413 -81.2830172 198 32.01344	405 -81.291665	288	32.0194339 -81.2796425 378	32.01685602 -81.2796591	468 32.01724325 -81.2822894 558	32.01528646 -81.2890513	648 32.0148655 -81.2841242 738	32.01196363 -81.2923715 8	28 32.01214889 -81.2952498	
19 32.0150717	2 -81.2797287	109	32.01395029 -81.2830749 199 32.01351	953 -81.2917503	289	32.01938462 -81.2796332 379	32.01671527 -81.2797223	469 32.01734242 -81.2823899 559	32.01520168 -81.2891489	649 32.01501336 -81.2840703 739 650 23.0154422 91.2044753 740	32.01186003 -81.2923193 82	29 32.01209208 -81.2952163	
21 32.0151608	2 -81.280007	111	32.0137089 -81.2827935 201 32.01376	731 -81.2918994	291	32.01925669 -81.2794541 381	32.01645248 -81.279847	470 32.01734428 -81.2828024 561	32.01505962 -81.2894627	651 32.01517067 -81.28425 741	32.011/4302 -81.2922/02 83	31 32.01174007 -81.2954382	
22 32.0153598	4 -81.280116	112	32.01366215 -81.2826109 202 32.01384	827 -81.2920059	292	32.01909441 -81.2794002 382	32.01643863 -81.280022	472 32.01719184 -81.2827322 562	32.01499923 -81.2896195	652 32.01511907 -81.2844268 742	32.01157362 -81.2920788 83	32 32.01229257 -81.2951384	10 1
23 32.0156000	6 -81.28015/5 7 -81.280368	113	32.01350/24 -81.2826665 203 32.01396 32.01335203 -81.2828387 204 32.01407	385 -81.2920466	293 .	32.01906035 -81.2792386 383 32.0190958 -81.2791371 384	32.01650953 -81.28014	4/3 32.01/0904 -81.282/1/2 563 474 32.0168763 -81.2827762 564	32.01489168 -81.2895841	653 32.01500/23 -81.2845151 /43 654 32.01493495 -81.2846364 744	32.01142983 -81.29202/1 8.	33 32.01234059 -81.2950807 34 32.01242891 -81.2951354	
25 32.0156057	7 -81,2804386	115	32.0133004 -81.2830459 205 32.0141	324 -81.2921082	295	32.01922761 -81.2791734 385	32.01663882 -81.2803287	475 32.0167252 -81.2826618 565	32.01490417 -81.2896613	655 32.01485575 -81.282953 745	32.01117042 -81.2920846 83	35 32.01253705 -81.2951238	
26 32.0154876 27 32.0154195	2 -81,2805042	116 117	32.01321412 -81.2831921 206 32.01419 32.01323581 -81.283211 207 32.01430	652 -81.2921196 853 -81.2921778	296 : 297 :	32.01928631 -81.2793076 386 32.01933927 -81.2794387 387	32.01675387 -81.280288 32.01674468 -81.2801528	4/6 32.01664089 -81.2825715 566 477 32.01648073 -81.2826925 567	32.01498568 -81.2897176 32.01491212 -81.2898756	656 32.01484643 -81.282736 746 657 32.0149305 -81.2826061 747	32.01116067 -81.291918 83 32.01114202 -81.2918078 83	36 32.01270577 -81.2951904 37 32.01284244 -81.2952559	
28 32.0152800	4 -81.2805751	118	32.01422251 -81.2840916 208 32.01440	139 -81.2922165	298	32.01940111 -81.2795115 388	32.01681784 -81.2801149	478 32.01635485 -81.282894 566	32.01491596 -81.2900767	658 32.01501678 -81.2826314 748	32.01107804 -81.2916608 83	38 32.01297784 -81.2953818	
29 32.0153095	5 -81.2804521	119	32.01278618 -81.2860179 209 32.01446 32.01290817 -81.2860179 210 22.01446	417 -81.2922595	299	32.01945674 -81.2795248 389 32.01995582 -81.2758951 200	32.01696925 -81.2801191	479 32.01631961 -81.2831763 569 480 32.01638262 -81.2831763 569	32.01483991 -81.2902073	659 32.01511691 -81.2826925 749 660 32.01515771 -81.2929421 750	32.01317817 -81.2969859 83	39 32.01312685 -81.2954939 40 32.01321342 -81.2956421	5
31 32.0150047	8 -81.2805105	5 121	32.01297938 -81.2859021 211 32.01458	889 -81.292242	301	32.01990795 -81.2760124 391	32.01718601 -81.2800184	481 32.01641639 -81.2836093 571	32.01459662 -81.2902376	661 32.01509988 -81.2829988 751	32.01329645 -81.2969203 84	41 32.01332594 -81.2957269	l i i i i i i i i i i i i i i i i i i i
32 32.0149564	3 -81.28037	122	32.01308726 -81.2858109 212 32.0147	45 -81.2923478	302	32.01964386 -81.2761793 392	32.01725217 -81.2800664	482 32.01635995 -81.2837977 572	32.01460922 -81.2903858	662 32.0149989 -81.2830459 752 653 23.014998790 91.2830459 752	32.01337999 -81.2968319 84	42 32.01337929 -81.2958246	σ
34 32.0146/92	7 -81.2803574	123	32.0132073 -81.280995 213 32.01483	311 -81.29251	303 .	32.01965226 -81.2762065 394	32.01733224 -81.280559	484 32.01626776 -81.2840953 574	32.0145/03 -81.290539	664 32.01280686 -81.2810452 754	32.01341779 -81.2970254 84	43 32.01339767 -61.250849	E
35 32.0146403	9 -81.280259	125	32.01358881 -81.2860653 215 32.01499	897 -81.2925756	305	32.01962128 -81.2759857 395	32.01736882 -81.2806981	485 32.01614581 -81.2841218 575	32.01425419 -81.2904851	665 32.01283563 -81.2809304 755	32.0133154 -81.2971 84	45 32.01311419 -81.295921	03
30 32,0144630	4 -81.2805281	120	32.01373833 -81.2864258 217 32.01514	018 -81.2920029	300 .	32.01960012 -81.2756475 397	32.01/08149 -81.280915	480 32.01611/405 -81.28425/4 5/0	32.01430848 -81.29029/9	667 32.01297952 -81.28071 756 667 32.01297952 -81.2806086 757	32.013.29484 -81.2971114 84	440 <u>32.01236854</u> -81.2589/6 147 <u>32.01283158</u> -81.2958521	e
38 32.0141757.	2 -81.2805085	128	32.01376216 -81.286558 218 32.01524	064 -81.2928102	308	32.01964993 -81.2755454 398	32.01680605 -81.2807902	488 32.01601336 -81.2842631 578	32.01430437 -81.2899528	668 32.01316649 -81.2806711 758	32.01495809 -81.2969583 84	48 32.01267136 -81.295817	3
39 32.0138998 40 32.0138310	6 -81.2804655 7 -81.2802952	129	32.01353458 -81.2868116 219 32.01531 32.01352194 -81.2868246 220 32.01534	147 -81.2927109 239 -81.2926197	309 310 310	32.01966463 -81.275422 399 32.01976077 -81.2753952 400	32.01660411 -81.2808723 32.01649595 -81.2807387	489 32.0159655 -81.2840956 579 490 32.01605964 -81.2839571 580	32.01412786 -81.289805 32.01389308 -81.2896494	669 32.01327973 -81.28081 759 670 32.01333687 -81.2810593 760	32.01475244 -81.2969555 84	449 32.01252995 -81.295728 950 32.01240873 -81.295636	S
41 32.01381108	5 -81.2800476	5 131	32.01332455 -81.2869745 221 32.01540	136 -81.2926942	311	32.01983442 -81.2753787 401	32.01631199 -81.2806971	491 32.01616732 -81.283771 581	32.0138559 -81.290014	671 32.01327519 -81.2811129 761	32.0145268 -81.2967458 85	51 32.01226699 -81.2955309	d d
42 32.013//6/	7 -81.2/98002	132	32.01306302 -81.2865986 222 32.0154 32.01297953 -81.2864267 223 32.01559	/89 -81.292/943 871 -81.2928388	312 313	32.0199/30/ -81.2/53/84 402 32.02010806 -81.2754958 403	32.01623121 -81.2805299	492 32.01623428 -81.2836235 582	32.013/4936 -81.2900942	6/2 32.01313664 -81.2811328 /62 673 32.01056455 -81.2923036 763	32.01448387 -81.2966567 8	52 32.01220664 -81.254196 53 32.0121896 -81.2953064	G
44 32.0135626	1 -81.2796239	134	32.0126995 -81.286263 224 32.01569	719 -81.2928163	314	32.02006949 -81.2756155 404	32.01616375 -81.2801623	494 32.01610602 -81.2833266 584	32.01369415 -81.289854	674 32.00991268 -81.2931533 764	32.01429053 -81.2965366 88	54 32.01223909 -81.2952121	
45 32.0134278	7 -81.2795133 8 -81.2793996	135 136	32.01263194 -81.2862247 225 32.01574 32.01173854 -81.2874228 226 32.01575	213 -81.2929058	315 316	32.02000966 -81.2757675 405 32.01963095 -81.2747991 406	32.01601827 -81.2800739	495 32.01601319 -81.2833334 585 496 32.01591013 -81.2834144 586	32.01360081 -81.2897446	675 32.01016694 -81.2935745 765 676 32.01029213 -81.2937668 766	32.01430305 -81.2964181 8	65 32.01304567 -81.2943234 66 32.012977 -81.2941639	
47 32.0133398	4 -81.2793641	137	32.01180326 -81.2874403 227 32.01584	821 -81.2930765	317	32.01952312 -81.2748686 407	32.01595156 -81.2796689	497 32.01582205 -81.2833941 587	32.0135732 -81.2894327	677 32.01042252 -81.2939544 767	32.01444591 -81.2963381 85	57 32.01301941 -81.2939214	
48 32.01206090	6 -81.2811151	138	32.0119251 -81.2874306 228 32.01587 32.01214/280 -91.2875882 229 32.01593	247 -81.2931421	318	32.01943985 -81.2749094 408 32.01929428 -81.2749837 409	32,01581513 -81,279551	498 32.01582374 -81.2833352 588	32.01348229 -81.2893851	678 32.01052459 -81.2940905 768 679 32.01052001 -81.2940905 768	32.01448365 -81.2962803 85	58 32.01310426 -81.2937655	
50 32.0122681	5 -81.2811017	140	32.01232161 -81.2878008 230 32.01602	363 -81.2932328	320	32.01918121 -81.2749275 410	32.01545883 -81.2797608	500 32.01591978 -81.2831077 590	32.01310205 -81.2893182	680 32.01064813 -81.2942413 770	32.01464968 -81.2960287 86	60 32.01333101 -81.2936922	
51 32.0124465	-81.2811586	141	32.01208834 -81.2879424 231 32.01614 22.011999 91.2899571 222 23.0162	101 -81.2932662	321	32.0191805 -81.2747843 411	32.01532232 -81.2796243	501 32.01592794 -81.2829257 591 502 32.01600607 91.2827500 502	32.01295914 -81.289119	681 32.01064928 -81.2942389 771 692 32.01065432 91.3041509 772	32.0146953 -81.2959329 86	61 32.01330713 -81.2939624	
53 32.0126989	1 -81.2813032	143	32.01167898 -81.2881362 233 32.01627	956 -81.2933813	323	32.01937103 -81.2745885 413	32.01544442 -81.2792339	503 32.01608749 -81.2826235 593	32.01274485 -81.2887621	683 32.01059879 -81.294062 773	32.01463387 -81.2956919 86	63 32.0132221 -81.2941083	σ
54 32.0126959	8 -81.2814503	144	32.01173885 -81.2878338 234 32.01641	113 -81.298378	324	32.01953177 -81.2745278 414	32.0154639 -81.2790849	504 32.01600825 -81.2825309 594 505 23.01501547 91.2824500 505	32.0125796 -81.2885804	684 32.01062021 -81.2939319 774 695 23.01052010 91.2039431 775	32.01461065 -81.2955614 86	64 32.01319521 -81.2942139	L GI
56 32.0128323	8 -81.281686	i 146	32.01157379 -81.2876437 236 32.01657	781 -81.2935326	326	32.01955176 -81.276742 416	32.01556947 -81.2785813	506 32.01603034 -81.2822846 596	32.01230048 -61.2883092 32.01218657 -81.2883092	686 32.01052239 -81.2936904 776	32.01481145 -81.2954292 86	66 32.01508204 -81.2967888	eo
57 32.01300590	3 -81.2818533	8 147	32.01112409 -81.2882468 237 32.01664	962 -81.2935633	327	32.01962704 -81.2766147 417	32.01561102 -81.2783857	507 32.0162483 -81.28199 597	32.01201031 -81.2882226	687 32.01043216 -81.2935842 777	32.0147854 -81.295302 86	167 32.01524336 -81.2965683	6
59 32.0134226	1 -81.2819071	140	32.01177818 -81.289246 239 32.01696	884 -81.2923436	329	32.01985225 -81.2766262 419	32.01589432 -81.2781962	509 32.0165609 -81.2815213 599	32.01205479 -81.2880113	689 32.01033436 -81.2932415 779	32.01473514 -61.2951739 80	69 32.01625371 -81.2960269	IT IT
60 32.0136276	4 -81.281973	150	32.01181917 -81.2892546 240 32.01678	656 -81.2923308	330	32.01992628 -81.2767248 420	32.01609908 -81.2782726	510 32.01674249 -81.2813016 600	32.0122381 -81.2878839	690 32.01039689 -81.2931111 780	32.01474634 -81.2949207 87	70 32.01618328 -81.2960262	ino
62 32.0140210	2 -81.281960	151	32.01203731 -81.2893899 242 32.01656	908 -81.2923845	332	32.01992332 -81.2769943 421 32.01984192 -81.2769943 422	32.01625764 -81.2781821	512 32.01708976 -81.2809825 602	32.0124101 -81.2878532	692 32.01043048 -81.2920144 782	32.01495534 -81.2948652 87	32.01605326 -81.2959706	Ŭ
63 32.0141597	6 -81.2817316	153	32.01215849 -81.2894943 243 32.01664	531 -81.292307	333	32.01968357 -81.2769597 423	32.0162978 -81.2780539	513 32.01640688 -81.2867373 603	32.01265922 -81.2880772	693 32.0106324 -81.2931233 783	32.01491162 -81.2945923 87	73 32.01596897 -81.296007	am
65 32.0142104	-81.281004	104 155	32.01224004 -81.2890218 244 32.01004	712 -81.2920743	334 .	32.01900887 -81.2708748 424 32.01902991 -81.280355 425	32.01629347 -81.277752	514 32.01669856 -81.2866786 605	32.01281349 -81.2882191	695 32.01066796 -81.2932406 784 695 32.01066796 -81.2933417 785	32.01489603 -81.2944251 8/	75 32.0156565 -81.2959442	Ê.
66 32.01435912	2 -81.281213	156	32.01249696 -81.289679 246 32.01644	122 -81.2919974	336	32.01908628 -81.280432 426	32.0164062 -81.2778833	516 32.01685699 -81.2867687 600	32.01307688 -81.2884842	696 32.01070981 -81.293485 786	32.01475261 -81.294148 8	76 32.01570833 -81.295866	ha
68 32.0144065	4 -81.28099/	15/	32.01249530 -81.2898261 247 32.01645 32.01260168 -81.2898335 248 32.01637	052 -81.2918918	337 .	32.01906327 -81.2806942 427 32.01895323 -81.2806948 428	32.0165649/ -81.277938/ 32.01674164 -81.277979	517 32.01703223 -81.2867224 60/ 518 32.01717982 -81.2867724 608	32.01318096 -81.2886838	697 32.0108334 -81.2934045 787 698 32.01093698 -81.293514 788	32.01456628 -81.294190/ 8/	377 32.01564761 -81.258103 378 32.01553262 -81.2957384	0
69 32.0145827	-81.2808637	159	32.01264219 -81.2898874 249 32.01616	258 -81.2918756	339	32.01882724 -81.2806666 429	32.01684694 -81.2781511	519 32.01707517 -81.2868925 609	32.0133698 -81.2888452	699 32.01104431 -81.2935289 789	32.01437726 -81.2939195 87	79 32.01546818 -81.2957112	
70 32.0146350	6 -81.281054 2 -81.2810452	160 161	32.01277255 -81.2899139 250 32.01614 32.01283865 -81.2899825 251 32.01612	303 -81.2917491 265 -81.2916162	340 341 3	32.01882687 -81.2804791 430 32.01886051 -81.2804382 431	32.01698859 -81.2783343 32.01706143 -81.2783894	520 32.01705651 -81.2870641 610 521 32.01712686 -81.2871706 611	32.01345098 -81.2886807 32.01350602 -81.288559	700 32.01110265 -81.2936078 790 701 32.01119485 -81.2936484 791	32.01428286 -81.2938093 8 32.01421861 -81.2936663 8	80 32.0154145 -81.2956581 81 32.01533465 -81.2956806	
72 32.0149242	5 -81.2809714	162	32.01290173 -81.2900862 252 32.01608	043 -81.2914145	342	32.01870371 -81.2804484 432	32.01717458 -81.2784351	522 32.01698415 -81.2871707 612	2 32.0135736 -81.2885578	702 32.01132194 -81.2936811 792	32.01406582 -81.2935742 88	82 32.0152223 -81.2957797	
73 32.01506118	5 -81.2808902 5 -81.280901	163	32.01296348 -81.2901737 253 32.01594 32.01302363 -81.2902505 254 32.01588	165 -81.2913858 746 -81 2911858	343 344	32.01859315 -81.280416 433 32.01846883 -81.2802866 434	32.01/36835 -81.2/8468	523 32.01686406 -81.28/2169 613 524 32.01678091 -81.2873115 614	32.013/4302 -81.288522/	703 32.01143/31 -81.293/822 /93 704 32.01147992 -81.2937223 794	32.0139/4/5 -81.2934388 8	83 32.01514116 -81.2868305 84 32.01507726 -81.2959339	P P P P P
75 32.0151981	1 -81.2810735	165	32.01310034 -81.2902839 255 32.0157	134 -81.2912352	345	32.01838236 -81.280185 435	32.01726963 -81.2776366	525 32.01660333 -81.287257 615	32.01400011 -81.2881937	705 32.01156484 -81.2936017 795	32.01380247 -81.2931918 8	85 32.01501867 -81.2959884	4 .3
76 32.0152292 77 32.0153604	4 -81.2812921	166 167	32.01320346 -81.2903537 256 32.01558 32.01326781 -81.2904953 257 32.01568	988 -81 2910194	346 347	32.01832809 -81.2801046 436 32.01826013 -81.2801596 437	32.01/2189 -81.2775163	520 32.01640668 -81.2873197 616 527 32.01627538 -81.2871987 617	32.01402889 -81.2879589	700 32.01166388 -81.293439 796 707 32.01175766 -81.2920578 797	32.01359548 -81.2931841 88	80 32.01493829 -81.2960351 87 32.01499111 -81.2961353	200 S S S 80
78 32.0155565	2 -81.2813483	168	32.01341249 -81.2905062 258 32.01554	914 -81.2909723	348	32.01820376 -81.2801203 438	32.01738683 -81.2772667	528 32.01624496 -81.2869799 618	32.01377046 -81.2876819	708 32.01177614 -81.2931204 798	32.01342666 -81.2981052 88	88 32.01478821 -81.2962611	9-2-9-2-
79 32.0157654 80 32.0158756	4 -81.2813782	169	32.0134/86 -81.2906183 259 32.01563 32.01356928 -81.2907256 260 32.01545	3/7 -81.2906786 611 -81.2904405	349 350	2.01822156 -81.280009 439 2.01838852 -81.2798824 440	32.01/51595 -81.2773306 32.01756939 -81.2774538	529 32.01637562 -81.2868636 619 530 32.01740052 -81.2852796 620	32.01356805 -81.2874068	709 32.011/1129 -81.2929518 799 710 32.01163323 -81.2929801 900	32.01328775 -81.2930141 88	89 32.014/3968 -81.2963559 90 32.014/8884 -81.2965346	
81 32.0159078	-81.2817446	5 171	32.01361593 -81.2908835 261 32.01549	066 -81.2903375	351	32.01849647 -81.2800071 441	32.01750747 -81.2775996	531 32.01751406 -81.2853913 621	32.0133856 -81.2869417	711 32.01154051 -81.2927788 801	32.01324612 -81.2927384 8	91 32.01485714 -81.2966271	
82 32.0160376 83 32.0161829	-81.2818308 5 -81.281819	172	32.01367042 -81.291021 262 32.01568 32.01374065 -81.2911222 263 32.01568	527 -81.2902562 338 -81 2899683	352 353	32.01856928 -81.2800694 442 32.01865889 -81.2802343 443	32.01733281 -81.2763643	532 32.01748041 -81.2855412 622 533 32.01731535 -81.2855908 622	32.01354008 -81.2868202	/12 32.01148622 -81.2926421 802 713 32.01145903 -81.2926401 903	32.01315719 -81.2926413 85 32.01306014 -81.2925383 90	82 32.01490723 -81.296711 93 32.01229725 -81.2900449	
84 32.01620290	3 -81.2818919	174	32.01376972 -81.2912341 264 32.01577	044 -81.2896068	354	32.01879921 -81.2803001 444	32.01699911 -81.2764814	534 32.01724901 -81.2854463 624	32.01363841 -81.2870883	714 32.01142712 -81.2924869 804	32.01294566 -81.2924863 8	94 32.01158371 -81.2817685	By
85 32.0160566	4 -81.2821413	175 176	32.01369754 -81.2911979 265 32.01580 32.01364234 -81.2911542 266 32.01564	061 -81.2894561 859 -81 2893895	355	32.01891413 -81.2803869 445 32.01768888 -81.2784034 446	32.0168386 -81.2764957	536 32.01731738 -81.2853005 625 536 32.01820285 -81.2906548 626	32.01377795 -81.2872464	715 32.01134366 -81.2924316 805 716 32.01127721 -81.2924316 805	32.01287899 -81.2923587 32.01285375 -81.2923242		oje Da
87 32.0159289	-81.2822639	177	32.0135391 -81.2911512 267 32.01597	818 -81.289169	357	32.01777608 -81.2786191 447	32.01648758 -81.2765302	537 32.01830862 -81.28067 627	32.01391589 -81.2871555	717 32.01121495 -81.2922648 807	32.01272841 -81.2921462		D Sol
88 32.01582915	-81.282385/	178	32.01348833 -81.2910584 268 32.01620 32.01343416 -81.290934 269 32.01642	237 -81.2889773 279 -81 2889694	358	32.01787963 -81.2787346 448 32.01799046 -81.2788597 449	32.01650885 -81.276359	538 32.01830953 -81.2807717 628 539 32.0183016 -81.2809154 620	32.01405332 -81.2870379	/18 32.01115246 -81.2922816 808 719 32.01106084 -81.2922066 909	32.01266232 -81.2920404		Aap ket
00 020101400	01.202425	113	action of 10 01,20004 200 32,01042			2.5175000 01.2100.51 445	01.2101231	01.200104 02	GEVITE1207 -01.20/1102	10 00010007 01.202200 000	01.2010010		E L C V Z