SAVANNAH HARBOR EXPANSION BANK STABILITY REPORT

ANALYSES & REEVALUATION SUMMARY

w/Updates and Comments

28 July 2010

Savannah Harbor Expansion General Bank Stability Report

Table of Contents

Section Pa	age
1.0 Introduction	4
2.0 General	4
3.0 Subsurface Investigation	4
4.0 Analyses Overview	5
5.0 Channel Summaries by Stations	5
5.1 Channel Stations 101+250 through 102+000 (Argyle Island)Results	5
5.2 Channel Stations 97+500 through 101+250 (Kings Island Turning Basin)	5
5.3 Channel Stations 92+500 through 97+500	6
5.4 Channel Stations 89+500 through 91+500. Georgia Side Only	6
5.5 Channel Stations 87+250 through 88+750	7
5.6 Channel Stations 86+000 through 87+500	7
5.7 Channel Stations 77+500 through 79+000, Northeast Side	7
5.8 Channel Stations 75+000 through 76+200	7
5.9 Channel Stations 72+750 through 73+750, Upstream of the COE Engineer Yard	7
5.10 Channel Stations 69+700 through 71+200, North Side	8
5.11 Channel Stations 58+000 to 59+000 (Fort Jackson / CSS Georgia location.)	8
5.12 Channel Stations 49+500 through 52+800	8
5.13 Channel Stations 34+500 through 41+900, LNG Turning Basin	8
5.14 Channel Stations 34+500 through -85+500 (all below 34+500)	9

6.0 Additional Geotechnical Requirements9

Appendices

Appendix A	Boring Logs
Appendix B	Laboratory Data
Appendix C	Maps General
Appendix D	Cross-Section Drawings
Appendix E	Slope Data Input & Output
Appendix F	Maps Acquisition
Appendix G	Inspection Summary
Appendix H	Preliminary Assessment
Appendix I	General Correspondence
Appendix J	Review of Previous Studies

SUMMARY SAVANNAH RIVER SIDE SLOPE STABILITIES SAVANNAH HARBOR EXPANSION PROJECT

1. Introduction

The Savannah District Soils Section (EN-GS) has completed computations, sketches and preliminary drawings regarding channel side slopes for use in preparation of plans and specifications. Computations are based on drilling data, test results from soil samples taken at drilling locations, the 2002 Annual Survey data, hill survey data as requested for specific locations, observation/review of channel side slopes resulting from previous harbor widening and deepening projects, and other information from previous dredging works regarding channel side slope performance. NOTE: References to mean low water (mlw) used herein have since been revised to mean lower low water reference (mllw) for later work. The difference is minor, 0.2 tenths of an inch. Such references have not been changed herein to maintain consistency between drilling logs, survey data, and other information used during analyses.

2..General

a. Channel side slopes historically average approximately 1 vertical on 3 horizontal (1V on 3H) for the Savannah River Inner Harbor and are generally considered the norm within the inner harbor. Areas where possible exceptions might occur have been identified by borings taken during the subsurface investigation program. Other areas of concern have been identified by the Savannah District Planning Division. Addressed in these analyses are the known locations or reaches of problem areas regarding channel side slopes, sloughing of materials, and/or real estate acquisition requirements. Each is discussed separately in the following paragraphs. Areas that are not specifically addressed herein were also reviewed in detail using the proposed channel geometries and the most recent survey/sounding information. Review of these areas indicates the proposed expansion will not have a direct effect on lands above mean low water (mlw) and/or structures located on the river.

b. Specifically not addressed are the effects of time, tide, erosion, wind, rain, ships wake, earthquake, structural deterioration, or any other natural or unnatural forces not directly related to the removal of material by dredging as proposed. Exceptions to this occur only at Federally owned facilities, i.e. the Corps of Engineers (COE) Engineer Yard or other Federally recognized areas or facilities of historical interest. With regard to time, tide, erosion, etc. as stated above, all other real estate properties are considered the responsibility of respective owners, which historically has always been the case.

c. Inspections were performed as a part of obtaining riverbank and structural information within the limits of this project. The data obtained is described and discussed in the trip report written as a Memorandum for Record and dated 06 December 2001. A copy of the report, photographs, and descriptions are included as Appendix G, Inspection Summary.

3. Subsurface Investigation

The U.S. Army Corps of Engineers, Savannah District, has performed a number of subsurface investigations within the project area. Recently, borings have also been performed using contract drillers. Several hundred borings have been drilled within and adjacent to the Savannah Harbor. The majority of these borings were drilled along the north side of the channel for the Savannah Harbor Widening and the Savannah Harbor Deepening projects. These borings were drilled to obtain information necessary for evaluating the in-situ materials within specific areas of the channel for harbor modification projects. The majority of the borings were water-borne. The land-based borings were completed to identify soil materials within the channel side slopes to help determine the most probable channel side slopes resulting for each proposed harbor modification. The investigations have used a variety of methods to obtain subsurface data, including Vibracore, splitspooning, coring, cone penetration tests, and other methods. Standard penetration sampling using a split-barrel sampler was the method most often used. Using this method, a 1-3/8 inch inner diameter standard split barrel sampler was driven through the material using a 140-pound hammer with a 30-inch fall. The sampler was retrieved and the material was described in accordance with the Unified Soil Classification System. Subsurface investigations were performed at selected locations based on the early-proposed revisions to the channel limits. Drilling Logs are located in Appendix A. Standard penetration test borings were performed at the locations indicated on the included maps. See Appendix F. Soil samples were obtained from each boring and selected samples were tested for moisture content, plasticity, soil grain-size distribution, and strength characteristics.

4. Analyses Overview

All slope analyses for the turning basin were performed using the Modified Slope Stability Package with Kansas City Analysis (DGSLOPE) and the computer program UTEXAS3. Both programs were used for original analyses and for the checking and verification of results. Final input data sets and the results are provided separately. Illustrations of cross-sections, slip circles and/or wedge location(s) are provided separately.

5.0. Channel Summaries by Stations

5.1. Channel Stations 101+250 through 102+000 (Argyle Island).

Review and analysis indicate that side slopes after widening should closely match side slopes before dredging. The cross-section sketches indicate expected side slopes after the dredging has been performed. See Appendix C for Maps and Appendix D for Cross Section Drawings. Indications are that the proposed widening will result in the existing top of slope being relocated landward. Specifically, approximately 2.5 acres is expected to be taken above the mean low water (mlw) line. Of the 2.5 acres, approximately 0.3 acre occurs above elevation plus 8.0 mlw. Coordinates of the line that describe the taking limit are shown on the map and do not include any provision for rights-of-way or construction limits. The maps and cross-sections have been reviewed by Coastal Hydraulics Section and appropriate areas were provided to Real Estate for acquisition purposes. Coastal Hydraulics Section can also use for planning and computation of dredge volumes.

5.2 Channel Stations 97+500 through 101+250 (Kings Island Turning Basin).

a. Existing Conditions. Analysis indicates a global or overall factor of safety (FS) against slope failure of 2.2 for the riverbank and dike adjacent to Kings Island Turning Basin. However, for the softer soils located generally within the tidal zone, the calculated factor of safety is approximately 1.1. While the lower FS does not necessarily indicate a local failure problem, the fact that soft soil material occurs in the tidal zone could indicate an ongoing erosion problem due mainly to tidal and wave action. The analyses also indicate that the calculated slope exposed to the river should remain stable on an approximate 1 vertical on 3.2 horizontal slope (1V on 3H). The measured distance from the top of the riverbank to the toe of the Disposal Area 2A dike is approximately 110 feet.

b. Proposed Conditions. In accordance with the proposed widening studies, analyses were performed assuming a new bottom depth for the turning basin of -55 mlw. Assuming the final side slope would be 1V on 3H, the analysis indicates results similar to existing conditions. The overall FS against slope and dike failure was calculated at 1.9. The local factor of safety for the soft area within the tidal zone was calculated at 1.1. The calculated distance remaining from the top of the riverbank measured to the toe of the existing dike is approximately 45 feet. Please note that depending on how the turning basin is dredged and whether or not the slopes are dredged, the bank side slopes could stand somewhat steeper for a short time. However, any materials remaining steeper than the 1V on 3H will likely collapse and fall into the turning basin. Erosion within the tidal zone (soft marsh material) will likely involve the loss of approximately 25 feet between the top of slope and the toe of the existing disposal area dike.

c. Summary. Calculations indicate that dredging within the Kings Island Turning Basin to an elevation of -60 mlw will not adversely affect the embankment stability nor the stability of the Disposal Area 2A dike. The material within a 1V on 3H slope measured from the bottom of the turning basin limits should be included in dredge quantities. Approximately 60 to 80 feet of channel bank measured landward from the top of the existing river slope will likely be lost as a result of dredging to -60 mlw. Coordinates of the line that describe the taking limit are shown on the map and do not include any provision for rights-of-way or construction limits. The map should be reviewed and provided to Real Estate for acquisition purposes prior to beginning the proposed work. Cross-sections will be provided to Coastal Hydraulics Section for their use in planning and computation of dredge volumes.

5.3 Channel Stations 92+500 through 97+500.

The sketch for Station 96+500 indicates a recommended side slope of 1V on 3H. The recommendation is based on review of previously obtained subsurface data, existing side slopes, test results, and comparison with similar channel soil profiles for which DGSLOPE was performed. Cross Section 96+500 was chosen to represent the worst case for the reach suspected as a possible problem area with regard to sloughing of materials. The currently proposed expansion maintains the existing side slope to the new depths to elevation -58 mlw. Provided over-swing of the dredge cutterhead (beyond the channel toe) can be tightly controlled, real estate acquisition should not be required.

5.4 Channel Stations 89+500 through 91+500. Georgia Side Only.

Analysis indicates that a normal channel side slope of 1V on 3H should be used for the reach between 89+500 through 91+500. The currently proposed expansion maintains the existing side slope to the new proposed depth. Provided over-swing of the dredge cutterhead (beyond the channel toe) can be tightly controlled, real estate acquisition should not be required.

5.5 Channel Stations 87+250 through 88+750.

Analysis indicates that a channel side slope of 1V on 3H should be used from the channel bottom to approximately elevation 0 mlw. Above 0 mlw, a side slope of 1V on 4H should be used. The currently proposed expansion maintains the existing channel toe to the new proposed depth. The estimated top of slope occurs at approximately 0 mlw. However, variations in the shoreline may require real estate acquisition. Coordinates for the estimated top of slope are given on the map for this reach.

5.6 Channel Stations 86+000 through 87+500.

Analysis indicates that a channel side slope of 1V on 3H should be used for the reach between 86+000 through 87+500. The currently proposed expansion maintains the existing side slope the to new depths of study defined as elevations -44, -45, -46, -47, and -48 and considers 2 feet of overdepth and 2 feet of squat for each depth. Provided over-swing of the dredge cutterhead (beyond the channel toe) can be tightly controlled, real estate should not be directly impacted. However, variations in the shoreline may require real estate acquisition. Coordinates for the estimated top of slope are given on the map for this reach.

5.7 Channel Stations 77+500 through 79+000, Northeast Side.

Review and analysis indicate that side slopes after deepening should closely match side slopes before dredging. The cross-section sketches indicate expected side slopes after the expansion dredging has been performed. See Appendix D, Cross Section Drawings for sketches. This area was previously within a proposed widener, which was deleted from the WES channel model. However, subsurface information was obtained and a cross-section was setup for analysis if needed, as may be decided later. If a widener does occur in this reach, preliminary analysis indicates the existing Savannah Marine bulkhead may be at risk.

5.8 Channel Stations 75+000 through 76+200.

Review and analysis indicate that side slopes after deepening should closely match side slopes before dredging. The cross-section sketch indicates expected side slope after the expansion dredging has been performed. This area was previously within a proposed widener, which was deleted from the WES channel model. However, subsurface information was obtained and a cross-section was setup for analysis if needed, as may be decided later. If a widener does occur in this reach, preliminary analysis indicates the existing T.I.C. bulkhead may be at risk. 5.9 Channel Stations 72+750 through 73+750, Upstream of the COE Engineer Yard.

Review and analysis indicate that side slopes after deepening should closely match side slopes before dredging. The cross-section sketch indicates expected side slope after the expansion dredging has been performed. This area is not within a proposed widener, however the bank materials are known to contain artifacts of historical interest. Over-swinging of the proposed channel toe could expose such artifacts. Caution is advised through this particular reach with regard to dredging operations.

5.10 Channel Stations 69+700 through 71+200, North Side.

Review and analysis indicate that side slopes after deepening should closely match side slopes before dredging. The cross-section sketch indicates expected side slope after the expansion dredging has been performed. This area was previously within a proposed widener, which was deleted from the WES channel model. However, subsurface information was obtained and a cross-section was setup for analysis if needed, as may be decided later. If a widener does occur in this reach, preliminary analysis indicates a real estate taking of approximately 1.5 acres above 0 mlw, of which 0.7 acre is located above elevation +8.0 mlw. An access easement of approximately 30 feet in width may also be required.

5.11 Channel Stations 58+000 to 59+000 (Fort Jackson / CSS Georgia location.)

a. This reach has typically been excluded from dredging over the past several years to avoid either (1) disturbing the CSS Georgia and/or (2) affecting the structure located at Old Fort Jackson. A review of previous and present channel soundings indicates that where a short section is left higher than the adjacent bottom depths, the higher area will eventually scour to the elevation of the adjacent depths at either end. The CSS Georgia appears to be 'perched' on a stiff layer located near the north toe of the river channel. Disposition of the CSS Georgia is currently being addressed by Planning Division.

b. Plans have been completed for the extended protection of Old Fort Jackson. However, at the present time, protection of Old Fort Jackson is considered an issue separate from the Savannah Harbor Expansion project.

5.12 Channel Stations 49+500 through 52+800, South Channel Training Wall & Southern LNG Pipe Crossing.

a. The proposed widener and new channel toe through this reach is approximately 156 feet southeast of the existing channel toe. It is expected that dredging operations will encounter both rock and timber and/or remnants of the rock and timber cribbing placed during construction of the South Channel Training Wall. Dredging in this area may require special consideration with regard to equipment, i.e. clamshell dredging may be more appropriate than hydraulic cutterhead methods.

b. The LNG pipeline crossing the river bottom at approximate Station 51+000 will need to be addressed before dredging begins. Location will need to be established and relocation may be required.

5.13 Channel Stations 34+500 through 41+900, LNG Turning Basin.

A review of the proposed expansion through the recently completed LNG turning basin indicates minimal impact. Top of slope occurs generally between -42 and -46 mlw elevations and well within the turning basin boundaries.

5.14 Channel Stations 34+500 through -85+500 (all below 34+500).

Top of slope occurs at elevations well below mlw and away from real estate and shorelines. By inspection, taking will not be required.

6. Additional Geotechnical Requirements.

Changes in channel geometry due to deepening, widening, realignment, slope stability, or feature avoidance require re-evaluation of existing data. As channel geometry continues to change, older geotechnical data is no longer adequate to evaluate these changes for a number a reasons. One concern is that there may be an insufficient number of borings located in areas that involve real estate taking or acquisition. Another concern is that older borings, drilled for a much shallower project, were completed at depths that are shallower than proposed project depths. Also, as channels become deeper to accommodate larger vessels, bend wideners are often added in areas that have not been previously investigated. These concerns were considered prior to the performance of the investigations conducted for the re-evaluation of this project. However, as additional changes in channel geometry are identified, these concerns will be re-evaluated and additional subsurface investigations will be required.

APPENDIX A BORING LOGS

BORING LOGS

CS-7
SH-34
SH-102
SH-112
SH-122
SH-127
SH-128
SH-138
SH-149
SH-150
SH-218
SH-373
SH-374
SH-384
SH-385
SH-386
SH-400
SH-401
SH-402
SH-403
SH-404
SH-405
SH-406
SH-406-UD
SH-407
SH-407-UD
SH-408
SH-410
SH-410A
SH-411
SH-412

1	1 21 0 11	-	noie No		<u>S-7</u>
		٤,	1100000	SHEET	
10. SIZE	AND TYPE	OF BIT	1 to COUN	CROOK	SALEIS
II. DATU	M FOR EL	EVATION	SHOWN (TEM or HE	4	
12. MANL	FACTURE	R'S DESIG	NATION OF ORI		
				•	
11 TOT	I NO OF	OVER	DISTURGED	UNDIST	URBED
				: 0	·
				COMPLETE	
		27	APRIL 1973	ZT APRIL	
17. ELE	ATION TO	POFHOL	E 0.0' FM	LW	
19. SIGN		INSPECT	D Sr	11.	
ALS	1 CORE	BOX OR	RAY	ARKS	
	ERY	NO.	(Drilling time, J weathering, et	c., if signific	cant)
WLW.		JAIL		9	ZLOWS
					nE
		I I			iE
					. E
					r E
					J E
					E
					- ' E
	:				ı E
					ΈE
					IF
					ı F
					ĒF
~/		2			.7. F
		-			<i>8</i> E
ELVIE					
-1/12					13
					12
					19 F
		3			32
		-			34
					· · · ·
					36 🖿
					-
					41 E
					44
					46 E
150,00	SHEET	4			- d 9 E
		5	<u>.</u>		
					F
1					
					F
					E
	S: VAI 10. SIZE 11. DATU 12. MANU 13. TOTA 14. TOTA 14. TOTA 14. TOTA 15. ELEX 16. DATU 17. ELEX 18. TOTA 19. SIGNA ALS W/C P FINE	10. SIZE AND TYPE 11. DATUM FOR EL ML W 12. MANUFACTURE FRIME 13. TOTAL NO. OF BURDEN SAMPL 14. TOTAL NUMBER 14. TOTAL NUMBER 15. ELEVATION GR 16. DATE HOLE 17. ELEVATION TO 18. TOTAL CORE R 19. SIGNATURE OF RECOV- ERY O ML W FINE FINE	SURANAL ES ? 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION ML W 12. MANUFACTURER'S DESIG FRILING 314 13. TOTAL NO. OF OVER. BURDEN SAMPLES TAKE 14. TOTAL NUMBER CORE B 15. ELEVATION GROUND WA 16. DATE HOLE 17. ELEVATION TOP OF HOLE 18. TOTAL CORE RECOVERY 19. SIGNATURE OF INSPECT ALS 2 CORE BOX OR RECOV. ERY JA/2 V/C AX AY 2	INSTALLATION SALVANNAH E. 2 HARBOR 10. SIZE AND TYPE OF BIT / 36" ID SPLIN 11. DATUM FOR ELEVATION SMOWN (22M or we ML W 12. MANUPACTURER'S DESIGNATION OF ORILL FRUING 314 13. TOTAL NO. OF OVER. BURDEN SAMPLES TAKEN 14. TOTAL NUMBER CORE BOXES 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER 16. DATE HOLE STARTED 17. ELEVATION TOP OF HOLE O. O' ML 18. SIGNATURE OF INSPECTOR 19. SIGNATURE OF INSPECTOR 19. SIGNATURE OF INSPECTOR 10. JA/C MC MC 10. JA/C MC 11. JAN 11. DATE MOLE 12. MANUPACTURER'S DAY 13. SIGNATURE OF INSPECTOR 14. TOTAL CORE RECOVERY FOR BORING 15. SIGNATURE OF INSPECTOR 16. DATE MOLE 17. ELEVATION TOP OF MOLE O. O' ML 18. SIGNATURE OF INSPECTOR 19. SIGNATURE OF INSPECTOR 19. JA/C MC 10. JA/C 31. JAN 11. JAN 11. JAN 12. JAN 13. JAN 14. JAN 14. JAN 15. SIGNATURE OF INSPECTOR 15. SIGNATURE OF INSPECTOR 16. JA/C 17. ELEVATION JAN 18. SIGNATURE OF INSPECTOR 19. JA/C 10. JA/C 11. JAN 10. JA/C 11. JAN 11. JAN 12. JAN 13. JAN 14. JAN 14. JAN 15. JAN 15. JAN 16. JA/C 17. JAN 17. LINE 18. JAN 18. JAN 19. JA/C 19. JA/C 10. JA/C 10. JA/C 10. JA/C 10. JA/C 11. JAN 10. JA/C 11. JAN 10. JA/C 11. JAN 10. JA/C 11. JAN 11. JAN 11. JAN 12. JAN 13. JAN 14. JAN 15. JAN 15. JAN 16. JAN 17. JAN 17. JAN 18. JAN 19. JAN 1	INSTALLATION 1 S! VUANNAM EC. 2 HARBOR 0F 2 0. SIZE AND TYPE OF BIT / 96 / 0 SPLITSFOON 1. DATUM FOR ELEVATION SHOWN (2000 PORILL <u>MANUFACTURER'S DESIGNATION OF DRILL</u> <u>1. DATUM FOR ELEVATION SHOWN (2000 PORILL</u> <u>1. TOTAL NO. OF OVER.</u> BURDEN SAMPLES TAKEN 5 1. ELEVATION GROUND WATER 1. ELEVATION OF OF HOLE 0.0' MILW 1. TOTAL CORE RECOVERY FOR BORING 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. SIGNATURE OF INSPECTOR 1. SWILL <u>1. TOTAL CORE RECOVERY FOR BORING</u> 1. TOTAL CORE RECOVERY FOR BORING 1. TOTAL CORE RECOVERY FOR BOR

_	LOG (Cont S	heet, (TOP TOP TOP	2. B A	CLOW M	in -	Hole No.	CS 7	
NGS		AND	TURNING			YNAH		HARBOR	of 2 SHEETS	1
TION	DEFTH	LEGEND	CLASSIF	CATION OF	ATERIALS	. % CORE RECOV-	BOX OR	REM	ARKS maser loss. depth of	12
	30			(Description)		T ERY	NO.	weathering, etc	., if signeficant)	1
	30	TIT		<u> </u>				· · · · · · · · · · · · · · · · · · ·	8 BLOWS	+
		TITI				4	- 24		51	E
						12" 7 10 40		- A 200 - 19 4 4 4		E
H4	15 7A		مرد والمنظمة المدود - والمار	· · · · · · · · · · · · · ·		-اینجنان ترد اسا، ۲۰	·	وهرميهم الملا مستعنه	1 ⁻¹	
					ILTY FIN	- hit	1,51		6Z	E
· · · ·	35		SAND,				1-1-1			1
			MICAC	<i>ous</i>					64	E
1.				in a l	the million	.4.1	3, 2, 3, 1	1.	59	E
							ACC-			E
	14:-			· · · · · · · · · · · · · · · · · · ·	r he with	9.514	5 100	- month Litter (1	Start GI	÷L،
	40			-	الاسم متي المع حلين				62	E
								1		-
		* + • + • • •							60	
÷.	·=	 † † 						1	58	E
· · · · · ·					·····	مشينيت ومعت	-			É
5	45			• • •			5.	1.202 Aver 1.	1.00	1
·**	12.35	See.				5		1	ER FOOT :	E
1			NOTE: Soil in accorda				in the second	BLOWS P	ER FOOT	:=
		A	Boil Class				- A 1	umber requir	ed to drive	۶Ę.
	12					2.1		K" ID splits	poon w/140 1	٥Þ?
						S	1	ammer fallin	8.30"	÷F
	<i>[</i> .,]=							H		F
1	12-2-	See.	1. 1. and	المحمد المراد	2. (al.)	Sec. 1			A Start of Taking	έĒ
	=								2	F
										F
	-	200	Street ton	1	******	with Varia				, F
	_									۶F.
										Ť
	=	· ·	1997 L							۰F
	=				• •				(a. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	۶F
			1. 1. 1. 1.							F
								1.1.1	New Training	÷Ε
								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Έ
•••		· · ·						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2	ÿΕ
<u>.</u>						3 - F - S		The second second		Ē
•	=	194. 1				2. 1. 1		1. A. 1. 1. 1. 4 . 4 . 4	1	Έ
							1.1.1.	C. A. A. S 7		
	· • • • -	1.1		الالهمة طرق فإنه ا	n	······································	1.2	ن و خصب المنظمات و		
	· _ =		1.54.50				رشدين ا	A LANGE AND	Y1 1	
	=									"E
1	X I T =			2.2.1	× : 7		12.5	10000	1.20	sÞ
				1. 1.	S. S. S			Har Avoits	Frank Strange	
A.			Sector Tax			1.1.1				÷
101-	Sector-				· · · · · · · · · · · · · · · · · · ·	Sec. 1.	7			5 H.

								Hole	No. SH-3		·
		DIV	/1510		INSTALL	ATION			SHEET	r 1	}
	NG LOO	S Sc	outh Atlant	ic		nah, G			OF 7	SHEETS	
1. PROJECT	h II.a.a.h				10. SIZE	AND TYPE	OF BIT	1 3/8" T	<u>D</u> splits	poon	
Savanna 2. LOCATION									· MJL)		
Sta 70+0	00N, R	:=''26''	(X-838665	Y-758100) 12. MANU	FACTURE	MLI R'S DESIG	NATION OF DR	166		1
3. DRILLING						rague_		wood			
Savanna 4. HOLE NO. (As shown		ng title		BURC	L NO. OF	OVER-	DISTURBED	UNDIS		
and file num			SH-3	4	14. TOTA	LNUMBE	R CORE B			<u>u</u>	1
5. NAME OF D					15. ELEV	ATION GR	OUND WA	TER			1
Perry R 6. DIRECTION	OF HOL	E			16. DATE	HOLF		RTED	COMPLET		1
VERTIC		NCLINED		DEG. FROM VE	RT.			<u>Oct 77</u>	2 Nov	77	-
7. THICKNESS	OF OVE	RBURDE	• 55.0			ATION TO		<u> </u>	MLW	-	ł
S. DEPTH DRI	ILLED IN	TO ROCK				ATURE OF		FOR BORING		*	-
9. TOTAL DE	PTH OF	HOLE	-55.0"			ES D. G					
ELEVATION	DERTH	LEGEND	CLASSIFIC	ATION OF MAT	ERIALS	% CORE	BOX OR		REMARKS , weter lose,	death of	1
0.0 • MLW		c		(Description) d		ERY	NO.		, etc., if sign: a	ificent)	
O. O. M.			· · · · · · · · · · · · · · · · · · ·	<u> </u>							†
			Vater						_		F
									• .		F
					•						F
-4.0		TIT	Bottom of r				JAR			BLOWS	ŧ
	5'	I♦I♦I .	SM - Gray	silty fine	e sand		1			7	F
	_	I I I I I I I I I I I I I I I I I I I							-		F
		 								5	
-8.5		•T•T			1					7.	Ŀ
			MH - Gray	soft claye	ey silt		2				F
-10.5	10'						<u> </u>			1	F
		\$ † I†I	SM - Gray	silty fine	e and		L			4	F
		╡┿┋┿┇	medium san	d			3			-	F
	_	╡┥╽┥ӏ								. 8	F
		╡┝┋┝┇						·		15	F
		╡┥ <u></u> ┥┥	With some	soft silt	pockets		4			35	F
	_	┤१↓१↓									F
		┤१↓१↓								30	F
	-	<u>┤</u> १ ↓ १ ↓	Gray and b	****							F
	20'	╡ ╿┥१ ┥	July and D	LOWII						33	E
	_	╡┇┥┇┥							•	31	E
	_	╡┨┥╹┥	•							31	E
		╡Ĭ┥Ĭ┥									E
		╡┨┝┨┥	h				+	4		25	E
	251	╡ӏ҅┥ӏ┥	Gray fine	silty sand	ł		5	ļ		21	E
	-	╡ӏ┥ӏ┥		,				.			E
	=	╡ӏ҅┥ӏ҅҅								20	F
		╡┨┥┨┥								24	.+
	-	<u> </u>	Gray fine silt pocke	sand with	soft		6			27	
-30.0	30-	11.1						1		25	F
	=	4	NOTE: Soi						OWS PER		E
		4	in accorda	nce with t	the Unifie	a a		Number re 1 3/8" II			Ľ
	-	4	Soil Class	ification	System.	T		140 1b ha			,E
1	-	ا	1				1				F
											-

	LOG (Cont S			1		•	SHEET 2 OF 2 SHE	ETS
Savanna	h Harbor		Savannah,	IN CORE	BOX ORI	R	EMARKS	
		CLASSIFICATION O	MATERIALS	RECOV	SAMPLE NO.	(Drilling lime. weathering.	water loss, dep esc., if significan	15 oj 1)
ELEVATION	DEPTH LEGEND)	- ERY	JÁR		g B	LO
2	3 9' c	d		+				
	+ + -							
	╡╽╿╽		the cond wi	+ 1				
		SM - Gray fine s	ilty sand wi					
		soft silt pocket	5					
						~**		
	35 - 1	•						
	I≊	I						
	│	Til						
-38.5		•						
50.5		SP - Light tan j	poorly		7			
	40	graded sand						
						ł		
-41.5			a oft clavey		8			
		MH - Dark gray	Solt clayey			4		
	=	silt						
						+		
-45.0	45	SP - Tan poorly	graded sand	1	9			
		SP = Tall poorty	8-000				:	
						4		
-48.0					10			
		SM - Dark green	n very fine			-		
	50.	cemented silty	sand, hard					
		slightly claye	7					
		•'						
		• <u> </u>						
1		♦I			11 .	4		
	⊐↓⊺	♦I						
-55.0	55,							
		Bottom of hole	-55.0' MLW					
1								
					1			
1								
]							
1								
	1					1		
	-			1				

· · ·

							l.	Hole No.	SH-102	
			SION		INSTALLA				SHEET 1	
DRILLI	NG LOG		Sout	th Atlantic .		nah, G			OF 2 SH	EETS
. PROJECT					10. SIZE A	NO TYPE	OF BIT	3/8" ID SD1: SHOWN (TBM or MSL	itspoon_	
Savannah	n Harbon	r Wid	ening	g	MLW					
X-83817		75805			12. MANUI	ACTURE	R'S DESIG	NATION OF DRILL		
3. DRILLING	GENCY					.ng 314		DISTURBED	UNDISTUR	
Savanna	h Distr	ict	A 11114		13. TOTA BURD	L NO. OF EN SAMPL	OVER- .ES TAKEI		0	
and file num				SH-102		NUMBER	R CORE B	oxes 0		
S. NAME OF D	RILLER						OUND WA		LW	
E. Maul 6. DIRECTION	den						STA	RTED 4 IC	OMPLETED	
VERTIC				DEG. FROM.VERT.	16. DATE	HOLE	30	Sep 83	30 Sep 8	53
						ATION TO	P OF HOL	E 0.0 MLW		
7. THICKNES			5	0.0' includes water	110. 1010			FOR BORING N	A	
8. DEPTH DR				0.0'	19. SIGNA	TURE OF	INSPECT Bolen	Geologist	£ {	5000
J. TOTAL DE	PTH OF HO			50.0'	Jam		BOY OR		ARKS	- second
ELEVATION	DEPTH	EGEND	1	CLASSIFICATION OF MATERIA	ALS		SAMPLE NO.	(Drilling time, wa weathering, etc	ter loss. den	th of
0.0	0.	c		d		•	JAR		<u> </u>	lows
			Sea	a Water 0.0'-2.0'						F
	=		· · ·					l		<u>⊢</u>
-2.0		111	MH	trom of Harbor 2 O' -Dark gray fat clay	ey		1	Note: Weig	at of to	ols 占
				lt with 15% medium	grain-			2.0'-7.4'	•	E
	5 =		.ed	sand .					, -	· E
								Note: At 1	0 41	F
								cleaned ou		, F
								Next drive		´_F
-7.4		I •] •	SM	-Gray silty coarse	medium		2	10.5'-12.0		- 7.
		IŧIŧ	sa	nd, moderate silt o	Untent			At 13.5' s	et 6"	_
		ĪŧĪŧ				1	3	diameter s		34
	='	Ţ∔Ţ∔						casing to	13.5'	¹ E
	='	1 + 1 +		· .		. .		· ·	· . ·	
		1 4 1 4		• •				Weight of	tools	E
				•			/	16.5'-17.2		15
		† † 						Next drive	17.2'-	-9F
	1	† †					1	18.7'	***1*	àF
		+ + 						Weight of 19.0-20.0		í F
		♦I♦ I								í þ
	7	†I†I				1		Weight of		33
	20 _	♦I♦ I		•	_			24.5'-26.5		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1		† I † I	W	ith lenses of clay	10%		5		e Lab	W/T
]	†I† I				·		No. Class	LL PL	<u>PI</u> 32
		♦Ⅰ♦Ⅰ						1 CH	86 34	52
	=	•1•1						4 SP-SM	NP NP	NP 17
-24.5	25		<u></u>			4		6 SM	NP NP 80 40	NP 40 11
		// ,		C-Alternating layer		1	6	7 MH 9 MH	70 3 5	35
-26.5		(YY)	4 _'	at clay and gray si medium fine sand	y	4		10 SP-SM		NP W/T
1				CH-Dark gray silty	tat cla	y	7			···
1		///		with some black wood				- Weight of 28.0'-29.1		7
		//;						20.0 -29.1		.,,,
-30.0) 30		·+	ontinued on Sheet 2				Blows Per	Foot .	umber T
		1	-	ontinued on Sheet 2 ote: Soils field cl				required		
		}		n accordance with t		7	ļ	ID splitp		
		1		nified Soil Classif				hammer fa		
	=	1 ·	1 -	ystem.			I	Note: W/T	-	Г
I	1 _	1			•		•	tool.	.	E
								4		r

.

·- :-

- - · ·

.

•

. . .

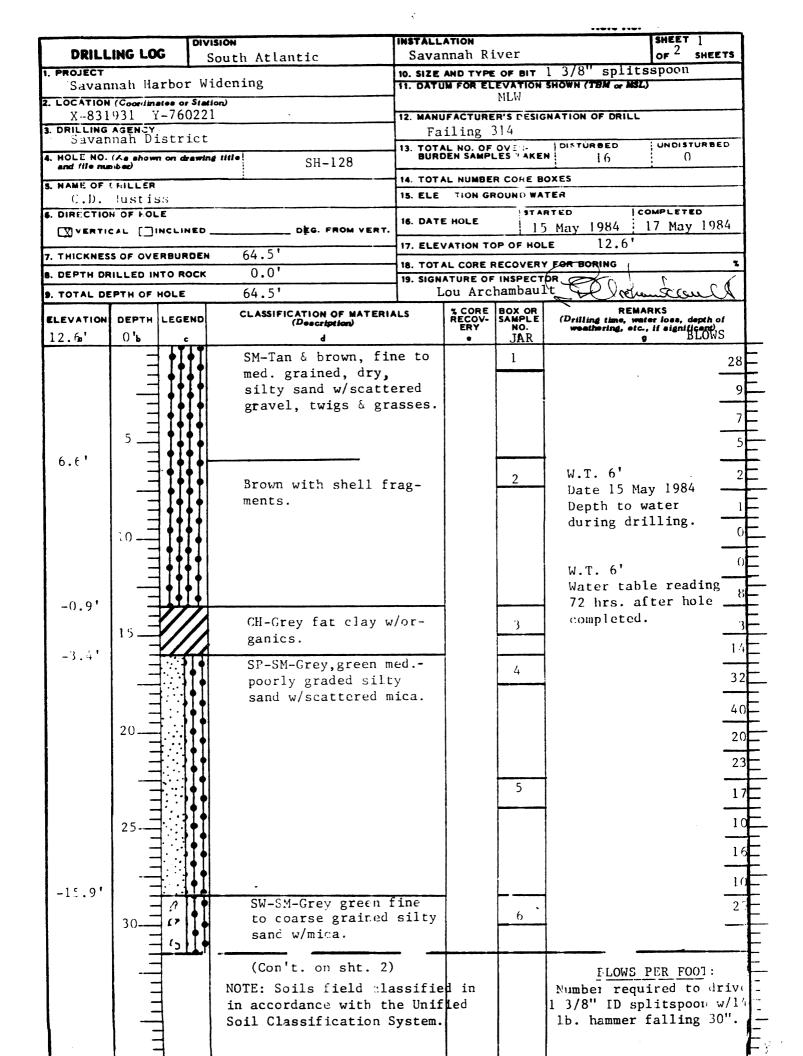
RILLING	LOG (Cont Si	neet) f tion top of ho	0.0 MLW			טיי שוסח.	SHEET 2	
Savanna	ah Har	bor Wid	lening	INSTALLATION Savannah,			064	OF 2 SHE	ETS
ELEVATION	DEPTH	LEGEND	CLASSIFICATION O	F MATERIALS (% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Dailling sime:	vater loss, dept if significant	b of ;) 31ows
-30.0	30,	c	+ d		e	JAR		<u> </u>	6-
	=		CH-Dark gray sil with some black	Lty fat clay- wood chips		8	Weight of 1 29.1'-30.6	:001 '.	W/T
	-		WILL Some Dilling			•			"s E
	-					9	Weight of 30.5'-31.7		
÷	35 _						Weight of	tool	W/T
				. •		:	33.2'-35.7 Weight of	tool	18
-37.7	-				-		37.2'-37.7	•	W/T
		╡┆ ╿	SM-Gray silty c sand with some	small clay	1	10	Note: At	0.7'	28
	40_] 1 1	lenses (moderat	te silt			cleaned ou	it to 41.	. ⁰ ' 36
		╡┥┥	content)				Next driv 41.0'-42.		36
	_	∃I∳I∳					-		•.
		╡ᢤᢩᡗᢤ			-		-		60
	45-					11		•	40
		II		• •					51
	-	╡┥╿┥						•	77
		E					(1)	;	97
-50.0	50-		Bottom of Hole	e: 50.0'			Note: 6" casing m	ist be ac	ivanced
		-					1.5' aft	er every	drive.
	-			• <u>·</u>			Note: W/	T = Weig cluding	ht of 140 1b.
							hammer.	Cina ine	140 200
		-							
		_							
1		4							
		1		·			1		
		4		·					
					-				
						.			
		4							
		1							
		1						•	

			VISION	INSTALL	ATION		Hole No.	SH-	
DRILL	ING LO		South Atlantic	ł		istrict	-	OF 1	SHEETS
PROJECT	ah µ	تسلحه هم	Idening				3/8" ID Spl SHOWN (TBM or MSL		חר
LOCATION			0	ł		EVATION	SHOWN (TBM or MSL	.)	
	512,Y-1		tion)	ML	W	ER'S DESI	GNATION OF DRILL		
DRILLING					iling				
Savanr	lah Dis (As show	strict		13. TOT	AL NO. OF	OVER-	DISTURBED	UNDI	
and file nur	mbee)		SH-112			R CORE E		<u></u>	
NAME OF Tomn	DRILLER NY Scot					ROUND WA			
DIRECTIO	N OF HUL			16. DATI				OMPLET	
VERTI	CAL []]	NCLINED	DEG. FROM VERT.					31 Oc	£ 83
THICKNES	S OF OVE		× 27.0'			OP OF HO	N	/	
DEPTH DE	ILLED IN	TU ROCK				RECOVER	Y FOR BORING		•
TOTAL DE	PTH OF	HOLE	48.0'		Zielon	-	Fed Zielon	he	
		LEGEND	CLASSIFICATION OF MATERIA	ALS	% CORE	BOX OR		RKS	denth of
0 %	0201	c	(Deecription) d		ERY	JAR.	(Drilling time, wai weathering, etc.	, il signi	depen of (icent) Blows
			River Water 0.0' to 2	21.0'		1	Note: Scale		
						1	- 20.0'	•	
	20								
-21.0	_		Bottom of Harbor 21.0 SM-Tan fine to medium)' Dorain	ed	+			
		}†↓† ↓	silty sand.	- Grain		1			16
	_	┟ ┥ ┥┥	Color change to gray	at 22.	2'	2			
		[┥ ┥┥		1			ł		17
	25	┟ ╿ ┥╿┥	Contains organic mate from 22.2' to 24.0'.	erial					18
		┆╹┥╹┥							55
		·I•I•	Color change to dark						
-28.5	-	<u>KITT</u>	at 28.0'. 2	28.5'		3	1		36
			No Recovery						100/0.9
-31.5	30		-	81.5'			Note: 28.5	' to	31.5'
- 11. 5					4		cuttings a	ppear	to 72
-33.0		///	SC-Dark gray fine to	33.0'		4	be from gr	ay fi	ne 23
		T I I I	medium grained cla sand.	ivey	1	5	to medium Tried new	-	
	35	[]]	SM-Gray fine to mediu	ım			spring and	-	
		∤╿ ┥╿┥	grained silty sand				in spoon.	-	20
		┆╿ ┥╿┥							20
		ĮĮ ĮĮ	Fine to coarse gra with gravel below				Note: 40.5	' to	
		I II	with graver below	57.5.			Cuttings a		
	40	ĮI ♦I♦		40.5'		6	be from gr	ay fi	ne 60
-40.5					1		to coarse	silty	sand. 29
			No Recovery.				SAMPLE		
-43.5		$\backslash \setminus$	no necovery.	43.5'	r.		No. Class L	L PL	<u>PI</u> 32
			SP-Tan fine to coarse	2]			IP NP	
	45		grained poorly gra	uled		-7	4 SM - 7 SP N	 IP NP	- 40
	=		<u>sand with grave</u> l. Gravel absent beig	16.7		L	7 SP N	IP NP	^{NP} 39
-48.0		1	46.5'.	, w		8			40
-40.0		+++			<u> </u>	+			40
	=	1	Bottom of boring a						
		1	Note: Soils field class		4		BLOWS PE	R FOO	т
		1	in accordance with the		ad		Number requi	red t	o drive
		4	Soil Classification Sys	scem			1 3/8" ID sp		
	1	4			1	1	hammer falli	<u>no (()</u>	

				1			Hole No.	SH-122	
DRIL	LING LO	ж '	South Atlantic	INSTAL				SHEET 1 OF 2 SHEET	
. PROJECT			Souch Allantic		annah I E and tyf				
Savann . Locatio	ah llar	bor W	idening	11. DAT	UM FOR E	LEVATIO	T 3/8" [D Sp]		
<u>8354</u>				M	L.W.	501	SIGNATION OF DRILL	·····	
B. DEILLING	AGENCY			- 12. MAN	UFAC UR		ME 550		
Savania L'HOLE NO	(A Dis	trict	wise title	13. TO.	DEN SAMP			UNDISTURBED	
and file :	nper		SH-122				16	0	
S. NAME O	DRILLER	!			I. NUMBI		iV/A		
P. ROL		L.		15. ELE	VATION G		N/Λ		
			D DEG. FROM VERT.	16. DAT	EHOLE	151	:	Nov 83	
				17. ELE	VATION T	OP OF H			
DEPTH DI			0,0				RY FOR BORING N/A		 *
. TOTAL DI				19. SIGN	ATURE O	F INSPEC	TOR 6		. –
		HOLE	65.0		s E. B			ellen	
ELEVATION	DEPTH	LEGEN	D CLASSIFICATION OF MATERIA (Description)	NLS	% CORE RECOV- ERY	BOX OF	REMAR (Drilling time, wete	tKS w loss, depth of	
15.1	0 6	c V / /	d d		8 ERT	JAR	weathering, etc., 9	tt eigniticent) BLOWS	
	=	V//	CL-Dark brown lean clay some silt and fine s			1			
		Y//	some sift and fille s	and.			W.T. 7.0'	-	.' 1
12.1		1 444	1	3.0']		Date 2 Nov. 8		0
		┤ ♦ Ĭ ♦Î	SM-Dark brown silty med			2	Depth to wate		10
	5	│ ♦ ╿ ♦╿	fine sand with some	clay.		<u> </u>	during drilli		U
		│	•			3		1	11
		│ ↓ १ ↓ १				1	W.T. <u>6.3'</u>		
		│ 					Water table r 24 hrs. aft		1
6.i				9.0'			hole complete		4
	10	2979	SC-Gray clayey coarse-m	edium		4			4
		<u> </u>	sand.				4		4
		9 . 9 9							6
		7 7 7	With wood chips and fib	ers			Note: Fill ma 0.0'-4.		6
		<u> </u>		CIU .			Mixed m	-	0
0.1	15	<u>~~</u>	1	5_0'		5	7.5'.		2
			MH- Dark green fat claye	ey				7	不
	=		silt with a trace o	f wood			Note: W/T=Wei	ght of W/	$T_{\rm T}$
			chips and fibers.				Tools.		
-3.9		<u>_</u>	19	9.0'		6	SAMPLE LA	L L L L L L L L L L L L L L L L L L L	
	20	∮I∮I	SM-Dark green silty coar	rse	·	7		PL <u>1</u>	
	コ	♦I♦I	medium sand. (moderate	e silt		├ <u>`</u>		18 19 10	6
	4	♦I♦I	content).					25 31 44 49 ₁ .	<u>_</u>
-8.4	1	∮ <u>I</u> ∮ <u>I</u>						44 49 11 31 27	د
-0.4	7	199	SC-Alternating layers of	<u>35'</u>			9 CH 130	44 35 E	1
	25	yy y	green fat clay and me					NP NP	
	=1	YY,	grained silty sand.			ų	13 SP-SM NP	ND ND 11	1
	=	Ţ Ŷ ſ	/MH-		ł	8		12	4
		`}	/ Dark green fat clayey	7 sil				л <i>и</i>	,
14.4	ال	Y Y X	/ with 25% medium sand.	· .		•		12	+
14.9	30	ΰŕ	¥	4	I	· - 9		11	1
• •			Continued on sheet 2						-
			Note: Soils field classi		,			ER FOOT:	ļ
			in accordance with the L Soil Classification Syst		d l		Number require	d to drive	
			Sour orassification Syst	em.			1 3/8" ID spli	tspoon w/l	14
							lb. hammer fal	LING JU".	þ
	1				l				ŧ
•	1		Ŧ						

RILLING	LUG	Cont S	heet) i IDN TOP OF HOLE		•	Hole No. SH-122
OJECT			INSTALLATION	.	•	SHEET 2
avanna	<u>h Harbo</u>	or Wide				OF 2 SHEETS
	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV- ERY	NO.	(Drilling time, water luss, depth of weathering, etc., if significant)
4.9	80 ь	c	- d	¢	JAR	g BLOWS
		 .	MH- Dark green fat clayey silt with 25% medium sand		9	5
	=		Silt with 25% medium sand	•		C
			· ·			7
.8.9			34.0'			24
	35	♦ I ♦ I			10	
	2	∳ I ∳ I	SM- Gray/green silty medium fine sand. (Moderate silt			. 27
		I I I I I	content).			21
		I I I I				• 21
	-	│ ↓ ╿ ↓ ╿				20
	40	│				
		│				19
		 † †			11	. 20
		╡ <u></u> <u></u> ╡ <u></u> ↓ † ↓ †				
	=					20
	45					. 21
	4 ³	II+I+	Silty coarse-medium sand.		12	
		I+I+				. 37
		Ĭţ∳Ĭ∳				
	=					34
	_	 † + † +				42
	50	† † † † †			13	
	=	! † ↓ † ↓				44
	=				· ·	50
	-	+ +				
	=	╡ ┥ ┨┥┨╴				59
	55	[• I • I			14	
	=	ŀ ♦ I ♦ I			•	94
	=	│ ┥ ╿ ┥╿	Gray/brown silty coarse medium sand.			74
		I I I I	medium sand.			
	-					· 25
	60	┝╺┥╸				47
		Ì·↓ † ¦ †	•		15	
						65
						60
	=	· † †				00
		╎╹┥╹┥				66
50.4	65				16	. 97
	=		Bottom of Boring 65.5'			
	· -		Note: Soils field classified			BLOWS PER FOOT:
) =		in accordance with the Unifie	d	•	Number required to drive
			Soil Classification System.			1 3/8" ID splitspoon w/1
			Í			1b. hammer falling 30".
					F	
					ľ	
	. –			1		
] .			
	- =					
	۱ —	1	1	l		

. . -


SII-127

			DIVISION		INSTAL			Hele No.	SII-127
	LING LO	Б	So	uth Atlantic			nah Ri	iver	OF 2 SHEETS
PROJECT					10. SIZI	AND TY	PE OF BI	T 1 2/8" 114	
Civanna Locatio		or Wi	iden ing		11. DAT	UN FOR 1	LEVATI	ON SHOWN (THA or MEL	tishtall
-3248 E	- (Coardin 3] 7-7	67364	Station)	-		MLW			
DRILLING	AGENCY	,			12. MAN	CME-		SIGNATION OF DRILL	
	<u>h D1::</u>	1 let			11. TOT	AL NO. O			UNDISTURBED
and file n	(As shu u Inder:	en on dra	wing title	SII - 127	BUR	IDEN SAM	PLES TA	KEN 14	ONDISTURBED
NAME OF		!		011-12/	14. TO	. NUMB	ER CORE		
'. Roun					18. ELE	VATION		()	
DIRECTIO				-	16 047	E HOLE	15.	•	MPLETED
VERTI	CAL	INCLINI	ED	DEG. FROM VERT.					- 14-84
THICKNES	S OF OVE	ERBURD	EN 58	.5'		VATION 1			
DEPTH DE	RILLED IN	TO RO	ск 0	.0'				RY FOR BORING	N/A ·
TOTAL DE	EPTH OF	HOLE	58	.5'		ATURE O			
						Larry		- surrey C	enzimen
EVATION		LEGEN		LASSIFICATION OF MATERIA	LS	% CORE RECOV- ERY	SAMPL	EL (Delling of the	RKS [°] Nr lose, depth of
.46	<u>.</u>	+ - -	-	dd		•	NO. JAFR	weathering, etc.,	if eignificent) BLOWS
		╽╽┥╽	SM	-Black & white fine	silt	±	1		
		↓∮ Ĭ		nd.		1	2 -	_	5
5.4		III	Bro	own ··			2 -		4
'			MH	-Crey fine silty fa	t cla	1	3	4	
				roots.		1			1
	5							W.T. 2.5'	 . י
						1		Date 5-13-84	• •
						[Depth to wat	
	_					l		during drill	ling. hammen
-0 .6	7	<u>'İİİ</u>							2
	10-		SP.	-Crey med. to coars	0		4	U.T. 2.0'	5
	1			orly graded sand.	ਦ		<u> </u>	Water table	reading
				Braaca Salla.				24 hrs. afte	
			Coa	arse grained				hole complet	
	-		1	-				· · ·	
	, न						5		10
ł	15							4	
	コ								14
									13
								At 9.0' mixe	
	<u> </u>							Zeogel mud &	16
	20	•••••						tinuously dr	
	F						6	1.5'(18") &	
	ヨ						_	tailed 1.5 (
		•••••	1					to a depth o	
	1							58.5'.	15
	25						-		22
							7	1	22
	7						l		25
			1						
	1						-		25
		•••••							
6	30	····· ·-	<u>+</u> -						23
	\neg			tinued on sht 2				BLOWS PER FO	OТ·
	コ		NOTE	Soils field class		, _]			
				cordance with the ification System.	Jnitie	a Soil		Number require 1 3/8"ID split	u to drive
1	=		~ 435	struction bystem.				140 lb. hammer	falling
ſ			1		1				-arring
			1		1	1		30".	L

,

RILLING	LOG	Cont St	elevation top of hole	8.4'			Hole No.	<u>ŞH-127</u>
OJECT		oor Wide		INSTALLATION	annah River OF 2 ² SHEETS			
	Γ		CLASSIFICATION OF		% CORE	BOX OR		MARKS
LEVATION	DEPTH	LEGEND	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, weathering, e	water loss, depth of (c., if significant)
21.6'	<u>ь</u> 30	c	d		e	JAR		g BLOWS
			SP-Crey coarse	poorly grad	Ļ	8		27
			ed sand.					31
	-							29
	35					9		26
								24
	-							23
						10		23
	40					10	-	
	-						-	27
								28
						11	÷	27
	45							
								29
	-		Trace of coarse	e river				30
			gravel.					
								28
	50 -	[12		26
	-		Tan no river g	gravel.				
							-	32
	=		Trace of clay			13		37
		1					†	34
	55		N1					
	-		No clay.					30
						14		29
-50.1		<u>├</u>	Bottom of Borin	ng 58.5'				
		1	NOTE · Soils fie	-	e d		BLOUS	PER FOOT:
	-	1	in accordance w				the second secon	uired to drive
	-]	Soil Classifica					plitspoon w/
	-]					140_1b. ha	nmer falling
		1			ł		30".	
:		1						
		1						
	-	1						
	-]						
		1						
		<u> </u>						
	-							

ſ

ILLING	LOG	Cont S	heet) ELEVATION TOP OF HOLE	12.6'			Hole No.	SH-12	28
Savann				INSTALLATION Savanna	h Rive	er		SHEET2	SHEETS
			CLASSIFICATION OF	MATERIALS	% CORE RECOV-	BOX OR SAMPLE	REI (Drilling time, weathering, et	WARKS water loss, a loss, if signifi	deptb of can <u>t)</u>
EVATION	оертн 30 _Б	LEGEND	(Description d	7	ERY	JAR	weathering, et	<u> </u>	BLOWS
2		C R II	u						16
	-	S I P		• ·	l				22
	=		W/wood fragmen	nts					22
20.41		1 <u>2</u> 1	SP-SM-Grey gr	een med.	†	7			35
	=	.	grained, silt;	y sand w/mic		7			
21.9'	35	R	throughout.						33
	_		SW-SM-fine to	med.grained					
			silty sand w/	mica.					31
			Occassional g	ravel.		8			<u>∃</u> 37
	. .	jo 🛉 🛛	UCCassionar g						
		o			1				22
	40	B							20
	=	0							
	·		· ·		1	9	-		37
	-								2.5
	,_ =	∃ ĭ I∳T							
•	45								27
] =	<u> </u>				10			
	_		Tan coarse -	mea.				•	37
		104							4
36.9'					-				
	50	<u> </u> :::	SP-SM-Light	grey coarse	1				- 4
	-	- <u> </u> :]	grained silt	y sanu.		11			2
		I ∷II	4						
		⊒ .∷ ⊺	4						2
		1 ::: 1							3
	55_	╡┊┊║	Tan						
		_]:: !				12			, 4
		<u>∣∷∶</u> ∣¶		- 1					3
	-	<u> </u>	Medium grain	.ea.					ر
		_ ∷ ¶			1				- 3
-47.4'	60-	<u>- :.: </u>			_		ł		1
		121	SW-SM-Grey g	reen well		13	1		· · · · ·
-48.9'			graded silty		Π	14]		
-50.4'	-		CH-Grey fat				4		
-51.4'		62	SW-SM-Grey	green well		15			
-51.9'		711	graded silty CH-Green fat	clay	rt	- <u>16</u>			. –
		F			•				ar an a
		7	Bottom of Ho	ole 64.5'			1		
	-	ヨ							
		7			ł				-
						•			
	-	1				ł			-
	1								
		_							
		1			I				
		_							
	-				Т				
	1						1		

							Hole No.	SH-1	38
DRILL	ING LO	G	South Atlantic		wamah			SHEET 1 OF SHE	
PROJECT							1 3/8"splitspo		iral
Savanna				11. DATU	IM FOR EL MLW		SHOWN (TBM or MSL) auger & f	Eishtail	
X=83184		Y = 7604		12. MANUFACTURER'S DESIGNATION OF DRILL					
DRILLING				Failing 314					
Savanna HOLE NO.			ne title SH-138	13. TOTA	AL NO. OF	OVER-	N 18	UNDISTURB	ED
and file nu			5 56 150	14. TOT		R CORE B		<u> </u>	
J. But		1			ATION GF			arks	
DIRECTIO	N OF HOI	LE		16. DATI		1		MPLETED	
VERTI		INCLINED	DEG. FROM VERT.					4 Mar 198	37
. THICKNES	S OF OVI		N 63.0'		VATION TO		N	/A	
. DEPTH DR	ILLED I	NTO ROCK	0.01	1	AL CORE P			/ A	
. TOTAL DE	PTH OF	HOLE	63.0'				') J. Arthur(24-63')	
		LEGEND	CLASSIFICATION OF MATERIA		% CORE	BOX OR	REMAR	rks	
13.0'		LEGEND	(Description)		ERY	NO. JAR	(Drilling time, wate weathering, etc., g	if eignificent)	ows
17.0	0 •	717	CH-Dark brown fat cla	av com	<u> </u>	1			
		\//	roots, brick fragment	• •			Water level 4		3
			dry.		,		depth to wate during drill:		10
9.5'	=		SP-Tan poorly graded	fine		2	during driff.	- ing •	_
8.5'	=					3	No 24 hour wa	ater	11
	5		dry.				level taken.		5
7.0'	-		Dark brown,fine to m	ed.	1		Backfilled ho	•	
5.5'			grained, trace of cla	y,damp	ŀ		grout aftet of pletion of bo		13
4.0'	=	\mathbf{V}	Trace of roots & fin	e grav	e1,	4			्त
4.0			wet.				12.0'-Began 1	using	1
2.5'	10-		CH-Brown fat clay, tr				Revert mud.		2
	=		fine to coarse grave	1 &			Undisturbed a	sample	2
1.0'			roots, wet:				taken from 24		
-0.5'	_		Some roots, no gravel			5	to 26.0' w/5'	-	2
-2.0'			Greenish grey, no roo piece of wood @ 11.0			ł	tube.Recover 1.8'. Jar sau		11
	15-	IIIII	Trace of fine to med			6	from 24.0' to		17
-3.5'	=	IIII	The co med			<u> </u>	24.1' & 25.7	' to	10
		Ĭ∳Ĭ ∳[Trace of fine to coa	rse gr	avel.		25.8' from s	helby	7
		Ĭ† ↓†[SM-Greyish green sil	ty fin		1	tube.		1
-6.5'	2 0	<u></u> <u></u> <u></u> <u></u>	sand, trace of fine t				LAB CLASSI		
	20-	┤ ╿↓╿↓	gravel, wet.		1	7	No. Class LI	. PL PI	14
	=	╡ <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	Some fine to coarse	 gravel	L		1 SM NF		25
	_	╡╿┥╿╞	trace of clay in thi				6 SP-SM NF		-
-11.0'		╡┸┪╹┥			l		8 CH 126		-
-12.5'	25-	\//	No clay.		ł	8	9 SC 40 11 SP NE		_
-12.5		199	CH-Greenish grey fat			9	14 SP NE		
	-	1 ///	trace of fine to coa gravel,fine sand & m			,	16 SW NF		
	-	19 7 9	damp.	<i></i> ,					1 5
-15.5'		I I I I	SC-Greenish grey cla				1		-1-1
-17.0'	3 0	╡┷Ҭ┷┸	to med.sand,trace of			.10	I		21
		1	wet.		/		BLOWS PER		
		1	SM-Greenish grey sil	tv fin			required to d		
	-	1	to med. sand, trace o		/ -		tspoon w/140 :	lb. hamme	er
	-	1	wet.		· · ·	alling		66014 -1-	
		1	Continued on sht_2				ils visually : accordance wi		
	-	1					sification S		• • • •
		1						-	E
				that are an available	56-				

•

.

.

BILLING	106	(Cont S	iheet) elevr ~ 10P o	F HOLE	MLW		Hole No.	SH-	
IN ILLING		100111 3		HART HERE IS NOT				SHEE	
Savanna	h Har	bor Wid		Savannal		BOX OR	R	MARKS	
ELEVATION	DEPTH	LEGEND		N OF MATERIALS	RECOV-	SAMPLE NO.	(Drilling time, weathering,	water le etc., if ut	
-17.0'	30'	c	-	d	e	JAR		8	BLO
-11.0		1111	SM-Greenish	grey silty fin	2				
	-	11+I	to med.sand,	trace of mica,					
-20.0'		∃I∳I∳	wet.						
-20.0		II II	Nod to con	rse grained.		11			
-21.5'	25		Med. LO COA	L'Se glaineat					
			Fine to med	. grained.					
		╡ӏ҆҆҄҅ӏ҅҅҅ӏ҅						•	· .
	_	⊐I †I†		- -			•		. •
		JI+I +	· .			12			•
	40	∃↓∮↓∳	Crev some 1	.ight brown & ta	in				•
	1	╕╻┝╻┝	streaks.						
-29.0'		∃↓†↓ ↑		brown poorly g	aded				
	-	∃∳१∳१	med.to coar	se sand, trace	of	13			
-30.5'			silt & mica			14	-		
-32.0'	45-	_	Light brown	n,few grayish b	rown				
-33.5	1	1	streaks.						
-22.2			Very thin	layer of decaye	a				
-35.0	· -		wood at ap	prox. 47.0'.					•
		1		treaks, trace of		15			
-36.5	50-		fine grave	1.					:
-38.0	•							•	
		-	No gravel.						
-39.5	' '	-	Light grey	ish tan, fine to		16			•
-41.0	'		med.graine	d,trace of fine		·	-		
	55	_	gravel.		1				
		3		in, med. to coarse					
-44.0	'	E	grained.			17	1		
-45.5	•		Coarse gra	ined.			4		
		1							
	60)	Some fine	gravel.					
			Few thin s	grey silty laye	rs.		4		
		–				18	1		
-50.0		-	Bottom of	Boring 63.0'					
	6			-					
]	0.								
	1	4							
ŀ	1								
		ゴ							
		1				.			
		لساسب							
	1	1							
1									
1		T		,					
1		-]							
1		7	•	•					
1		-							

•

.

DDII -	INC 1 0		VISION		1	LATION			10. 5 //-	1		
	ING LO	~	5ουτ Η	ATLANTIC		SAVANNAH, GA. OF 2 SHEETS						
. PROJECT	IALI I	(ANZA	0 n=-	PENING	10. SIZ	10. SIZE AND TYPE OF BIT 13/8" T.D. SPUTSPOON, 11. DATUM FOR ELEVATION SHOWN (TBM or MSL)						
LOCATION	(Coordin	ates or Sta	tion)		- ML	11. DATUM FOR ELEVATION SHOWN (TBM & MSL) H"SPIRAL AUGER, MLW 51/2" FISHTAIL						
X= 817 3. DRILLING	840;	Y= 77	9530	(CA EAST)	12. MA	12. MANUFACTURER'S DESIGNATION OF DRILL						
SAVAN						FAILING 314						
. HOLE NO.	(As show	-	-4		13. TO BU	TAL NO. OF RDEN SAMP	OVER-	N /5	1			
and file num			رک	4-149	IA TO	TAL NUMBE						
NAME OF						EVATION G			REMARK	<u></u>		
D. JU								RTED	COMPLETE			
VERTIC		NCLINED		DEG. FROM V		TE HOLE	/	8 OCT 91	18007	91		
THICKNER	5 OF 01		<u> </u>		17. EL	EVATION T	OP OF HO	LE				
DEPTH DR								FOR BORING	NA			
			60.0		19. SIG	NATURE O	FINSPECT		·			
. TOTAL DE	PTH OF	HOLE			<u> </u>	Z CORE	BOX OR	P.G.				
ELEVATION	DEPTH	LEGEND	CLAS	SIFICATION OF MA (Description)	TERIALS	RECOV-		(Drilling time,	EMARKS water loss, de	pth of		
a	b	c		d		•	JAN	weeuwring,	etc., if eignific	siano Slavo		
			(SM) BI	20WOLSILTY 1	FINE TO			CLEANED	OUT HOLE			
			ROOT	S, SLIGHTLY E	мс <i>бо</i> г Ланр. /	4	ļ	WITH 4" AUGEN FI	SPIRAL	~ —		
]		HT BROWN TO			2	4.5' & 6.0	070 9.0'			
	_	1	POORLY	1 GAADED FI	NE TO		1 4	JAL SAM				
		1	MEDIC	SLICHTLY D	ACE OF	А		TAKEN FA	OM AUGE	к _		
	<u> </u>	1					3	FROM 1.5	ייגע קי 4.5°; ע	1		
		4	(<i>SM</i>)	BROWN SILI 15010 - 58AN	T, FINE			BEGAN	ISING 5%	2		
		1		-	-			FISHTAIL E DRILLING	, ZEOGOL MUD AT			
	-	}		UM SAND,				10.5%				
	_		/ MEDI	UM TO COAL	SE SAND			SPLITSPO				
	10	7	SAND	FINE TO MI FROM 10.3'T			4	TAKEN AT		- 4		
	_	1		WASH	i			INTERVA	LS,			
			(sc)	GREENISH &	MAY 1				,			
		1	CLAYI	EY, FINE TO N SOME SILT	TEDIUM	$\backslash [$		WATER L				
		<u> </u>	DAND O	SOME SILT	, MACE	Ч		DEPTH TO DURING	DRILLING.			
	15-	1	CF FIN				5	WATER (-		
	=	1		$\omega A SH$				ENCOUNT	ERED 210	2791		
		1	(SM)	TANNISH GA	AY GILTY	1		TAPEO HO	LE TO S.	0',		
		-	MEDI	UM TO COARS	SIZUSAND	11						
-	=		TNAC	E OF CLAY,	WET.	1	6	I		_		
		}						•		1		
	20-	7		wASH								
	_	1	Teo1 -	ANNISH GAN	Y POONLY	7						
		!		FO HEDIUM								
	-	1	SAND	MACE OF	SILT, WET		7			\overline{I}		
		<u> </u>		WASH				1		-		
	25	1		~~~>H								
	-]				ľ						
	=]		A				1				
		1	SAME	AS 22.5' TO 2	4.0;		8	1		1		
	=	1		WASH		1	<u> </u>	t				
	30-	1	CONT	NUED ON S	HEET #2	\perp –	4	L				
		1	1					RIVER	PAR FOO	, ,		
	_	1		SOILS VISUAL				-				
		-		HE UNIFIDD				NUMBER				
	=	7		FICATION S				DRIVE 13/ SPOON W	8 L.U.S.	6611		
	=	7						HAMMER	FALLING	30'		
		-	•									

RILLING		CONT.>	INSTALLATION			Hole No. SH-149
ΟJECT	AH HAR	BOR DI	EEPENING SAVANNA	H, GA.		OF 2 SHEETS
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORI RECOV ERY	E BOX OR - SAMPLE NO. JAR	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) BLOWS
0	30-	с с	Wash.			
			(SM) Grey, fine to med. silty SAND. Trace c mica, wet.	of	9	
			Wash.			
	35					
		• • •	(SP) Grey, med.to coarse, poorly graded SAND. Trace of silt & mica, wet.		10	39
			Wash.			
	40		Same as 36.0' to 37.5' but coarse sand, Trace of fine gravel.		11	46
		<u>· · ·</u>	Wash.			_
	45 -	- - - • • •	Same as 40.5' to 42.0'.		12	
			Wash.			
						-
	50		(GP) Greenish-grey, fine, poorly graded GR Trace of silt & coarse sand, wet.	AVEL.	13	17
			Wash. NOTE: Wash return contained some sand and clay.			
	55		(CL) Greyish-green, silty, lean CLAY. Trace mica & fine sand, slightly domp.	of	14	36
			Wash			
	-		Same as 54.0' to 55.5' but dry.		15	45
	60 —		Bottom of Boring 60.0'			
		1				
		_				
		-				
		_				
					•	
	-	_				
		-				
	-	4				
	_	1				

Hole No. SH-150

DRILLIN	IG LOG	'VIS	ION SOUTH ATLANTIC	INSTALLAT	AVAZ	NNAH, (GA	SHEET 1 OF 2 SHEETS
1. PROJECT				10. SIZE A	ND TYPE	OF BIT	1%"splitspoon, 4"spire	al auger, 5½"fishtail
SAVANNA			EPENING	11. DATUM ML		VATION SH	IOWN (TBM or MSL)	
2. LOCATION X = 817555		77914	5 GA. EAST	12. MANUF	ACTURER'S	DESIGNAT	ION OF DRILL	
3. DRILLING A	GENCY H DISTRI	СТ		FAILINC		VFR-	DISTURBED	UNDISTURBED
4. HOLE NO. and file num	(As shown on a		SH-150	BURDE	N SAMPLES	5 TAKEN	18	0
5. NAME OF	DRILLER					CORE BOX	es 0 R SEE REMARKS	
6. DIRECTION	STISS			16. DATE		STAR	TED CO	MPI ETED
		NED	DEG. FROM VERT.		TION TOP		OCT 91	17 OCT 91
7. THICKNESS	OF OVERBU	URDEN	64.5'				OR BORING N/A	X
8. DEPTH DR				19. SIGNA	TURE OF	NSPECTOR	<u>^</u>	
9. TOTAL DE	PTH OF HOL	. <u>e 64</u>	.5'		% CORE	THUR, P	REM	ARKS
ELEVATION 0	DEPTH LI	egend c	CLASSIFICATION OF MATERIAL (Description) d	_S	RECOV- ERY	SAMPLE NO JAR	(Drliiing time, wa weathering, etc.	ter loss, depth of if significant, BLOWS
	<u> </u>	••	(SP) Tan, coarse, poorly graded SA	ND. Damp.		1		
			(SC) Olive,fine clayey SAND. Some	silt,damp.		2	Cleaned out hole with to 4.5'. Jar =2 taker 1.5'to 4.5'. Splitspoor 4.5' interval to 55.5'. fishtail & Zeogel drillir	n from auger from n drive taken at each . Began using 5½"
	5-		Fine to med.sand, trace of fine gr	avel,wet.		3	Water level 2.0' depth drilling.	to water during0
			Wash. NOTE: Wash return contained large a clay.	mount of			Water level 1.7' depth 21 Oct 91. Taped hol	
	10 - 10		Same as 4.5' to 6.0'.			4		15
			Wash					ŀ
		• • •	(SP) Olive grey, med., poorly graded of silt, wet.	SAND.Trace	2	5		30
	15	<u>· ·</u>	Wash.		1			ļ
			(SM) Olive-grey, med., silty SAND, w		-		-	
					-	6	-	
	20		Wash.					
			Note: Traces of wood in wash.					
		• •	(SP) Light brown, med. to coarse,	poorly	1	7	1	16
	1		graded SAND. Trace of silt, wet.		-	<u> </u>	4	
	25-		Wash.					
		• • •	Same as 22.5' to 24.0', but with t of fine gravel.	roces		8		26
			Wash.					
	30				-			
			Continued on sheet •2 NOTE: Soils visually field classified	in			BLOWS PER	
			accordance with the Unified Soil Clas System.	ssification			splitspoon w/140 lt	, nummer runnig 50 .
	=							

OJECT	AH HAR	BOR D	EEPENING	INSTALLATION SAVANNAH,	GA.		SHEET OF 2	Z SHEETS
EVATION	DEPTH 30	LEGEND	CLASSIFICATION OF (Description)	MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE NO. JAR	REMARKS (Drilling time, water loss, weathering, etc., if signit	depth of (leant) BLOWS
a		•••	Wash. (SP) Light brown,fine to me poorly graded SAND. Trace silt, wet.	d		9		33
	35 —		Wosh.		_			_
		•••	Same as 31.5'to 33.0'but n to coarse sand. Wash.	ned.		10		30
	40	: • .	Same as 36.0'to 37.5' but with some wood.		-	11		26
	45		Wash.		_	-		_
			(SP) Greyish-brown,coarse,p ly graded SAND. Trace of f gravel& silt, wet.			12		27
	50		Wash. (CL) Greyish-green,silty lear CLAY. Trace of Mica & fine		_	13		31
		4	Sand, dry.					_
	55 -		Same as 49.5'to 51.0' but greyish-green.			14		54
			Wash.		_	15	Began continuous splitspoon drives at 58.5'.	100/0.8
	60		(SM) Grey & greenish-grey, silty SAND. Trace of Mica,d (SC) Greyish-green,fine clay	ry.	_	16 17		78
	65		SAND. Some silt, dry.	<u></u>		18		43
			Bottom of Boring 64.5	,				

Hole No. SH-218

•

ſ	DRILLI	NG LOO	DIVIS	SOUTH ATLANTIC	INSTALLAT	ION SA VA	NNAH,	GA.	SHEET 1 OF1 SHEETS	
	1. PROJECT				10. SIZE A			1%"SPLITSPOON, 5	1/2" FISHTAIL	
ſ	SAVANNA 2. LOCATION	(Coordinates	s or Station))	11. DATUM		VATION SI	HOWN (TBM or MSL)		
╞	X-84303		75822	29 GA. EAST	12. MANUF Failing		5 DESIGNA	TION OF DRILL		
┟	SAVANNA	H DIST		404	13. TOTAL	NO. OF C	VER-	DISTURBED		
	4. HOLE NO. and file nu	mber)	on arawing .	SH-218	BURDEN SAMPLES TAKEN : 6 :0 14. TOTAL NUMBER CORE BOXES 0					
	5. NAME OF DAVID JU				15. ELEVA	TION GROU	UND WATE			
ļ	6. DIRECTION			DEG. FROM VERT.	16. DATE	HOLE	16	JAN 92	COMPLETED	
╏	7. THICKNES			50.0' (Water 41.0')	17. ELEVA			0.0'		
ľ	8. DEPTH DR						NSPECTOR		4	-Ĥ
	9. TOTAL DE	PTH OF F	IOLE 50).0'		ES AR	THUR, P		MARKS	_
	ELEVATION	оертн О _б	LEGEND ¢	CLASSIFICATION OF MATERIAL (Description)	.S	RECOV- ERY	BOX OR SAMPLE NO UAR	(Dellilon time	oter loss, depth of c, if significant) gBLOW	s
								Scale change at 40) 0' Set 6'' diameter	
				Water				casing by own weig		
		40 -		41.0 Bottom of Harbor <u>42.8</u>						
	-41.0'			(MH) Dark grey to black clayey SILT.			1			0
. н.	-42.5'		╷╷╷	(SM) Dark grey to black, medium to silty SAND. Some clay.	coarse		2		-	
й, Ч.	-44.0'			(SC) Dark grey to black, medium to clayey SAND. Some silt.	coarse		3		-	4
	-45.0' -45.5'	45		(SM) Dark grey, fine to medium, silty Some clay.	SAND.		4		-	15
		_	••••	(SP) Tannish-light grey, coarse, poorly]		5			16
A 1 8 4			••••	SAND. Trace of silt.	y groced		6			22
	-50.0'	50 —	•••	With some fine gravel.						56
	50.0			Bottom of Boring 50.0'						F
			4							F
								BLOWS PE		
								Number required to SPLITSPOON IN HAMMER FALL	3/140 LL	F
]					THE LAST PAOL	of ench drive	F
			-							Ē
]							F
			1							E
]							F
		_	1							Ē
		-		NOTE: Soils visually field classified				splitspoon w/140 lb	. hammer fallina 30	┈╞
			1	accordance with the Unified Soil Cla System.	ssification					Ē
			1							F
		_	1							E
		=	1							F
		-	1							E
	ł		4							F
	L		1			<u> </u>	1	I		

								o.SH- 37	0		
DRILL	ING LO	G	vr South Atlantic	INSTALL	S	avanna		- SHEET	SHEETS		
1. PROJECT	Savan	inah Ha	urbor Deepening	10. SIZE	AND TYPE	- OF BIT	1 3/8"1.D. SI	litence	2		
2. LOCATION	Condin	stee or Sta		MLW				"Fishtai			
3. DRILLING	ACTICY		nah District	Failir	<u>19-314</u>						
4. HOLE NO. and file nu	(As show			13. TOT	AL NO. OF Den Sampi	OVER-		UNDIST	JRBED		
5. NAME OF	DRILLER	D Ju	isti ss	14. TOTAL NUMBER CORE BOXES							
6. DIRECTIO	N OF HOL				- <u></u>		N/ A	COMPLETED	<u>, </u>		
VERTI		NCLINED	DEG. FROM VERT.	16. DAT	VATION TO	<u> </u>		MAR 7 1	992		
7. THICKNES				<u></u>			Y FOR BORING	/Δ			
8. DEPTH DR 9. Total De			60.8		ATURE OF						
T			CLASSIFICATION OF MATERIA		S CORE	BOX OR	REI				
ELEVATION	DЕРТН 6	LEGEND	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, w weathering, et	ater loss, de c., if signific	oth of and		
	6		WATER				SCALE CHAN	46EAT4	υ. ο [′] .		
	111						SET 6"DIAN	• • -	E		
							CASING 134	0 47.1.	E		
	11			•			0		F		
	40								E		
									E		
						4			þ		
1112'			COTTOM OF HANDON	44.3		JANS		r	slows E		
- 443'	45		(SP) GRAYISH GROWN MED TO CORISE POORLY O			1	WEIGHT OF	NODS DAD			
- 45,8			SAND, SOME SMALL SHE FRAGMENTS, TRACEOF				SPUTSPOON 44,3'70 44	ELOM S'	6		
			FINE GRAVELESILT.			2	BEGAN USH DRILLING H	NG ZEOG	FL <u>38</u>		
_48.8'			(SM) DANK GAMY FINE TO SILTY SAND, TRACE OF S	, MEDIUH MAIL			47.3'		24		
- /0.0	50 I		SHELL FRAGMENTS. GP)GRAY FINE POORLY GA	CADEP			NO SPLITER	DO.N.			
,	, II		QUANTZ GRAVAL, SHELLY, QUANTZ GRAVAL, SHELLY, FINE TO COARSE SAND, BF SILT.	SOME RACE		3	DRIVE FROM	48.2	t		
-5-1.8			CH)GRAY FAT CLAY.				בוסז כק . ג'בוסז כק	HEN CON			
	Ц		(CH)GAMY FAT CON Y			4.	WITH DRIVE JML SAMF!	ه،ای صر	; 31		
							FROM 48.5	5115 05118	13		
	55					5			76		
l İ					1		ţ				
			Francis Enter	15-1					14		
- 59.3			(SC) OLIVE FINE CLU SAND, SOME SILT				ļ		14		
- 59.3 - 60.8	10		·			6	i.		1.5		
, c			GOTTOM DE PORI	10-60.8	1	ĺ			Ē		
	. – –			Plad			BLOWS PER FO	DOTI	F		
			OTE: Soils field classi In accordance with the U		Nบ	mber r	equired to d	rive	F		
]			Foil Classification Syst		1 אר	3/8" I mmer f	D splitspoor alling 30".	n w/14 0 1	ъ Е		
					``		PATTIK 90".		F		
[ĺ				Ē		
j									E		
									F		
				•	}				E		
•	I	1	1		1	1	4		1		

Hole No. SH-3/4

DRILLI	NG LO	G ^{DI***}	SOUTH ATLANTIC	INSTALLAT	ION SAV	ANNAH,	GA. SHEET 1 OF1 SHEETS		
1. PROJECT					ND TYPE		1% " SPLITSPOON, 51/2" FISHTAIL		
2. LOCATION				11. DATUN MI	FOR ELE	EVATION SI	HOWN (TBM or MSL)		
x-93846		-72321	7 GA. EAST	12. MANUFACTURER'S DESIGNATION OF DRILL					
3. DRILLING SAVANNA	AGENCY VH_DIST	RICT		Failing		DVER-	DISTURBED		
4. HOLE NO. and file nu		on drawing	SH-374	13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 6 0					
5. NAME OF DAVID JU					VATION GROUND WATER N/A				
6. DIRECTION		:	<u> </u>	16. DATE		STAR	TED COMPLETED		
X VERT		ICLINED	DEG. FROM VERT.	17. ELEVA	TION TOP	OF HOLE	FEB 92 20 FEB 92 0.0'		
7. THICKNES			60.7' (Water 42.7')	18. TOTAL	CORE RE	COVERY F	FOR BORING N/A 2		
8. DEPTH DE 9. TOTAL DE						NSPECTOR			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL		% CORE RECOV-		REMARKS		
0.0	0,	c	(Description)		ERY	UAR	(Drilling time, water loss, depth of weathering, etc., if significant) g BLOWS		
	111						Scale change at 40.0'. Set 6" diameter casing by own weight to 43.7'.		
	3		Woter				E		
	40								
							E		
			Bottom of Harbor 42.7'				E E		
-42.7'	45		(SM) Dark grey, fine, silty SAND.			1	No recovery on first splitspoon drive. 11 Redrove first drive to 44.2' then		
-45.7'	1		Fine to medium sand, trace of small	to large		<u>├</u> ────	12		
-47.2'			shell fragments. (GP) Grey, fine poorly graded GRAVEI	Troce			19		
-48.7'	11		of silt, fine sand & small to large she			2			
	50		(SM) Grey, fine to medium, silty SANE of small shell fragments.). Troce		3	25		
	-	╏╻╿╻	· · · · · · · · · · · · · · · · · · ·						
-51.7'				<u></u>	1	4			
	=		(CH) Dark grey, fat CLAY. Trace of s	silt.	}		27		
					}		13		
	55 -					5	14		
	=								
					}				
	60						19		
-60.7'						6	17 -		
] =	1	Bottom of Boring 60.7']			
]					BLOWS PER FOOT:		
		1	NOTE: Colle structure Politic - Incontration	in			Number required to drive 1%" I.D. splitspoon w/140 lb. hammer failing 30".		
]	NOTE: Soils visually field classified accordance with the Unified Soil Cla		ļ				
]	System.]	E		
	-	1							
1]							
		4							
	=	1							
]	<u> </u>			1	LF		

HOIE INO. SH-384

							HOLE INO. SH-384	-			
DRILLING LOG CIVISION SOUTH ATLANTIC					INSTALLATION SHEET 1 SAV ANNAH, GA. OF1 SHEETS						
1. PROJECT				10. SIZE AND TYPE OF BIT 1% "splitspoon, 51/2" fishtail							
SAVANNAH HARBOR DEEPENING 2. LOCATION (Coordinates or Station)				11. DATUM FOR ELEVATION SHOWN (TBM or MSU) MLW							
x-849850 Y-759106 GA. EAST				12. MANUFACTURER'S DESIGNATION OF DRILL							
3. DRILLING AGENCY SAVANNAH DISTRICT					FAILING 314						
4. HOLE NO. (As shown on drawing title and file number) SH-384					BURDEN SAMPLES TAKEN 19 10						
5. NAME OF	DRILLER										
DAVID JU				15. ELEVATION GROUND WATER N/A							
		CLINED	DEG. FROM VERT.								
7. THICKNES	S OF OVE	RBURDEN	60.0' (WATER 30.4')				OR BORING N/A	7			
8. DEPTH DF				19. SIGNA	TURE OF I	SPECTOR					
9. TOTAL DE	PTH OF H	IOLE 60).0'	JAM	ES AR	HUR, P	.G. REMARKS				
ELEVATION 0.0	ОЕРТН Оь	LEGEND ¢	CLASSIFICATION OF MATERIA (Description) d	LS	RECOV-	SAMPLE NO.	(Drilling time, water loss, depth of weathering, etc., if significant) 9 BLOW	٧S			
			Water				Scale change at 30.0'.				
			Bottom of Harbor 30.4'				Set 6"diameter casing by own weight to 35.4'.				
-30.4'	30 —										
5			(CH) Dark olive grey, fat CLAY. Very & wet.	SOIL		1					
			,								
74 51						L					
-34.5'	35 —		Dark grey, some coarse sand, wood particles & glass fragment at 35.8'.					_			
-36.0'			(SC) Dark grey, coarse clayey SAND.		1	2	1	_			
-37.5'	_	<i>\/////</i>	Trace of glass fragments.		4			-			
70.01		••••	(SP) Greyish-tan, coarse, poorly grans SAND. Some fine to coarse gravel,			3	Weight of rods drove splitspoon	1			
-39.0'	40 -	•••	& rock fragments.				from 30.4' to 34.5'.	1			
	" =							-			
	-		Tan, some fine gravel, trace of glas fragments.	55				_			
-43.5'	_	••••						-			
-45.0'		 	No glass.					-			
-46.5'	45 -]	Trace of silt & glass fragments.			4		2			
+0.5	-	<u>॑</u> <u></u>	(SM) Olive-grey, fine silty SAND.		1	5	1	2			
-48.0'	-	\mathcal{W}			-			_			
		///	(CL) Olive-grey, silty, lean CLAY.			6	-	1			
	50 -	\$///	Some fine sond.								
		1///	1					-			
-52.5'		1/1/1			-	7	-				
		\$ <i>\.\\\\</i>	(SC) Olive-grey, fine clayey SAND. Some silt.				-				
	55 -	¥////	Joine Sitt				-	_			
		\$/////				8		-			
	_	V////					-	-			
		¥////				9	-	-			
-60.0'	60 -	<i>\////</i>									
		-	Bottom of Boring 60.0'				BLOWS PER FOOT:				
		Ξ	NOTE: Soils visualy field classified accordance with the Unified Soil Cla				Number required to drive 1%" I.D.				
		1	System.	351100100			splitspoon w/140 lb. hammer falling 3	0'			
1		4									
						:					

							Hole	NO. SH-385		
DRILLING LOG DIVISION SOUTH ATLANTIC				INSTALLAT	NON V.	ANNAH,	GA.	SHEET 1 OF1 SHEETS		
1. PROJECT SAVANNAH HARBOR DEEPENING				10. SIZE AND TYPE OF BIT 1%"SPLITSPOON, 51/2" FISHTAIL						
2. LOCATION (Coordinates or Station)				11. DATUM FOR ELEVATION SHOWN (TBM or MSL) MLW						
X-849451 Y-759522 GA. EAST 3. DRILLING AGENCY SAVANDAL					12. MANUFACTURER'S DESIGNATION OF DRILL Failing 314					
SAVANNAH DISTRICT 4. HOLE NO. (As shown on drawing title					NO. OF ON SAMPLE					
and file number) :SH-385 5. NAME OF DRILLER					NUMBER		~			
6. DIRECTION				15. ELEVATION GROUND WATER N/A						
X VERT		ICLINED	DEG. FROM VERT.	18 DEC 91 18 DEC 91						
7. THICKNES			60.8' (Water 42.8')	17. ELEVATION TOP OF HOLE 0.0' 18. TOTAL CORE RECOVERY FOR BORING N/A Z						
8. DEPTH D				19. SIGNATURE OF INSPECTOR						
ELEVATION	DEPTH		CLASSIFICATION OF MATERIAL		ES AR	BOX OR		REMARKS		
0.0	0.	LEGEND ¢	(Description)		RECOV- ERY	SAMPLE NO UAR	(Drilling tin weatherin	ne, water loss, depth of g, etc., if significant) g BLOWS		
	11							<u> </u>		
	-		Water				Scale change at casing by own	t 40.0'. Set 6" diameter weight to 44.9'.		
	11									
	40 -									
	-		Bottom of Harbor 42.8'							
-42.8'		• •	(SP) Tan, coarse poorly graded SAND							
-44.3'	-	••••				1		3		
-45.8'	45		(CL) Olive, silty lean CLAY. Trace of fi	ine sand.		2		30		
	Ξ		(SC) Olive, fine clayey SAND.			3		100/0.6'		
	_		(SC) Dive, the Cidyey SMND.							
	3							58		
·	50							70		
	=					4		33		
								32		
								_		
	55 -					5		24		
								26		
								25		
								26		
	60 -					6				
-60.8'	Ę		Bottom of Boring 60.8'							
	ᅴ						BLOWS F	PER FOOT:		
	4		NOTE: Soils visually field classified in				Number required	d to drive 1¾" I.D. Ib. hommer falling 30",		
			accordance with the Unified Soil Class System.	ification			spiitspoon w/ i+U	ib. nommer folling 30".		
	ᅴ							Ē		
	一									
								F		
								E		
	-							Ē		
	-							F		
						ŧ.		\$		

• · • • •

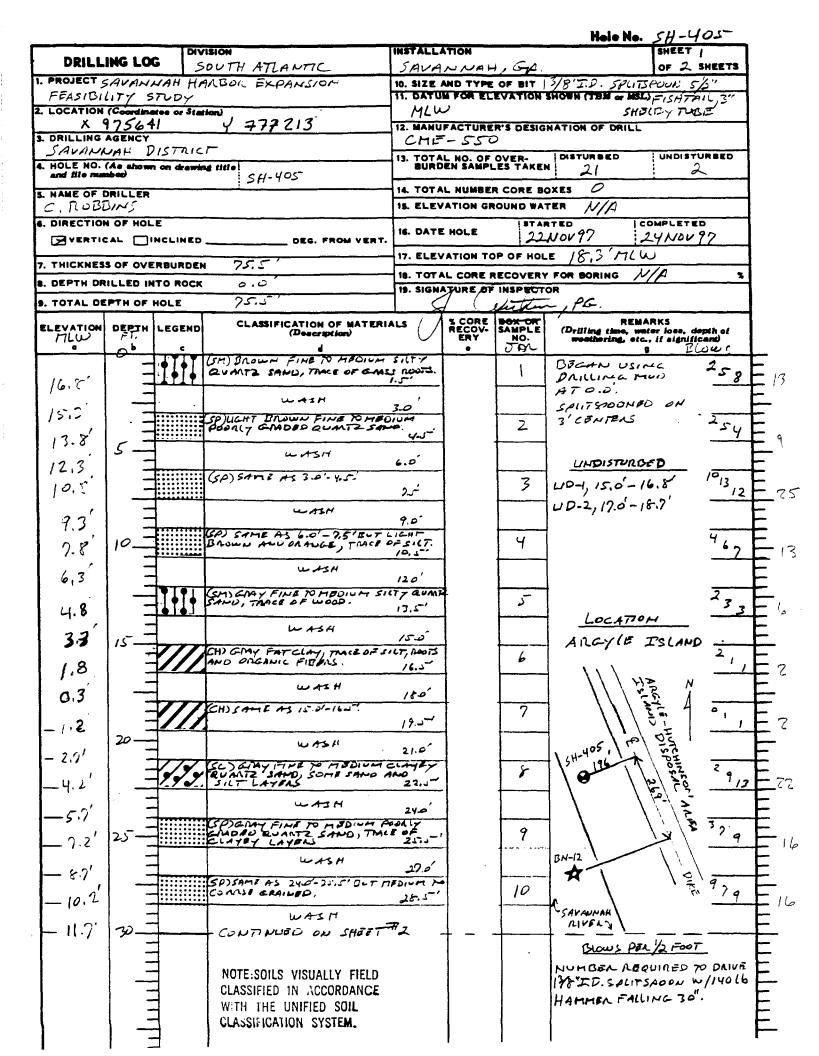
							רוטופ וא	0. SH-386				
DRILLI	NG LOG	DIVIS	OUTH ATLANTIC	INSTALLATI	SAVA	NNAH, (SHEET 1 OF 2 SHEET	rs			
					10. SIZE AND TYPE OF BIT 1%"splitspoon, 51/2" fishtail							
2. LOCATION (Coordinates or Station)					11. DATUM FOR ELEVATION SHOWN (TBM or MSL) MLW							
X-849665 Y-759846 GA. EAST					12. MANUFACTURER'S DESIGNATION OF DRILL							
3. DRILLING A	agency H DISTRI	СТ		Failing 314 13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED								
4. HOLE NO. and file nul	(As shown on a mber)	drowing ti	SH-386	BURDEN SAMPLES TAKEN : 10 :0								
5. NAME OF	DRILLER			14. TOTAL NUMBER CORE BOXES O								
6. DIRECTION				STARTED COMPLETED								
		INED	DEG. FROM VERT.	16. DATE HOLE 17 DEC 91 17 DEC 91 17. ELEVATION TOP OF HOLE 0.0'								
7. THICKNES	S OF OVERB	URDEN	60.8' (Water 29.3')	17. ELEVATION TOP OF HOLE U.U. 18. TOTAL CORE RECOVERY FOR BORING N/A Z								
8. DEPTH DR			.0'	19. SIGNATURE OF INSPECTOR JAMES ARTHUR, P.G.								
9. TOTAL DE	PTH OF HOL	<u>ε 60</u>			LS AR	HUR, P BOX OR	F	REMARKS				
ELEVATION 0.0	DEPTH L	EGEND c	CLASSIFICATION OF MATERIA (Description) d	LS	RECOV- ERY	SAMPLE NO UAR	(Drilling time weathering	e, water loss, depth of , etc., if significant) g BLO	ws			
			Water				Scale change at casing by own w	25.0'. Set 6" diame reight to 29.5'.	eter			
	25								E			
	7								E			
									ļ			
-29.3'	-		Bottom of Harbor 29.3'						F			
	30 —		(SM) Olive grey, fine silty SAND. Son			1						
-30.8'		┥╽┥╽	clay, trace of shell fragments & mic	a			Weight of rods to 30.5',cont'd.	drove splitspoon drive to 30.8'				
		┥┥┥				<u> </u>	with four blows.		46			
		┊╷╷╷	No shell fragments.			2			52			
								•	43			
	35—											
-36.8'					-				57			
			(SC) Olive-grey, fine clayey SAND.			3	4		52			
			Some silt, trace of mica.						52			
	40								_			
				-		4			49			
							1		52			
		////							36			
-44.3'	45		(SM) Olive, fine silty SAND.			5			_			
			Trace of clay.				1		67			
	E						4		71			
		Ĭ¦Ĭ¦				6	4	100	 0/0.8'			
	50 _	†							79			
-50.3'		/////	(SC) Olive-grey, fine clayey SAND.	Some	1	7	1					
-51.8'		<u> </u>	silt, trace of mica.		-		4		32			
	-	[]]	(CL) Olive-grey, silty lean CLAY. So sand, trace of mica.	ome fine					44			
	7	///				8			25			
-55.0'	55		Continued on "sheet •2		·	+	+					
							BLOW	NS PER FOOT:				
	-1		NOTE: Soils visually field classified	in			Number requir	red to drive 1 <mark>%</mark> " I. O Ib. hammer falling	.D.			
	E		accordance with the Unified Soil Cl				spiitspoon w/14	o io, nammer failing	y JU .			
	-		System.				1					

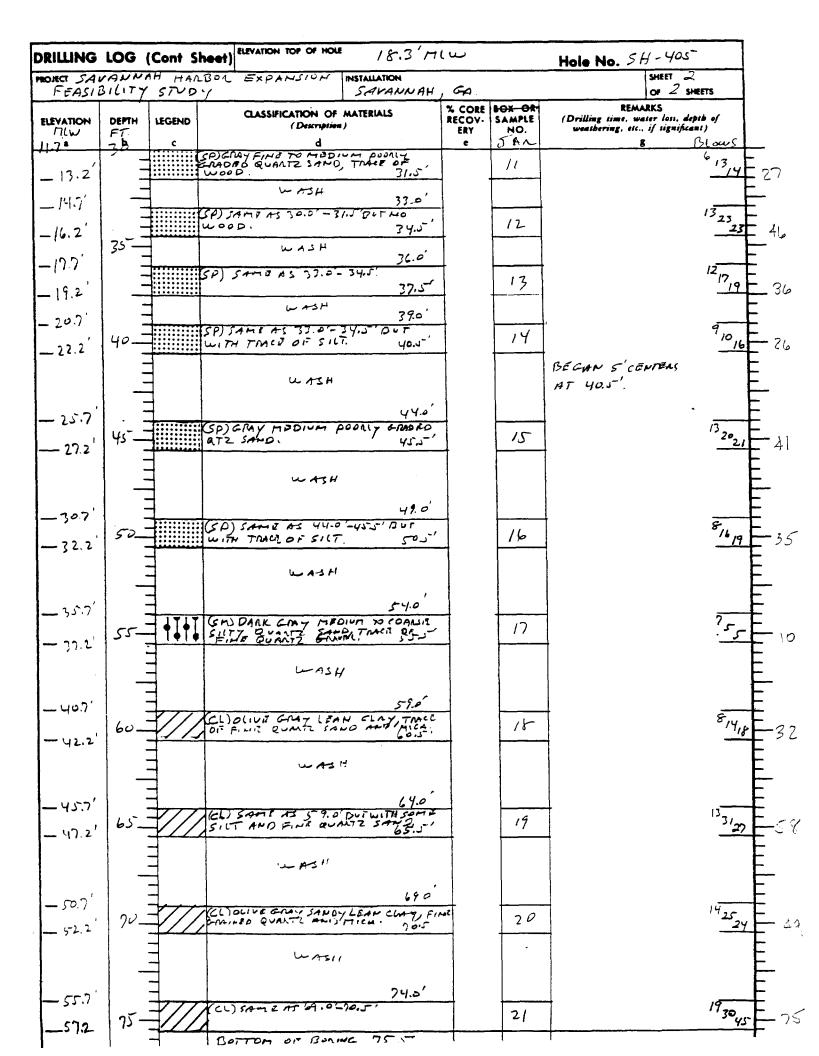
OJECT			ELEVATION TOP OF 0.0' MLW	INSTALLATION SAVANNAH,	GA.		Hole No. S	SHEET 2 OF 2 SHEETS
EVATION			CLASSIFICATION OF (Description)		Z CORE RECOV- ERY	BOX OR SAMPLE NO JAR	REM/ (Drilling time, wai weathering, etc.,	NRKS ter loss, depth of if significant)
			(CL) Olive grey,silty lean C sand, trace of mica.	LAY. Some fine				34
		\square				9		27
		\square				10		24
60. 8'	60 — 			<u>.</u>				2
			Bottom of Boring 60.	8.				
		4						
	-		-		7			
		4						

Hole No. 54 - 400

							Hole N	o. シ <i>H - 4</i> 1	
DRILL	ING LOG	SOL	TH ATTANTE	SAU	ATION ナルルイ	4.60.		SHEET	HEETS
. PROJECT		<u> </u>					38 I.D. SHI		
SAVANN	AH HANBON	DFOR	BRINC FRASIBILTY STLOY	11. DATU	M FOR ELI	EVATION	SHOWN (TEM or M	SLI JEISHT	416
LAT: 31°	(Coordinates o 57144.211	r Station)	. 80°42'41.0623	I ML		R'S DELLA	NATION OF DRIL		
L DRILLING	AGENCY			FAI	LING	314	ACTION OF DRIL	. 6.	
L HOLE NO.	A ahoun on a			13. TOTA	L NO. OF	OVER-	DISTURBED	UNDISTU	ROED
and the num	nbec ⁾		SH-400				<u> </u>		
NAME OF D	NTREE				ATION GR				
DIRECTION				16. DATE	HOLE		TED	COMPLETER	
VERTIC	AL DINCLI	NED	DEG. FROM VERT.				SEP 97 E 0.0' ML	30 SEP9	~
7. THICKNES	S OF OVERBUI	RDEN	60.4 (INC. 52.9 WATH)				FOR BORING	NI	2 .
DEPTH DR	ILLED INTO R		0.0'		ATURE OF				-
. TOTAL DE	PTH OF HOLE		60.4	\bot	7 (fort	<u> </u>	<u></u>	
HLU	DEPTH LEG	END	CLASSIFICATION OF MATERI (Description)	als (/	% CORE RECOV- ERY	SAMPLE NO.	(Drilling time, weathering, c	MARKS Weter ices, de IG., il signific o TL	end and
			UL ATTER				SCALE CHA		
	50	i	COTTOM OF OCEAN 53	.91			SET 6 DI	gmeter si	TE F
			SP) GANY FINE POOR				CASINGT	o state'.	
		110	CAADED QUARTZ SAM	ρ 1					
-52.9'			ALCANEOUL (SEE ASMA	M & N]]) :	NO RECOVE DRIVE, RE	ny on Firs	TIZ
	<u>نې او او او او او او او او او او او او او </u>		SM) G-MAY FINE TO MOD		· ·		DRIVE, AT 52.9' TO 5	DILUVE 4.4'THEN	
_ 55.9	55-		SILTY QUALTZ SAND,	15%	4	2	CONTU ON	1. E TO 55.7	· 1 8 11
_57.0			FINZ TO COALSIL SALO SHILL FMGMONTS, TTAC			3	NECOURNED DAIVES.	59774	912,3
'		1911	FIND COAVEL SIZE SHE	r /		5	BRANNUS	INC	101114
_58-2		` ↓ †h\	FRAGMONTS, CALCANSO	5.9		6	ZOOGEL DA MUD AT		11 11 15
- 60.4	60-1-1		(SP) GRAY CORLE POO GRADAD QUARTE SA	NY	ļ				1515
			40TO FINE GRAVEL SI	26	II.				
			SHOLL FRAGMONTS, CALCANOUS.	7.0'					
			(SM) OLIVE CARY FIN SILTT OUALTZ, SAN SLICHTLY CALCANE 58.9"	re e					
			SILTT OUALTZ'SAN SLIGHTLY CALCANE	ous.					
I		1	DARK OLIVE GRAY,						
			TRACIOF CLAY,			1			
	=		DOTTOM OF BOAM	60.4					
							1		
	E		·						
							,		
				,					
	-]				ľ		Blaus P	EA 1/2 Ent	-
		ļ		ified					-
		- له	TE: Soils field class accordance with the	OUTT TOO			NUMBER 1	Plitspeen	w/1406
		\$0	il Classification Sys	tem.			HAMMER I	Alline 3	<i>ò</i> ",
						1			
•		1							

Hole No. 54-401

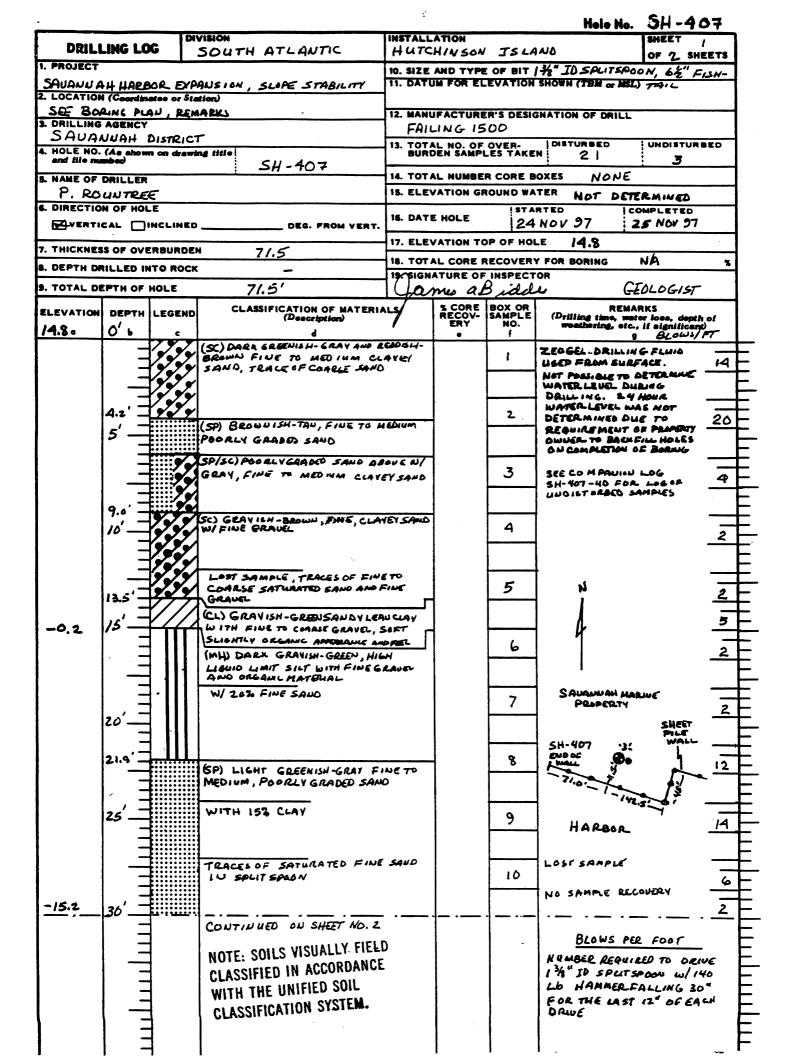

							Mole No.	7	
DDII I	ING LOG	DIVIS		INSTALLA				SHEET	·
I. PROJECT		1 20	OUTH HITLANTIC		NUTYPE		ST.D.SAIT		SHEETS
	HANBOR D) fi rð	NING FEASIBILITY STUDY	11. DATU	FOR EL	EVATION S	HOWN (TEM or MSL)	1=1SA	ITAIL
2. LOCATION	(Coordinates o	r Statio	m	MLU					
J. DRILLING	3 / / 5, 5/3 AGENCY	<u>, 1</u>	ON: 50°41'57.4161		FACTUREI		NATION OF DRILL		
	NNAH D					OVER- ES TAKEN	DISTURBED		URBED
4. HOLE NO.	(As shown on d nbsc)	rawind	54-401	BURD	EN SAMPL	ES TAKEN	1 7	2	
S. NAME OF						CORE BO			
	NTRER			18. ELEV	ATION GR	UND WAT	NIA	MPLET	
6. DIRECTION	A OF HOLE	NED .	DEG. FROM VERT.	16. DATE	HOLE			O SEA	59
				17. ELEV	ATION TO	POFHOL	,		
	S OF OVERBUI		60.4'(Trich. 49.9'WATER)	18. TOTA	LCORER	ECOVERY	FOR BORING N	7A	2
	PTH OF HOLE		60.4'	19. SIGNA	1	INSPECTO	, P.G.		
S. TOTAL DE		-	CLASSIFICATION OF MATERI	1	1 CORE RECOV-	BOXOR	DEMA		
ELEVATION			(Description)		RECOV-	NO.	(Drilling time, was weathering, etc.	er ioes, i , it signij	depth of (
A.C.	0 .	c	WATER		•	JAL	SCALE CHANG		
		ļ						-e 1 11	~ F
	45-		DOTTOM OF OCEAN	49.9'			SOT 6" DIAM	enia.	STREL
			(SP) CARY MODIUM TOC poorly GMODO QUAN	OANSE			SET 6" DIAM CASING PO	53.2	F
			poorly amoro aun	r2			BEGAN USIN		
			SAND, MACE OF FIN DUANTE GRAVEL 20%	CHELL			Drilling M	10 47	- 49.9'. E
,			QUANTZ GRAVEL, 2070 FILGATENTS, CALCANE	2005.					E
_49.9'	50		51.4	Ŀ					F
- 16			FINE TO MEDIUM				CASING B	CC.A.	2710
<u></u> 51.4		-	- GRAINED TRACE OF	SHJU		2	DAOPPING		15.
			FRACHISHTS. 52.9'	-			CLEANOUT		152034
,			NO GRAVIEL. 54.4			3	DEGINNIN	16	143421
		· . -	FINE CIMINED. 55.9'			U U	- AT 57.4'.		191636
_ 55.9							r.		
			COARSE GRAINED, SO			5			51015
				58.91	in a nation	6		-	33.9
58.9			(SCALERY DAAK OLIL		+				-29
40.4	10-19	6	SOME SILT, SLICHTLY CALCMEOUS	SAND,		7			13 12 9
			CALCMEOUS	ſ	1				'
1			BOTTOM OF BONN	6 60.4	1				
					1				
	65-								
		Ī							
							i i		
								14	_
							BLOULS PE	x 1/2 F	001
S I		N	OTE: Soils field class	ified			NUMBER REQU		DAIVE
		i	n accordance with the	Uniiled			HAMMER FALL		
		9	oil Classification Sym	- CHLL			TAMPER FAC		- •
`						1			
ź									
					1				
1									


Hole No. < 4-402 DIVISION INSTALLATION SHEET / DRILLING LOG SOUTH ATLANTIC SAUANNAH لتسک) SHEETS OF 10. SIZE AND TYPE OF BIT 13/8" T.ID. C PLITSPOON 5'6" 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) =15 H PAIL 1. PROJECT SAVANNAH HANBON DENING FEASIBILITY STUDY 2. LOCATION (Coordinates or Station) LAT: 31° 56' 52.4257" 1.00. 80° 41' 1.9911" MLW 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY FAILING 314 SAVANNAH DISTRICT 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN DISTURBED UNDISTURBED 4. HOLE NO. (As shown on drawing title) 8 \circ SH-401 14. TOTAL NUMBER CORE BOXES ${\cal O}$ S. NAME OF DRILLER 15. ELEVATION GROUND WATER C. NOBBINS NIN 6. DIRECTION OF HOLE STARTED COMPLETED 16. DATE HOLE 601797 6 Oct 77 SYERTICAL INCLINED DEG. FROM VERT 17. ELEVATION TOP OF HOLE O.J'MU 7. THICKNESS OF OVERBURDEN 60.3'(INC. 48,3 WATER) 18. TOTAL CORE RECOVERY FOR BORING NA 8. DEPTH DRILLED INTO ROCK 0.0 19. SIGNATURE OF INSPECTOR 60.3 S. TOTAL DEPTH OF HOLE 6 A CORE RECOV-ERY SAMPLE CLASSIFICATION OF MATERIALS (Drilling time, water loss, deprin ... weathering, etc., il eignificant) REMARKS LEGEND ELEVATION DEPTH NO. đ . LATER W SCALE CHANGE AF450. SET C DIAMETER STEEL CANNG TO 53.1 BEGAN USING ZEOCEL. BOTTOM OF OCEAN 48.3 DRILLING MUD AT 51.3. 45 (SP)GRAY MEDIUM TO COARSE POORLY GMDED SAND, TRACE OF FINE OWNER 48:3 9 GRAVIL AND SHIEL FRAGMENTS, 950 SLICHTLY CALCANEOUS. 56 1 49.5 GANY TO LIGHT GRAY, FINE 1013 2 ナ TO MODILIM GRAINED, NO 51.3 42 CRAVEL, CALCALEOUS. 1236 3 1 52.8 52.8 NO SPLITSPOOR 7216 LIGHT GRAY INFOLUM GRAINED Ч \$ SLIGHTLY CALCANEOUS. AUCOUBLY ON FIAST . 54.3 ó ¹³9 -שא יציבציקינצי GRAY, MEDIUM TO COANSE GRAINED, TRACE OF FINE QUANTZ GRAVER. 5 DADUE TO 55.5. THEN 8182 57.1' 6 CONTIO DAIUE TO -57.1 81011 57.3, CHANGE OF, N (SC) DANK OLIVE GOLLY FINE MATERIAL AT 57.1 . CLAYEY SAND, SLICHTLY 6.8 6911 CALCALEOUS. g 0 60.3 BOTTOM OF CONINC 60.3' S ~ FU 0 2 Blows PER 1/2 FOOT 9 NOTE: Soils field classified humber required to drive 711, in accordance with the Unified 17 I.D. Spirspoor or/14066 HAMMER FALLING 30". Sdil Classification System. Z

				<u> </u>			Hele No.	54-40	5
DPII I	ING LO		SOUTH ATLANTIC	INSTALL		1.1.		SHEET	
			HABOIL		ANNA			OF SHE	
			lity study	10. SIZE	NO TYPE	EVATION !	18 7 D. SPU	15,400N 5	<u>'</u>
I OCATION	1Canadian	Ann an Eda	(dea)	MLU	/			FISH THIL	-
LAT: 31	56	31.664		12. MANU	FACTURE	R'S DESIG	NATION OF DRILL		
3. DRILLING	AGENCY	_		FAI	LING	314			
SAVAN				13. TOTA	L NO. OF	OVER-	DISTURBED	UNDISTURB	ED
and file num			SH_403				1_2	0	
S. NAME OF	DRILLER			14. TOTA	L NUMBER	CORE BO	ixes O		
C. RO				15. ELEV	ATION GR	OUND WAT	ER NA		
6. DIRECTION				16. DATE	HOLE	STAR	TED	OMPLETED	
AVERTIC		NCLINED	DEG. FROM VERT.			114		1402197	
7. THICKNES	S OF OVE	RBURDEN	60.1 (INCL. 49.6 WATTER	17. ELEV	ATION TO	POFHOL	E 0.0'HL	<u>ب</u>	
B. DEPTH DR			0.0'				FOR BORING	NA	*
				19. SIGN	TORE OF	INSPECT	* 0-		
9. TOTAL DE	PTHOF	HOLE	60.1'	کب ا	<u>/</u>	Jack	P.C.		
ELEVATION 8	DEPTH b	LEGEND c	CLASSIFICATION OF MATERIA (Description)	us //		BOX OR SAMPLE NO. JAA	REM (Drilling time, w weathering, etc	ARKS star loss, depth -, il significanti g /3L00	ە: بىر
			11. 1.				SCALE CHA		
			WATER	1			-	• -	-
	45						SET 6" DIA		₽(
			DOTTOM OF DOCEAN 4.9	.6		.	CALING NO	53.6'.	
1	=		(SP) TROUN MEDIUM T	ألميس كالكمين بيريكا الم					
			WHASE POORLY GAND	FO					
			SAND TRACE OF SHELL	. 1					
- 49.6'	-		FINGINENTS AND FIME G	2UM2	l				
	50-	27.1-	GRAVE, CALCASEOUS.	1		<u>├-,</u>		7	
		Z.,	51.1'			1	NO ABCOURA	y ON	610
			GJAY, FINE TO MEDILI	1		2	49.6'70 51.1	THEN 24	25 0
			GRAILIED, TRACE OF SIC GRAVEL.	T, NO	ł	<u> </u>	CONTINUED	DAIVE	32
) =	3	STANC.		ļ	3	70 524! ALC	DUENIO 30	792
-54:1-		h	TRACE OF FINE QUANTE	مقادين بالايه بيداد	a parata da sera da sera		- DOTH DANES		-2
'	53	[:::::::::::::::::::::::::::::::::::::	GRAVEL, NO SIET. SLIGHT	n y	[4	BEGAN USI		50
-57.6	-		CHICANBOUS.		1	5	ZFOGEL DAIL		9
		، مرتب (COARSE GRAINED.	58.6			100 AT 52.		8-
		1.1.	(CL) DANK OLUE GRAY	SILTY		6		13	$2\frac{1}{11}$
	=	777	H-LBAN CLAY, SOME F	EINE L	4		•		<u>//</u>
1.1		1//2	CALCANEDUS, SLICHT	y	}	7		(9,
	60-		POTTOM OF BONING		†				
	=	1	Juli	<i>o</i> -, i	1				•
l		1							
	-] .			1	1			
	-	7			1				
[45-	1				1			
· ·		1	ł						
]	=	-			1		}		
		7				1	j.		
1	-	7			1	1			
1	- =	1	1		1		4		•.
1		4					WS PER FOOT	1	
[=	7.		-	1				
ł	=	1 N	TE: Soils field classif	ied	1	Numb	er required	to drive	1 10
1		4 4	magoordance with the U	11180		1 1 3/	8" ID Splits	sboor #172	STI.
	-	- 5	oil Classification Syste	811.		hamm	er falling a	يد " 50	
1		7			{				
1		1							
	-]		
l		4				ł			
ł	-	4	1				1		
1	-					1	1		

								Hele N	· 5H-4	04
DRILL	ING LO	G	VISION		TALL				SHEET	· ·
			HAREDIL EXPAN		AUA	NNNH,	GA.	2101-		SHEETS
FFASIB	11171	יחנה איז יחנה צ	THUS ON EXHAN	5100 10.	DATU	AND TYPE	OF BIT	13/8' I.U. SPO	ITSAUN	52"
2. LOCATION	(Coordin	stee or Sta	100 × 973 878 91	a	MLU	בי יוג ב י		OIAMET	The SHORD	All, 3
		<u>uks</u>	<u> 179250 ?</u>	12.			R'S DESIG	NATION OF DRIL	L	7 1006
3. DRILLING SAVANI		DISTNIC				<u>-55</u> 0				
4. HOLE NO.	(As show			13.	TOTA	L NO. OF	OVER-	DISTURBED	UNDIST	URBED
and file num	nb ec		SH-404					20	/	
S. NAME OF				14.	TOTA	L NUMBE	R CORE B	DXES D		
C. RO				15.	ELEV	ATION GR	OUND WA	TER NIA		
. DIRECTIO	•	_		16.	. DATE	HOLE		ATED	COMPLETE	-
VERTIC		NCLINED	DEG. F	ROM VERT.					21 NOV	77
7. THICKNES	S OF OVE	REURDE	N 64.51			ATION TO				
8. DEPTH DR	ILLED IN	ITO ROCK	0.0		_				N/A	*
9. TOTAL DE	PTH OF	HOLE	64.5		. SIGN/	ATURE OF	INSPECT	T. P.G.		
					\rightarrow	S CORE	808-08			
ELEVATION MLW 10.4'	DEPTH	LEGEND	CLASSIFICATION (Descrip	OF MATERIALS High)	\mathcal{O}	RECOV- ERY	SAMPLE NO. JAN	(Drilling time, weathering, e	tc., il eignifi	epth of cant) (put 5
,	-		(SM) BROWN AND	GRAY FINE	70		1	R.S.C		<u> </u>
8.9'		1414	MEDIUM SILTY QU	MAT'Z SAMO	· _		1	BECAN US DRILLING		22
· · ,		1	Some Roors. WASH	<u>/. 5</u>	[AT 0.0'.	FIUID	
7.4'			SP) LICHT DROWN	3.0	A 14 -			SP(17 SAUEA		
ral	_		POORLY GRADED QU	JAATZ SAND.	451		2	2' C BM / BA		234
5.9'	5		WASH			r i		NOTE: No f		7
4.4 ¹	_		W ASH	6.4	o'			ON FIRST &		
1.1		55	(SC) GRAY MODIUM					PROM 6.0'7	· 7.5%	10
		1999	CLAYEY QUART2	SAND.			3	REDAOUS TO THEN CONT		-0
t	_	1999	1	9.1	۵́			DAINE TO		26
1.4'			(SP)LIGHT BROWN	MEDIUM TO CO	ANSE	ł		Then sought a		4
-0.1	10		PODALY CRADED QU	ANTZ SAND, 7	TACE	ł	4	FROM 6.0'T	ro 9.0'.	446
!		1	WASH		کر کھنے			8		
-1.6	-				20	. .	Ļ	UNDISTURIS	ED	
<i>a</i> ,'	_	₩ ₩₩	(SM) GMY FINE 7 QUANTZ SAND.	O FIPDION S	1		5		,	412
-3.1	=				3, 5-	ł		UD-1, 6.0'-	7.0	
_ 4.6'	15	1	w A SH	1	50			LOCAT	NON	•
ļ ,		TOT	(SM) SAME AS 12.0	- 135 BUFU	אדות	I	1	ARGYLE	TYAND	286
- 6.1	=	<u></u>	TRACE OF CLAY		5	ł	6		II N	<u> </u>
_ 7.6'		1	(SP) GRAY MEDRUM		T T		1	H \	1版4	
	1 -		POUNLY GMDED	QUANTZ SAN	۲ رەر	ł	 			<u> </u>
-9.1	=		TRACE OF WOOD	19.	5-1		7		1157	610
	20-	 	WASH	21.	ø	Ţ		SH-404 162	-10-	
-10.6	-	1	SP) GRAY FINE TO	MPDIUM PO	117	1			11154	
1.01	=		SILT.	•		1	8		H83	1713
_12.1'		1	WASH		-5-	┫	<u> </u>	- SAVANUA		e <u>15</u>
13.6	-	4	(SP)C-MY MODAM		~			E NIVER	1115	<
	_,		POORLY GRADED A	WANTS SAM		1	9			967
-15.1	_دz	1	TRACE OF WOOD.	******	-5-1	1	4			
	=	1	WASH		2				OF	~
- 166			(SP) SAME AS 2	Y.0'- 25.5 B	~~ 1					×
18.1	-	-	WITH THACE OF I	28	5.5	1	10	STATION	l	5811
	=		1			1	 	51-5 164	· *	
19.6	30-	1	CONTINUED ON		2			1 Series		
		4	CONTINUED ON			T	T — -	<u> </u>	PER 1/2 F	
	=	4							· · · · ·	
		7	NOTE:SOILS VISU					NUMBER RE		
1	=	1 1	CLASSIFIED IN A			1	1	DRIVE 13/8		TSPACIN
Į		4	WITH THE UNIFIL					W/140 L6 H		
1	_	4	CLASSIFICATION S	DISIEM.		ł		FALLING :	\$0	
	1 =	1	ł			1	1	I •-		

<u>S 173</u> PN		LEGEND	CLASSIFICATION OF MATERIALS (Description)	, GEO % CORE	AG1A	SHEET 2 OF 2 SHEETS
PN	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS			
· · ·	FT.					REMARKS
· · · · · · · · · · · · · · · · · · ·	<u>ب</u> بو ا	c	• •	RECOV- ERY	NO.	(Drilling time, water loss, depth of weathering, etc., if significant)
ı'			GP) GMY FINE TO MEDIUM	e	£	<u> </u>
ı'	_		POORLY GRADED QUARTZ SAND TRACE OF SILT AND FINE QUARTZ	ļ	11	13,3
ı'		-	GIAVEL. 31.J	1		
	-	1	WASH 330			
			(SP)LICHT GRAY MEDIUM TO COALSE POORLY GRADED QUARTZ SAND, TRACE OF FINE QUARTZ CAMEL. 34.5		12	568
- T	35-	-	MALL OF FINE QUARTZ GAMEL. A.S.			
	-		36.0			
r'	-	╡┥╿┥╿	(SM) GRAY AND BROWN FINE TO MEDIUM SILTY QUARTZ SAND. 37,5		13	1213
		┥	WASH 39.0'	1		
6	-		SP) GMY FINE TO MEDIUM POORLY			
. I.	40 -		GADED QUANT2 SAND, TRACE OF SILT. 405]	14	91918
1'	-		SILT 40-5' WASH 42.0'	4		
	-	-	(SP) 54 ME AS 39.0'- 40.5'D.T			
. 1			WITH SOME WOUD.		15	8-
1	-		43.54	4	15	85
,'	45_		CONCOMPENSION TONE			
J.	19 -	117	ICH) GRAY FAT CLAY, TRACE OF MEDIUM TO COANSE QUANTZ SAMD	1		0
1'	-	111.	AND WOOD. 46.5	1	16	0 23
6		4	wASH 48.0			
1	-		(SP)LICHT GAAY MEDIUM TO COANSE L POORLY GAUDED QUARTZ SAND.	╡		BEGAN S'CENTERS TO
/	-	_	495		17	BRGAN 5'CENTENS 16 BT49.5", 24
	50_			1		
	-		he As H		1	
	-	-	•			
6		1///	53.0	4		
i	-		(CL) DIVE GAAY SILTY LEAN		18	15 ₃₂
'	55-		CLAY, SOME FINA QUALTZ SAND, THER OPPICA. 545	1		
	t.		SAND, THEIR OFFICEA. 542			
	-	4	WASH			
	_		58:0	1		
('	-	\$ <i>///</i>	(CL) SAME AS 530'- 545' BUT		19	14 22 2
	60-		MICA. 59.5 [-		
	-		MICA. 59.5			
	-		WASH			
r			63.0']		
	-	1///	(CL) SAME AS 58.0'-59.5'.	1	20	15 27
ι'	65_	<u> </u>			4	רב לב ארב ארב
			Borron of Bonine 64.5'	1		
	-					
	_	7				
	-	-				
	-]				
		4				
	-	4			-	
		4				
	-					
	-	-		ł		


								Hole No.	SH-40	>
DRILL	ING LO		VISION SOUTH	ATLANTIC	HUTC	ATION HINSO	N ISI	AND	SHEET J	FETC
. PROJECT								1% TO SPLITSA		
SAVANNA L LOCATION	AH HA	RBOR	EXPAR milon	SIGN, SLOPE STABILITY	11. DATU MLV	M FOR EL	EVATION	SHOWN (TEM or MSL	-) THIL	
				-	12. MANU	FACTURE		GNATION OF DRILL		
L DRILLING		NSTON	-			ING 15				
And file num	(As show	n on draw	ing title	SH - 406	13. TOTA	L NO. OF	OVER- ES TAKE	DISTURBED	UNDISTURE 2	ED
. NAME OF E	DRILLER			31-100	14. TOT		R CORE B	IOXES NON)E	
P. Rou					15. ELEV	ATION GR	IOUND WA	TER NOT DETE	ERMINED	
DIRECTION				DEG. FROM VERT.	16. DATE	HOLE			25 NOV	97
THICKNES	S OF OVE	RBURDE	N	>71.5'	17. ELE	ATION TO	P OF HO	LE 9.94		
DEPTH DR				711.5				Y FOR BORING	N/A	7
. TOTAL DE			•	71.5'		ATURE OF		Jan al id	I. AENA	
				LASSIFICATION OF MATERIA			BOX OR	REMA		6/ 37
ELEVATION 9.9 a	DEPTH	LEGEND	1	(Description)	125	RECOV-	SAMPLE NO.	(Drilling time, we weathering, etc.	ter loss, depth)
	-	• I•I	SN) F	INE TO MEDIUM SILTY SA	NO W/			WATER LEVEL NOT	DETE MINUD	
		∳Ĭ • Ĭ	SOWC	ROOTLETS/WOOD			<u> </u>	DURING BRILLING		12
		 	LOG,	WBED			· ·	SURFACE. 24 H	OUR WATER	
		♦I♦I	TAN,	GREEN, GRAY , TRACE OF	GAAVEL		-			
	5'	♦Ĭ♦ Ĭ ·	·		•		2.	SEE COMPANIE SH-406-40 F	-	8
	י ר	∳Ĭ∳ Ĭ.	1					DISTURBED SAM DESCRIPTIONS, LI		
	T	• I • I		NAND GRAY W/ LAVER) of		3			-
		• I • I						1		6
		I I T I								
0.9	9		(MH) G	REEN AND GRAY , HIGH L	QUID		4	1		
	10'		LIMIT				4			3
-2.1	12' _		(SM) 7	TAN FINE TO MEDIUM .	SILTY			4		
	11	†↓†↓	SAM	2			5			2
	15'_	│ †								
	15	│ † ↓ † ↓	GRAY	WITH LARGE PIECE OF G	RAVEL			N.		
	_	┆ ┿ ↓ ┿ ↓					6			19
		┤ ┽ ┟ १ ┟								
		│ १ ५ १ ↓	·					4 [
	=	╽┥┧┥┧					7			13
	20'	╡ ┥ ┋┑┇								
	_	┤ ┿ ↓┿↓						, oc		
		┤┞┧┞╽					8			2
	_	┤ १ ↓ १ ↓								
		┤ ┥ ┥┥	1					4		
	25'	╡╿┥┥					9			2
		┤ ┥ ┥┥					1			
		Į∮↓∮↓	GRAV	FINE TO MEDIUM WITH	ATRACE		10		سِبْ	·
	=	╡╹┥┥┙		RAVEL		1	L	HARBOR WAT	ER-LINE AT	6
- 20.1		┤ ╿ ┥╿						~ ~		_
	30'	إغاغا	CONT	INVED ON SHEET No. 2		+	+	· ·	<u> </u>	•
	-	1	1000	and the second second second second second second second second second second second second second second second						
		ł		TE: SOILS VISUALLY FIE						
	-	1	1	SSIFIED IN ACCORDANC	E					
	-	}	1	TH THE UNIFIED SOIL						
]		ASSIFICATION SYSTEM.						
	-]						1		
	1 -]	1				1	1		

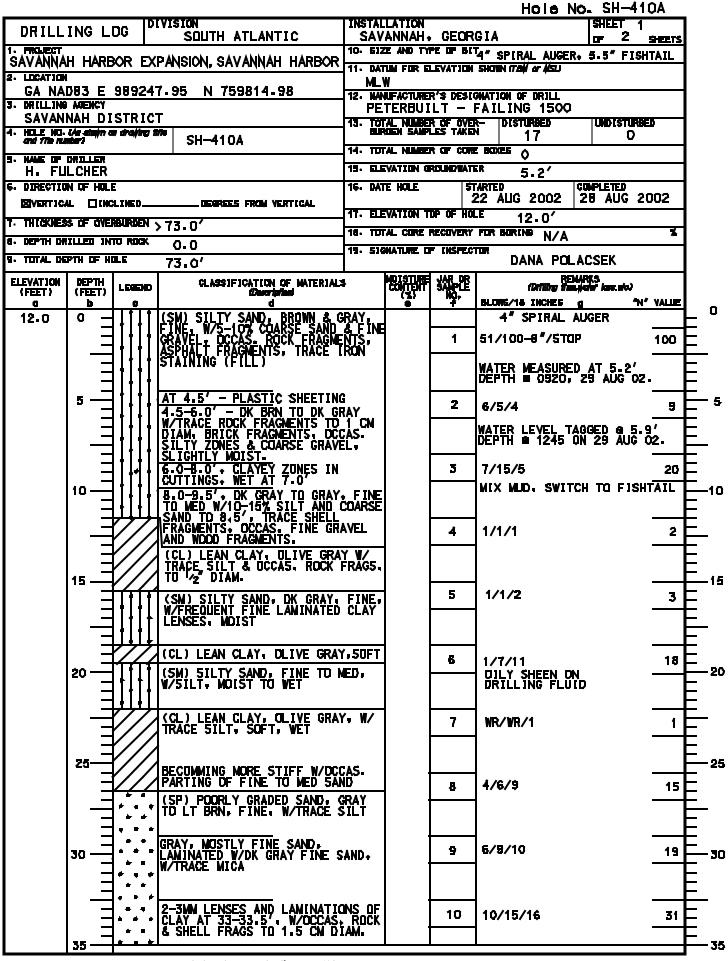
DRILLING	100	. ,	C ~		5b + 1	ELEVATION	N TOP O	F HOLE									
NOJECT	LOG	- (Sneetj				9.9	4 MLV	/		Hole	No.	SH-	406	
SAUANNA	<u> HA HA</u>	RE	OR	EL	PANSI	w,sla	re sta	4					UANNAH	64	1	2 SHEET	S
ELEVATION	DEPTI	н	LEG	END		CLASSI		N OF I	MATERIAL	S	% CORE RECOV-	SAMPLE	(Drill	ling time	EMARKS	ss, depib	of
20.1	300			c				d		•	ERY	NO. f			etc., if sig		
		1							e linu E noo	SILT,		11	WEIGHT	of Hai Rom J	1412 PA	SICD	
		4			MIC	124043	1 164			-			4				
_	-	Ξ											WEIGHT	oe u		DULHED	
-24J	34'	∃	┿┥	╬	(SM)	GRA	. EN	E TO	MEDI		4	12	TOOLS F	FRon 1	1.0'70	U 5'	8
	35'-	-	•	∮∮		SAN											
		7	I	Ī								13	1				
	-	\exists	Į	Ī									4				20
-28.1	39'	4	1														-
-011	40'-	_		••••	(SP) Sau	GRAY,	FINE	, Poi Rau	orly (Eof m	GRADED		14					32
		Ξ							1 14				·				
-32.1	42'	Ξ	1		(NZ)	GRAY.	FINE.	SILTY	SANO	WITH	4		+				
		4	•	,∳Į	ATR	ALE O	FMI	CA .		- • •		15	-				24
- 35.1	45'-	=								•		· ·					
- 32.1		Ξ						-	VETO M			16	1				35
									us wit Ravel	-			4				32
	-	1				H FIN	<u>e 00</u>						4				-
					VV I	4			•			17]				35
	50'-																
		1															
	-																
					FINE	TOC	OARS	E, w	ITH SO	MC		18	1				.=
	55'_	_			312	1							ŧ				15
		4															
		=															
		∃			FIN	TOM	ED/4A	1, 20	ORLY G	RADED			4				
	60' -	=			SAN	2		•		-		19	4				36
	60 -	Ξ											1				
		Ξ															
	-	4				C					4		4				-
		Ξ			VER	GREEN	s, Low	יביפר הנופר	HO LIN	ut sict,		20					79
	65 '_	\exists					-]				
		4															
- 60 0	-	Ξ	11														_
-58.8		∃		11	847		C 2		:68.7	,		21	1			100/0	5.7'
	-	4			001	D	190 H		.=								
		Ξ										-					
	- 1	Ε							-								
		4															
		=															
		Ξ															
		_										1					

s

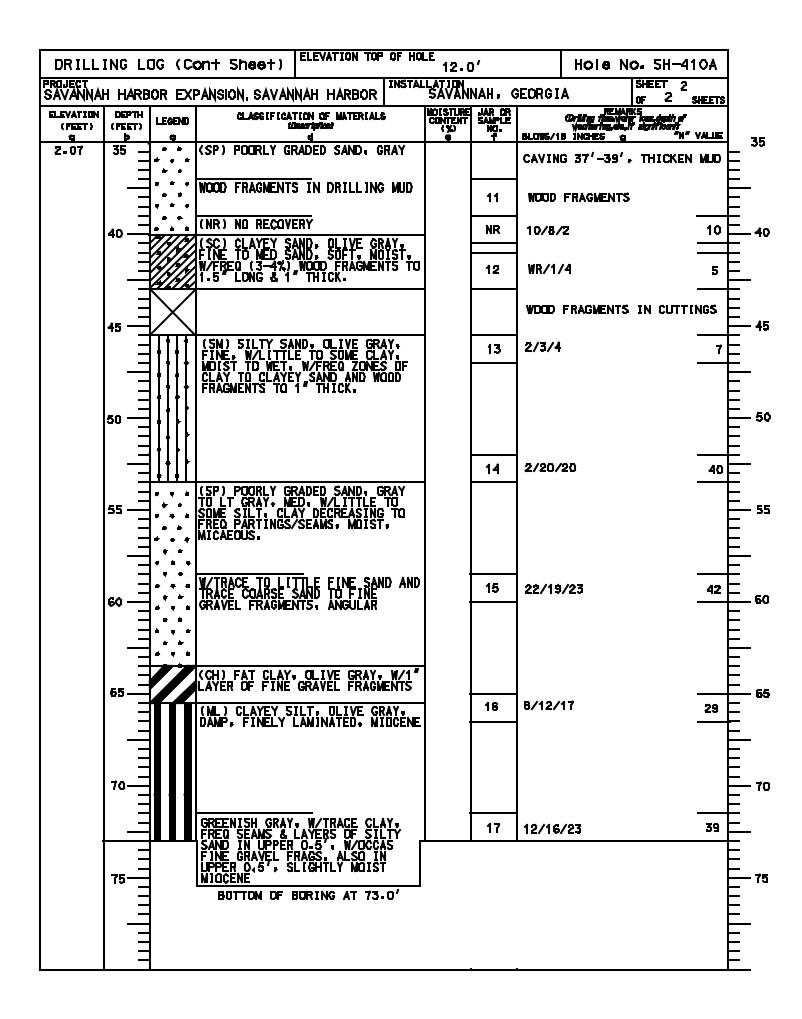
Hole No. SH - 406-40

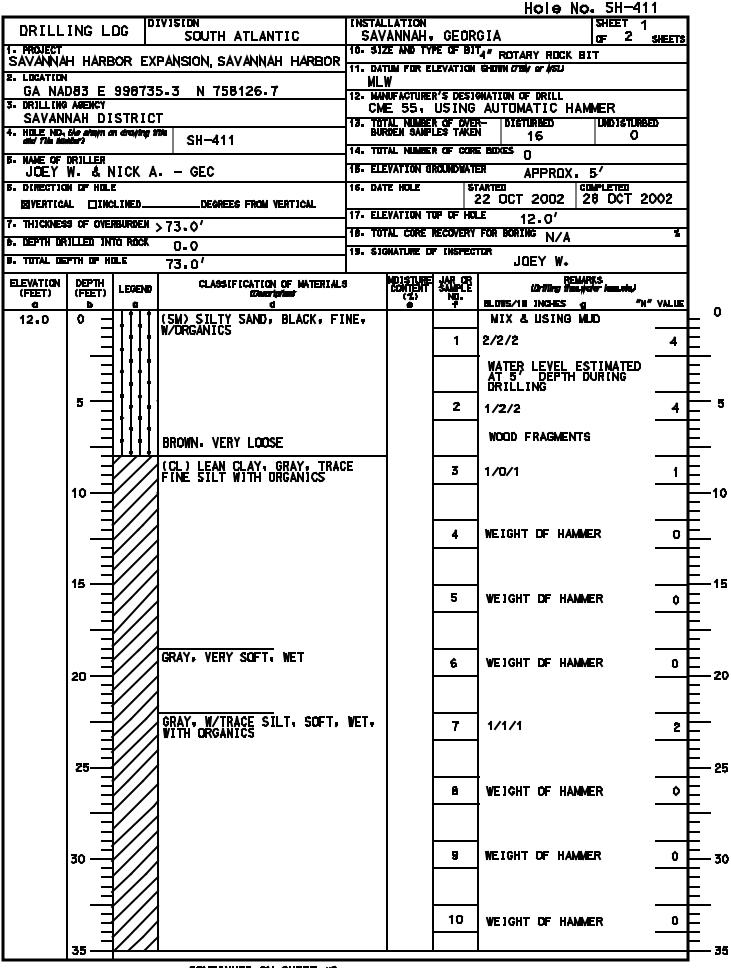
								Hole N	6. SH - 406-4	D
DRILL	ING LO	~ i	VISION		INSTALL				SHEET ;]
. PROJECT		<u> </u>	очтн	ATLANTIC		HINSON			OF I SHEETS	
SAVANNA	ан нар	BOR EX	PANS	ION, SLOPE STABILITY	11. DAT	JM FOR EL	EVATION	SHOWN (TBM or)	MSL) TAIL	-
LOCATION	(Coordina	stee or Sta	tion)			W				
See Borin			REHA	1AKS -	-	LING 150		GNATION OF DRI	LL	
SAUANN	-	-				AL NO. OF		DISTURBED	UNDISTURBED	
ANDLE NO.	(As shown mber)	n on drewt	ng title	SH - 406 - UD	BÜRI	DEN SAMPL	ES TAKE	NONE	2	
NAME OF	DRILLER					AL NUMBE			ONE	
P. Rou		-			15. ELE	VATION GR		TER NOT DET		
DIRECTION					16. DAT	E HOLE		RTED NOV 97	24 NOV 97	
		NCLINED		DEG. FROM VERT.	17 ELE			<u> </u>	2/40/)/	┥
. THICKNES	S OF OVE	RBURDE	N	>32.5'				Y FOR BORING	N/4	
DEPTH DR	ILLED IN	TO ROCK			19. SIGN	ATURE OF	INSPECT	AR A		-
. TOTAL DE	PTH OF	HOLE		32.5'	4	mes	al	3 iddle	GEOLOGIST	
ELEVATION	DEPTH	LEGEND	c	LASSIFICATION OF MATERIA	ALS	% CORE RECOV-	SAMPLE	(Drilling time.	EMARKS water lose, depth of	
a	Ь	c		d	/	ERY	NO. f	weathering, o	etc., if eignificant) 9	
									tures after each	Τ
								PUSH BEFORE	REMOVING TUBE.	
								N_		
	10'			UE GRAY HIGH LIQUID LIF	IT SILT.	1	UD-1			
	/o		FINE	-						
									SH-406-40	
	-									
	-								PI 5H-406	
									- 3N- 400	
	zo'									
								HARGOR WATER	130'	
								LINE & LOW		
								N N		
										-
	30'		GRAN	LOW LIQUID LIKIT SILT, FI		4		CONPANION	LOG TO SH-406	
			ALCAC	eous.			40-2			
			Barro	M OF BORING : 32.5"						
	_									
							1			
	_						1			
			1							
	=									
						1				
			}		D					
		1		E: SOILS VISUALLY FIEL			ł			
	=	1		SSIFIED IN ACCORDANC	C					
		i.		H THE UNIFIED SOIL						
		1	CLA	SSIFICATION SYSTEM.			1	1		
		1				1	1	1		

RILLING	LOG	(Cont S	heet) ELEVATION TOP OF HOLE			Hole NoSH407
OJECT			INSTALLATION			SHEET 2
AVANDAL	+ HAKE	SOR EXP	ANSIGN, SLOPE STABILITY SAVAMUAH HARBOR		BOX OR	REMARKS
	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth of weathering, etc., if significant)
5.22	З0'ь	c	d	e	f	B BLOWS/FT
			(SD) CONTINUED FROM SHEET NO. 1 .			_
			OLIVE GREEN, FINE TO MEDIUM POORLY		11	2.4
	-		GRADED SAND			
	· _		FINE TO 23.8'			
					12	- 2
	35'		CLAN LAVERS			
	. –					
			FINE - TO MEDIUM, NO CLAY		12	-
					13	e
	-					
	40'		SLIGHT SULFUR ODOR		14	
	-					<u>-</u>
			ONE FINE GRAVEL SIZED PIECE OF		15	
	, <u> </u>		LIME STONE		212	3
	45'					-
	_		TRACE OF COARSE SAND		16	2
	-					4 -
	_					
		-				
	50' _					
	_		FINE TO COARSE		17	
			· · · · · · · · · · · · · · · · · · ·			
					•	
	'عب	_	TRACE OF FINE GRAVEL			-
	-	-			18	•
]				
			-			
	-	-				
	60' _	-				
]	FINE TO COARSE W/ 15% SILT, NO			-
	-		GRAVEL		19	
	-	-				
	-	-				
	=					
	65' _					_
:	1				20	
-51.2	66 -		(ML) DARK GRAVISH-GREEN ORGANIC			-
	_	<u> </u>	SILT, HARD, DEUSE			
	-					
	-					
	70' _]				
- 61 0	:				21	
-56.8	+		BOTTOM OF BORING: 71.5'			
	_	7	DUITUR OF DURING, THE		-	
	:					
	-	-				
		7			1	
	1			1 .	1	1

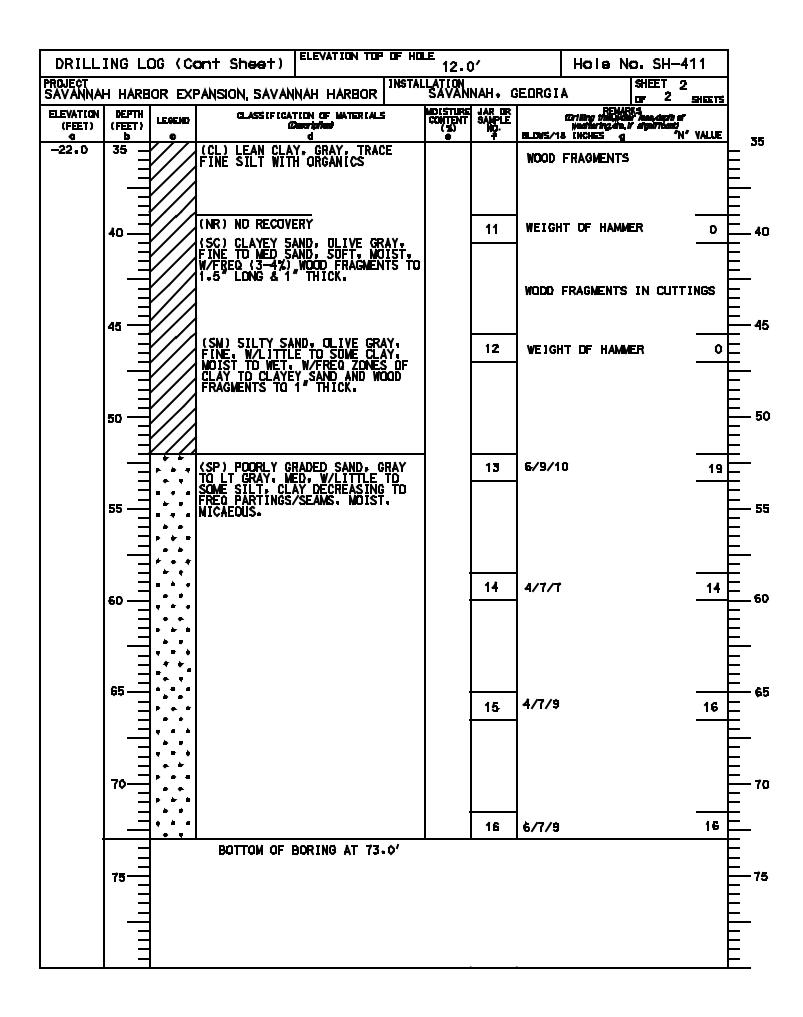

DRILLING LOG SUMMENT ATLANTIC HITALATION JUST ALLANDA PROJECT SUMMAN HARDAG, EYPAUSION IS BER AND YTE OF BITS STAAHDAT TACK, BY CALL SOUMAAN HARDAG, EYPAUSION TO AND YTE AND YTE STAAHDAT TACK, BY CALL LOCKTOR Conduments of Administic and Mining TO AND YTE NOW CONTRACT TO AND YTE AND											t	lole No.	SH-4	107-4	<u>D</u>
PROJECT D. NET WORD STORE D. NET WORD STORE YORK STORE YORK THE AVENT THE AVENT STORE YORK THE AVENT STORE YORK THE AVENT STORE AVENT THE AVENT STORE AV	DPII I	ING 1 (0 G					1		د نه د					
SOUZANDAH HARBORG FY POLSION SOUZANDAH HARBORG FY POLSION SEE BOOLNERADI, SH. 407, REPARAL The DATUE FOR ELEVATION GROWN (THE AS NEL) "POLL SAUADUAH DISTURED DISTURED DISTURED TOTAL DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED DISTURED				50	SUTH A	TLANT	10	1							
LOCATION (Coversite of a Station) MLW MLW MLW MLW MLW MLW MLW MLW MLW ML	_	н цо	RAAR	τX	PAUSION	,		11. DATU	M FOR EL	EVATION	SHOWN (T	BM or MS	L) 7416	-	
DRILLING ADERCY FAULING 1500 SUNDAUMAN bistret FAULING 1500 Marker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Harker of address divide divis SH 407 - UD Barker of address divide divis SH 407 - UD Barker of address divide divis SH 407 - UD Barker of address divide divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divide divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD Barker of address divis SH 407 - UD SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 - SH 407 -	2. LOCATION	(Coordin	nates or	Stati	ion)										
SAUAUAU DISFERENT SAU JANUAU DISFERENT and die namboli NARE OF DRILLER P. ROCUNTREE DRECTION FORLER P. ROCUNTREE DRECTION FORLER P. ROCUNTREE DRECTION FORLER DRECTION FOR THE DRECTION DRECTION FOR THE DRECTION FOR THE DRECTION DRECTION FOR THE DRECTION DRECTION FOR THE DRECTION FOR THE DRECTION DRECTION FOR THE DRECTION DRECTION FOR THE DRECTION FOR TH				1-4	07, REMA	ens					SNATION C	F DRILL			
and Min marked SH 407 - UD Is TOTAL DUP IN LER Is TOTAL OUR BUILTER Is TOTAL OUR BUILTER P. ROUNTREE Is ELEVATION GROUND WATER NOT DETERMINED DIRECTION OF DUE Is ELEVATION GROUND WATER NOT DETERMINED DIRECTION OF DUE Is ELEVATION GROUND WATER NOT DETERMINED DIRECTION OF DUE Is ELEVATION OF POLE DET ONLIED WTO ROCK Is DATE HOLE DET ONLIED WTO ROCK Is DATE HOLE DET ONLIED WTO ROCK Is DEVENDED I 14.80 CLASSIFICATION OF WATERIAL I 4.80 C STATUS CLASSIFICATION OF WATERIAL I 4.80 C STATUS CLASSIFICATION OF WATERIAL I 4.80 C STATUS COMPANIANT OF DATERIAL I 4.80 C STATUS COMPANIANT OF DATERIAL <td></td> <td></td> <td>-</td> <td>ст</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>DISTUR</td> <td>BED</td> <td>UNDI</td> <td>STURBE</td> <td>.D</td>			-	ст						-	DISTUR	BED	UNDI	STURBE	.D
NAME OF DELLER IS IN TOTALD Is TOTAL HUMBER CORE BOXES NONC P. ROULNT REF Is ELEVATION GRONDE VATER NOT DETERMUED Is ELEVATION GRONDE VATER NOT DETERMUED DIRECTION OF NOLE Is ELEVATION GRONDE VATER NOT DETERMUED Is ELEVATION GRONDE VATER NOT DETERMUED DIRECTION OF NOLE Is ELEVATION GRONDE VATER NOT DETERMUED Is ELEVATION GRONDE VATER NOT DETERMUED DIRECTION OF NOLE Is ELEVATION TOP OF NOLE Is (AND P 7) DIRECTION OF ORDER 20.9 Is, (OTAL CORE RECOVERY FOR BORNE NA DEPTH DULLED INTO ROCK Is, (OTAL CORE RECOVERY FOR BORNE NA NA TOTAL DEPTH LEGEND CLASSIFICATION OF MATERIAL Is (MACH OF ALL OF SALAD) CLASSIFICATION OF MATERIAL Is (MACH OF ALL OF SALAD) REMARKS SC OF Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF ALL ALL OF SALAD) Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF ALL ALL OF SALAD) Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF ALL ALL OF SALAD) Is (MACH OF ALL OF SALAD) Is (MACH OF ALL OF SALAD) SC OF ALL ALL OF SALAD)	4. HOLE NO.	(As show	en on dr	e win		> ^ ^ =		BUR	EN SAMPL	ES TAKE	N NO	NE		2	
P. ROUNTREE Is. ELEVATION GROUND WATER NOT DETERMINED DIRECTION OF HOLE DES. FROM VERT. IS. DEE NOLE 2.4 NOV 97 DES. FROM VERT. IS. DEE NOLE DES. FROM VERT. IS. DEE NOLE DES. FROM VERT. IS. DELEVATION TOP OF HOLE DES. FROM VERT. IS. ELEVATION TOP OF HOLE DES. FROM VERT. IS. ELEVATION TOP OF HOLE CONTAILED INTO BOCK IN. TOTAL COME RECOVERY FOR BORING DEFTH OF HOLE 2.0.3 CLASSIFICATION OF MATERIAL SCORE BOX OF TO MARKET IN OF MATERIAL DEFTH OF HOLE 2.0.3 CLASSIFICATION OF MATERIAL SCORE BOX OF TO MARKET IN OF MA			<u>.</u>		21	1 407	-ub	14. TOT/		R CORE B	OXES	NON	6		
BUYERTICAL DIRECTINED DEC. FROM VERT. B. CARE HOLE 2.4 NOV 97 IT. ELEVATION TOP OF MOLE 14.5 IT. ELEVATION TOP OF MOLE 14.5 DEFT DIRLED MYTO ROCK IN TERMALS NOR FOR BORING N. NA * IS. TOTAL CEFT OF BORING PROCE ILEVATION DEPTM LEGEND CLASSIFICATION OF MATERIALS ACCOUNT OF MOLE 14.5 S. C. C. ASSIFICATION OF MATERIALS ACCOUNT OF MATERIALS ACCOUNT OF MOLE 14.5 S. C. C. ASSIFICATION OF MATERIALS ACCOUNT OF MATERIAL ACCOUNT OF MATERIAL								15. ELE	ATION GR	OUND WA	TER NO	T DET	ERMIN	(ED	
Description Description Description THICKNESS OF OVERBURDEN > 20.9 IN TOTAL CORE RECOVERY FOR BORING NA IN TOTAL CORE RECOVERY FOR BORING IN TOTAL CORE RECOVERY FOR BORING IN TOTAL CORE RECOVERY FOR BORING IN TOTAL CORE RECOVERY FOR BORING IN TOTAL CORE RECOVERY FOR BORING IN TOTE SUBMERTICHTURE IN TOTE SOLE IN TOTE SOLE IN TOTE SOLE IN TOTE SOLE IN TOTE SOLE AND FORE COLLER FOR THERESOLE <td>6. DIRECTION</td> <td>OF HO</td> <td>LE</td> <td></td> <td></td> <td></td> <td></td> <td>16. DATI</td> <td>HOLE</td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td>,</td>	6. DIRECTION	OF HO	LE					16. DATI	HOLE	:					,
THICKNESS OF OVERLAURDEN THICKNESS OF OVERL	VERTIC	:AL [INCLIN	ED.		DEG.	FROM VERT	·					24 1	00 37	
DEPTH DRILLED INTO ROCK - TOTAL DEPTH OR HOLE 20.7 TOTAL DEPTH OR HOLE 20.7 CLASSIFICATION OF MATERIAL ACCORD PROCE CLASSIFICATION OF ACCORDANCE CLASSIFICATION OF ACCORDANCE CLASSIFICATION OF BORING: 20.8'	7. THICKNES	S OF OV	ERBUR	DEN	>	20.9									
TOTAL DEPTH OF HOLE 20.3 Comme AB cadds GEOLOGIST ILEVATION OF PETH LEGEND CLASSIFICATION OF MATERIAL REGARD ADDRESS AND ADDR	8. DEPTH DR	ILLED I	INTO RO	ск		-						RING /	N /A		
ILEVATION DEPTH LEGEND Construction RECOV. SAMPLE Construction Construction I 4 - 8 O's c d Construction Construction Construction S - 1 c d c d Construction Construction S - 1 c d d c State State S - 1 c d d c State State S - 1 c d d c State State S - 1 c d d d c State S - 1 c d d d d State S - 1 c d d d d d S - 1 c d d d d d S - 1 d d d d d d S - 1 d d d d d d S - 10 d d d d d d S - 10 d d d d d d S - 10 d d d d d d S -	9. TOTAL DE	PTH OF	HOLE			20,9						le Ge	OLOG	157	
14.8 0'b c d Comparison of a light light light of a light light light light of a light	EL EVATION	OFOTH	L ECE		CLASSI			IALS	% CORE	BOX OR	(D_111)-			4	
6.8 9' 5' 6.8 9' CSC) GRAVSH. GEBUSH BEAM FILETO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0							-	1	ERY		weath	g time, wa ering, etc	ter 1088, -, if aigr	, depth o hificant)	<i>'</i>
6.8 g. 5' 6.8 g. 5' 6.8 g. 6.8 g. 6.8 g. 6.8 g. 6.9 GC) GRANISH - GREENISH BROWN FINE TO 10 O 15 BOTH JANDRES AT SULFACE WHEN FULLING 10 O 10' 10 1-1-0	<u>~ ь</u>	<u> </u>	+		dd			•	<u> ' </u>	COMPAN	ION IA	5 6 70 5	4.447		
6.8 9' 5' 6.8 9' 5' 6.8 9' 5' 6.8 9' 5' 6.8 9' 5' 6.8 9' 6.9 (SC) GRAVISH GREDNSH BROWN FINE TO MCDIUM CLAYEY EAND WITH GRAVEL 1' 1' 1' 1' 1' 1' 1' 1' 1' 1'		-									SAMPLE	S ALLOW	10 TO 1	1 30	E
$\begin{array}{c c} 5' \\ 5' \\ 6.8 \\ g_1 \\ 5.0 \\ 10' \\ 100 \\ 2.8 \\ 12' \\ 100 \\ 10' \\ 100 \\ 10' \\ 100 \\ 10' \\ 100 \\ 10' \\ 100 \\$		-	7								MINURI	AFTER	-LACH	push	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7							ļ				-	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	4								14.0_1	5.8 ANC		-17.8.	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5'	1								LOST E	SOTH SA	PLES	47	F
6.8 8' 5.0 10' 2.8 12' 1.0 13.8 Source the converted and the top th		-	1									CE WHE	نه کرد	.ING	Þ
5.0 Ia' 5.0 Ia'		-	1								14062				E
5.0 Ia' 5.0 Ia'	6.8	a'	-					·			ļ				E
5.0 10^{-1} 2.8 12^{-1} 1.0 13.8 -3.0 18^{-1} -3.0 18^{-1} -6.1 20^{-1} Borrow of BoriNG: 20.9' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			- 1							100-1	N				E
2.8 12^{1} 3.8 5^{1} 3.8 15^{1} 3.8 15^{1} 3.8 15^{1} 3.0 18^{1} 3.0 18^{1} 3.0 18^{1} 3.0 18^{1} 3.0 18^{1} 4.0 10^{1} 5.0 18^{1} 4.0 10^{1} 5.0 18^{1} 4.0 10^{1} 5.0 18^{1} 4.0 10^{1} 5.0 10^{1} 4.0 10^{1} 5.	5.0	· - ·	-122	Ľ	hard-sciences et						Ï				F
1.0 1.0 13.8 15' -3.0 18' -6.1 0' 10' 10' 10' 10' 10' 10' 10'		···	7								<i>k</i>				F
1.0 1.0 13.8 15' -3.0 18' -6.1 0' 10' 10' 10' 10' 10' 10' 10'	20	-	-												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~·8	····	-	9	SPYXXINE	TO COAL	LS E SATU	RATES	1		1				F
-3.0 18' -6.1 20' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL	1.0	17 00 -		2	SAND AM	S EINE G	FINE CLAY	ey same		40-2	1				E
- 3.0 18' - 6.1 20' - 6.1 20' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL	•											407 -	K.		E
-3.0 18' -6.1 20' -6.1 BOTTOM OF BORING: 20.9' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		15`	4						1			··· (💭	• 5H-4	07-40	上
-6.1 20'		-	1								· ·	- North			Æ
-6.1 20'	_	-	4						1		~~ _ °.	HEET PI	1425	<u>`</u>	/E
-6.1 20' - HARBOR BOTTOM OF BORING: 20.9' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL	- 3.0	18' -] 11		MU DARK	GRADUIS	H-GRAL	63 L 1 4 1000	1		- 1		WAL		₅∕-F
-6.1 20' HAABoe BOTTOM OF BORING: 20.9' NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	$\exists $		UMIT SILT	WITH .	Some cut	TISAND		40.3	- 1		~		F
NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL	<u> </u>	20'	$\exists $							1	1 H	ARBOR	~		^ F
NOTE: SOILS VISUALLY FIELD CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL	-, 0 , 1		╡╵└	Щ	BOTTOM	E 200	16:20 0'		ļ	<u> </u>					<u>~</u> F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	1		20.1040										F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			1												F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	1												E
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			1							[E
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL															E
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	_							1					E
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	-						1						F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL		-	7												F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			ゴ												F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			4												F
CLASSIFIED IN ACCORDANCE WITH THE UNIFIED SOIL			1												
WITH THE UNIFIED SOIL			1							1					E
		-	_		CLASSIF	IED IN A	CCORDAN	CE							E
CLASSIFICATION SYSTEM.		ŀ .	-		WITH TH	E UNIFI	ED SOIL								E
		_	7	- 1	CLASSIF	ICATION	SYSTEM.		1						F
			7				-								F
			ゴ												F

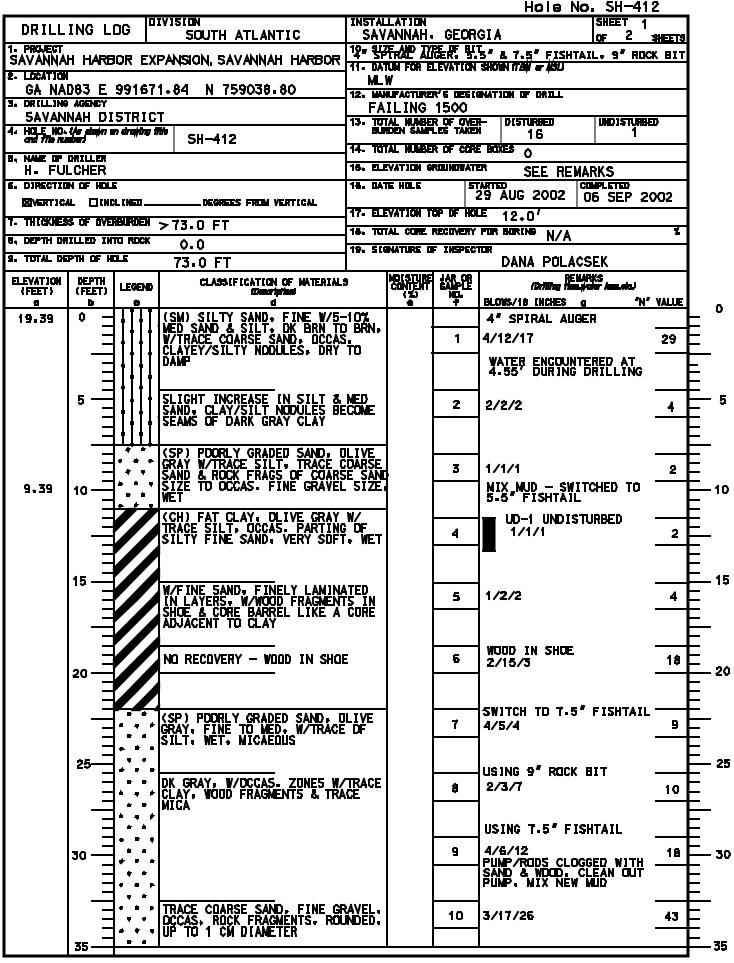
								Heie N	• 5H-1	
DRILLIN	16.1.00		SION		INSTALLA		<u> </u>		SHEET	
		2		TLANTIC		NNAH		3/01-2 -2	OF 2	
				PANSION	11. DATU	FOR EL	OF BIT	3/8'5.D. SP	LITSPOON,	<u>5/2</u>
FEASIB LOCATION (C	Coordinat	ee or Stati			- 17L+	N		د	HALBY N	84
DRILLING AG	7532	29	<u>Y 777</u>	666		FACTURE		ATION OF DRI	L	
SAVANN	AH	DISTA						DISTURBED	UNDIST	RBED
HOLE NO. (A			d dddlal	- 408	BURD	EN SAMPL	OVER-	17	2	
NAME OF DR	NLLER		> H	- 700	14. TOTA		CORE BO	XES O		
C. ROB	OINS				15. ELEV	ATION GR	OUND WAT	ER NA		
DIRECTION		-			IS. DATE	HOLE	STAR		COMPLETE	
VERTICA		ICLINED		DEG. FROM VERT	·			-NOV97	26 Nov	
THICKNESS	OF OVE	RBURDEN	55.5'				POFHOL	/3.///-	NA	
DEPTH ORIL	LED IN	TO ROCK	0.0				INSPECTO	FOR BORING	NA	
TOTAL DEP	THOFH	OLE	55,5'			1	Litte	- P.G.		
	DEPTH	LEGEND	CLASSI	FICATION OF MATER (Description)		% CORE RECOV- ERY	BOY OR SAMPLE NO.	(Drilling time.	EMARKS weter Joss, de etc., if signific	pth of card
	0 	•] •]	(SM)LIGHT	DROWN FINE TO A				BRGANUS	ING	
14.2'	4	1414	SILTY QUA		1.54		 	Drilling 1	ud at	146
12.7'				WASH	3-0'			0.0'.	,	Ŀ
1 4 . 1			SP)LICHTE	MAY FINE TO HED	Har Anna La		$\left \begin{array}{c} \\ \\ \end{array} \right $	SPLITSPOOL	NON 3	399
11.2'	_ =		FINE CA	LAGE SAND, TTA	4.5		2	CENTANS.		19
9.7	5			W ASH	6.0'			NOT: UA	SH NETULU	L L
1.7		195	(SC) GINY NA	DIUM TO COMOSE CI DD, SOME FINE R			3	FROM 75	10 9.0'	444
8.2'		Y y y	ENAVEL.	WIJSOME MINE R	7.5	ļ		CONTAINS	LANCE	<u></u>
, ~ 1			le fer	1 - SFFAFTAR	es 9.0			PIOCES OF FISHTAIL H	AD LARCE	Ę
6.7'		TATA	(SM) GAAY F	MA TO MEDIUM	SILTY	t		AMOUNT &	FFAT	1,
5.2'	Ю	•T•T	KUNITZ 3A	- y some clay.	10.5	ļ	4	CLAY, CODI	SLE ALO	
3.2				WASH	12.0'					t t
··/ ,		772	(SC) army	FINE PHEDUN	1 CLAYEY	1	5	קטסאט	NEED	1,
2.2	_	2.17	RUMT2'	x7~D.	13.5-1	1		12-1,12	5-13.8	23.
22'	,			LASH	15.0	1		10-2,14.	7'-16.5'	. 1
0.7'	<u>ب</u> ــــــــــــــــــــــــــــــــــــ	111	CHOCMY A	TO BROWN PATCI	LAY, TRACK	1	6	LOCATI	يم	1
_ 0.8	-		Madeum Qu	NO BROWN PATCO D WOUD AND FIN MAJZ_SAMD.	11.5	4		اه' ا	N N	,
_ 2.3′		1		WAIH	18.0'					
	_		SP)LIGHT G QUANTZ SA	MY FINE POOLLY	614050	1	2	514409 1,	18= 4	8 12/4
-3.8	, –		A - MIL SA		19	4	ļ	\ 🖉 \ \	125	<u>'''</u> /Y
_ 5.3'	20	1		W AIH	21.0	1		$ \rangle \rangle$	25/00/	
	_		SP) SAME MODIUM	AS IF.O'-A-S' BUT	FINE TO	1	8	\	812-1-15 OF	.14 17 18
- 6.8']			22-5-	4				
/	_]		w AZH	240				///Ä	
- 8,3	,		SP) SAMI	AS 21.0 - 22.5		-	9	1 \	؛ / یو / _	4 9 6 4
- 9.8'	25		·		25.5'	4.	7	BH-12	121	v <u>•4</u>
	·]		W ASH	270			#		\setminus
- (1.3' /			SP)SOME	AS 21.0'-22.5'		-1	10	♠ ´ \		10 14 11
- 12.8'	-		<u> </u>		28.5		10	SAVANNAN AIVER J	\ \`	
11.7'	30 _	7		WASH	— .			111000	1	
— 14.3	<u>~</u>	+		IUSO ON SHEE		<u>† </u>	1	Blows	pan 1/2 F	
	_	7	":07E:SO	ILS VISUALLY FIELD	J F			NUMBER	ROUNSO T	DUVE
		7	CLASSIFI	ED IN ACCORDANC. IE UNIFIED SOIL	-			136" E.D. SA	LITSPOON W	/140 LA
	=	7	HT HTW	CATION SYSTEM.			1	Hannen P	ALLING 3	o",
) =	7	ULNOOITI							
	-	7								
1						-				


		Cont S	•1	15.7 ML	L		Hole No.		
		אא אא יהצ'	MBOR BRAADSION	SAVANNA!	می را			SHEET 2 OF 2 SI	
		LEGEND	CLASSIFICATION OF (Description d	•)	% CORE RECOV- ERY e	BOX OR SAMPLE NO. JA	(Drilling time,	tc., if significa	IRt) Marce (
70			(P) LIGHT GRAY FINE TO. GRADED QUANTZ SAND.	medum poorly 31.5-1		11			\$17
			WASH	33.0'					
		† ↓ ↓	(SM) GRAY MEDIUM S SAND,	342 ²		12			714
35	11		LASH (SP) LICHT GAMEINET	360 D M BOINT ADDAL					12
-			(SP) LICHT GAMY FINET GRADED QUANTZ SAND	37.5		13	NOTE: INA WASHED F.		12
., 40	,		WASH (SEE REMA	^م ب⊔			ч ЧI, o'.		
3'			(SP) 54H\$ 45 36.0'-3'	7,5%. 42,5	*	14			105,
3'.	-		WASH	44.0					•
: 4	s		SP) SAME AS 36.0'-37 These of SILT.	45.5° Dur 12 , TH 45.5	, -	15	BREAN 5'C	sumers	15192
			w ASH				AT 45.5,		
' 5			SP) CRAY MEDIUM TO C CIMOSO QUANTZ SANG	99.0 0 ANST POORLY 50.5		16			1326
,			W A3						
' 5			(SP) GRAY COARSE P QUARTZ SAND, PIECE FROM 55,2' HO ST	54.0 00114 GALDED 107 WODD 5.3'.	- 	17		,	^{יץ} די
			Dorron of B	ONING 55.5"					
60		-							
ź	-								
				·					
	-								
	•	=							


Hole No. SH-410

								HOIB	No. 5H-410	J
DRILL	ING L		ivision Solit	H ATLANTIC	SAV	LATION ANNAH 1			SHEET 1	SHEETS
		IOR EX	PANSION,	SAVANNAH HARBOR	10, SI7	LE AND TY		I ER+57/1* ROCK B SHOWN (TEM) or ((SL)	1T. 5.5" FIS	ITAIL
2. LOCATION GA NA		98927	8.56 N	759851.67	ML	W		, ,		
3. DRILLING	ARENCY			103001101				ENATION OF DRILL FAILING 1500	,	
	NAH DI				13. TO	TAL NUMBE Den same	R DF DVE	R- DISTURBED		D
4. HOLE NO. and The nu			‴" SH→	410		TAL NUMBE		Z	v	
5. NAME OF H↓ FUI					15. ELI	VATION Q			MARKS	
6. DIRECTIO	n of holi	5			16. DA1	e hole	S	ARTED 21 AUG 2002	22 AUG 20	202
				REES FROM VERTIÇAL	17. 61.	VATION T			22 AUG 21	
7. THICKNES			> 7.0'		18. TO	AL CORE	LCOVERY			z
8. DEPTH DR			0.0			NATURE D	F INSPEC	TOR		
ELEVATION			7.0'	SSIFICATION OF MATERIAL		MOISTURE		POLACSEK	MARKS	
(FEET)	(FEET)	LEGEND		Cier and Charles Constructions	•		JAK DLE JAK DLE JAK DLE	Urning in Blovs/18 inches	n ydyr innewydd C 'N"	VALUE
	0 -	TIT	(SN) SI	LTY SAND, DK BROWN	<u>FI</u> NE			HAND AUGERED		
		Ī	N/5-10%	ROCK FRAGMENTS & I Se gravel & dccas Pieces to 1" Acros	INE		1	4 <u>4 0</u> , D. AUGE		ск 🗄
		ĪŧĪŧ	\(FILL }	WOOD AT 2.5 FEET.	55			4" 0,D. AUGE AT 3' 5' F ABOUT 3.5'		
		ĪŀĪŦ	LT. GRA					SET 10' CASI 9 FT BELDW G	NG TO DEPTH	ÊEE
	5 —	1,1,		SH RED W/CLAYEY ZON I F MED SAND, OCCAS	IES Trinai		2	4/3/3		╤╞
		╏╏	SHĚLĽS I	LE MED SAND, OCCAS TO 3/4, WOOD FRAGME	NTS.		2			
			BORING	TERNINATED AT 7 FE	ĘŢ			WATER LEVEL		
				CONTINUED WATER LU	22			WATER LEVEL	NUI ENCUUNII	╘╓╘╜╞
	10 —									_
	15 —									
										E
										E
	20									F
										E
										E
										F
	25—									F
	3									E
										E
	30 —									E
										E
										F
										F
										E




CONTINUED ON SHEET #2

CONTINUED ON SHEET #2

CONTINUED ON SHEET #2

	ING L	JG (C	ont Sheet)	ELEVATION TOP		12-0			Hole N	Io. SH		
PROJECT Sávanna	h harb	or exi	PANSION, SAVAN	Nah Harbor 1	INSTALI	SAVANI	NAH - C	EORGIA		SHEET 2	SHEETS	
ELEVATION (FEET) G	DEJETH (FEELT)	LEGEND B		TION OF MATERIALS		CONTENT CONTENT (%)	JAR OR SAMPLE NU	n Blows/10	NEMA Miling fino.yo Yadharing,do. INCHES G	RKS Vir Anne daptin af Vir arganir/konati "N	" VALUE	-
	35		(SP) POORLY GR GRAY, FINE TO SILT, WET, MI(RADED SAND, OL MED, W/TRACE CAEDUS	. [VE OF							
	40		FINELY LAMINA FINE GRAVEL, F WOOD, DECREAS	ROCK FRAGMENTS	ONE5.		11	9/17/1	9		36	· · · ·
	45	* * *	LAMINATIONS AN OF DARK GRAY	<u>3sent, W/Few</u> S To black silt	eam s		12	7/14/13	3		27	
	50											
	1 11 11 55	* * * * * * * * * *	GRAY TO LT GRA CLAY LAYER ABO FROM 52∢O TO 9	JUT 0.4 FT THI	ск		13	10/15/	'15		30	
	8 11111111		IABOUT 59 <u>.</u> 0 TO	INE TO MED SAN M/LAYER OF FIN Y FINE TO MED 59.5 AND TRAC	D& E SAND		14	12/23/	28		51	
	5 5	* * * * * * * * *	STLT. WOOD AB G3' TO G4' DR SOIL BASED ON (ML) LEAN SIL W/TRACE FINE S DRY TO SLIGHT	ILLER REPORTS DRILLING RESP			15	15/25/4	10		65	
	1111		V/LITTLE FINE	SAND, BEÇONI Dok gray W/TR ND FRON 72.5	NG ACE TD		16	6/14/18	1		32	
	75		T3' VERY FIN	IELY LANINATED Boring at 73.0			19	0/ 19/ 18	3			
								-			Ē	•

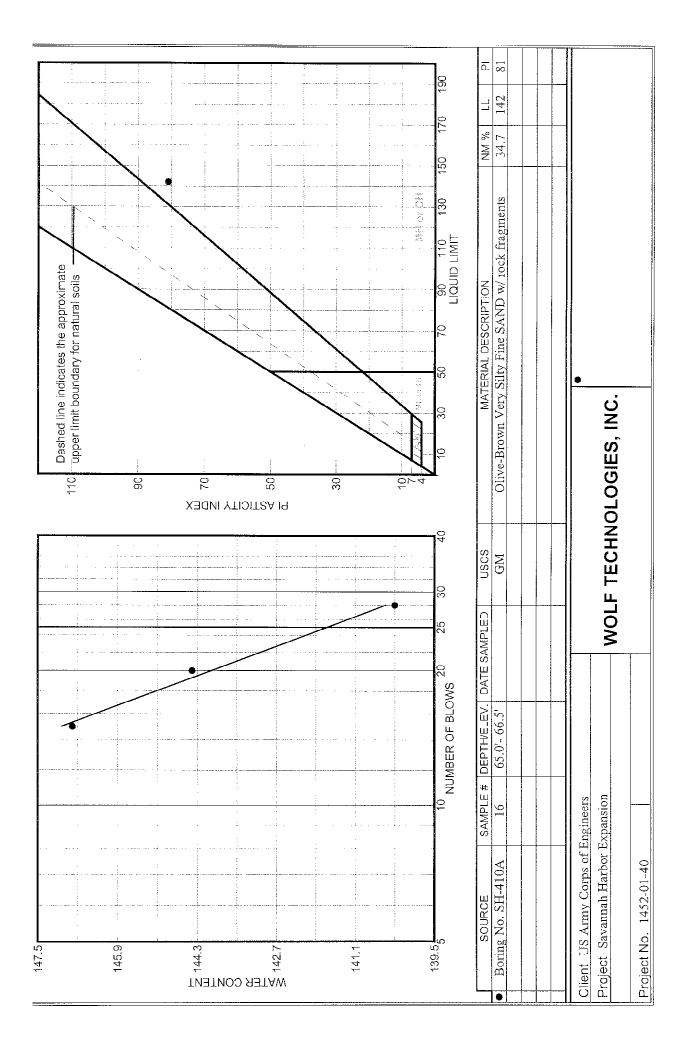
APPENDIX B LABORATORY DATA

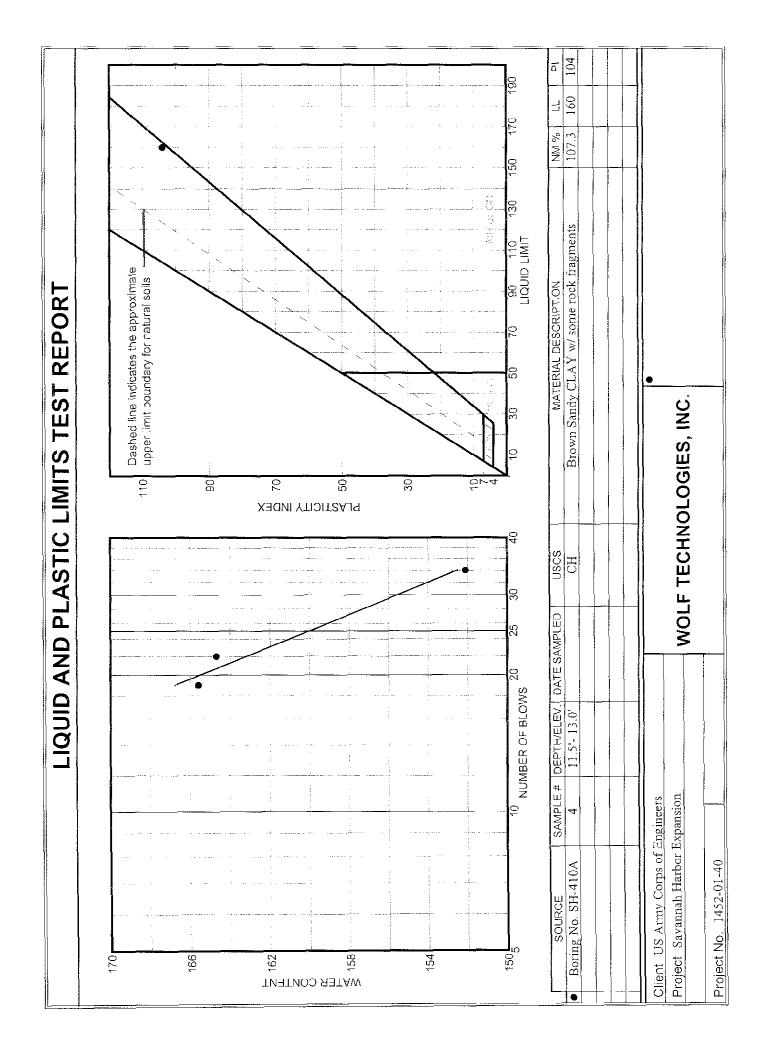
(Click for Test Results)

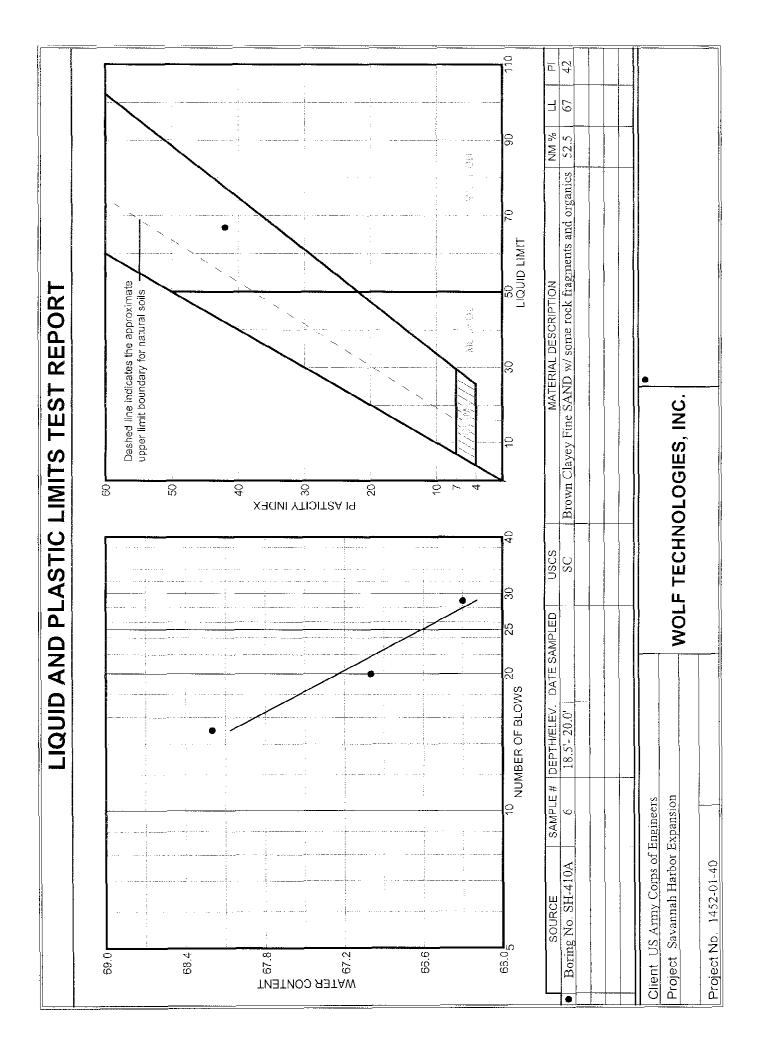
LABORATORY DATA

Liquid and Plastic Limits

SH 410A Sample 4	Depth 11.5 to 13.0	СН
SH 410A Sample 4	Depth 11.5 to 13.0	CH Lab Work Sheet
SH 410A Sample 6	Depth 18.5 to 20.0	SC
SH 410A Sample 16	Depth 65.0 to 66.5	GM
SH 411 Sample 2	Depth 4.5 to 6.0	SM
SH 411 Sample 5	Depth 15.0 to 16.5	СН
SH 411 Sample 8	Depth 25.5 to 27.0	MH
SH 411 Sample 12	Depth 45.5 to 47.0	СН
SH 412 Sample 5	Depth 15.0 to 16.5	СН

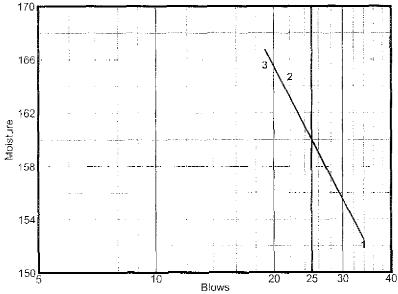

Grain Size Distribution


SH 410	Sample 2	Depth	4.5	to	6.0	SC	
SH 410	Sample 2	Depth	4.5	to	6.0	SC	Lab Work Sheet
SH 410A	Sample 3	Depth	8.0	to	9.5	SM	
SH 410A	Sample 3	Depth	8.0	to	9.5	SM	Lab Work Sheet
SH 410A	Sample 4	Depth	11.5	to	13.0	CH	
SH 410A	Sample 4	Depth	11.5	to	13.0	CH	Lab Work Sheet
SH 410A	Sample 6	Depth	18.0	to	20.0	SC	
SH 410A	Sample 6	Depth	18.0	to	20.0	SC	Lab Work Sheet
SH 410A	Sample 6	Depth	18.0	to	20.0	SC	
SH 410A	Sample 6	Depth	18.0	to	20.0	SC	Lab Work Sheet
SH 411	Sample 2	Depth	4.5	to	6.0	SM	
SH 411	Sample 2	Depth	4.5	to	6.0	SM	Lab Work Sheet
SH 411	Sample 5	Depth	15.0	to	16.5	CH	
SH 411	Sample 8	Depth	25.5	to	27.0	MH	
SH 411	Sample 12	Depth	45.5	to	47.0	CH	
SH 411	Sample 14	Depth	58.5	to	60.0	SM	
SH 412	Sample 5	Depth	15.0	to	16.5	СН	


Triaxial Shear Test

SH 412	Sample	UD1	Depth	11.5	to	13.3	CH	R w/pore pressures
SH 412	Sample	Jar	Depth	11.5	to	11.7	SM	
SH 412	Sample	UD1	Depth	11.5	to	13.3	CH	Sieve Analysis
SH 412	Sample	UD1	Depth	11.5	to	13.3	СН	Atterberg Limits

Moisture Contents Summary Table 410, 411 & 412


LIQUID AND PLASTIC LIMIT TEST DATA

Client: US Army Corps of Engineers **Project:** Savannah Harbor Expansion **Project Number:** 1452-01-40

Sample Data

Source: Boring No. SH-410A Sample No.: 4 Elev. or Depth: 11.5'- 13.0' Location: Description: Brown Sandy CLAY w/ some rock fragments Date: Natural Moisture: 107.3 USCS Class.: CH Testing Remarks: AASHTO Class.: A-7-5(101)

Liquid Limit Data											
Run No.	1	2	3	4	5	6					
Wet+Tare	35.26	35.56	34.95								
Dry+Tare	32.31	32.48	32.40		· · · · · · · · · · · · · · · · · · ·						
Tare	30.37	30.61	30.86								
# Blows	34	2.2	19								
Moisture	152,1	164.7	165.6								

Liquid Limit= 160 Plastic Limit= 56 Plasticity Index= 104

		 	····· ··· ····		•	
Tare	3.61	 	·····	<u></u>		
Moisture	56.1	 		:		

[0				RCENT C			VEIGH	ţ								
	<u> </u>	10	50	30	40	20	4	8	70	α	8	06	100	r			NC NC
Ц.								• • •					0.001	CLAY			TECHNOLOGIES, INC
HYDROMETER	· · · · · · · · · · · · · · · · · · ·	······································				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			0.01		Savannah Harbor Expansion		2003 WOLF TECH
		· · ·	· · ·			······	···· · · · · · ·	· · ·	•	· · · ·	• • • •			SILT			g no. 1/17//
00 140 200		· · · ·	· ···· · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	 				· · · · · · · · · · · · · · · · · · ·		0.1		PI Project	Area	Date:
STANDARD S.EVE NUMBERS 20 30 40 60 10	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· ·	 - - - : : ;			· · · · ·	· · · ·		METERS	SAND	61 61		
ANDARD S.E [.] 20 30			· · · · ·			······································		· · · · · · · · · · · · · · · · · · ·		· ·			GRAIN SIZE IN MILLIMETERS	S	Nat w% LL 34.7 142		
U.S. ST 10								· · · · · · ·			-		GRAIN		JD w/ rock		Report
IN INCHES 1/2 3/8 4	l .		· · · · · · · · · · · · · · · · · · ·					- - - - - - - - - - - - -	· · ·				10	GRAVEL	Classification ery Silty Fine SAN fragments		Grain Size Distribution F
SIEVE OPENING IN INCHES 2 1-1/2 24 1/2 3/8		· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	······································						Olive-Brown V		Grain Si
0.S.S. 0.S.S.	-	· · ·	· · ·				· · · ·						100	COBBLES	Elev or Depth 65.0'- 56.5'		
	100	06	0	02	09	20	···· ·	· · ·	30			10	0	COBI	Sample No. 16		

					RCENT CO										6
	<u></u>	10	50	B M	40	20	60	20	80	6	- 1 10	. []			TECHNOLOGIES, INC.
							:				0.001				ES,
	.,				· · · · ·		<u>L</u>					сгау			00
			:				•					O			Q
TER		-	. •	• •		-	1	-	•	:			цо		HN
OME							:	•	÷ .	•			ansi		
HYDROMETER					····		·	4				-	r Ext	SH-410A	<u>Ц</u>
			•	-							· [Savannah Harbor Expansion		NOL
			 	•						· · · ·		SILT	a: H	Baring No	a
								: .	•				vann	1	\sim
		: .	··· ·					:							1.17
		: :				· · · · · ·		;	· · · · ·				Project	Area Boring No.	Date:
10 200	[· · · · · · · · · · · · · · · · · · ·							1				_ < ¤ _ □	
0 5 5													<u>e</u> N		
STANDARD SIEVE NUMBERS 22 32: 40 60 10	 -	· · ·				-									
	-			• • •			-	1				GRAIN SIZE IN MILLIMETERS	P		
N 4 2 4	—									· ·		SAND			-
н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·· ·····										MILL			
DARI 22 RI		 F	/				· · · · · · · · · · · · · · · · · · ·					<u>Ц</u>	%∞ ×∞	╶┼╼╀┈	-
IAN	ſ	/			:			: :		1	ľ		Nat w% 23.8		
S.S. °.			· ·		: 				:			SRAII			
	/	· :	. .		. :		·						v/ rock		Report
	. /.	•	· · ·				<u>.</u>		· · · · · · ·				ND W		
4	t/			-	·	···· 	· 	· ·		. : 					Distribution
l UI a	1	· · · ·	······································	· • · · · · · · · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·			Classification Gray Slightly Silty Fine SA fragments		trib
NCH NCH	, -			·								GRAVEL	ilty frag:		Dis
2 0 \$	 -	-										6	itly o		Size
	- L							•					Sligh		Lin C
OPE 14	-		· · ·	· · · · · ·		•		-	:	. :			лаy		Grain
SIEVE OPENING IN INCHES	↓	 	· · · · · · · · · · · · · · · · · · ·	·····				· · · · ·							-
	- 	······	·	: :		• :		<u> </u>					bth bth		
)		· ·	· ······			••			······	•	· · · · · · · · · · · · · · · · · · ·		Elev or Depth 8.0 ⁻ 9.5'		
: c	<u>}</u>								:			3LES	Elev 8.(
						-			• ••			COBBLES			-
	·				· · ·			-			· · ·		N N		
	с. С.	6	88		69	20	40	30	50	<u>0</u>		й Г	Sample No		
	14 C	<u>.</u>	ன்	ト	Ū	LÓ L	4	c7	2	.					

i		5
M000		MAY 63
		÷
	() 2 1	-
		_

	<u> </u>	<u> </u>	··	PE	RCENT C	OARSER	BY WEIG	HT				<u></u>				
	0	2	50	30	40	20	60	40	8	6	100	T 1				NC.
		:	•		:							0.001				ЦÖ,
			: •						·				сгау			TECHNOLOGIES,
							 			. 1			ō			0 0
TER		. 1		•		<u>.</u>			;					L L		
HYDROMETER		•			:	i .	:	: 		·· ·				Savannah Harbor Expansion		
YDR		-	· · ·	• • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					0.01		Exp	ĺ	
I		÷										0		rbor		NOLF WOLF
		i.										-	SILT	H H		<u></u>
						: : 	<u>.</u>	į.		. :			U,	eurue.		No. 3011 1/17/2003
		÷				<u>.</u>		: 4	· · · · · · · · · · · · · · · · · · ·	: <u></u> :		-				No.
		• : •	·		· · · · · · · · · · · · · · · · · · ·		· · · ·	•••••		• • • • •	·····	-		Project	ea	Boring No.
200		··· ·····		· 		· · · · · · · · · · · · · · · · · · ·	· · ·	 						ă	Area	
140	<u> </u>	i. 					:	•••			·	0.1		104 104		
RS 100	F		1								:				_	
U.S. STANDARD SIEVE NUMBERS 12 20 30 40 60 10	-		ļ		:						-	RS S		56 56		
		•										GRAIN SIZE IN M'LLIMETERS	SAND			
+ SIEVE 30 40		ł.	Ĵ		:	• • • • • • •		4 	1.				ۍ ۲	LL		
ARD 20			·] ·		• • • • • • • • • • • • • • • • • • • •	: 				:.						
					••••••		· · · ·	4				SIZE		Nat w% 107.3		
ST/												N N				H
0.5 S. 5	-		ļ			· .	· ··· ·	:			······ ·	GH R		× 1		Report
			'		<u></u>	l		i tum		·····	· • · · -			e rock		Rel
N				· · · · ·	:	· . ·	· · ·		-			-		uos		l lo
		<u> </u>	••••••			<u></u> •	· · ·		· · · ·					Classification Idy CLAY w/ fragments		Distribution
E E E E E E E E E E E E E E E E E E E	<u>/</u>			······································								- 6	Ē	Classification Sandy CLAY w/ fragments		Distr
N NO	4_ 					•							GRAVEL	Clas Ĵre Ĵre		
SIEVE OPENING IN INCHES]_]			: 				··· ··	· · · · ·		··· ·			n Sar		Size
	-	·: ·					•	:		· :·				Brown		Grain
	<u>.</u>	11			· ·	;	···· · ·	:.	• •	• •				E E		Ó
SIEV	<u>⊢</u>		,								· ···· · ···	-				
U.S.	, -			····· · · · · ·		••••••••••••••••••••••••••••••••••••••		·		••••••••••••••••••••••••••••••••••••••	· · • · · · · · · · · · · · · · · · · ·	100		Depth 13.0'		
						:		-				Ę	ω.	Elev or ! 11.5'-		
L c) - .	:					· · ·	:				[COBBLES			
		1				÷		:					00			
		•		 			···· · · · · · · · · · · · · · · · · ·					500		N S S S S S S S S S S S S S S S S S S S		
	100	C6	80		C:9	20	4 0 1	<u>:</u> CS	50	 	<u>,</u>	ă	L	Sample No.		
	÷	0,	~~ 				<u>- КСЕИ I</u>							<u>└- _</u>		

2027	>				
FORM	MAY 63				
	-				
C					
ЫN					

			0					COARSE			0		<u> </u>				(
1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	ſ		10	50		30	40	20	60	<u> </u>	80	06	100		ıl II		
100 100 0.01 0.01 100 100 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01 100 10 0.01 0.01													0.0				
1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td>CLA'</td> <td></td> <td></td> <td>0</td>											:			CLA'			0
1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <td></td> <td>-</td> <td></td> <td>· · · · · ·</td> <td>······</td> <td>)</td> <td>· ····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td>(</td>		-		· · · · · ·	······)	· ····						· · ·				(
9 3 1/2 1/2 1/2 1/2 1/2 2/2 2/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		··· -	: · · · ·			· · · · · ·	 	·				····			Ision		
8 3 147 146 12 146<						· ·	··· ·	····· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			схраг	410/	
8 3 147 146 12 146<												·	0.0		bar F	SH	
8 -3 -112 -10 -20				1						:					Har	No No	Ľ
8 -3 -112 -10 -20							· .							ß	hnal	Borin	
8 3 1 H2 1 Ma 15 30 15 90 9		÷					: : :										
8 3 7 112 1 Ma 12, 200 20 20 20 20 20 20 20 10 0 0 0 0 0 0 0 0 0 11 15: 200 10.0 0 0 0 0 0 0 11 15: 200 10.0 0 0 0 0 0			······		· · ·			:							oject	sa ring l	
8 3 7 142 152 1 94 152 1 94 150 100 <t< td=""><td>200</td><td></td><td>·····</td><td></td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td>Bol Bol</td><td></td></t<>	200		·····		· · · · ·						· · · · · · · · · · · · · · · · · · ·					Bol Bol	
8 -3 2 1/2 -2 -3 -0 -2 -3 -0 -0 10	00 140				•		<u> </u>						o		5 42		
8 3 1.12 3.0 12 3.0 10 10 10 10 10 13.5'-20.0' Biowrin Clayey Fine SAND w/ some ro													ş				
8 3 2 1/2 1 3/4 12 3/6 10 10 10 10 10 10 13.5'-20.0' Biowrn Clayey Fine SAND w/ some ro	0 0	·	_/	<u>/</u>			: : :.			· · · · · · · · · · · · · · · · · · ·			METER	AND			
8 3 2 1/2 1 3/4 12 3/6 10 10 10 10 10 10 13.5'-20.0' Biowrn Clayey Fine SAND w/ some ro		-		· ·		• ·	 							S	LL		
8 3 1 12 36 10 10 10 10 135: 20.0' 10 10 135: 20.0' Biowrn Clayey Fine SAND w/ some ro	8 - -		<u>Î</u>	• •					- 1	ا مستنقلات ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	 				w%		
8 3 1 12 36 10 10 10 10 135: 20.0' 10 10 135: 20.0' Biowrn Clayey Fine SAND w/ some ro													NIN S		S2		
8 3 112 34 12 38 4 10 10 10 10 10 10 18.5-20.0 ¹ Biown Clayer Fire SAND wiscon	₽				·								6 1		ock		
B 3 2 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					÷				·								1
B 3 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	+		· · · ·	•	· ·· - - ·· ··				4 . 4 2			· · · · · · · · · · · · · · · · · · ·	-		w/ sc anics		
B 3 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	ł		· · ·	• • •	· ·			···· ··· ·	· · · · · ·		: · ·				AND d org		
B 3 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3/8										• •		10	VEL VEL	ssific ne S/ ts an		
B 3 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Ţ				• • •						•			GRA	<mark>Cla</mark> gmen		ľ
B 3 2 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.		· ···· · ·								:				<u>fray</u>		(
BBLES Depth	1/2	·	· ····	:		-	:				:				Имо		
			•												B		ľ
	~ <u>-</u>						· · ·					· · ·			0. 0		÷
	.									-		· · · · · · · · · · · · · · · · · · ·	100		or De		
	∞–		-	:										3LES	18.5		
			 - -		- ·	:	••••••••••••••••••••••••••••••••••••••				•			COB			
		•	-	• • •			: .	· · · · · · · ·	- • · · ·		•						
2 3 4 2 3 3 3 4 2 3 3 3	Ľ	<u>.</u>	: Qe	<u> </u>	; 	C2	02	<u> </u>	<u> </u>	 02	0 <u>7</u>	10					

GRAIN SIZE DISTRIBUTION TEST DATA

Project: Savannah Harbor Expansion

		Sample Data
Source: Boring	No. SH-410A	
Sample No.: 16		
Elev. or Depth:	65.0'- 66.5'	Sample Length (in./cm.):
Location:		
Description: 01	ive-Brown Very	y Silty Fine SAND w/ rock fragments
PL: 61		LL: 142
PI: 81		Nat W .%: 34.7
	٩	Mechanical Analysis Data
	Initial	
Dry sample and		
Fare	= 50.06	
Dry sample weig		
Minus #200 from		
Fare for cumula	_	
Sieve	Cumul. Wt.	
	retained	
.75 inch		100.0
.50 inch	7.32	87.7
.375 inch	14.75	75.3
# 4	27.53	53.9
# 10	33.46	44.0
# 20	35.01	41.4
# 40	35.91	39.9
# 60	36.64	38.6
# 100	37.45	37.3
# 200	40.32	32.5
		Fractional Components

Gravel/Sand based on #10 Sand/Fines based on #200 % COBBLES = % GRAVEL = 56.0 % SAND = 11.5 % FINES = 32.5

D85= 11.88 D60= 6.14 D50= 3.80

GRAIN SIZE DISTRIBUTION TEST DATA							
Project: Savannah Harbor Expansion							
Sample Data							
Source: Boring	No. SH-410A						
Sample No.: β							
Elev. or Depth:	: 8.0'- 9.5'	Sample Length (in./cm.):					
Location:							
Description: Gr	ay Slightly S	Silty Fine SAND w/ rock fragments					
PL: NP		LL:					
PI: NP		Nat W.%: 23.8					
		Mechanical Analysis Data					
	Initial	After wash					
Dry sample and	tare= 142.8	134.01					
Tare	= 49.9	49.94					
Dry sample weig	ght = 92.9	00 84.07					
Minus #200 from	n wash= 9.5						
Tare for cumula	ative weight r	etained= .00					
Sieve	Cumul. Wt.	Percent					
	retained	finer					
.75 inch	0.00	100.0					
.50 inch	0.00	100.0					
.375 inch	0.00	100.0					
# 4	2.90	96.9					
# 10	6.98	92.5					
# 20	13.50	85.5					
# 40	24.11	74.1					
# 60	43.92	52.7					
# 100	71.23	23.3					
# 200	83.40	10.2					
Fractional Components							
Gravel/Sand based on #10 Sand/Fines based on #200 % COBBLES = % GRAVEL = 7.5 % SAND = 82.3 % FINES = 10.2 Da5= 0.81 D60= 0.29 D50= 0.24							
$D_{30} = 0.17$ $D_{15} = 0.17$							

GRAIN SIZE DISTRIBUTION TEST DATA

· · · · · · · · · · · · · · · · · · ·	GRAIN	SIZE DISTRIBUTION TEST DATA
Project: Savan	nah Harbor Expar	nsion
		Sample Data
Source: Boring	No. SH-410A	
Sample No.: 4		
Elev. or Depth	: 11.5'- 13.0'	Sample Length (in./cm.):
Location:		
Description: B	rown Sandy CLAY	w/ some rock fragments
PL: 56		LL: 160
PI : 104		Nat W.8: 107.3
	Me	echanical Analysis Data
	Initial	After wash
Dry sample and	tare= 90.23	57.49
Tare	= 50.52	50.52
Dry sample wei	ght = 39.71	6.97
Minus #200 fro	m wash= 82.4 %	9 3
Tare for cumul	ative weight ret	tained= .00
Sieve	Cumul. Wt.	Percent
	retained	finer
.75 inch		100.0
.50 inch	0.00	
.375 inch	0.00	
# 4		89.0
# 10		86.1
# 20	5.80	85.4
11 ()		

60 6.31 84.1 6.63 83.3 # 100 7.06 82.2 # 200 Fractional Components

85.4 84.7

Gravel/Sand based on #10 Sand/Fines based on #200 **% GRAVEL =** 13.9 **% SAND =** 3.9 % COBBLES = **% FINES =** 82.2

6.07

D85= 0.57

40

GRAIN SIZE DISTRIBUTION TEST DATA

PL: 25 PI: 42 Dry sample and ta Tare Dry sample weight	18.5'- 20.0' vn Clayey Fine Me Initial are= 106.85 = 50.76	echanical After 9 5	some LL: Nat Anal wash 2.51	W .%: 52.5 ysis Data	
Sample No.: 6 Elev. or Depth: 1 Location: Description: Brow PL: 25 PI: 42 Dry sample and ta Tare Dry sample weight	18.5'- 20.0' vn Clayey Fine Me Initial are= 106.85 = 50.76	echanical After 9 5	some LL: Nat Anal wash 2.51	rock fragments and organics 67 W.%: 52.5 ysis Data	
Location: Description: Brow PL: 25 PI: 42 Dry sample and ta Tare Dry sample weight	vn Clayey Fine <u>Me</u> Initial are= 106.85 = 50.76	echanical After 9 5	some LL: Nat Anal wash 2.51	rock fragments and organics 67 W.%: 52.5 ysis Data	
Description: Brow PL: 25 PI: 42 Dry sample and ta Tare Dry sample weight	Me Initial are= 106.85 = 50.76	echanical After 9 5	LL: Nat Anal wash 2.51	67 W.%: 52.5 ysis Data	
PL: 25 PI: 42 Dry sample and ta Tare Dry sample weight	Me Initial are= 106.85 = 50.76	echanical After 9 5	LL: Nat Anal wash 2.51	67 W.%: 52.5 ysis Data	·
PI: 42 Dry sample and ta Tare Dry sample weight	Initial are= 106.85 = 50.76	After 9 5	Nat Anal: wash 2.51	W .%: 52.5 ysis Data	
Dry sample and ta Tare Dry sample weight	Initial are= 106.85 = 50.76	After 9 5	Anal: wash 2.51	ysis Data	
Tare Dry sample weight	Initial are= 106.85 = 50.76	After 9 5	wash 2.51		
Tare Dry sample weight	are= 106.85 = 50.76	9 5	2.51	L Contraction of the second second second second second second second second second second second second second	
Tare Dry sample weight	= 50.76	5			
Dry sample weight			0 m c		
	t = 56.09		0.76		
			1.75		
Minus #200 from w					
Tare for cumulati	_		00		
Sieve	Cumul. Wt.	Percent			
	retained	finer			
.75 inch	0.00	100.0			
.50 inch	0.00	100.0			
.375 inch	2.83	95.0			
# 4	3.62	93.6			
# 10	4.46	92.1			
# 20	5.06	91.0			
# 40	6.04	89.2 82.1			
# 60 # 100	10.04 30.16	°∠.⊥ 46.2			
# 200	41.46	40.2 26.1			
# 200	41.40	20.1			
	· · · · · · · · · · · · · · · · · · ·	Fractiona	l Con	nponents	
Gravel/Sand based Sand/Fines based % COBBLES = % FINES = 26.1 D85= 0.30 D60= 0	on #200 % GRAVEL		Ş	SAND = 66.0	

£.

ENG 1 MAY 63 2087

		 2	20	PI R	RCENT (COARSEF යි	BY WEIG සි	GHT P		06	100			
								-			0.001			Vo. SH-410
							<u></u>	•				сгау		
	 	: · ·	·						· ····· ··· ·····		· · · · · ·			
	 	·····				· ,	· · · · · · · · · · · · · · · · · · ·	······································		• ••••• • ••••	· • · ·		ansion	0
	····· ·· ·· ·· ····	· ···· · · ···· · · ···· · · · · · · ·	· · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			L 		0.01		or Exp	SH-410
							• • •					SILT	Savannah Harbor Expansion	Boring No.
				· · ·	· · · · ·	[· ·	Б,	<u>/annal</u>	Borin
	···· -··:	······		······				· · · · · · · · · · · · · · · · · · ·					1 1 1	Area Boring No.
2DD	··· ··· 	·	: 	· · · · · · · · · · · · · · · · · · ·			······	-:		• 			Project	Area Borin
0 14C		• • • • • •		·····		· · · · · · · · · · · · · · · · · · ·					0.1			
101	-	· ·; ·		· · · ·		· :	.a		P I					
99			· · · · · · · · · · · · · · · · · · ·					<u>, на на на на на на на на на на на на на </u>	=	:	GRAIN SIZE IN MILLIMETERS	SAND		
30 40		· ·		· ······				······································	······	· · · · · · · · · · · · · · · · · · ·	WILLIM	SA		
20 30 40			· · · ·	· · · · ·			1. 1. 1. 1. 1. 1. 1.	···· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			N%	╆╌╂╼┥
					/						AIN SIZ		Nat w% 30.6	
10	•••		· 4 · · · · · · · ·	· ·····	1						୍ଲ ଓ ଅନ୍ୟ) w/ some (SC)	
	·· ·· · <u>-</u> ···		÷	· · ···· }·	/		 	· · · · · · · · ·	<u></u>					
ব	-	4 	 :		51 1	· · · · · · · ·	4		· · ·	<u>.</u>			Classification Brown Slightly Clayey Fine SANI rock fragments and organics	
(2 3/B		 :			· · · · · · · · · · · · · · · · · · ·	· · ·		· · · · ·	· · ·	· · ·	10	GRAVEL	Classification Clayey Fine S ments and orga	
3/4 1/2	-		Ĵ									GRA	Cla dly Cla agmen	
	-					· · · · · · · · · · · · · · · · · · ·		. .		· · ·	: 		<u>Sligh</u> ock fr	
3 2 1-1/2 1 3/4 1/2 3/8		: 	: 		· · ·	· · · · · · · · · · · ·	<u> </u>	: 		· ·			Brown	
ო			· ·	· :		· · ·	· · · · ·	:						
>		•		· · · · · · · · · · · · · · · · · · ·	······································	· · · · · · · · · · · · · · · · · · ·	······································			· · · · ·	100	S	Elev or Depth 4.5'- 6.0'	
ę	F 		· · ·	·	······································				: 	:		COBBLES	Elev 4	
			· · · · · · · · · · · · · · · · · · ·						· · ·	: .		00	Sample No. 2	
:	[200			

	GRAIN SI	ZE DISTRIBUTION TEST DATA	
Project: Savanr	nah Harbor Expans:	on	
		Sample Data	
Source: Boring	No. SH 410		
Sample No.: 2			
Elev. or Depth:	: 4.5'- 6.0'	Sample Length (in./cm	.):
Location:			
Description: Ba	rown Slightly Cla	vey Fine SAND w/ some rock fra	gments and
-	rganics (SC)	_	-
PL:		LL:	
PI:		Nat W.8:	
	Mecl	anical Analysis Data	
	Initial	After wash	
Dry sample and	tare= 132.96	118.88	
Tare	= 50.54	50.54	
Dry sample weig	ght = 82.42	68.34	
	n wash= 17.1 %		
Tare for cumula	ative weight reta:	ined= .00	
Sieve	Cumul. Wt. Po	ercent	
	retained f:	ner	
.75 inch	17.97	78.2	

Fractional Components

78.2

76.8

66.6

58.8

50.5

42.4

32.7

23.8

17.7

Gravel/Sand based of	n #10	
Sand/Fines based on	#200	
% COBBLES =	% GRAVEL =	% SAND = 41.1
% FINES = 17.7		

17.97

19.15

27.54

33.95

40.80

47.50

55.50

62.83

67.83

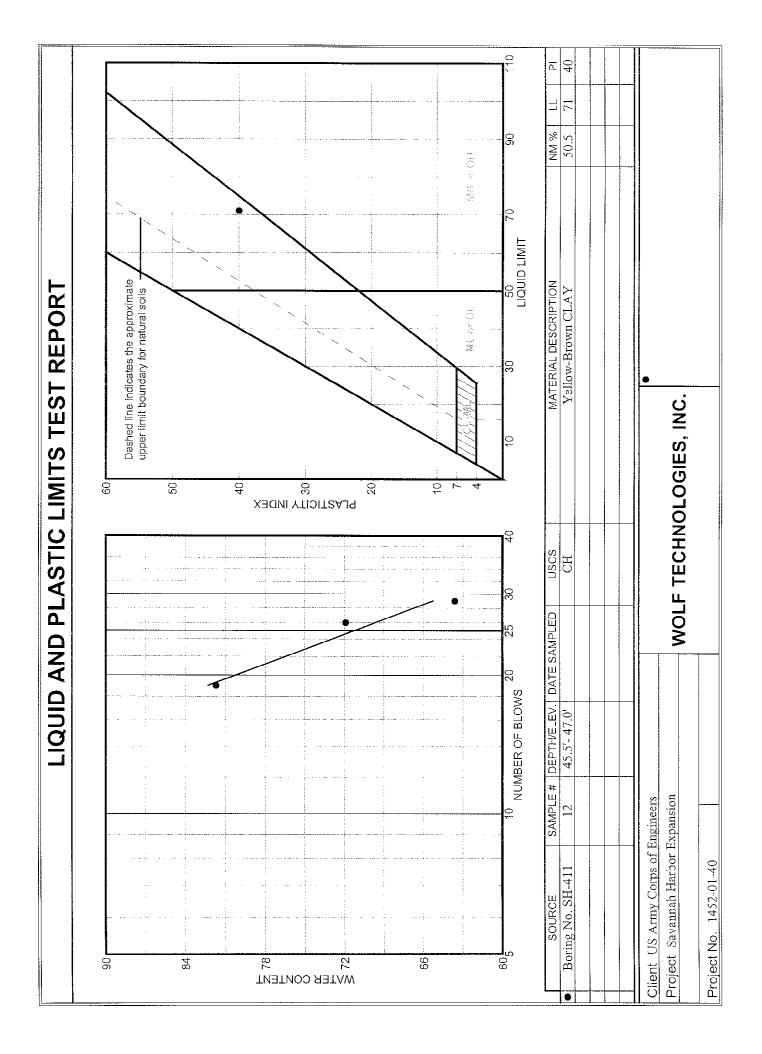
.50 inch

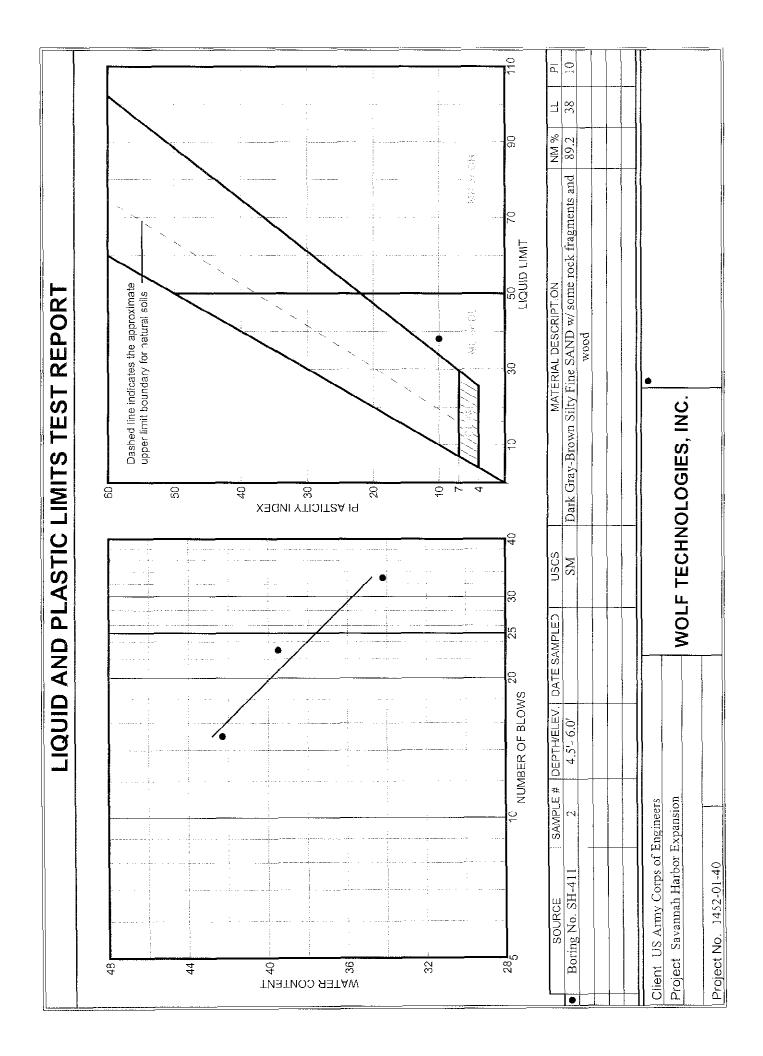
4

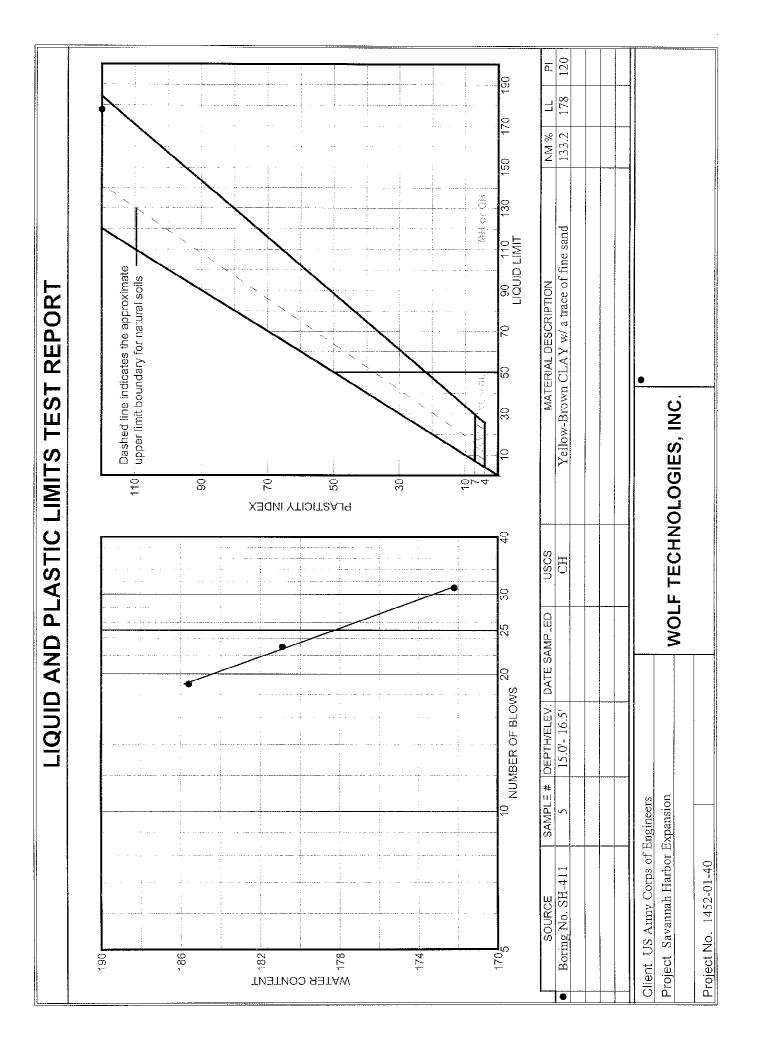
10

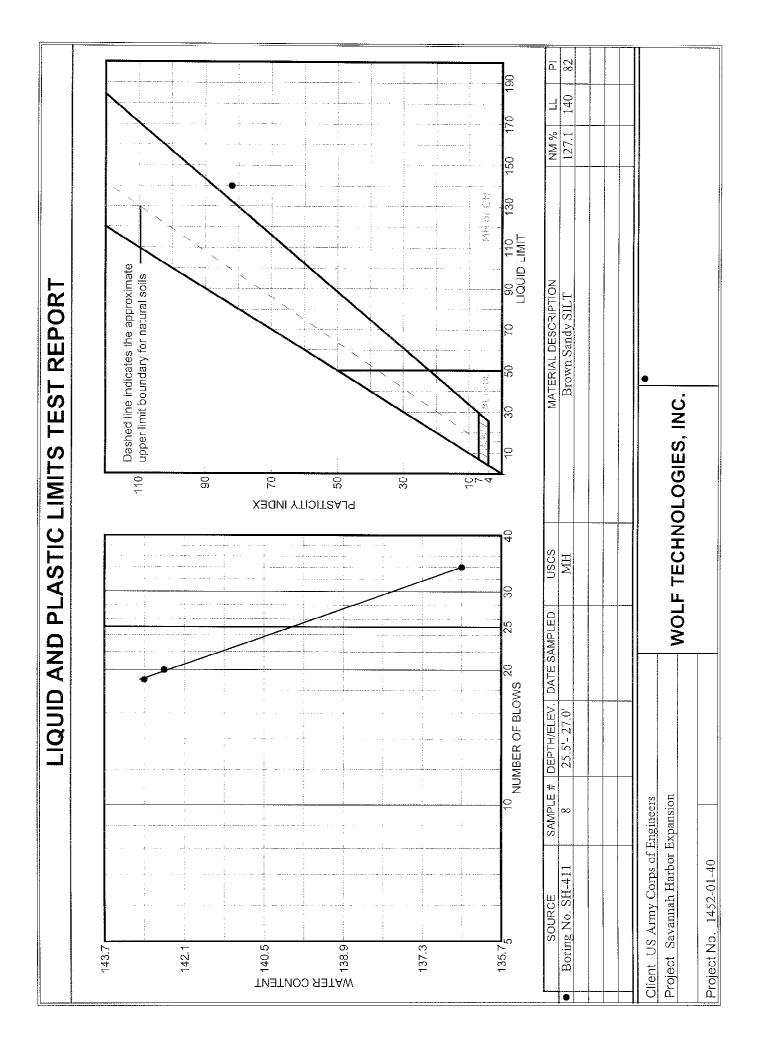
20

40

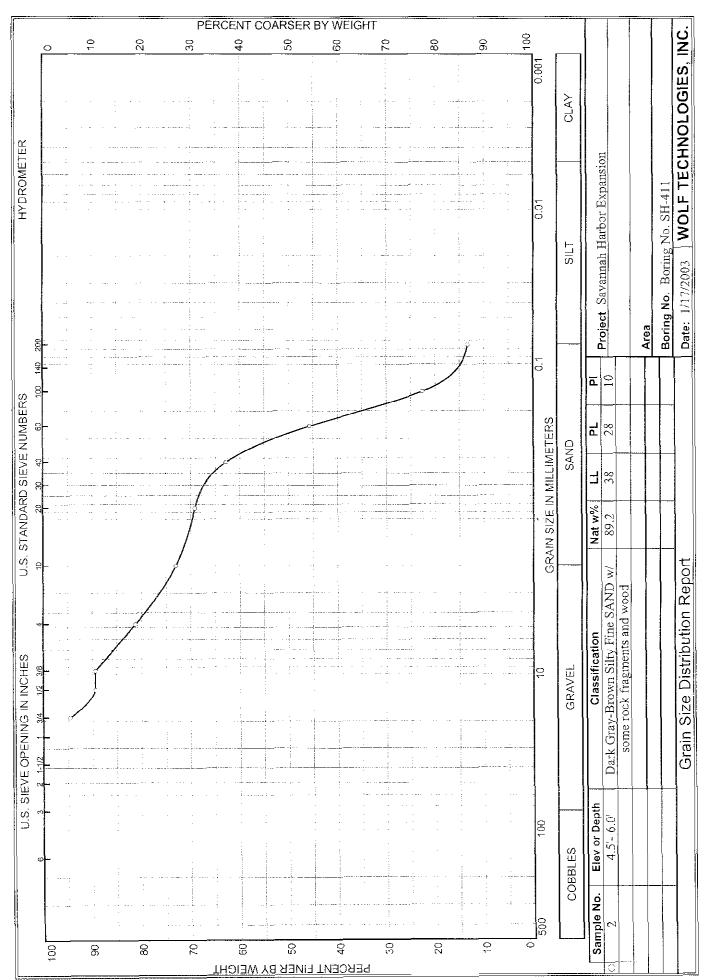

60


100


200


.

.375 inch

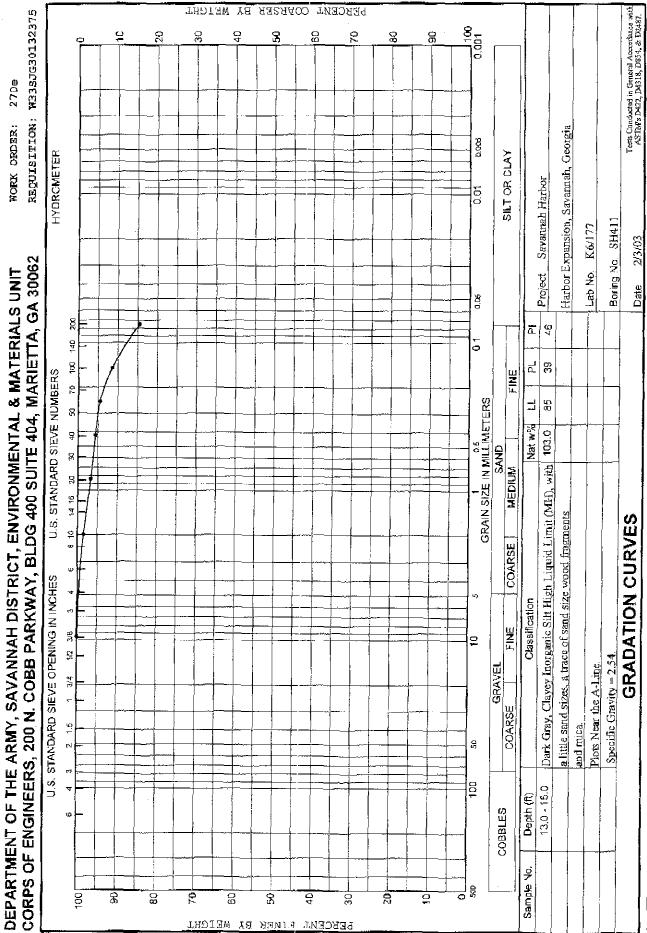


20.07	5
FORM	1 MAY 63
Ş	2
Ц	ų.

	0								SFR BY						_			1 1	1		100
			() 	ć	i V	80	4	5 C. - Li	[] 0	00	70		00 00	0 0	1 00	7					N N
1 1					-	-										0.001					
				· · · · · · · ·	ļ 												сгау				WOLF TECHNOLOGIES
			:			- 	-						: 				6				FI
ЕР			:		• • • •				i . I	: 		:		i							Ž
HYDROMETER		•	•		 				: . 	: .	 		· ··					Savannah Harbor Expansion			1 2 2
02 02 0			•	.i	· . 				·			·	•					храг		411	F
Ь́Н												.				0.01		E E		Bering No. SH-41	Г О
				:													_	Harb		°. Z	Š
			·i	• ••								:		:			SILT	hah		δui:	l g
											:		: •					IVEN		r	1 × 1
			•				-				-							T N		Boring No.	
					• :						·····		· · · · ·					Project	Area	oring	Date:
500							····	···· :				·····		i	·				<u>₹</u> 	۵	ļö
140								:			:					0		5 0			
8 100 100	Î																ļļ				
Ч Э С Э С О С	ļ						•••				:		:			Rs		4 2			
NN NN			.: .	• •		: :								;			SAND				
1EV5 46	<u>.</u>				: 								······································		· ·····		SA	71			
2 D S 30 S	-		······································						·······	· · · · · · · ·		····-		·	• • •	Ž					
STANDARD SIEVE NUMBERS 22 30 40 60 10	Ì						· · · · ·									GRAIN SIZE IN MILLIMETERS		Nat w% 50.5			
STA'					: :					:		-		:		S Z		S(_
U.S.	ŀ		•				•			•	•					GRA	\square				١۲
						:		<u>-</u>	1	: 					÷	_					Report
	ŀ		·· ·· ·		· · ·	÷	-			÷ .	•			. <u>-</u>		-					
5	ĵ-					 			<u>.</u>	•••• • •••••••	···		· · · · ·					SLA SLA			ltio
ហ		••						••••••••••••••••••••••••••••••••••••••	·					•	•••	}		wn (ldin
J.S. SIEVE OPENING IN :NCHES 3 2 1:42 1 34 1/2 38			••••••••••••••••••••••••••••••••••••••				· · · · · · · · · · · ·			···÷-····					:	Ę	GRAVEL	Classification <u>Yellow-Brown</u> CLA			Grain Size Distribution
/					:			:		-		:					0RA				Ze
UD 🕅	<u>م</u>				:	<u>.</u>												Ye			j.
	-				 •			:	: }	4					· .						Lair L
75 OF 1512	-				•			<i>i</i>							•••••						0
SIE	-													·				┠┉┼━┼━	┿╿	ł	-
l.S. o								:					·····		••••	<u>o</u>		Vept)			
		-					 : ,				:				·	100		Elev or Depth 45.5'- 47.0'			
ſŊ	┢									-			:	:			BLE	Ele/			
	ļ				· ·	-					•			:	·	1	COBBLES	╠╴╷┉┿╸	+		
		·	•		•• • • • • • E	i	• • •		<u>.</u>		+			· ·	•			S S S S S S			
	. 		· · · · · · · ·					·	<u> </u>			· · ·				200		Sample No. 12			ļ
	, 0C		06		80	C2		<u>В ви м</u> е	6	- 2	ج	2	20	10	¢,	Ċ		S O	$\downarrow\downarrow$		

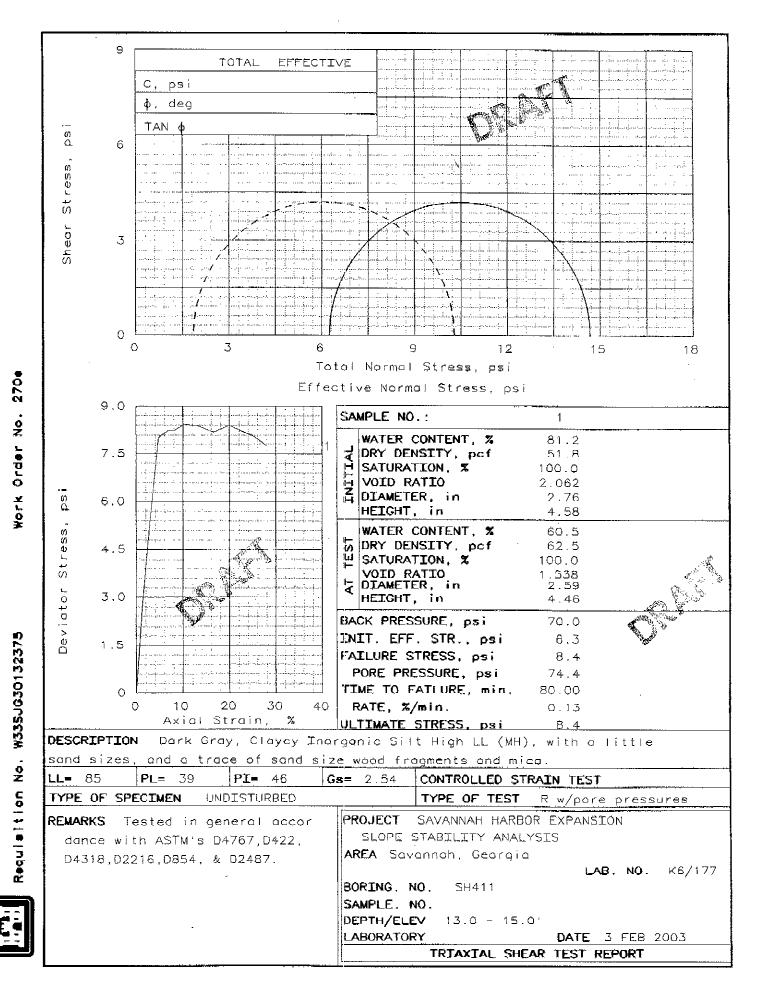
2087	>
FORM	MAY 63
	~
CN L	Z

P		10		50		30		40	<u> </u>	20		09	<u> </u>	20		80	. <u>.</u>	6								
				÷	•	:					:			: : : :		:		-	:	0.001						
		:		:		; ;										····•	 				сгау					
	· • ·	, .		•	4.	2	: : :				• •	-														İ
							 										. <u>1</u>					ei On	11/11/1			
	 	·····		· · · · ··-	: 			··· · ···				- 				· · · · · · · · · · · · · · · · · · ·		· · · · · ·		. . . ₇		- Laux			SH-411	L
		· :	:		.: <u></u> .		·	 - -	l ! !		· · / · ·· ·		<u> </u>				<u> </u>	·	:	0.0		chor F				
								•	:				•	-	-		-				SILT	Savannah Harbor Evnansion			ng No.	
								:	:			- 		-			-	-	:			equez			Boring	
	-	-			. <u>-</u> .		· : ··	··· :	· -						-	•						5 5 +	1		No.	
 		 <u>-</u>		· ···	· · · · · · · · · · ·	· · · · · ·	· · ···									·				- -		Proiort		Area	Boring No.	
 	· · · · ·	· - ····	· · ·		···· ······	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 		 	 2			· ·	·• ·· · ·	 		1	0.1						ļ
-							·		•		:		•		1	-			٨			ā				
		·					• ;	·								•				-l s		٩L				
		· ·			· · · · ·			· :									: ···	• ••	1	AETE	SAND					
	·	···· ···		 				••••••••••••••••••••••••••••••••••••••			·· ;· ·		حير يا يا			 	·			GRAIN SIZE IN MILLIMETERS	ſS					
 				· · · · ·	: 	 - 1	· · · ·	·	: 	: . 	 		: :	: : 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	:	· · · · · ·	· · · ·	2 U		0/01				
/											· • ··											Nat w%	18.9			
				÷				·	• •	÷		÷	÷	•		÷				GRAI						
		···· •		<u></u>	<u>-</u>					:	•					• •							of silt			
]	· · · · · · · · · · · · · · · · ·	·····	- <u>.</u> <u></u> -	:	···		·	······	 : : : :		 <u>.</u>	· · · · · · · · · · · · · · · · · · ·	· · · ·	·····			·	· -··					trace			
	 	· · · · · · · · · · ·		· · ·	یا اور بار با کار بار	·			<u>.</u>		· <u> </u>	····i · :	۰ ۱۰۰۰۰	······································	: :	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·				Classification	w/a			
Į		•		···	:	: 1	: :	، ـــــ از ســــ :			• • • • • • • • • •		- : 	:		· .i 	 		· _: 	<u>.</u> 19	VEL	ssific	AND A			ļ
Ì															-	·					GRAVEL	Cla	Fine SAND			
ŀ				•					• • • • • •	· · ····	• • ••			:									wn F			
<u> </u>		: :			···	·····	···· ··	- :		 					·	· · ·	·····	- • • •	:				Brown			
<u> </u>			· · ···					·····		i							· • • • • • • • • • • • • • • • • • • •	·	:					┝		
+	• •			· -	• • •• • •		· ·	•••		· · ·	·· · ·	 -	····· ·	••••	•	· ·· ·· ·		•		100		Depth	60.0			
		·				·				·										10	S	Elev or Depth	58.5'- 6			
»= .			·· .						:		.]		···· .					··- •		-	COBBLES	[] [] []	- 25			
				÷			:					• 	:		i 		··· ·		• •		l S '	v				
			· · · · ·		. i		, 											:		200	<u> </u>	Sample No.	4			
100		06		80		70		60		ିନ ଅਤମା		40		30		20		10		0		Sal	<u></u>			

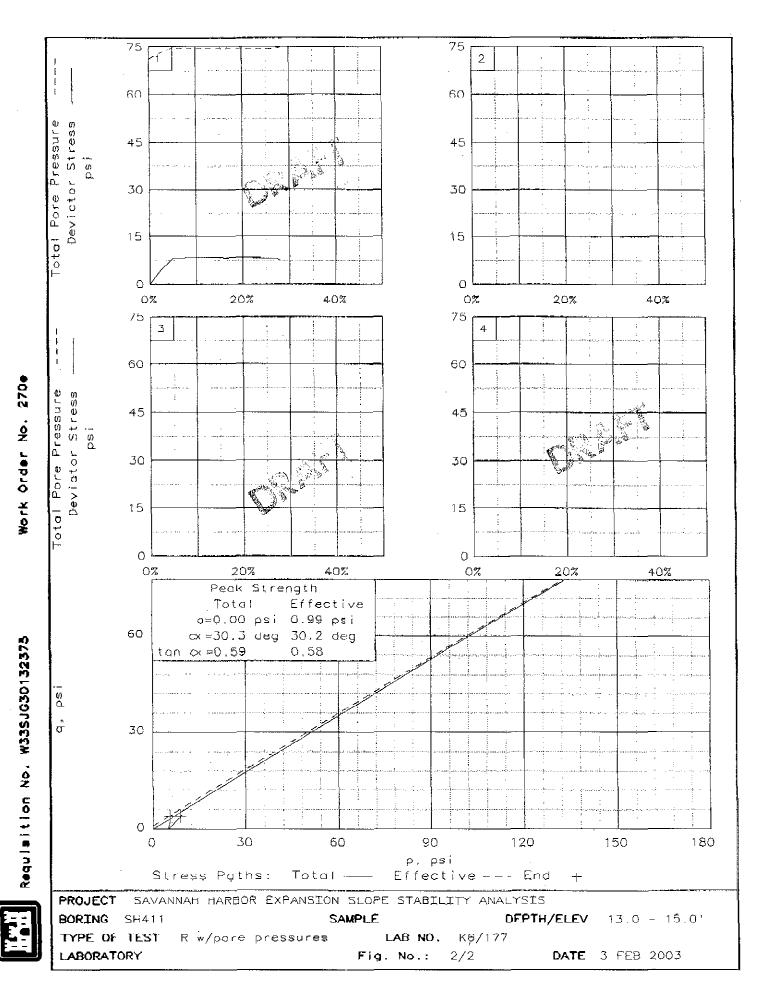


100C	>
FORM	MAY 63
C N U	

				······································				BY WEIG		<u> </u>	···· <u>·</u> ·····				1	1
	<u>~</u>	-10	ć		<u>}</u>	40	20	80	02	80	06	- <u>1</u>	[]			INC.
		-									:	0.001				Ц Ш
	.	· · · · ·		<u>.</u>			·				• 		сгау			OGIES
				:			··· · · · ·	1 2			· · · · · · · · · · · · · · · · · · ·		ರ			
ЦЦ					i	· · · · ·										ECHNOL
HYDROMETER		 	• =	· · ·	· ···	····· ·	· · ·	4 <u>-</u> 	·····	··· ·	· · ·			Project Savannah Harbor Expansion		
DRO		·- ···· ··· ···	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	····· ································					······		Зхра		SH-411
Ì				· · · · ·				 ; ;	-		· · ·	0.01		bor I		Vol Vol
				 1			·				-			Har		
						· · ·		• • •	· · · · · · · · · · ·		1 · · ·	:	SILT	mah		Boring 2003
							÷ ÷	: .			-			aver		
				 : 	• •		· · · · · · · · · · · ·	4 			• •	- - -		t S		ത്
e e				· · · · · ·	·						i i			roje	Area	Borin Date:
002 01		·					· · · · · · · · · · · · · · · · · · ·									
- -														<u>1</u> 20		
ERS H			÷	, ·	· · · ·		i .	: 	:		1					
MB 8	ł	:		:									2	58 58		
ĨΖ Ψ.	<u> </u>			······································			·		· · · · ·				SAND			<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
SEV SEV	* 			· · · · · · · · · · · · · · · · · · ·									S	LL 178		
RD .	2 			······································					· · · · · · · · ·			Z		,o		$\frac{1}{1}$
STANDARD SIEVE NUMBERS	ч 	 			• •	• •								Nat w% 133.2		
											1			Ž		$\frac{1}{1}$
U.S. ª	2					:			· · · · · · · · · · · · · · · · · · ·				5—	ine		Seport
														of fine		
	 				· · · ·									trace		L L
					· · ·						1			C d		Distribution
HES		• •	 		· · · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			Classification Yellow-Brown CLAY w/ a sand		strik
SIEVE OPENING IN INCHES		:									: . · .		GRAVEL	Iass CL		
 I I I I I I I I I I I I I I I I I I I	, ⇒							:					Ö			Size
						•		-	-					v-Bi		
Ша. О \$											- 4			ello		Grain
, Ш , С	- N -						<u>.</u>									
l I I I I I I I I I I I I I I I I I I I		· · · · · · ·					<u></u>			··· ··	· · · · · ·			t t		
ື່ທ່ " ⊂		· · · ·		· · · · · · · · · · · · · · · · · · ·			 	·····			······	100		- Depti		
	0-				: :	:		:			:		ŝ	Elev or Depth 15.0'- 16.5'		
				•	· i	:		• • •			1		COBBLES	 		
					- 				۰ هندن بود ا		4 . ·	: .	00	ġ		
				· 			<u></u>	<u> </u>				500	1	S ple N		
	100	06		8		60	20	40 40	30	50	<u> </u>	22	L	Sample No.		
	\sim							*		-					i	4 4


						PER	CENT	r coi	ARSEI	R BY	WEIG	SHT							1 1		1	
	<u></u>		2	20	0	(j.	4 C		20	<u> </u>	с 6	20			() 0							∪ ⊻
							:	:						·			0.001					
									· · · ·:	:			,		: 1	·		7				WOLF TECHNOLOGIES.
			: : :		Ţ					-				:				СLAY				
С Ш				••	:					: 		:			·							
HYDROMETER						: 				· ···	•					······			Sevannah Harbor Expansion			
С Ц			<u>.</u>	 	·····-				i		· · ·	····· ··· ···							cpan			
Ц Х Ч		:	1	-		· · · ·		······································				•		·····-· ·		· ···	0.01		E E		Bcrirg No. SH-41	
		:										• •		:					larbo		9	Š
		·										1. t		·				SLT	ah H		l g li	
							- - - -			:		:					Ì		uue		Bc:	
			· -													•					No.	1/17/2003
											•	: <u>-</u>		•	· ·	•			Project		Boring No.	
200	₽		2	 	•			.					•••••	· · • 1		÷			2	Qrea Prea		Date D
1	ŀ										• •	:	···	· • • • • • • • • • • • • • • • • • • •		•	0.1				T	
ν≜	+ <i>;</i>	Į –	-									·							<mark>8</mark> 2			
Υ Π η_	14				·· - ··							. ·	,			· • • • •						
	†ĵ.						:	: 	: - :								L H		58 PL			
, ц 2 4	Į.							•	· · :-				,	÷				SAND				
о П	∦			···· · · · · · · · · · ·	· · · · · · ·	 					 					.: 	N MILLIMETERS	<i>(</i>)	140			
STANDARD STEVE NUMBERS 20 30 40 60 10	_	<u> </u>		. :		: 					; 		· · · · · ·	 							_	
Ż						<u></u>					·	<u>.</u>		··· •		·	GRAIN SIZE		Nat w% 127.1			
										:				1					N -			
0 0 0	,I 	•	· ·			• •			·			· ·		•	• •		L R				İ	t
			.			•••			· · · · · · · · · · · · · · · · · · · ·	~	•				• :	÷						Report
-	<u> </u>										• 		· · • ·	•	· · · · · ·				ы			
4	<u> </u>	· ·						·			:		· <u>-</u>	·			- 1		Classification Brown Sandy SIL 1			Grain Size Distribution
ກ ມູ			· · · · · ·			• • •••	·····			•••• •• ••• • • ••====	• •	····· <u>-</u> ·	· · · · · · · · ·		· • • • • • • • • • • • • • • • • • • •	· ···· ·······························			Classification own Sandy SII			<u>trib</u>
NCHE 12 38	1		1		• • •			÷								. 2	10	GRAVEL	n Sa			
<u> </u>									:						-			GR/	LOW CI			a R
SIEVE OPENING IN INCHES 2 1-10 1 34 1/2 348	ĺ					• •	• •	<u>.</u>				•	• •		· · · · · ·	· ··· ·			E E			Įΰ,
Т Ц	. .										•	:										l'je
5 ₽ u	<u>+</u>	-				<u>.</u>					· · · · · · · · · · · · · · · · · · ·	<u> </u>	· ·		•							C
́ш∼ Л						·····		i				· -···- ·										
	» .	. <u>.</u>		•		•	• •	··· · :	· · · · · ·	•				•			0		epth 7.0'			
_'		•					:	:				:					100		elev or Depti 25.5'- 27.0'			
g	÷						:	;		:		÷		•				LES	Elev or Depth 25.5'- 27.0'			
	1	•	: :		•									:			1	COBBLES				
														· · · · · · · · · · · · · · · · · · ·			-	Ιŭ	s s			
		: : ···				:	÷					• :					500		Sample No. 8			
			 6	80	(2	60		50 -		- C 4	30		20			0	I	San			
						11	<u>AFIGH</u>	<u>в </u>	NEN	<u>4 LNE</u>	EBCE	ld										

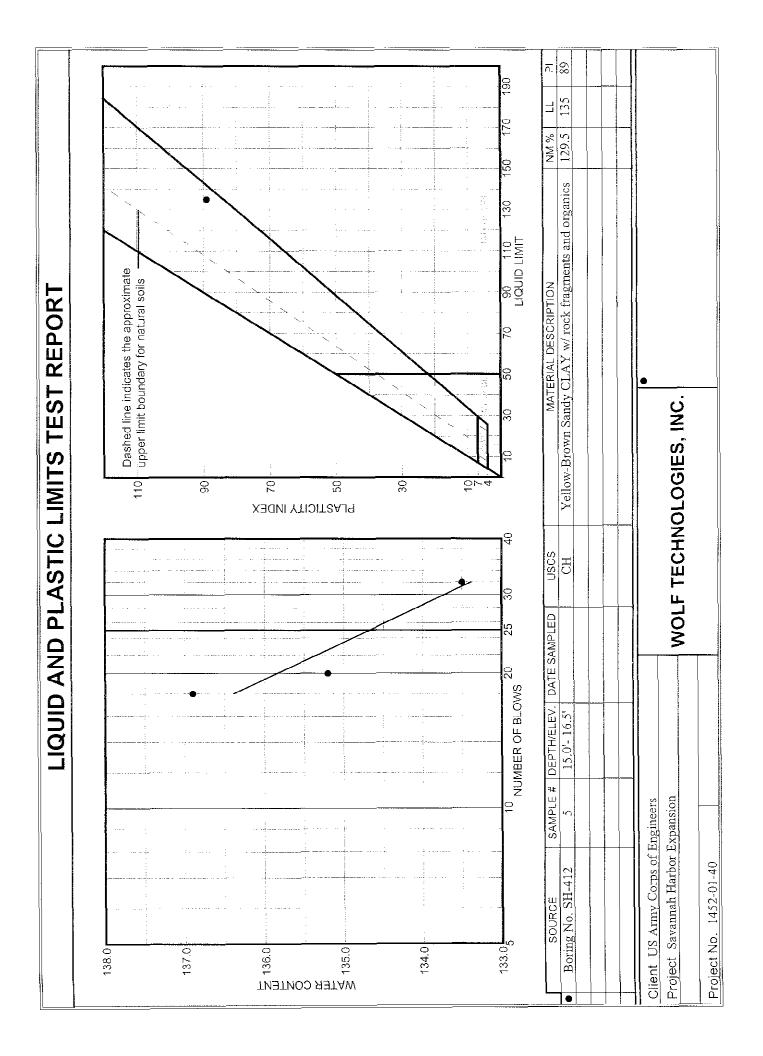
[[[ł

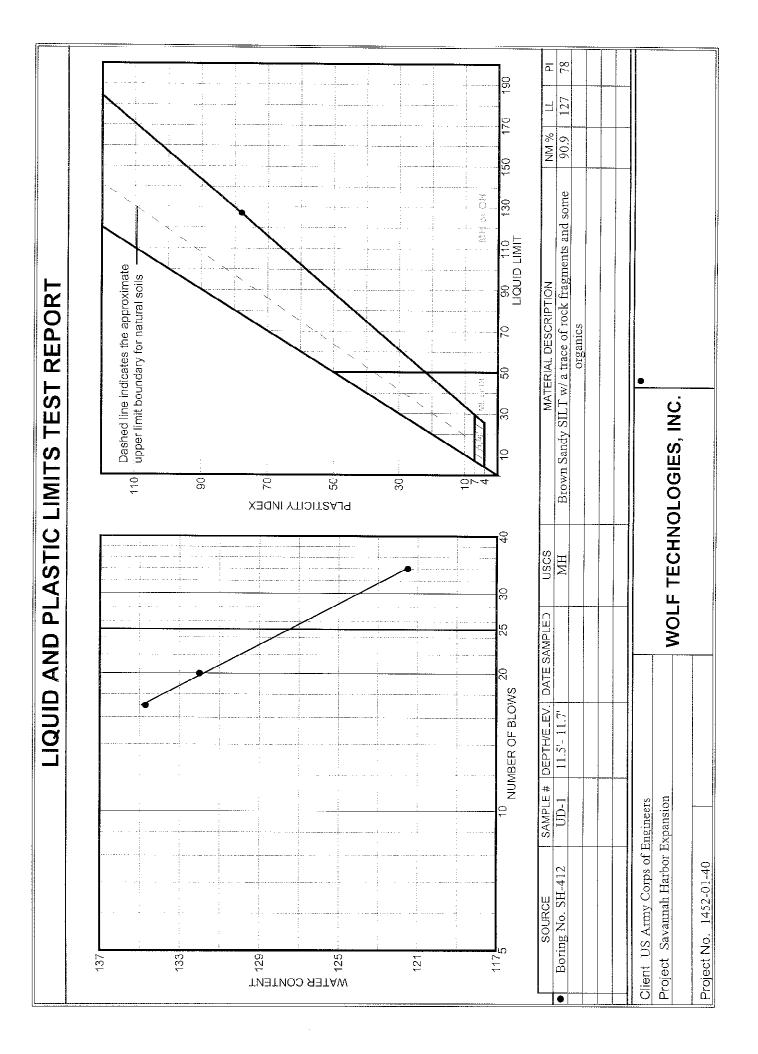


BERCENT FINER BY WEIGHT

USACE

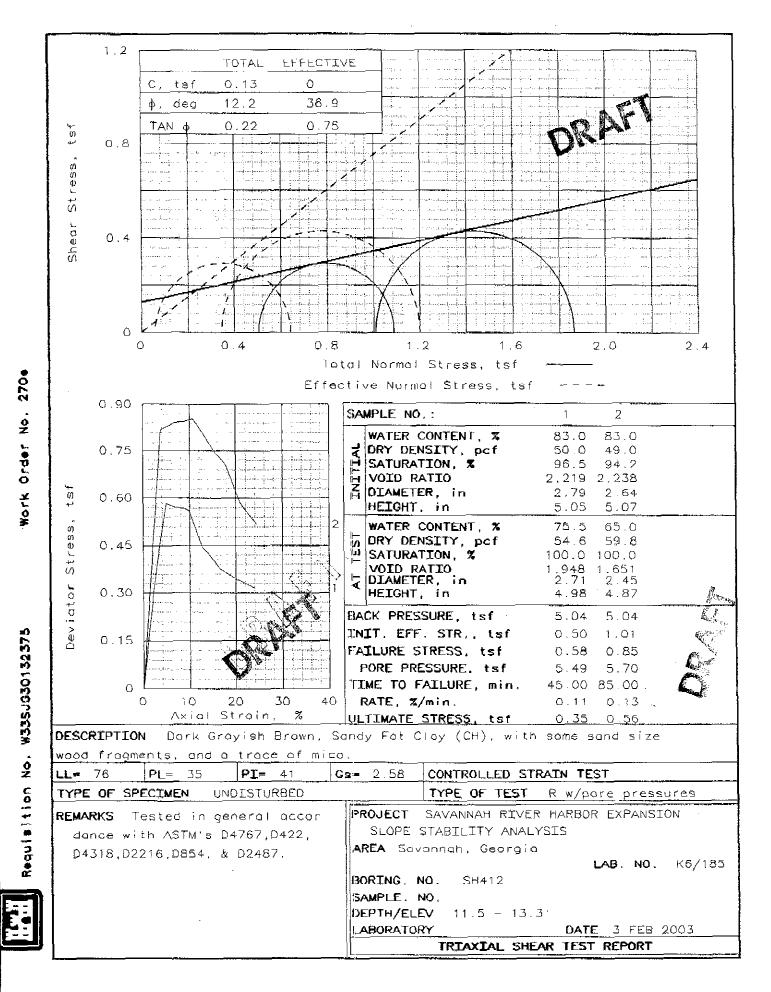
USACE

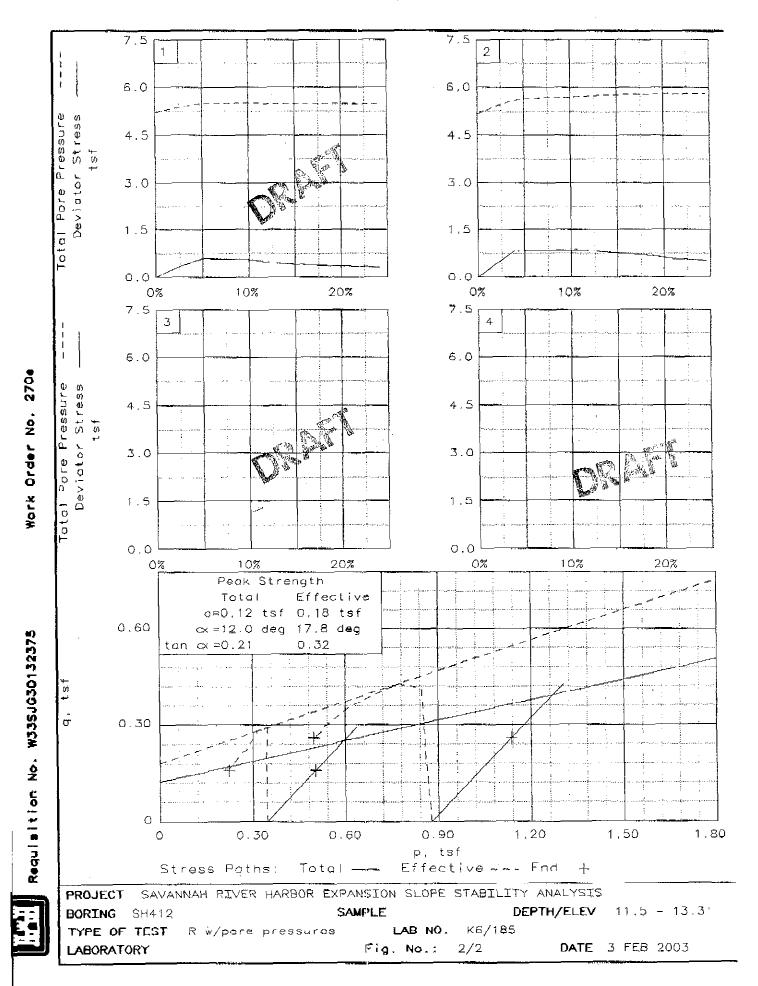



GRAIN SIZE DISTRIBUTION TEST DATA

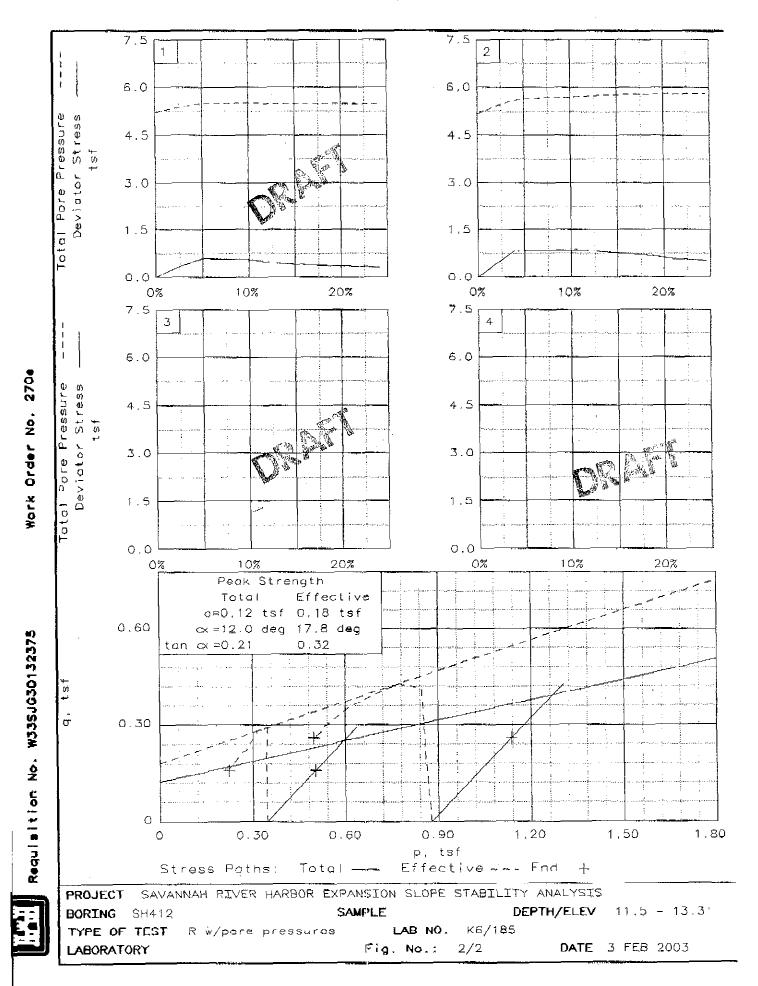
Project: Savannah Harbor Expansion

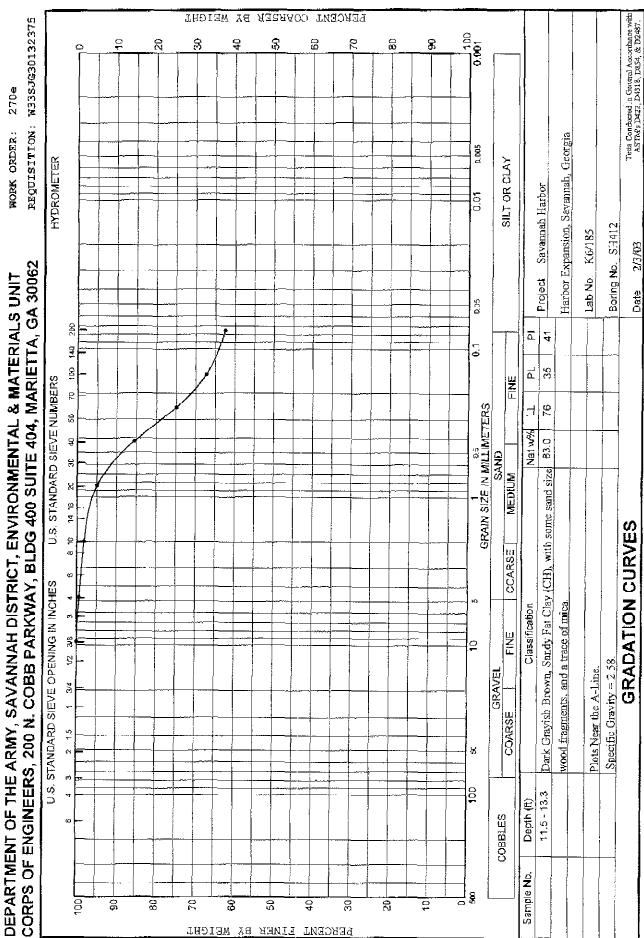
Elength (in./cm.):
<pre>n/ some rock fragments and wood</pre>
8: 89.2
.s Data


Gravel/Sand based or Sand/Fines based on		
% COBBLES = % FINES = 13.3	% GRAVEL =	% SAND = 59.7
D85= 6.59 D60= 0.38 D30= 0.18 D15= 0.10		



				PER	CENT CO	ARSER E	BY WEIG	HT			_				
	0	10	20	30	40	20	60	20	80	06 6		– 1			
ETER											0.001	CLAY	ion		WULF IECHNOLUGIES,
HYDROMETER											0.01	SILT	ct Savannah Harbor Expansion	g No. Boring I	1/17/2003
1≠0 200	Į .	···- · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	. : 	· · · · · · · · · · · · · · · · · · ·			0.1		PI Project	Area	Date:
UMBERS 60 100											LRS		РL 46 Я		
D SIEVE N 30 40	.		· · · · · · · · · · · · · · · · · · ·				· · · · ·				MILLIMETI	SAND	LL 135		
U.S. STANDARD SIEVE NUMBERS 10 20 30 40 60 10						· · · · · · · · · · · · · · · · · · ·			• • • •	·····	GRAIN SIZE IN MILLIMETERS		Nat w% 129.5		
U.S. SIEVE CPENING IN INCHES U.S. S 3 2 -112 1 3/4 12 3/8 4 10											10 GRAII	GRAVEL	Classification Yellow-Brown Sandy CLAY w/ rock fragments and organics	Size Distribution	USULATION REPORT
و U.S. SI ه												COBBLES	Elev or Depth 15.0'- 16.5'		
	100		·····	· · · · · · · · · · · · · · · · · · ·	Br weig		4 6 7 7 7	30	50	0	0	COE	Sample No.		


USACE.



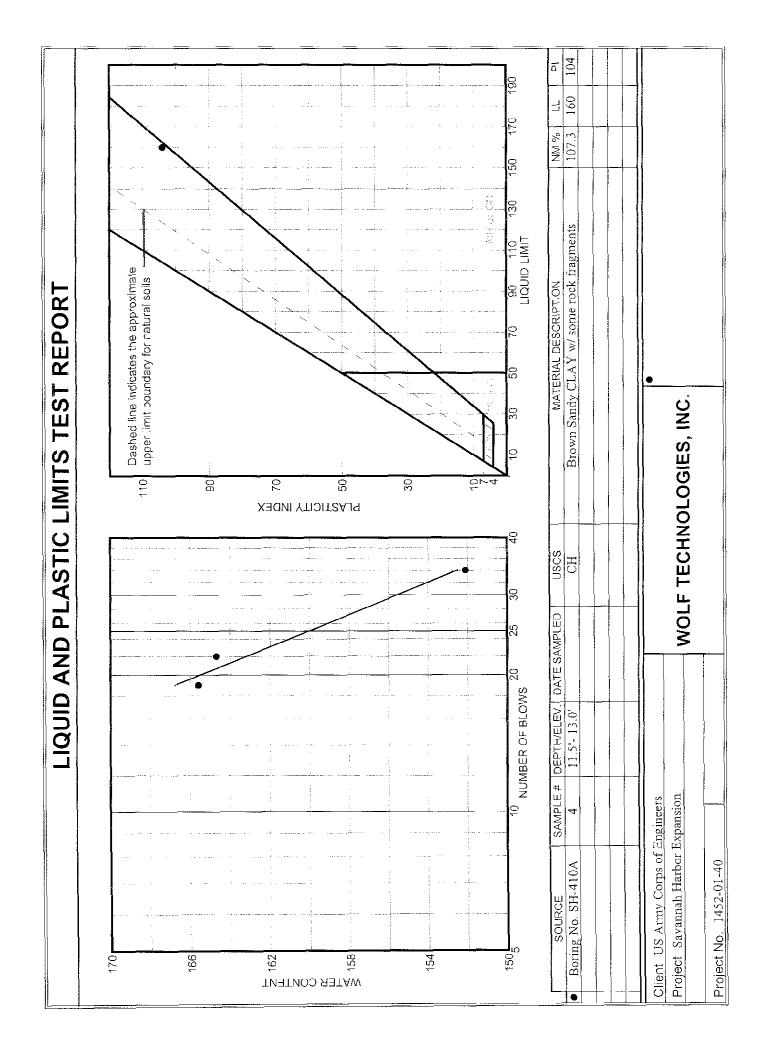
USAUE

USAUE

2/3/03

Date

[PE	RCENT C	OARSEF	R BÝ W	EIGHT							
	<u> </u>	° ~	20	30	40	50	09	40	80	<u> </u>					≦∥
L L		. : . : . :		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						0.001	CLAY			WULF LECHNOLOGIES, INC.
HYDROMETER	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								0.01		Savannah Harbor Expansion	Boring No. SH-412	
						· · · · · · · · · · · · · · · · · · ·						SILT	Project Savannah	No.	Date: 1/17/2003
S 100 140 200		1	····· · · ·	· · · ·	· · ·		· · · ·		·	· · · · · · · · · · · · · · · · · · ·			Р <mark>и</mark> Ри	A A	ă
STANDARD SIEVE NUMBERS		····· · · ·									ETERS	SAND	PL 49		
RD SIEVE		· · · · · · · · · · · · · · · · · · ·	 	······································	······	······	· · · · · · · · · · · · · · · · · · ·			·····		SAI	LL 127		
STANDA		· · · · · · · · · · · · · · · · · · ·									GRAIN SIZE IN MILLIMETERS		Nat w% 90.9		
IN INCHES U.S.											C Kr	GRAVEL	Classification Brown Sandy SILT w/ a trace of rock fragments and some organics		Grain Size Distribution Report
U.S.												COBBLES	No. Elev or Depth 11.5'- 11.7'		
	100	06	80		WEIGHT	୍ଥ NEK BY	SENT F		50	10	0		Sample No.		


MOISTURE CONTENT DATA

Project Name: Savannah Harbor Expansion Project No.: 1452-01-40 Date: 1-7-03

			AS1M D2216						
Boring	Sample	Tare	Tare Wt.	Wet Wt.	Dry Wt.	Water			
No.	No.	No.	(grams)	(grams)	(grams)	Content, %			
SH-410A	7	18	49.88	113.91	76.42	141.26			
	8	54	50.22	126.64	86.37	111.40			
	17	81	49.56	109.17	84.92	68.58			
SH-411	4	13	50.04	114.73	78.86	124.46			
	10	9	49.75	121.71	91.82	71.05			
SH-412	4	82	49.45	139.72	97.54	87.71			
			_						
					· · · ·	·····			
			[<u> </u>				
		··./			<u> </u>				
			<u> </u>						
			<u> </u>						
				<u> </u>					
	}			<u> </u>					
	<u> </u>		+						
L	<u> </u>	<u> </u>		L	L	L			

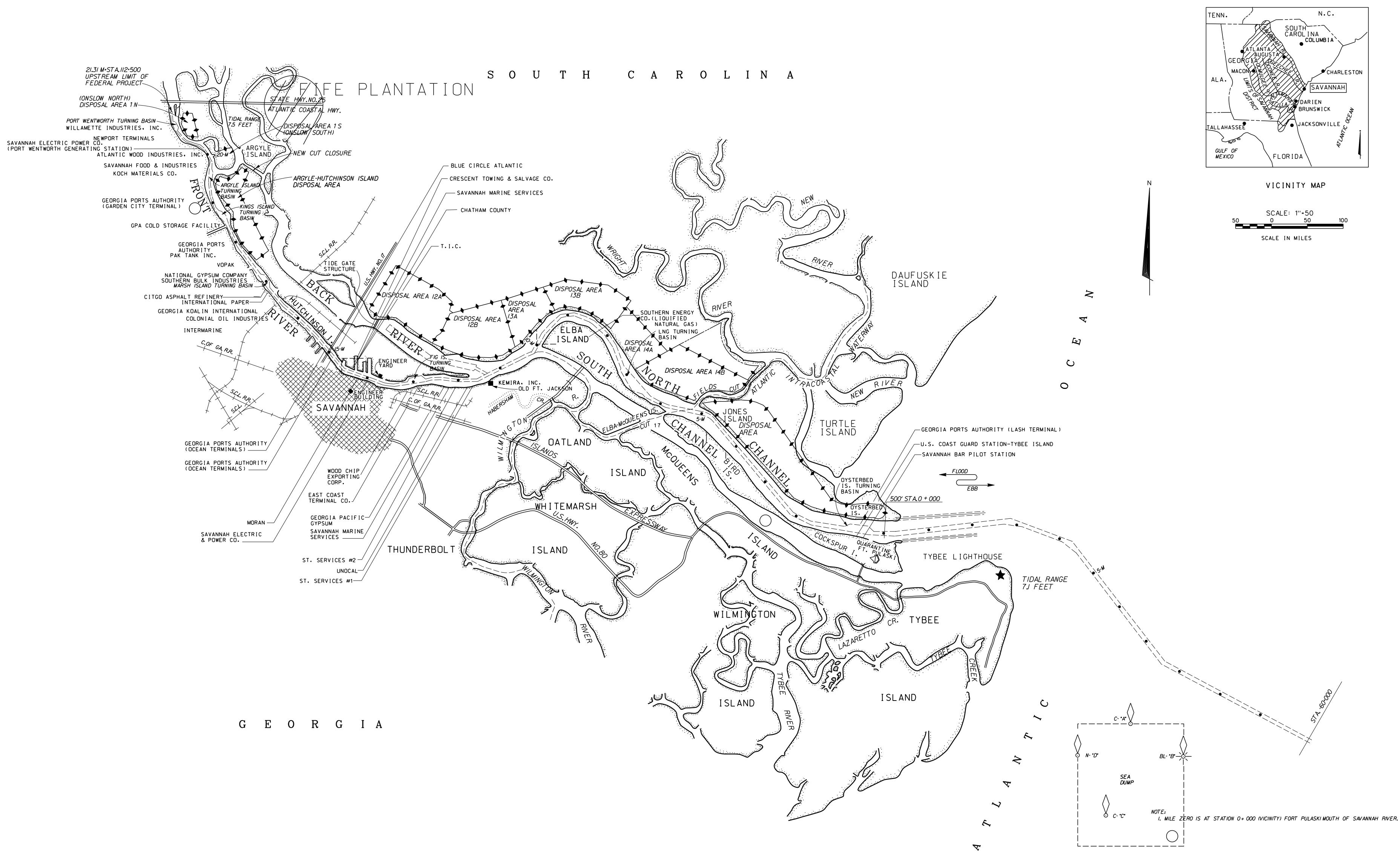
Performed by:CMjr Checked by: CM Equipment used: LB-1, LO-2

WOLF TECHNOLOGIES, INC.

APPENDIX C MAPS GENERAL

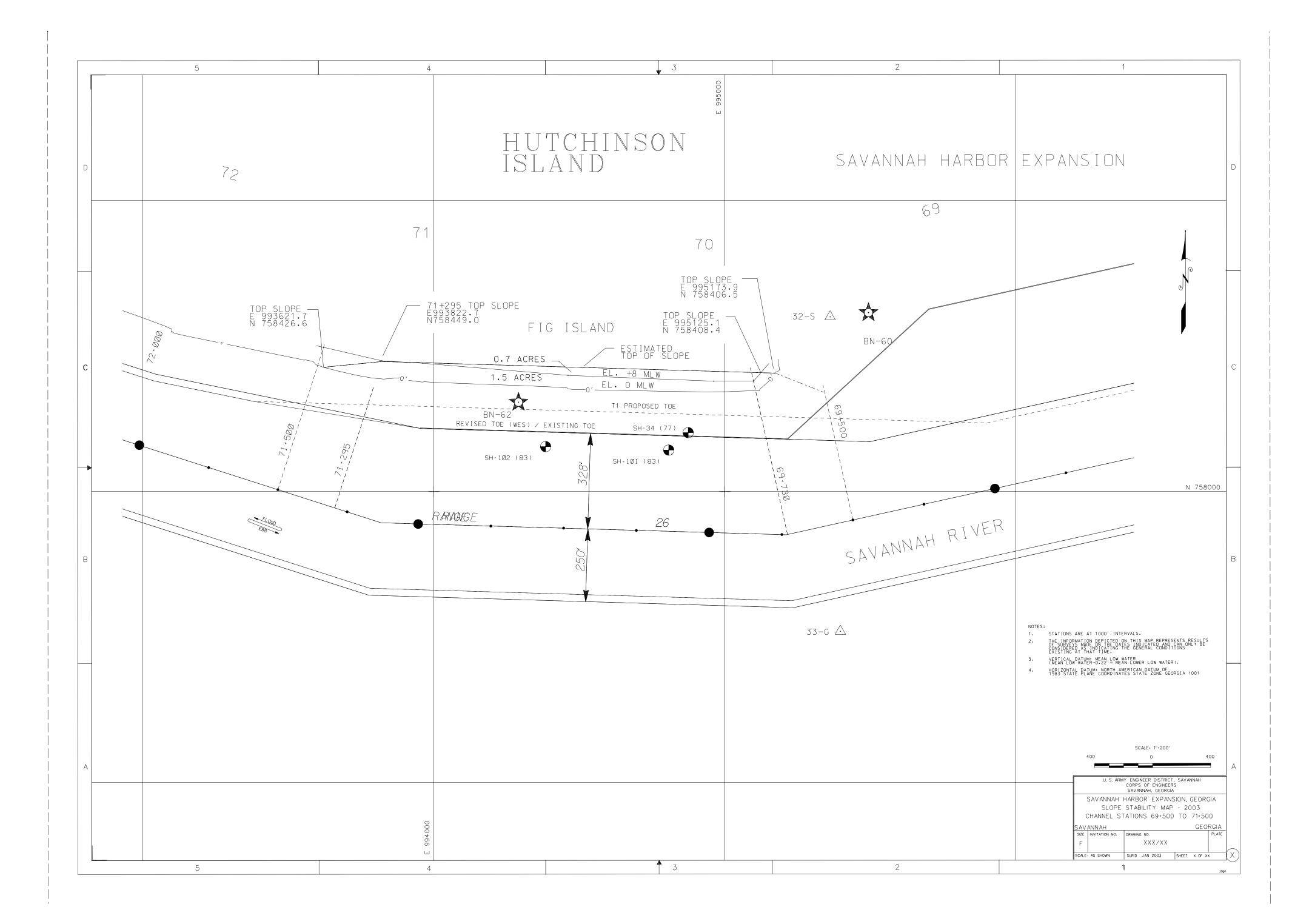
MAPS GENERAL SLOPE STABILITY STUDY AREAS

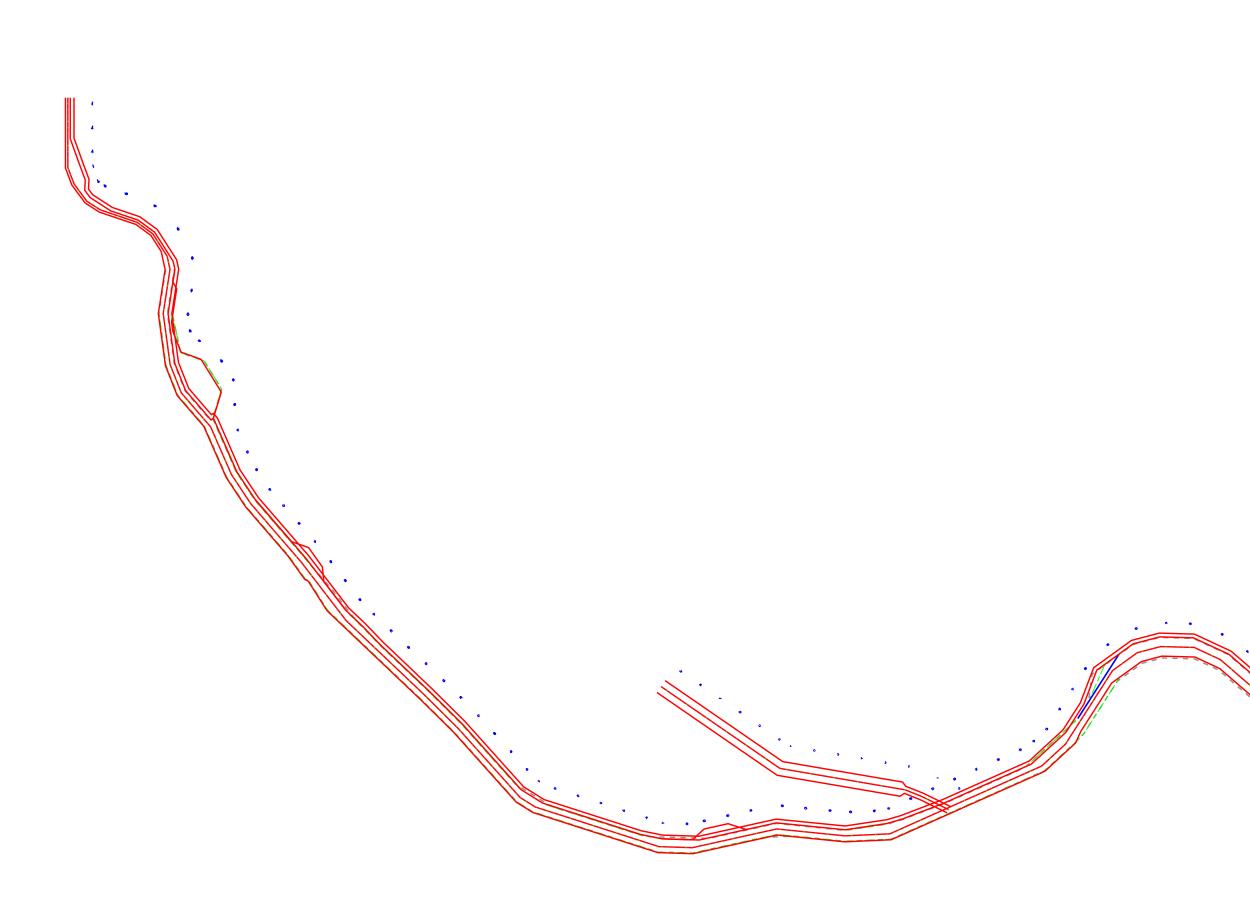
OVERALL STUDY MAPS


Savannah River Project Location Map Savannah River Project Outline Stations 114+000 to -85+000 Savannah River Project Outline (ERDC) Stations 114+000 to -85+000

CLOSE STUDY MAPS

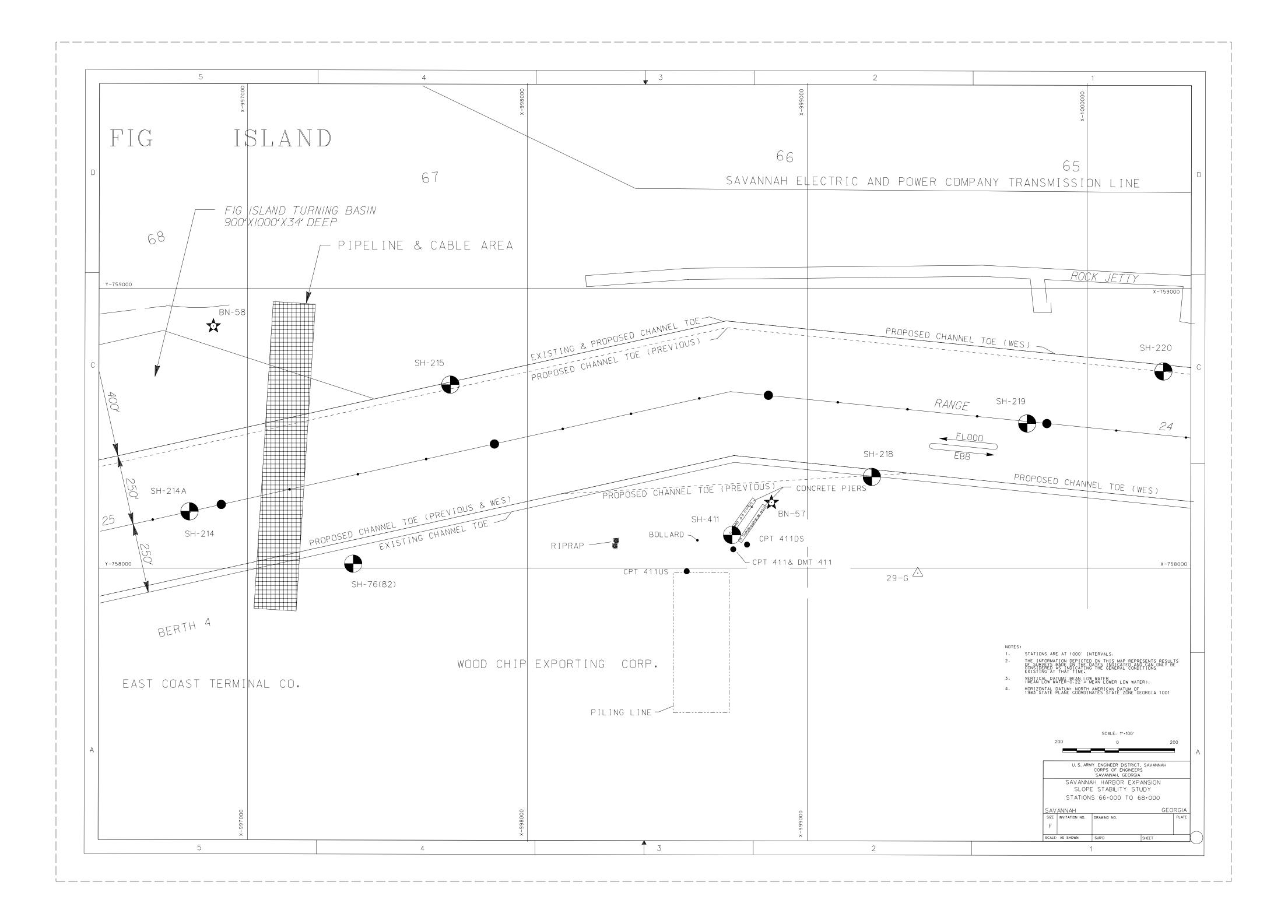
Savannah River Channel Stations 66+000 to 68+000 Savannah River Channel Stations 69+500 to 71+500 Savannah River Channel Stations 73+000 to 73+700 Savannah River Channel Stations 75+000 to 76+500 Savannah River Channel Stations 77+000 to 79+000 Savannah River Channel Stations 85+000 to 88+500 Savannah River Channel Stations 96+000 to 97+500 Savannah River Channel Stations 98+000 to 103+000

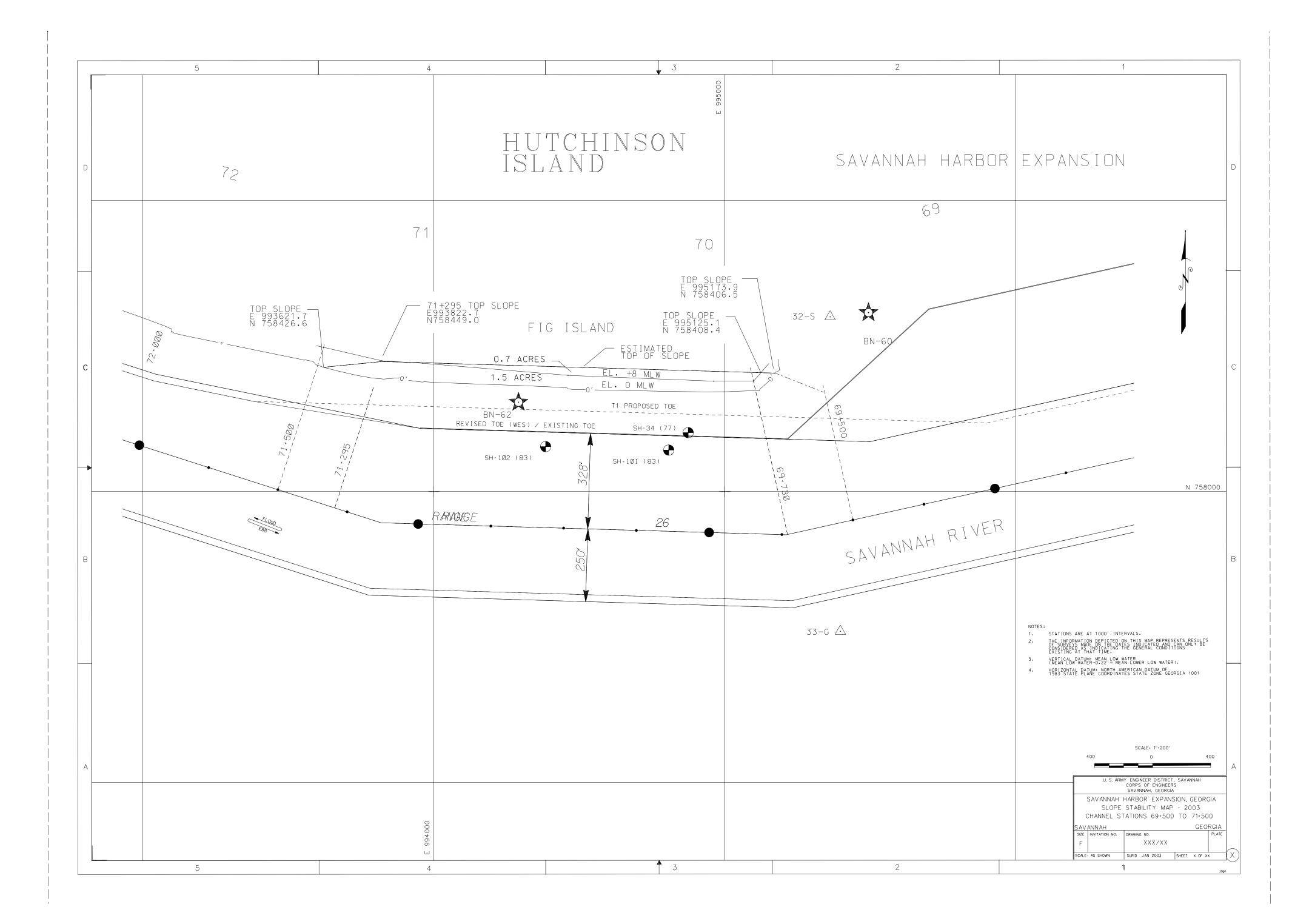

ADDITIONAL INFORMATION General Project Information

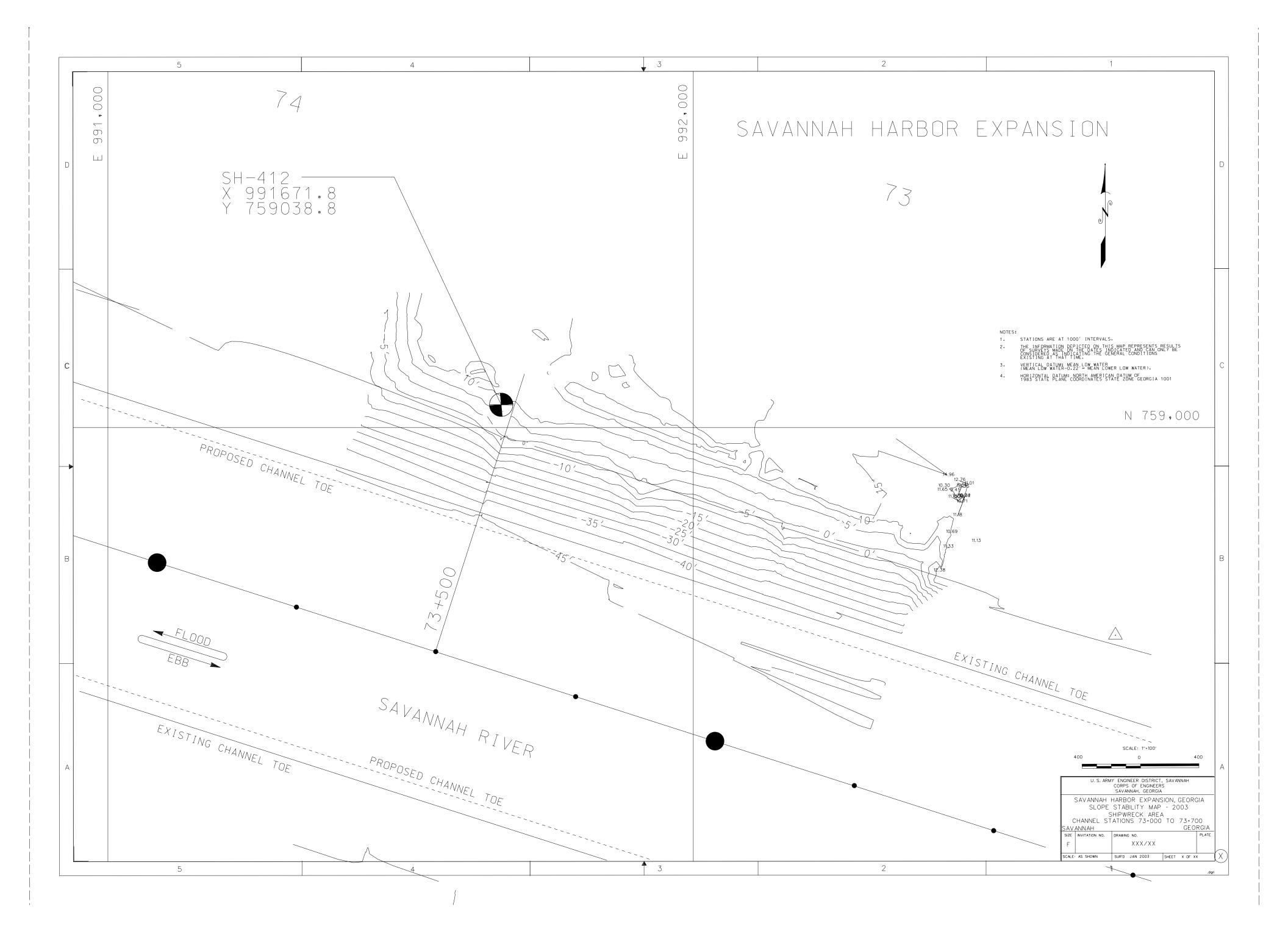

Coastal GIS Site (Slow & Unreliable)

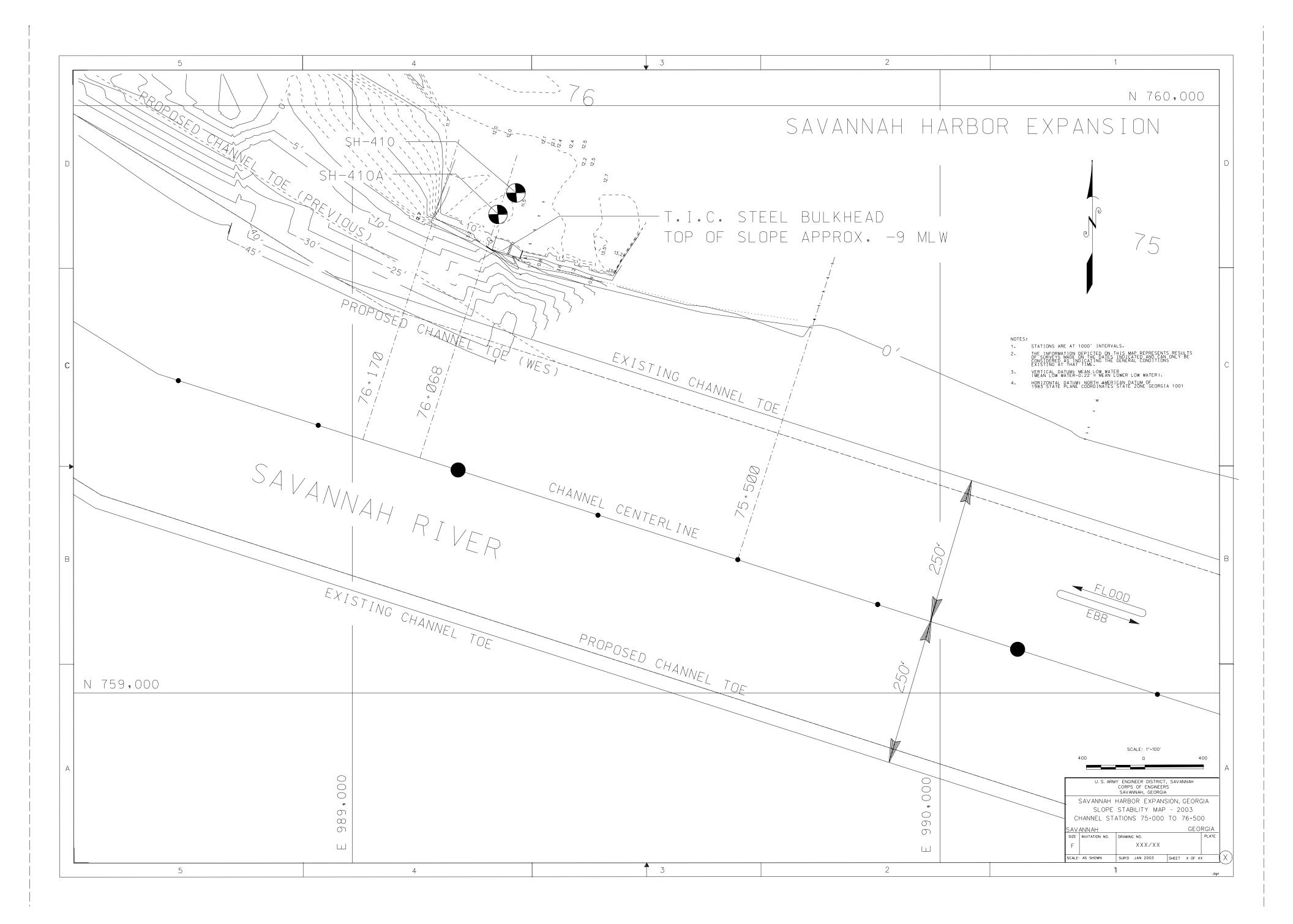
LOCATION MAP

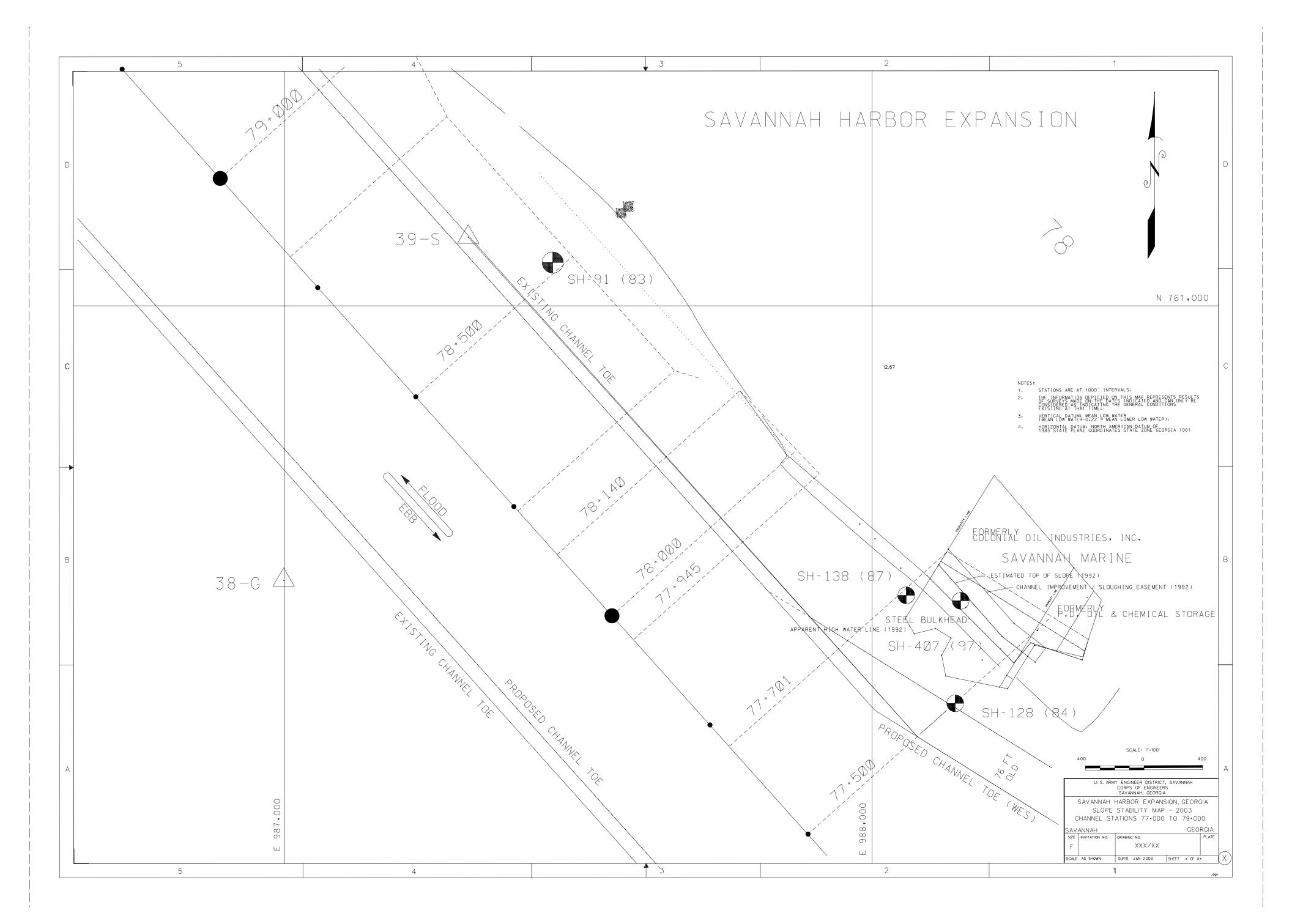
G-02 2

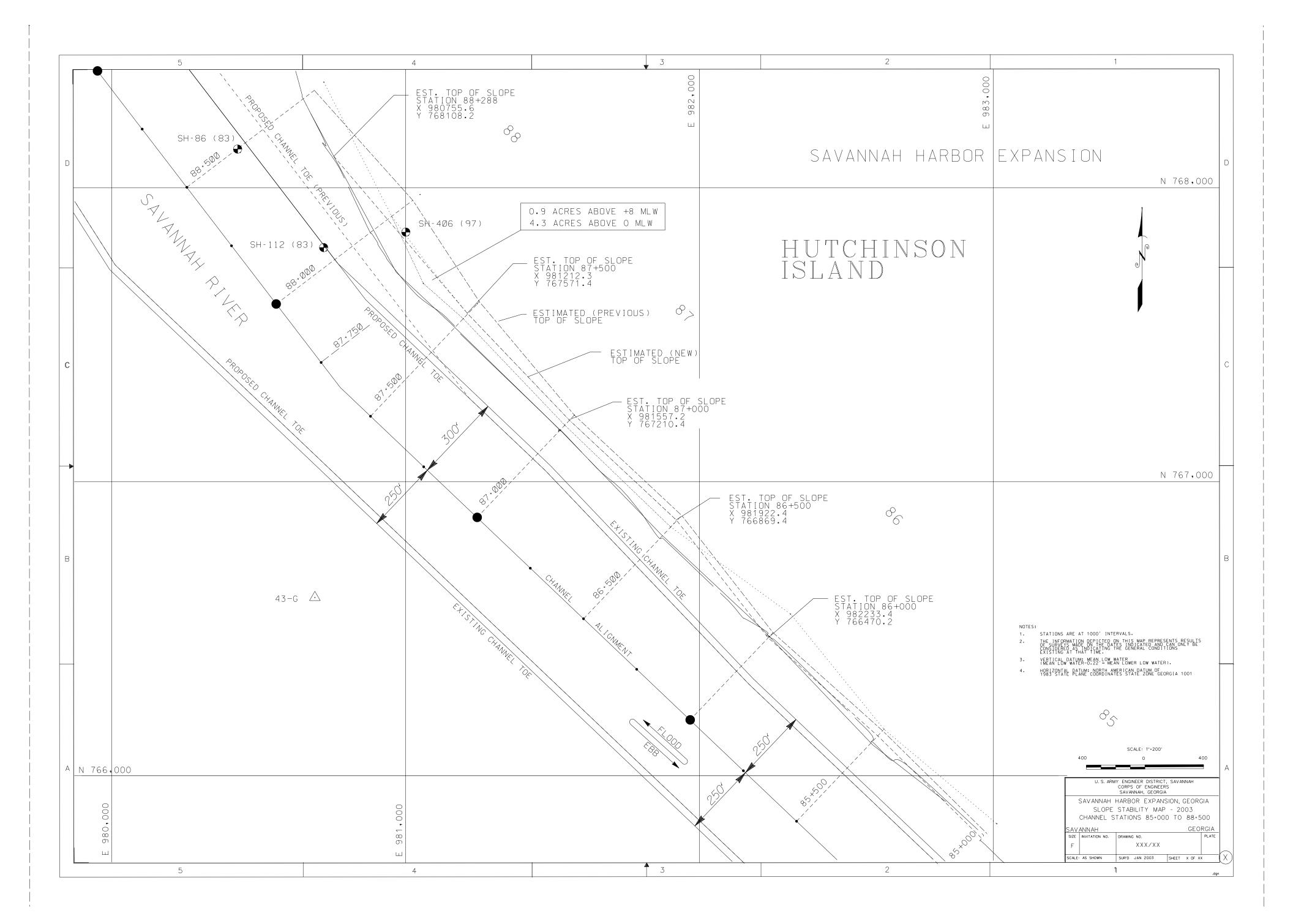

SAVANNAH RIVER

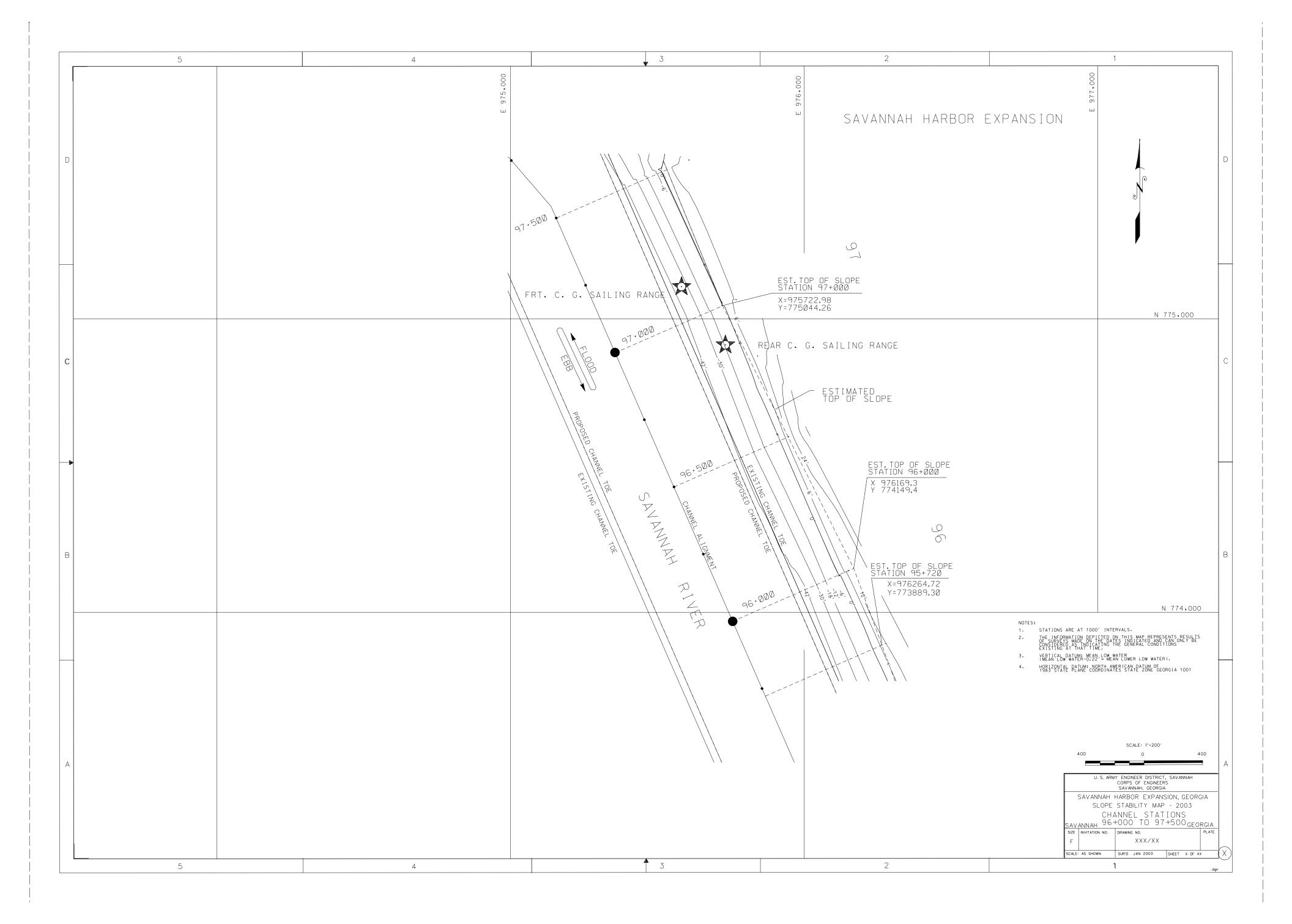

RecChan2model.dgn 5/13/2005 10:30:00 AM

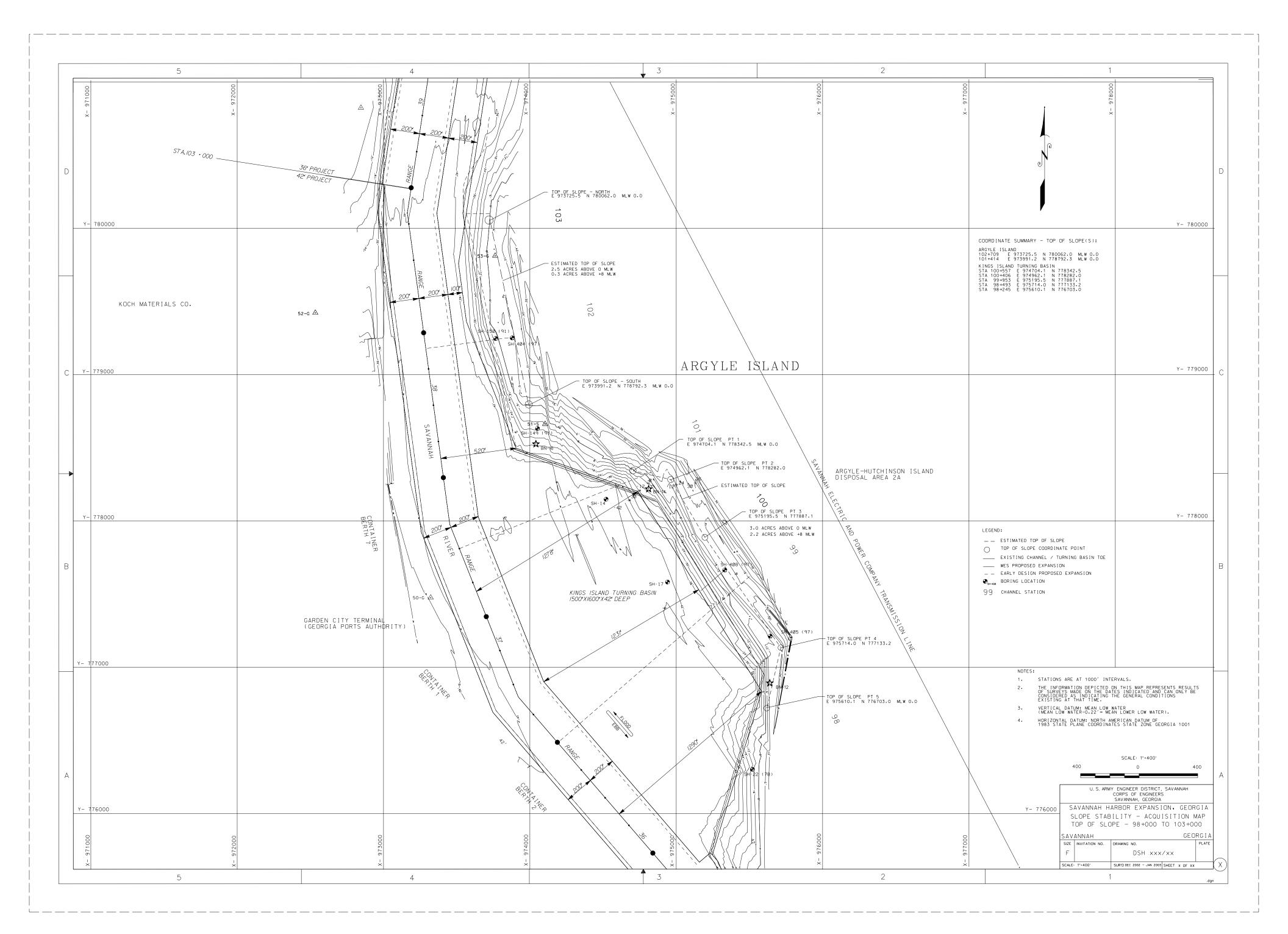

LEGEND

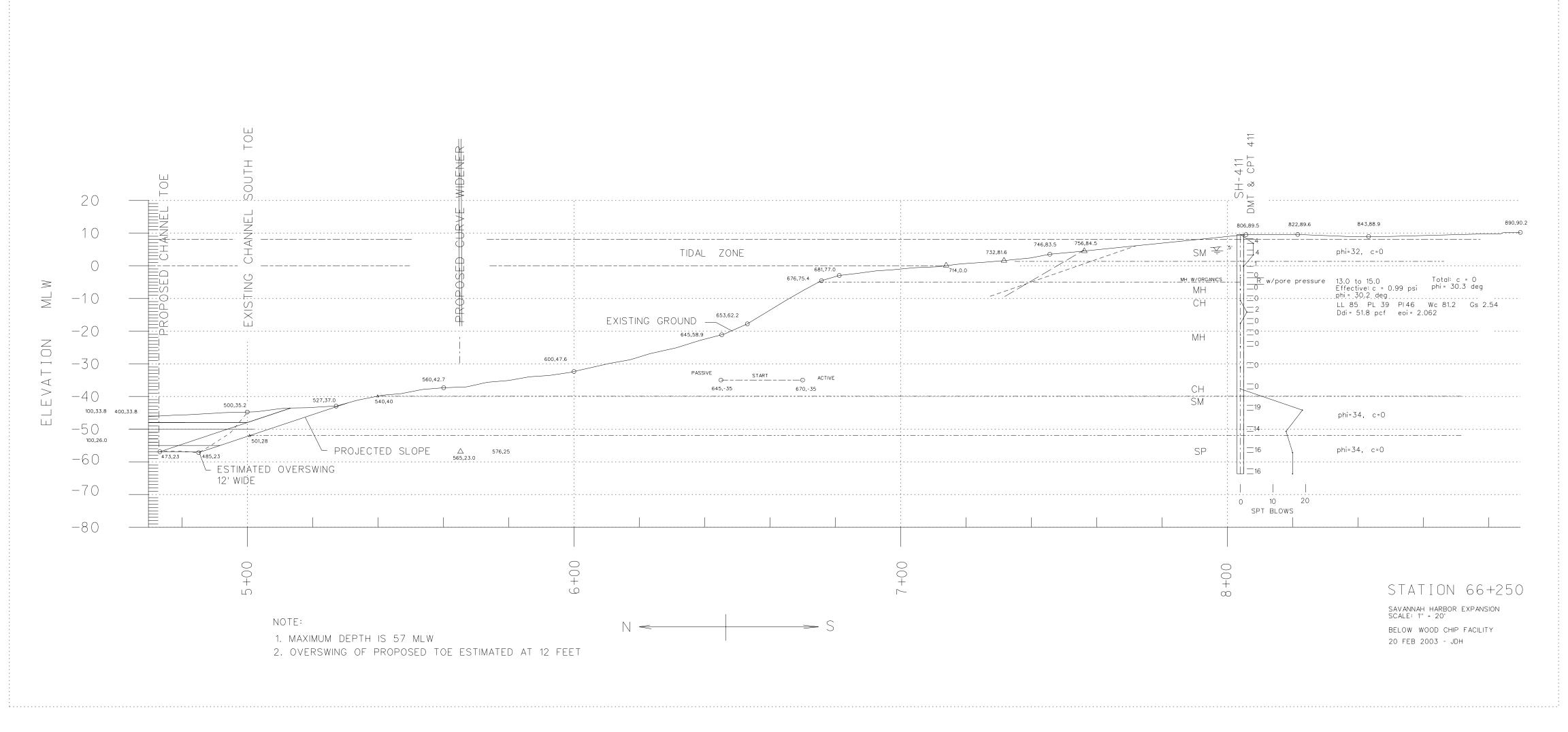

EXISTING CHANNEL TOES - LEVEL 20 - SOLID RED LINE PRELIMINARY DESIGN TOES (SAV'H DISTRICT) - LEVEL IO - DASHED WHITE LINE PRELIMINARY DESIGN TOES BASED ON SHIP SIMULATION (ERDC) - LEVEL 2 - DASH/DOT GREEN LINE

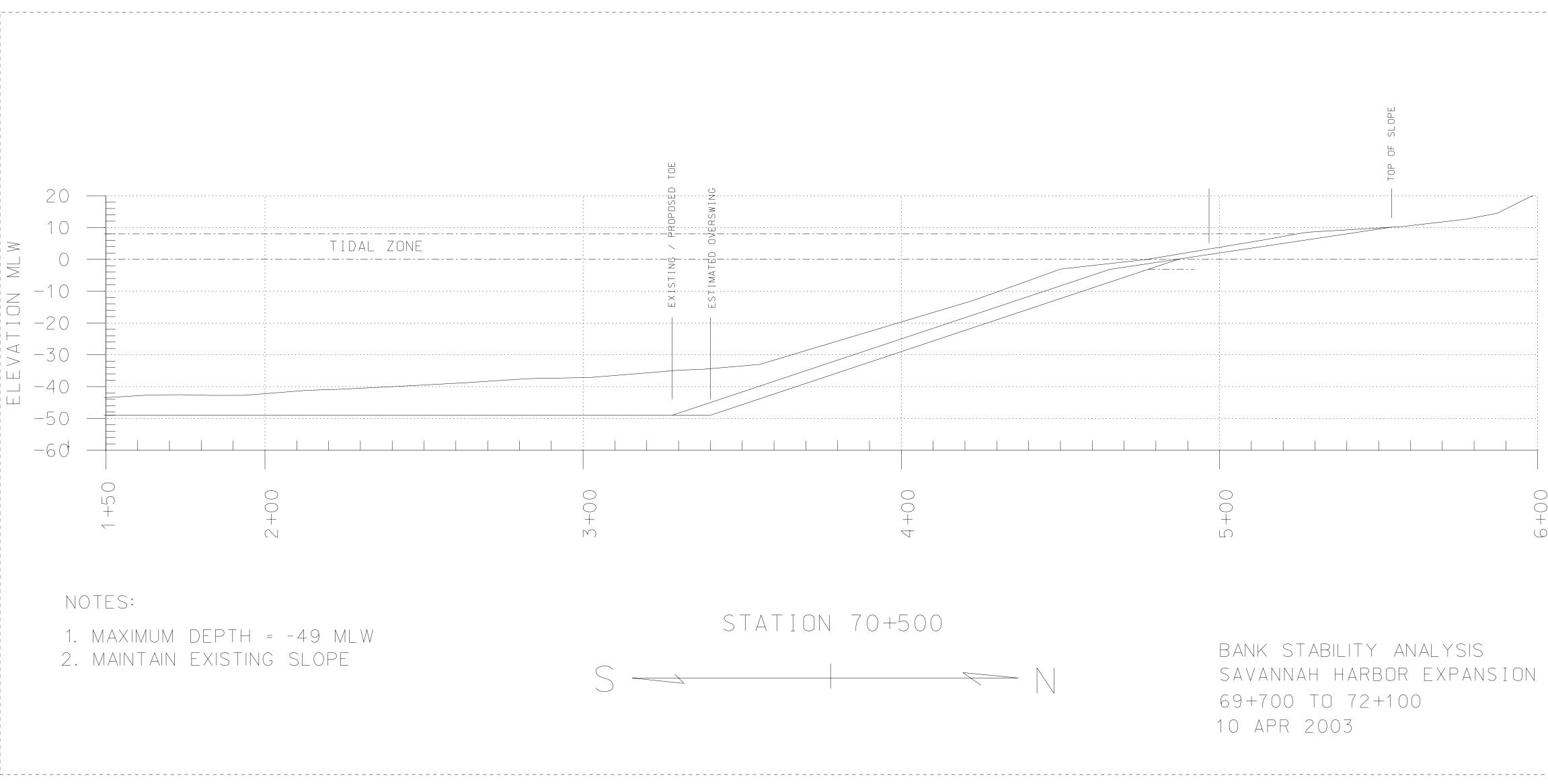

.

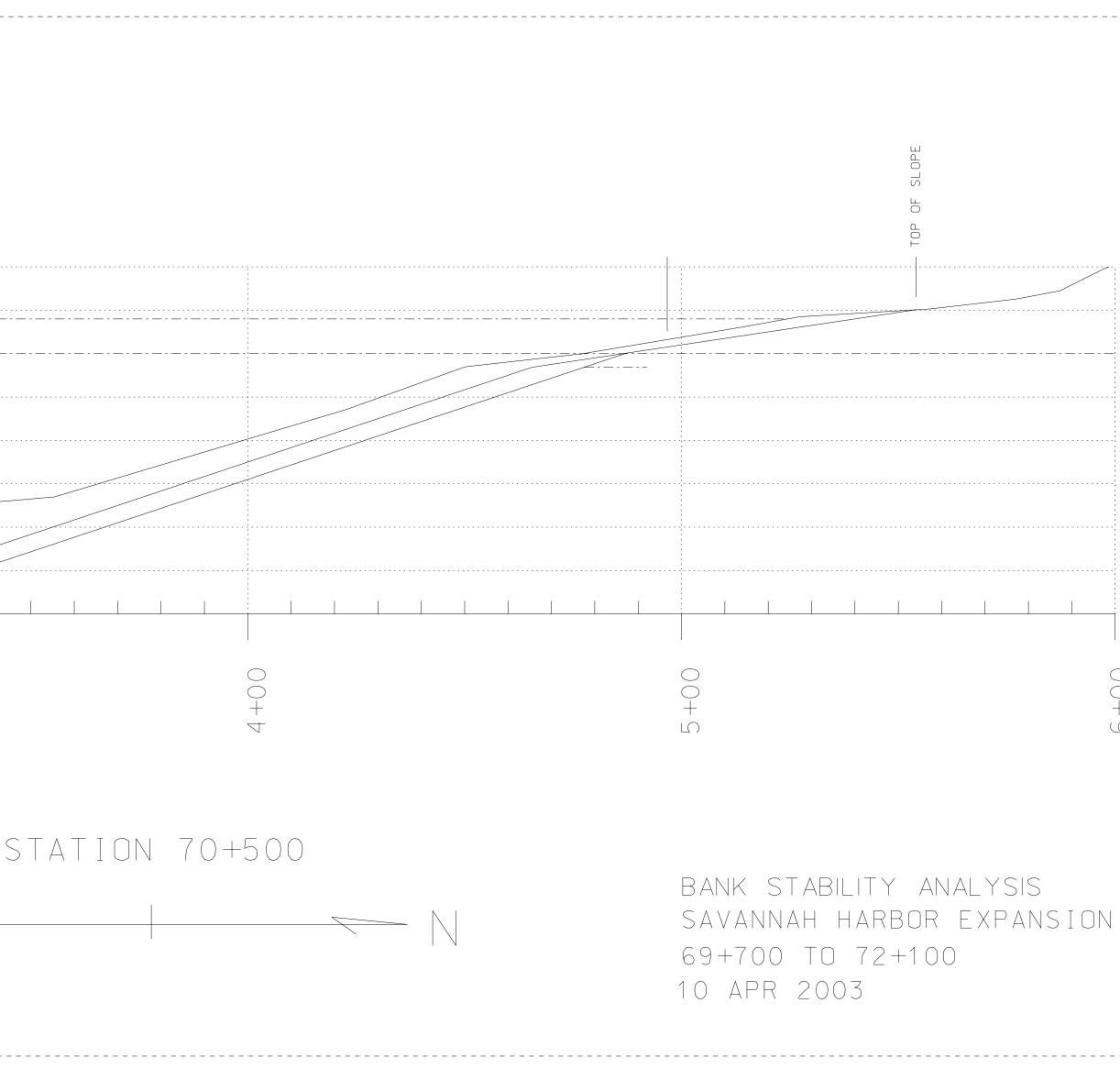


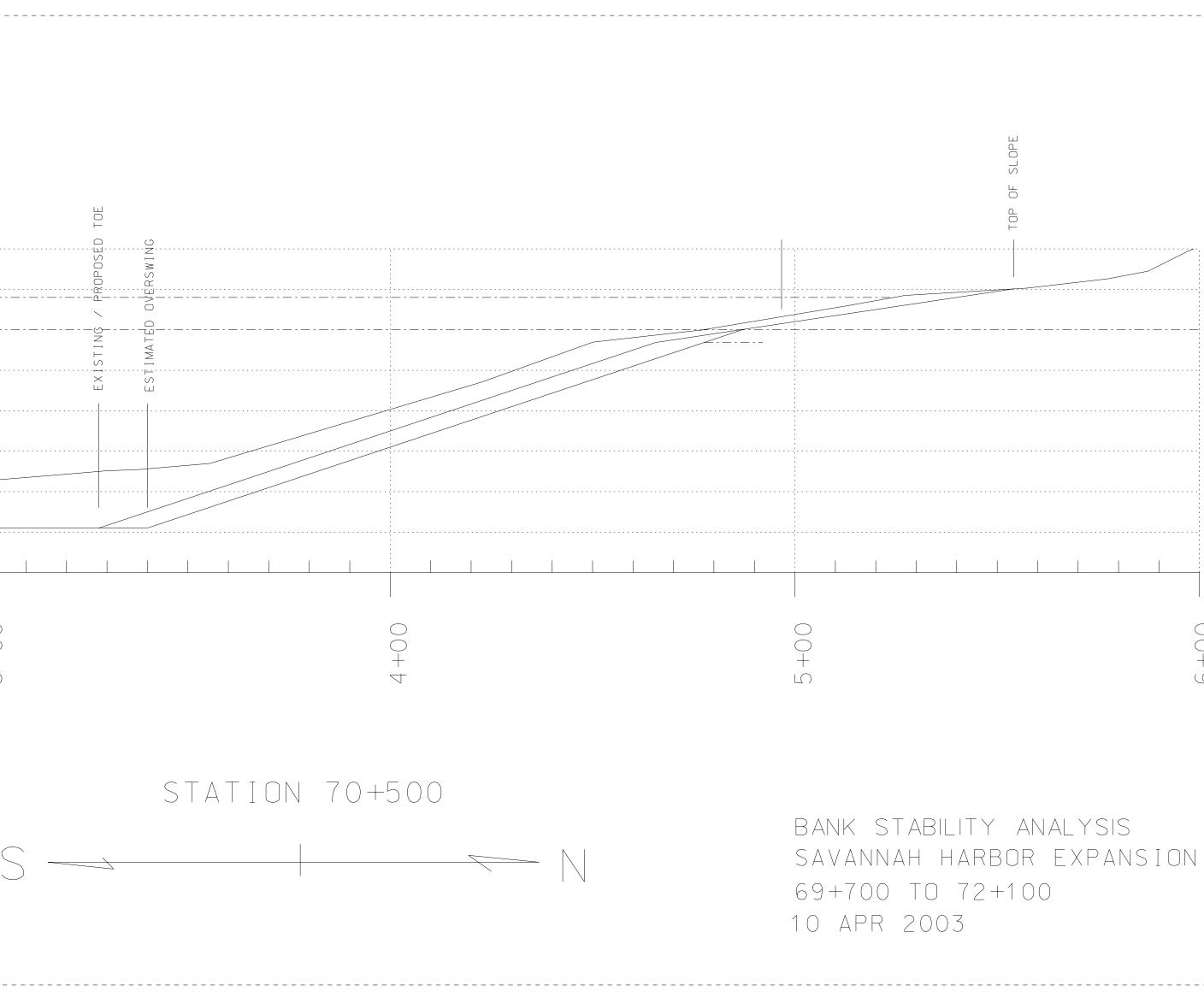


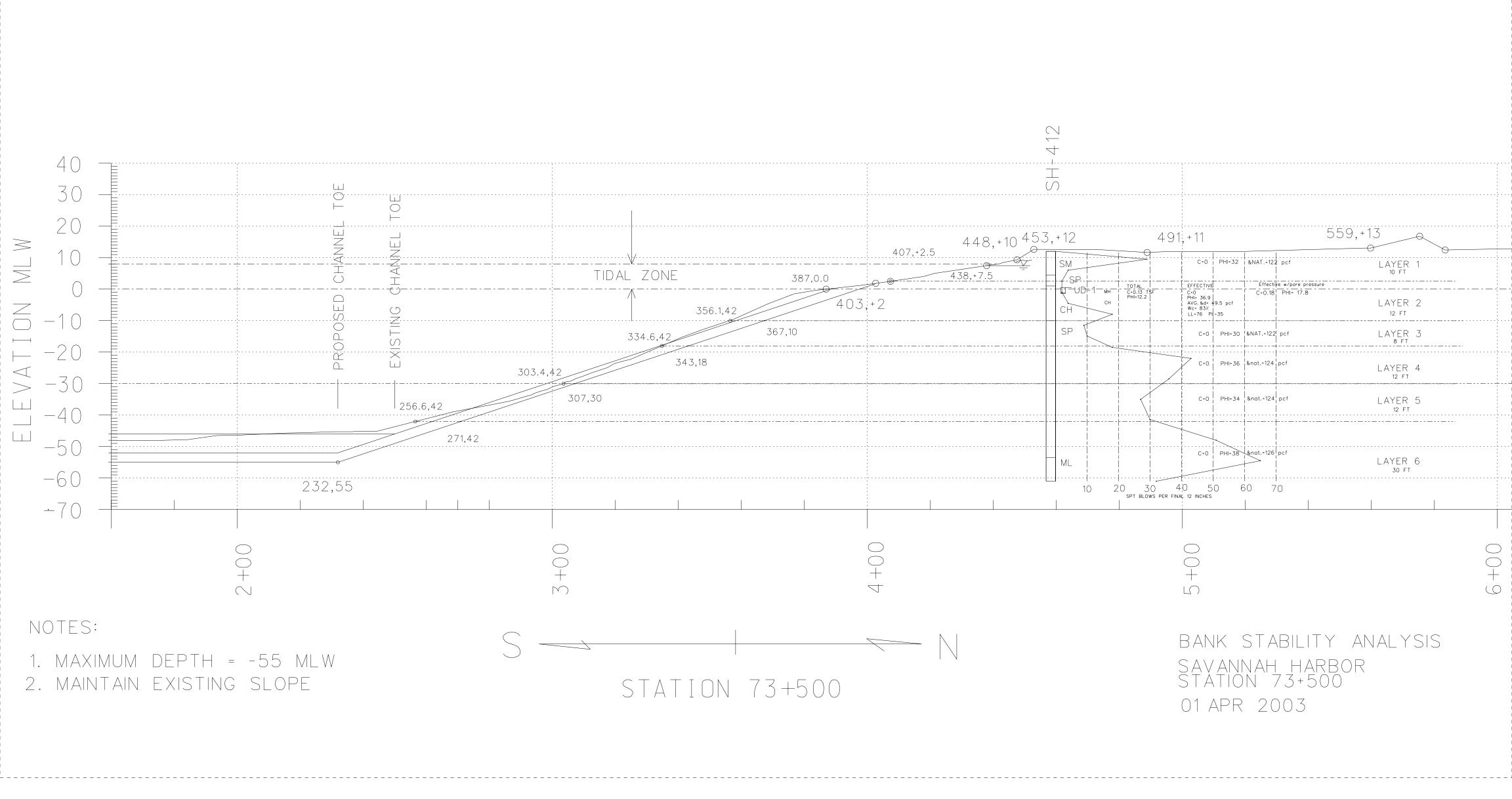


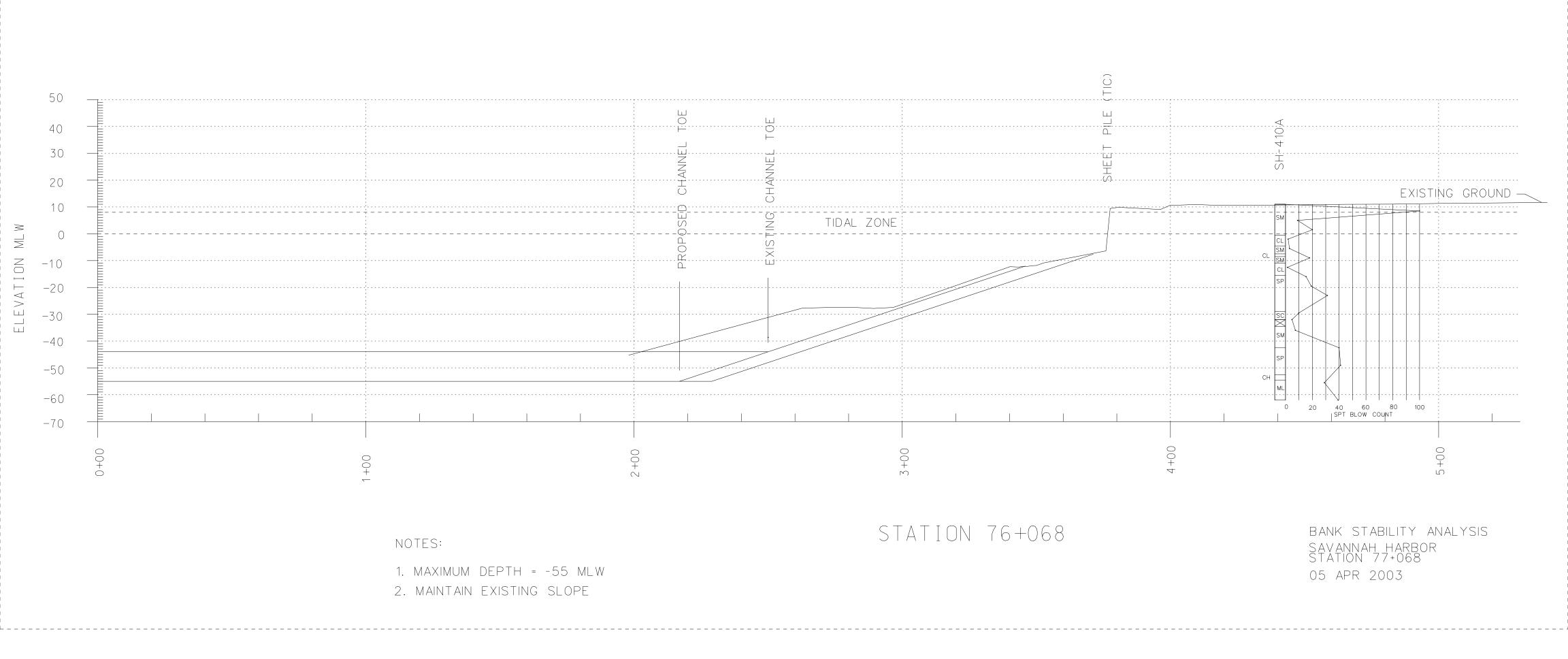


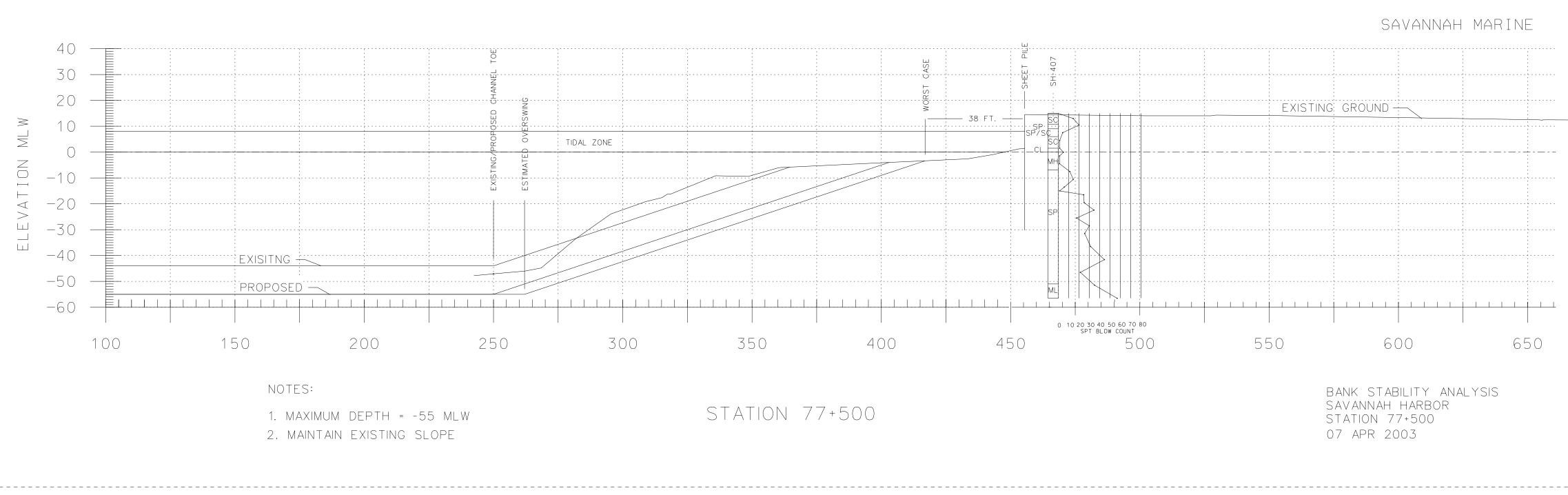

APPENDIX D CROSS SECTION DRAWINGS

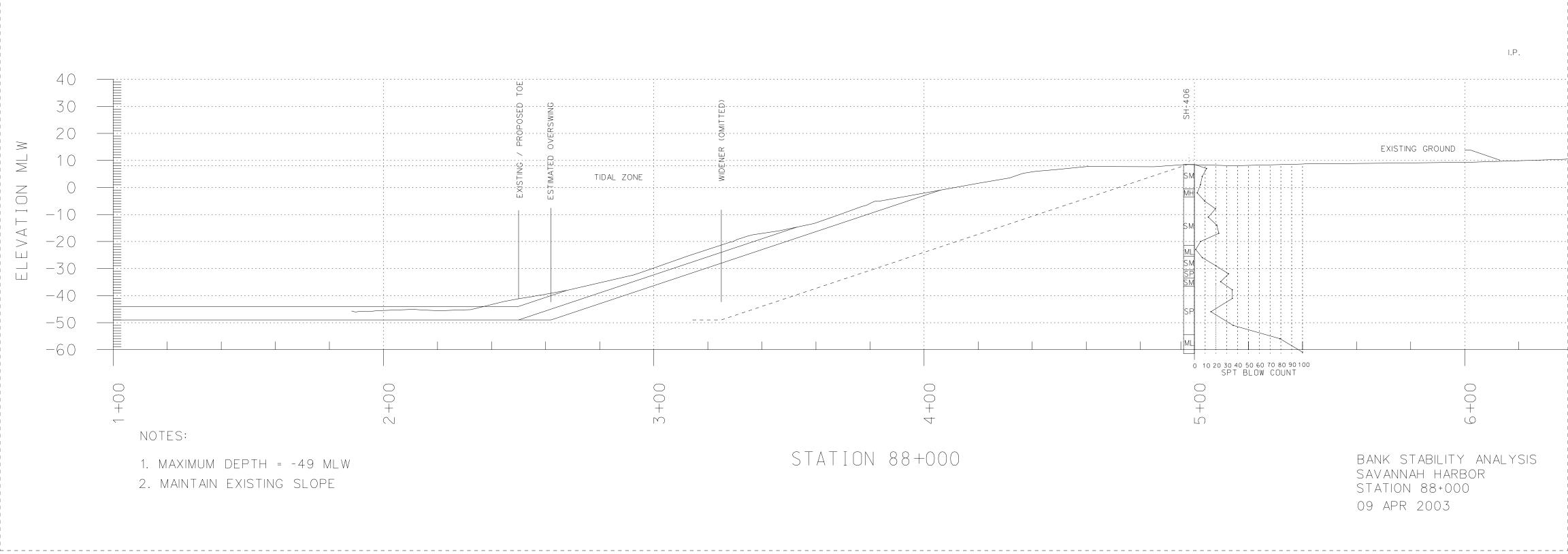

CROSS SECTIONS ANALYZED FOR SLOPE STABILITY

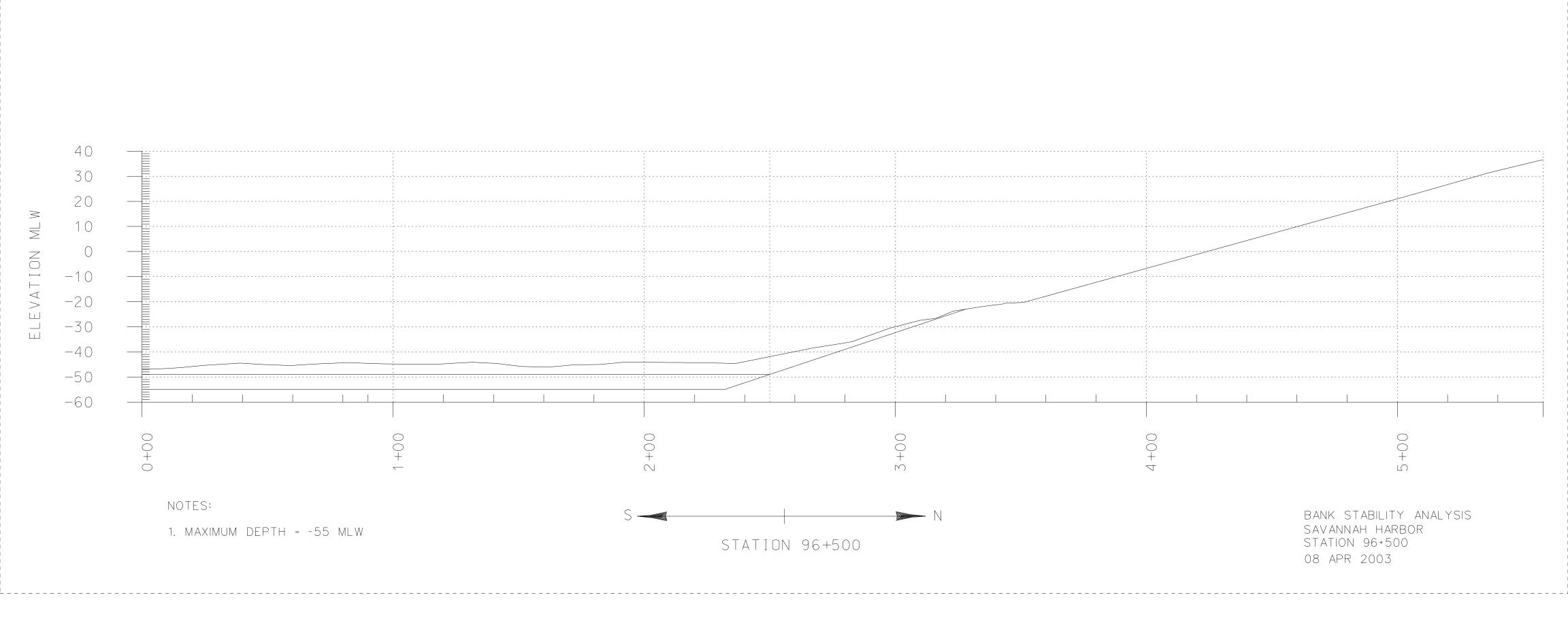

Note: These drawings were originally developed using MicroStation Version 7. The files attached below have been converted to Adobe .pdf format and as such will not be readable without using zoom control to read layer soils data. Originals may be requested by contacting the Corps of Engineers office in Savannah, Georgia for those with the ability to read original design files.

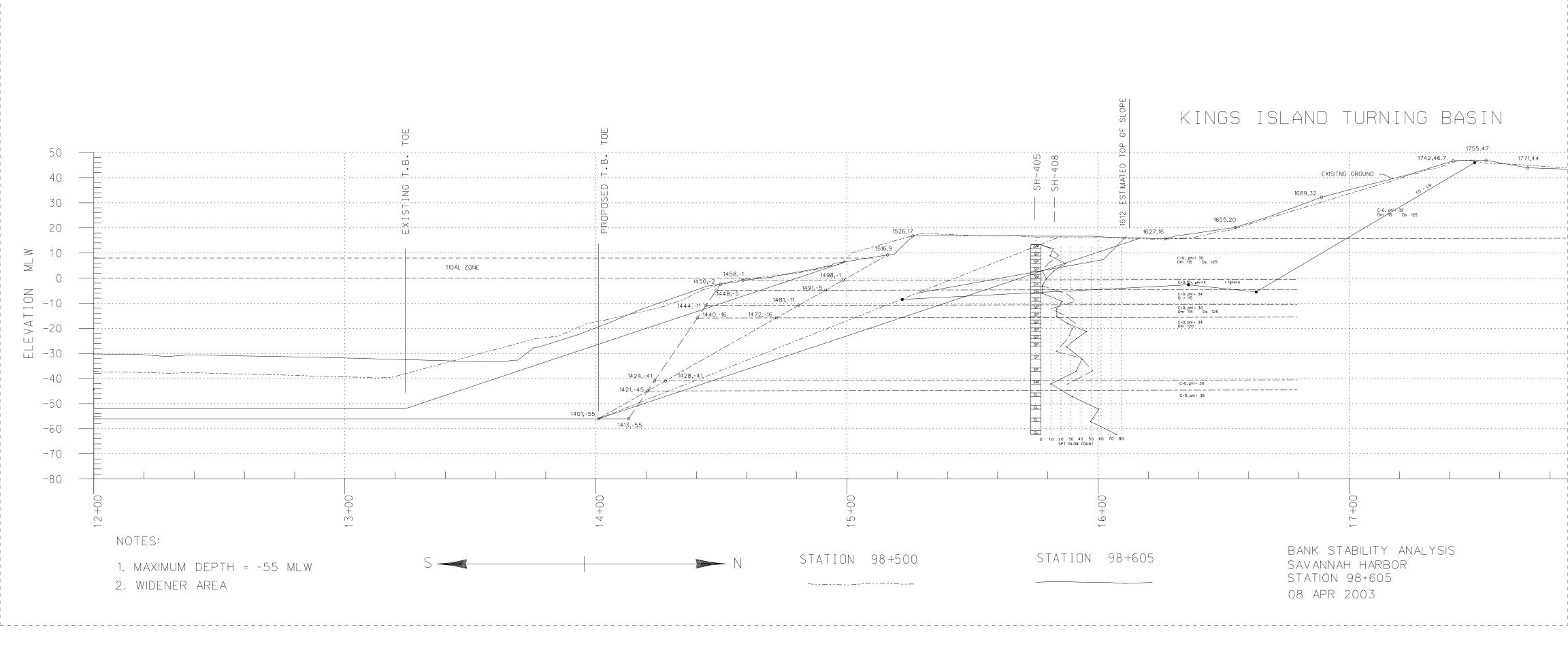

> Channel Station 66+250 Channel Station 70+500 Channel Station 73+500 Channel Station 76+068 Channel Station 77+500 Channel Station 88+000 Channel Station 96+500 Channel Station 98+605 Channel Station 101+887

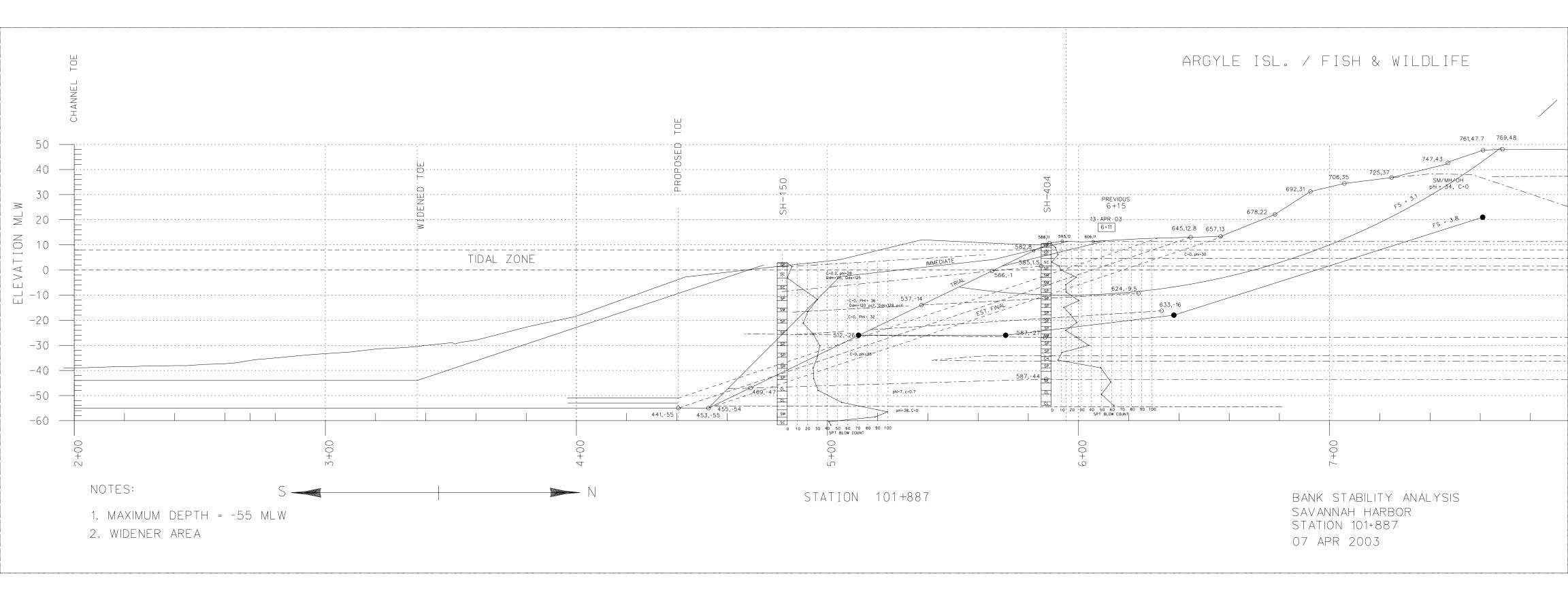












APPENDIX E

SLOPE DATA INPUT & OUTPUT

SLOPE DATA INPUT AND OUTPUT

Depth Requirements

Soil Boring Analyses

Trial Setup - Station 66+250

Trial Setup - Station 98+500

Trial Setup - Station 101+887

UTexas3 Input File Station 98+605

UTexas3 Output File Station 98+605

UTexas3 Input File Station 101+887

UTexas3 Output File Station 101+887

UTexas3 Input File Station 101+887 Circular Arc

UTexas3 Output File Station 101+887 Circular Arc

Note:

The Annual Survey Sheets, Aerial photos, River Soundings, and River Borings have not been included in this report. These files are over 6 gigabits in size and should be available either on our GIS database or in paper form, upon request.

Savannah Harbor Depths

			Allowable		Total O&M	Cł	nannel Deepening	
Station	Project Depth (feet below MLW)	Advance <u>Maintenance (feet)</u>	Overdepth <u>(feet)</u>	Disturbed Depth <u>(feet)</u>	Dredging Depth (feet below MLW)	2-Foot Improvement	4-Foot Improvement	6-Foot Improvement
60+000B TO 14+000B	44	0	2	3	49	51	53	55
14+000B TO 0+000B	42	2	2	3	49	51	53	55
0+000B TO 24+000	42	2	2	3	49	51	53	55
24+000 TO 35+000	42	4	2	3	51	53	55	57
35+000 TO 37+000	42	6	2	3	53	55	57	59
37+000 TO 70+000	42	4	2	3	51	53	55	57
70+000 TO 102+000	42	2	2	3	49	51	53	55
102+000 TO 103+000	42	0	2	3	47	49	51	53
103+000 TO 105+500	36	2	2	3	43	45	47	49
105+500 TO 112+500	30	2	2	3	37	39	41	43
OYSTER ISLAND TURNING BASIN	40	0	2	3	45			
ELBA ISLAND TURNING BASIN	38	0	2	3	43			
FIG ISLAND TURNING BASIN	34	4	2	3	43			
MARSH ISLAND TURNING BASIN	34	0	2	3	39			
KINGS ISLAND TURNING BASIN	42	8	2	3	55			
ARGYLE ISLAND TURNING BASIN	30	0	2	3	35			
PORT WENTWORTH TURNING BASIN	30	0	2	3	35			
SEDIMENT BASIN	40	0	2	3	45			
0 to 2+000	38	0	2	3	43			
ENV APPROVED BUT NOT CONSTRUCT	ED							
OYSTER ISLAND TURNING BASIN		4						
ELBA ISLAND TURNING BASIN		8						
FIG ISLAND TURNING BASIN		12						
MARSH ISLAND TURNING BASIN		8						
ARGYLE ISLAND TURNING BASIN		0						
PORT WENTWORTH TURNING BASIN		0						
SEDIMENT BASIN		6						

SOIL BORING ANALYSES LOCATIONS / PRELIMINARY ASSESSMENT

31 January 2002

1. The existing Savannah Harbor is approximately 32 miles long (along the centerline of the channel), stretching from the Atlantic Ocean to the former New Cut Channel (Channel Stations –60+000 to 103+000). The Savannah Harbor Expansion Project proposes to add 25,000 feet of outer channel (New Channel Stations (-60+000 to - 85+000), widen selected turns within the inner harbor, and enlarge the existing Kings Island Turning Basin (Inner harbor). The outer channel work does not impact privately owned real estate. The inner harbor, for the purpose of this study, shall be described as being all reaches from Channel Station 0+000 to 103+000. There is approximately 20 miles of land on each side of the river (approximately 40 miles of river banks), and many properties that could be affected by the project depending, in part, on the proximity of the land to the proposed channel deepening and/or widening. The Corps of Engineers does not recommend taking soil samples from all properties located along the Savannah River and in the Savannah Harbor.

2. The publications by the Department of the Army, Corps of Engineers, Office of the Chief Engineers entitled "Engineering and Design, Geotechnical Investigations," EM 1110-1-1804 (29 February 1984) and "Soil Sampling," EM 1110-2-1907, are the primary sources on how to take soil samples. These engineering manuals indicate how to take the samples, but do not identify with any specificity the locations where samples must be taken. There are no regulations, internal guidelines, policies or other directives that specify the conditions under which soil samples must be obtained or the properties from which soil samples must be taken. The designing soils engineer has the discretion to decide, based on his or her best judgment as an engineer, the locations where it will be necessary to take soil samples for analysis.

3. The soils engineering staff for the Corps of Engineers is responsible for determining where soil samples for slope stability and demolition purposes will be taken in connection with the Savannah Harbor Expansion Project. During the course of determining the locations where it would be necessary for the Corps of Engineers to take soil samples for analysis, we considered the following factors: 1) the proximity of a property to the proposed project, 2) the type of material likely to be encountered (as obtained from past soil borings in the vicinity), 3) the slope of the riverbank, 4) the configuration of the existing channel, 5) hydrographic surveys, 6) topographic surveys and aerial photographs, 7) the configuration of the proposed navigation channel, 8) whether the proposed channel intersects with adjacent property, 9) the proposed method of dredging, 10) the available budget, 11) the cost of taking and analyzing soil borings,¹ and 12) the likelihood that soil sample analysis will yield necessary information. In

¹ The cost of a soil boring, including laboratory testing and analysis, and subsequent analysis of the drilling and test results, varies from approximately \$10,000.00 to \$12,500.00, per boring.

addition, we considered historic information, including: 1) most recent surveys, 2) problems arising out of most recent dredging projects, and 3) historic structures and artifacts.

4. In connection with the Savannah Harbor Expansion Project, we also conducted site inspections of all areas that could be affected by the project, by boat and by land. Documentation, photographs, and comment from the most recent inspections are contained in Memorandum For Record dated 06 December 2001, Subject: Trip Report, Savannah Harbor Expansion, Savannah, GA; Inspection of Dock Structures, Inner Harbor.

5. The decision whether to test certain property is based on an analysis of the above factors, and not the ownership of the property. The taking of soil samples, like any other expenditure in connection with a harbor expansion project, must be justifiable. Engineering judgment is used to determine the locations where the taking of soil samples will yield necessary information.

6. Soil borings and samples were taken during preliminary study analysis which will need to be augmented based on the now proposed channel configuration, and again (possibly) augmented after final model studies have been completed. Each of the following areas represents a 'taking' or real estate acquisition necessary to accommodate proposed channel widening. Areas which are known to involve 'taking' by virtue of direct intersection of proposed work to the existing channel/river configuration or where there is some question regarding existing bulkhead and/or channel bank stability are 1) Argyle Island between Channel Stations 101+000 and 103+000, 2) Kings Island Turning Basin between Channel Stations 98+700 and 100+500, 3) International Paper, northeast riverbank, between Channel Stations 87+450 and 89+500, 4) Savannah Marine Services and the former Graham Radio Corp. Property, Channel Stations 77+250 to 77+650, 5) T.I.C., Channel Stations 76+000 to 76+200, and 6) Property located at or adjacent to Wood Chip Exporting Corp., Channel Stations 65+950 to 66+200. Each of the above described areas either have been or will be investigated with regard to subsurface condition, profiles, material strength and bank stability.

7. Areas of concern that do not involve a direct intersection of the proposed project to the existing river configuration, and are recommended for soil testing are listed in the following:

a. Hutchinson/Fig Island between the U.S. Army Corps of Engineers Yard and Slip No.1, known as an archeological site consisting of soft fill materials and old ship/boat wrecks (Approximate Channel Stations 72+700 to 73+700). This area is recommended for subsurface exploration and testing to better determine bank stability with regard to the proposed project.

b. South Channel Training Wall, Elba Island side, Channel Stations 50+000 to 51+700, and near Southern Energy Corporation's natural gas pipeline crossing. Channel widening proposed along this reach will likely involve debris and/or training wall (or remnant) removal. Exploratory investigation is planned to determine size and extent of possible debris removal.

c. The extended bar channel area from -60+000 to -85+000. While not of concern to adjacent properties (none), subsurface sampling and testing will be performed to determine the character of materials proposed for removal.

d. Other areas are subject to subsurface testing and analysis. Such include aquifer studies for salt-water intrusion, which are considered beyond the scope of this writing.

8. Problematic areas exist that involve deteriorated, broken and/or highly questionable structures with regard to their stability and are located near or adjacent to the proposed project. These areas are not recommended for subsurface study, but will need to be addressed as separate issues. Each is listed in the following:

a. Cantilevered Parking Lot and Dock Facility (Owner: Sylvan Byck) located between Moran Towing and the eastern end of the original Rousakis Plaza, located opposite the Shrimp Factory on River Street, and approximately between Channel Stations 74+270 and 74+400. The foundation for the cantilevered concrete parking area consists of wood piling. As noted in the trip report dated 06 December 2001, a gap or open area exists that varies from about 1 foot to less than 1 foot between the pile tops and the concrete, depending on pile location. Given the relatively good condition of the pile tops, it is surmised that repeated loading and unloading of the parking lot has subsequently driven the piles into supporting soils beyond the depth that piles were originally installed. In any case, the gap between the pile tops and supporting concrete indicates a pile bearing failure that leaves the concrete section free to flex and move within existing constraints. Repeated movement or flexing of the concrete structure could lead to (if not already) structural problems for the parking facility. This facility in its present condition requires substantial foundation repair(s).

With regard to the proposed harbor expansion, it should be noted that over-swing normally associated with pipeline dredging (estimated at approximately 4 to 6 feet) could lead to an approximate loss of 2 feet of channel side slope soil material that currently helps support the outermost piling. While true for the outermost piles, the estimated 2 feet of possible material loss is unlikely to have an appreciable effect on remaining interior piles. In addition, it is noted that the same amount of remedial or repair work will be required, with or without the harbor expansion project.

Subsurface sampling and testing in this area isn't likely to yield any new or useful information with regard to the facility and therefore is not recommended. It is recommended that the property owner be advised of the foundation conditions discovered before actual dredging occurs

b. International Paper (formerly Union Camp), southwest side, located between Channel Stations 87+500 and 89+600. The sheet-piling bulkhead contains numerous holes approximately 1-foot square in size at or near the zero mlw elevation. It is unclear whether these holes have been cut deliberately (given the near uniform hole sizes), perhaps as a previous drainage effort, or if the holes are the result of long term pile corrosion at the low water mark.

With regard to the proposed project in this vicinity, the resulting side slope from project dredging is not expected to change or alter existing conditions directly adjacent to the

bulkhead. The above expectation is based on the distance of the bulkhead from the proposed channel work and considering usual dredging practices.

Subsurface sampling and testing in this area is not likely to yield any new or useful information with regard to the facility or project and therefore is not recommended. However, it is recommended that the property owner be advised of the bulkhead conditions discovered during our site inspection.

c. Crescent Towing and Salvage Company approximately located between Channel Stations 75+500 and 75+800. Crescent's brick wall and brick retaining wall structures appear to be supported or partially supported on wood piling. The wall is severely cracked, with portions of the wall either removed, or broken and subsequently fallen into the river. The wood piling behind the brick wall and supporting the dock facility appears to exist in a fair to good condition.

With regard to the proposed project and the Crescent property, the harbor expansion could have some effect on the stability of the brick wall and supporting piles. While it is not recommend that sampling and testing be performed solely for this facility, testing and sampling is currently planned for Crescent's neighboring facility, T.I.C., located approximately 400 feet upstream. Given the contiguous nature and similar histories for this reach, the sampling, testing and analysis currently planned should be considered sufficient and cost effective. The results of the analysis for the reach between Channel Stations 75+500 and 76+250 will be applied to the landmass / riverbank without regard to who owns which part. Any subsequent recommendations will be addressed after analysis has been completed.

d. East Coast Terminal Company, approximate Channel Stations 68+000 to 69+700. Observations reveal the supporting foundation for the dock facility at East Coast Terminal exists in an advanced state of deterioration and disrepair. This includes piling, pile bracing, wood retaining structures and portions of the concrete deck.

With regard to the proposed project in this vicinity, the resulting side slope from project dredging is not expected to change or alter existing conditions adjacent to the East Coast dock facility. This conclusion is based on the distance of the dock from the proposed channel work (80 to 120 feet) and considered usual dredging practices.

Subsurface sampling and testing in this area is not is not recommended. However, it is recommended that the property owner be advised of the dock facility foundation conditions discovered during our site inspection.

9. The remaining properties, structures and/or other items within the scope of the proposed harbor expansion exists in or belongs to one of the following conditions:

a. Located by sufficient distances from the proposed work so as not to be impacted and are not recommended for sampling and testing of soil materials or further studies.

b. Located near, but outside, the proposed work and exist in an excellent to good condition. Sampling and testing in the vicinity of such facilities will not provide any

useful information with regard to the proposed work and such sampling and testing is not recommended.

c. Is currently under design for remediation / repair of structural facilities to be implemented as an item separate from the proposed project. i.e. Old Fort Jackson moat and bank protection.

d. Belongs to a group or class probably best described as obstructions and are being addressed as separate issues. i.e. CSS Georgia, sunken barges, training wall(s), etc..

SAVANNAH HARBOR EXPANSION - STATION 66+250 SLOPE STABILTY 09 APRIL 2003

Trial Surface 1 - Worksheet

Х	Y	DESCRIPTION	С	phi	Dm	Ds
0	-57					
473	-57					
485	-57					
501	-52	SM	0	38	118	126
527	-43					
540	-40	SP	0	34	118	126
560	-37.3					
600	-32.4					
645	-21.1	SC	0.2	28	115	125
653	-17.8					
676	-4.6	TOP CH	0.071	30	58	90
681	-3					
732	1.6					
756	4.5	СН	0.12	14	91	95
806	9.5	SM	0	32	115	123
822	9.6					
843	8.9					
890	10.2					

Embankment Water Level @ 5.0, Intersection @	756	4.5
Channel Water Level taken at 0.0, Intersects @	714	

PH Input Line

0	0
714	0
756	4.5
1100	5

NE (Start Neutral Block, Size/Location)

Active Side		Passive Side	Contro	ol Ac	t Inc Pa	ass Inc.	Vert Inc.
670	-35	645	-35	-2	5	5	2

SAVANNAH HARBOR EXPANSION - STATION 98+500 SLOPE STABILTY 09 APRIL 2003

Trial Surface 1 - Worksheet

Х	Y	DESCRIPTION	С	phi	Dm	Ds
0	-55					
1401	-55					
1413	-55					
1421	-45	CL	0	36	120	128
1424	-41	SM	0	32	118	126
1440	-16	SP	0	34	115	125
1444	-11	SP	0	30	115	125
1448	-5	CH / SC	0	34	115	124
1450	-2					
1458	-1	TOP CH	0.12	14	91	95
1516	9					
1526	17					
1627	16	TOP SM - SP	0	30	115	122
1655	20					
1689	32					
1742	46.7	SM / MH / OH	0	32	115	125
1755	47					
1771	44					
1805	42					

Embankment Water Level @ 5.0, Intersection @	1509
Channel Water Level taken at 0.0, Intersects @	1500

PH Input Line

0	0
1500	0
1509	5
2000	9

NE (Start Neutral Block, Size/Location)

Active Side		Passive Side	Contro	Act Inc	Pass	Inc. Vert	Inc.
1475	-14	1465	-14	-2	5	5	2

SAVANNAH HARBOR EXPANSION - STATION 101+887 SLOPE STABILTY 09 APRIL 2003

Trial Surface 1 - Worksheet

Х	Y	DESCRIPTION	С	phi	Dm	Ds
0	-55					
441	-55					
453	-55					
455	-54	SM/SC/CL	0	38	118	126
469	-47	CL	0.7	7	91	96
512	-26	SP	0	38	118	126
537	-14	SP	0	32	115	125
566	-1	SM / SP	0	36	120	128
582	8	SC	0.2	28	115	125
588	11					
593	12					
606	11	TOP SM - SP	0	30	115	122
657	13					
678	22					
692	31					
706	35					
725	37					
747	43					
761	47.7	SM / MH / OH	0	34	115	125
769	48					
902	48					
940	43					
1100	43					

Embankment Water Level @ 5.0, Intersection @	577
Channel Water Level taken at 0.0, Intersects @	566

PH Input Line

0	0
566	0
577	5
1100	30

NE (Start Neutral Block, Size/Location)

Active Side		Passive Side	Co	ontrol Act	Inc Pa	ss Inc. Ver	t Inc.
536	-34	526	-34	-2	5	5	2

KI TB98605. i n. txt

HEADI NG Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading PROFILE LINES 1_1 Top Spoil Material 44 1771 2000 44 2 2 Top DA Dike (SM-SC) 1627 16.0 1655 20.0 1689 32.0 1742 46.7 1755 47.0 1800 30.0 1840 20.0 1900 17.0 3 3 Directly Beneath Dike & Spoil Area 1498 17.0 1526 17.0 1627 16.0 2000 16.0 4 4 Soft River Bank Material 1458 -1.0 2000 -1.0 5 5 Underlying Softer (SC) (Old marsh deposits) 1481 -5.0 2000 -5.0 6 6 Sands & Sand Clay (SM-SC) 1472 -11.0 2000 -11.0 77 Medium Dense Sands 1428 -16.0 -16.0 2000 Dense Sands 8 8 1421 -41.0 2000 -41.0 99 Dense Sand 0 -45.0 2000 -45.0 MATERIAL PROPERTIES 1 Spoil 98 = unit weight Conventional shear strength 0 16 NO pore pressures 2 Sand (Di ke) 125 = unit weight Conventional shear strength 0 32 NO pore pressures 3 Sand 122 = unit weight

KI TB98605. i n. txt Conventional shear strength 0 30 NO pore pressures 4 Upper Embankment Lean clay and clayey sand 95 = unit weight Conventional shear strength 20 14 NO pore pressures 5 Soft SC 111.8 = unit weightConventional shear strength 80 12.6 NO pore pressures 6 Medium sand 125 = unit weightConventional shear strength 0 30 NO pore pressures 7 Med Dense Sand 120 = unit weightConventional shear strength 0 34 NO pore pressures 8 Dense Sand 126 = unit weightConventional shear strength 0 32 NO pore pressures 9 Dense Sand 128 = unit weight Conventional shear strength 0 36 NO pore pressures SURFACE PRESSURES 0 -55.0 0 0 1413 -55.0 0 0 1421 -45.0 2810 0 1428 -41.0 1472 -16.0 1481 -11.0 2560 0 1002 0 688 0 17.0 1526 0 0 1627 16.0 0 0 1655 20.0 0 0 1689 0 0 32.0 1742 0 0 46.7 1755 47.0 0 0 1771 44.0 0 0 2000 44.0 0 0 SLOPE GEOMETRY 0 -55.0 1413 -55.0 1421 -45.0 1428 -41.0 1472 -16.0 1481 -11.0 1526 17.0 1627 16.0 1655 20.0 1689 32.0 1742 46.7 1755 47.0

1771 44.0 2000 44.0 ANALYSI S/COMPUTATI ON NonCi rcul ar Search 1500.0, -22 1640.0, -22 1660.0, -6 1750.0, 46 10, 60 I TErati ons 500 WATER DEPTH 4.0 FACTOR OF SAFETY 16.0 CHANGE TRI AL FACTOR COMPUTE ASCI I PRI NT KITB98605.out.txt

1

1

UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9

TABLE NO. 1 * COMPUTER PROGRAM DESIGNATION - UTEXAS3 * * Originally Coded By Stephen G. Wright * Version No. 1.120 * Last Revision Date 10/08/92
* (C) Copyright 1985-1992 S. G. Wright
* All Rights Reserved ***** RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER * PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY * HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS * PROGRAM BEFORE ATTEMPTING ITS USE. * NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT * MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS OR ADAPTABILITY OF THIS COMPUTER PROGRAM. ******** UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 2 __ * * * * * * * * * * * * * * * * NEW PROFILE LINE DATA * ****** PROFILE LINE 1 - MATERIAL TYPE = 1 Top Spoil Material Poi nt Х Υ 1771.000 44.000 1 2 2000.000 44.000 PROFILE LINE 2 - MATERIAL TYPE = 2 Top DA Dike (SM-SC) Poi nt Х Υ 1 1627.000 16.000 1655.000 2 20.000 3 1689.000 32.000 4 1742.000 46.700 5 1755.000 47.000 1800.000 30.000 6 7 1840.000 20.000

Page 1

KI TB98605. out. txt 1900.000 8 17.000 PROFILE LINE 3 - MATERIAL TYPE = 3 Directly Beneath Dike & Spoil Area Poi nt Х Υ 1 1498.000 17.000 2 17.000 1526.000 16.000 3 1627.000 2000.000 4 16.000 PROFILE LINE 4 - MATERIAL TYPE = 4Soft River Bank Material Poi nt Х Υ 1458.000 -1.000 1 2 2000.000 -1.000 PROFILE LINE 5 - MATERIAL TYPE = 5 Underlying Softer (SC) (Old marsh deposits) Poi nt Х Υ 1 1481.000 -5.000 2 2000.000 -5.000 PROFILE LINE 6 - MATERIAL TYPE = 6 Sands & Sand Clay (SM-SC) Poi nt Х Υ 1472.000 -11.000 1 2 2000.000 -11.000 PROFILE LINE 7 - MATERIAL TYPE = 7 Medium Dense Sands Υ Х Poi nt 1428.000 -16.000 1 2 2000.000 -16.000 PROFILE LINE 8 - MATERIAL TYPE = 8 Dense Sands Poi nt Х Υ -41.000 1421.000 1 2 2000.000 -41.000 PROFILE LINE 9 - MATERIAL TYPE = 9 Dense Sand Poi nt Х Υ 1 . 000 -45.000 2 2000.000 -45.000 All new profile lines defined - No old lines retained

All new profile lines defined - No old lines retained UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Page 2

1

KITB98605. out. txt Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 3 * NEW MATERIAL PROPERTY DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * DATA FOR MATERIAL TYPE 1 Spoi I Unit weight of material = 98.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS No (or zero) pore water pressures DATA FOR MATERIAL TYPE 2 Sand (Dike) Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS . 000 Cohesi on - - - - - - - -Friction angle - - - - 32.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 3 Sand Unit weight of material = 122.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - -. 000 Friction angle - - - - 30.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 4 Upper Embankment lean clay and clayey sand Unit weight of material = 95.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - 20.000 Friction angle - - - - 14.000 degrees Cohesion - - -20.000 No (or zero) pore water pressures DATA FOR MATERIAL TYPE 5 Soft SC Unit weight of material = 111.800 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - 80.000 Friction angle - - - - 12.600 degrees No (or zero) pore water pressures Page 3

KI TB98605. out. txt

DATA FOR MATERIAL TYPE 6 Medium sand Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - . 000 Friction angle - - - - 30.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 7 Med Dense Sand Unit weight of material = 120.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - -. 000 Friction angle - - - - 34.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 8 Dense Sand Unit weight of material = 126.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS No (or zero) pore water pressures DATA FOR MATERIAL TYPE 9 Dense Sand Unit weight of material = 128.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - . 000 Friction angle - - - - 36.000 degrees No (or zero) pore water pressures All new material properties defined - No old data retained UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 10 * NEW SURFACE PRESSURE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * ALL NEW DATA INPUT - NO OLD DATA RETAINED Surface Pressures -Shear Normal Υ Point Х Pressure Stress

1

KI TB98605. out. txt -55.000 1 . 000 . 000 . 000 1413.000 2 000 -55.000 . 000 3 . 000 1421.000 -45.000 2810.000 4 1428.000 -41.000 2560.000 . 000 1472.000 1481.000 -16.000 1002.000 5 . 000 688.000 6 -11.000 . 000 1526.000 17.000 . 000 . 000 7 8 1627.000 16.000 . 000 . 000 9 1655.000 20.000 . 000 . 000 10 1689.000 32.000 . 000 . 000 1742.000 46.700 . 000 . 000 11 1755.000 47.000 . 000 12 . 000 13 1771.000 44.000 . 000 . 000 2000.000 44.000 14 . 000 . 000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT 4: 12: 2003 Date: Time: 16:17:18 Ínput file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 9 **** * NEW SLOPE GEOMETRY DATA * All new data input - No old data retained Slope Coordinates -Poi nt Υ Х 1 . 000 -55.000 2 1413.000 -55.000 3 -45.000 1421.000 4 5 1428.000 -41.000 1472.000 -16.000 6 1481.000 -11.000 7 1526.000 17.000 1627.000 1655.000 8 16.000 9 20.000 1689.000 10 32.000 11 1742.000 46.700 1755.000 12 47.000 1771.000 44.000 13 2000.000 14 44.000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: Ínput file: kitb9 4: 12: 2003 Time: 16:17:18 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 15 * NEW ANALYSIS/COMPUTATION DATA * Nonci rcul ar Shear Surface(s) Automatic Search Performed

1

1

Coordinates of points on shear surface which are to be shifted -

KI TB98605. out. txt Poi nt Х Shift Angle Υ angle to be computed - moveable 1500.000 -22.000 1 2 1640.000 -22.000 angle to be computed - moveable angle to be computed - moveable angle to be computed - moveable 3 1660.000 -6.000 4 1750.000 46.000 Initial distance for shifting points on shear surface = 10.000 Maximum steepness permitted for toe of shear surface = 60.00 degrees Maximum number of iterations allowed for calculating the factor of safety = 500 Depth of water in crack = 4.000 Initial trial estimate for the factor of safety = 16.000 Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be changed during search THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES: Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only) Allowed force imbalance for convergence = 100.000 Allowed moment imbalance for convergence = 100.000 Number of increments for slice subdivision = 30 Unit weight of water in crack = 62.400 Seismic coefficient = .000 Conventional (single-stage) computations to be performed Procedure used to compute the factor of safety: SPENCER UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 22 ***** * INITIAL COMPUTED INFORMATION FOR SEARCH * * WITH NONCIRCULAR SHEAR SURFACE * CAUTION - INITIAL TRIAL SHEAR SURFACE IS BELOW SLOPE NEAR THE TOE OF THE SLOPE A DISTANCE = 22.82 SOLUTION WILL BE ERRONEOUS IF THIS DISTANCE IS VERY LARGE Crack depth computed to be - - -88 FOR INITIAL TRIAL NONCIRCULAR SHEAR SURFACE 1-Stage Factor of Safety - - - - - -4.056 Side Force Inclination - - - - - - - -12.53 Number of Iterations - - - - - - - -27

1

KITB98605. out. txt

1

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor of Side Force Safety Poi nt Х Υ Inclination Iterations 1491.51 -27.28 See Message on Next Line(s) 1 ERROR AT SLICE 2 X = . 150E+04 Y = -.271E+02NO PROFILE DATA FOR TOP OF SLICE 1508.49 1 -16.72 4.395 12.13 4 1636.29 -12.72 3.165 11.60 5 2 5.520 9 2 1643.71 -31.28 13.33 1654.33 2.24 -14.24 4.993 5 3 13.50 3 1665.67 3.765 11.83 4 45.27 4.175 3 4 1740.03 12.39 1759.97 45.18 See Message on Next Line(s) 4 . 176E+04 Y = .439E+02ERROR AT SLICE 40 X = NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 10.000 at point surface is 3 Coordinates For New Estimate of Shear Surface Poi nt Х Υ 1500.00 -22.00 1 2 1636.29 -12.72 1665.67 3 -14.24 4 1750.00 46.00 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - 3.255 Side Force Inclination - - - - - 11.68 Number of Iterations - - - - - 5 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 2 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor Side Force of Poi nt Х Υ Safety Inclination Iterations

Page 7

KI TB98605. out. txt 1491.51 -27.28 See Message on Next Line(s) ERROR AT SLICE 2 .150E+04 Y = -.267E+02X = NO PROFILE DATA FOR TOP OF SLICE 1 1508.49 -16.72 3.269 11.40 3 2.552 1636.20 -2.72 12.42 5 2 -22.71 2 1636.37 3.790 4 11.82 3 3 1662.53 -4.74 3.158 11.60 1668.82 -23.73 3.890 13.46 3 4 1740.03 45.27 3.363 11.70 3 Δ 1759.97 45.18 See Message on Next Line(s) 4 ERROR AT SLICE 40 X = .176E+04 Y = .436E+02NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 10.000 at point surface is 3 Coordinates For New Estimate of Shear Surface Υ Point Х 1500.00 -22.00 1 1636.20 2 -2.72 3 1662.53 -4.74 Δ 1750.00 46.00 FOR NEW ESTIMATE OF SHEAR SURFACE 2.324 10.89 7 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 * * * * * * * * * * * * * * * * * SEARCH TRIAL NUMBER 3 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor Side Force of Poi nt Υ Inclination Iterations Х Safety 1491.51 -27.28 See Message on Next Line(s) 1 ERROR AT SLICE 2 Х = . 150E+04 Y = -.263E+02NO PROFILE DATA FOR TOP OF SLICE -16. 72 7. 28 1 1508.49 2.175 10.61 4 1635.88 2.401 13.39 2 8 2 -12.71 1636.53 3.160 11.60 5 3 4.96 1660.09 2.497 11.20 4 2.574 3 1664.97 -14.44 12.54 4 1740.03 45.27 2.347 4 10.87 3 1759.97 45.18 See Message on Next Line(s) 4 Page 8

KITB98605.out.txt ERROR AT SLICE 38 Y = .439E+02X = . 176E+04 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 10.000 at point 1 surface is Coordinates For New Estimate of Shear Surface Poi nt Х Υ 1 1508.49 -16.72 2 1636.07 1.45 1662.31 -3.87 3 4 1750.00 46.00 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - -2.244 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 23 * SEARCH TRIAL NUMBER 4 * **** INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor Side Force of Poi nt Х Υ Safety Inclination I terations 1500.00 -22.00 2.328 3 1 11.64 2.128 13.92 1516.98 -11.43 4 1 2 1635.77 -8.55 2.605 10.47 4 11.44 See Message on Next Line(s) 1636.37 2 FATAL ERROR IN CALCULATING FACTOR OF SAFETY SOLUTION DID NOT CONVERGE WITHIN 500 ITERATIONS 1660.51 3 5.97 2.281 11.82 5 3 -13.70 2.615 5 1664.11 15.01 2.264 1740.03 45.27 12.06 3 4 1759.97 45.18 See Message on Next Line(s) Λ ERROR AT SLICE 38 . 176E+04 Y = X = . 439E+02 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 10.000 at point surface is 1 Coordinates For New Estimate of Shear Surface Poi nt Х Υ

1

KI TB98605. out. txt 1 1516.98 -11.43 2 1.45 1636.07 . 17 3 1661.57 4 1750.00 46.00 FOR NEW ESTIMATE OF SHEAR SURFACE TOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - 2.225 Side Force Inclination - - - - 15.37 Number of Iterations - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 , * SEARCH TRIAL NUMBER 5 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor of Side Force Poi nt Υ Inclination Iterations Х Safety 1 1508.49 -16.72 2.337 12.67 Δ 2.538 1525.47 13.98 4 -6.15 1 11.44 See Message on Next Line(s) 2 1635.78 FATAL ERROR IN CALCULATING FACTOR OF SĂFETY SOLUTION DID NOT CONVERGE WITHIN 500 ITERATIONS 1636.36 2 -8.55 2.156 10.11 4 2.129 3 1659.29 9.90 3 13.80 -9.57 2. 148 3 1663.85 13.69 4 15.76 4 1740.03 45.27 2.239 3 45.18 See Message on Next Line(s) X = .176E+04 Y = .440E+02 1759.97 4 ERROR AT SLICE 37 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 10.000 at point surface is 2 Coordinates For New Estimate of Shear Surface Poi nt Υ Х 1514.97 -12.69 1 2 1636.36 -8.55 3 1659.29 9.90 1750.00 46.00 4 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - -2.776 Side Force Inclination - - - - - - - - 10.15 Number of Iterations - - - - - - - 8 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia Page 10

1

KI TB98605. out. txt End of construction loading Single circular loading TABLE NO. 23 -* * * * * * * * * * * * * * * * * * * 6 * * SEARCH TRIAL NUMBER INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 7.00 1-Stage Factor of Side Force Poi nt Υ Inclination Х Safety I terations 2.309 1 1511.04 -15.13 13.03 4 1 1522.92 -7.74 2.414 14.66 4 7 1635.87 8.44 2 2.635 26.98 2 1636.27 -5.55 2.009 10.81 4 3 3 1659.97 6.98 2.127 14.08 1663.16 2. 112 2. 232 13.59 3 -6.65 4 4 1743.00 45.84 15.69 3 1757.00 45.74 See Message on Next Line(s) 4 ERROR AT SLICE 37 . 176E+04 Y = X = . 453E+02 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear 7.000 at point surface is 3 Coordinates For New Estimate of Shear Surface Poi nt Υ Х 1515.84 -12.14 1 -5.55 2 1636.27 3 1663.16 -6.65 4 1750.00 46.00 FOR NEW ESTIMATE OF SHEAR SURFACE TOR New ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - 2.004 Side Force Inclination - - - - 10.21 Number of Iterations - - - - 4 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 * * * * * * * * * * * * * * * * * SEARCH TRIAL NUMBER 7 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 7.00 1-Stage Factor of Side Force Poi nt Х Υ Inclination Safety Iterations 1 1509.90 -15.84 2.252 10.23 4 Page 11

		KI TB9	8605. out. txt		
1	1521.78	-8.44	1.915	10.72	3
2	1636. 22	1.45	2.132	13.05	4
2	1636. 32	-12.55	3. 191	10.76	6
3	1661.26	. 09	2. 116	10.44	4
3	1665.07	-13.39	2.236	12.12	4
4	1743.00	45.84	2.010	10. 23	3
4	1757.00	45.74	See Message	on Next	Line(s)
ERROR	AT SLICE 41	X =	. 176E+04	Y =	. 452E+02

NO PROFILE DATA FOR TOP OF SLICE

Maximum distance shifted for new estimate of shear surface is $\ \ 7.\,000$ at point $\ 1$

Coordinates For New Estimate of Shear Surface

Poi nt	Х	Y
1	1521. 78	-8.44
2	1636. 25	-2.73
3	1662. 83	-5.48
4	1750. 00	46.00

FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - - 1.913 Side Force Inclination - - - - - - 11.36 Number of Iterations - - - - - - 4 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:12:2003 Time: 16:17:18 Input file: kitb9 Kings Island Turning Basin, Station 98+605, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 *****

* SEARCH TRI AL NUMBER 8 *

1

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 7.00

			1-Stage Factor		
Poi nt	Х	Y		Side Force Inclination	Iterations

KI TB101887. in. txt **HEADI NG** Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading PROFILE LINES 1 1 Top Spoil Material 771 47 2000 47 2 2 Top DA Dike (SM-SC-MH-OH) 0/32 400 48.0 48.0 769 800 20.0 20.0 2000 3 3 Directly Beneath Dike & Spoil Area 0/30 300 11.0 2000 11.0 SP River Bank . 2/28 4 4 0 8.0 2000 8.5 Underlying Softer (SC) (Old marsh deposits) 0/36 5 5 0 -3.0 -3.0 480 5.0 585 2000 5.0 6 6 Sands (SM-SP) 0/32 0 -10.0 480 -10.0 585 0.0 2000 0.0 77 Medium Dense Sands 0/38 0 -26.0 2000 -28.0 Clay Layer .7/7 -47.0 8 8 0 587 -44.0 2000 -44.0 99 Dense Sand 0/38 0 -54.0 2000 -54.0 MATERIAL PROPERTIES 1 Spoil 98 = unit weight Conventional shear strength 0 16 NO pore pressures 2 Sand (Di ke) 125 = unit weight Conventional shear strength 0 32 NO pore pressures 3 Sand 122 = unit weightConventional shear strength Page 1

0 30 NO pore pressures 4 Upper Embankment Lean clay and clayey sand 95 = unit weight Conventional shear strength 200 28 NO pore pressures 5 SP' 125.0 = unit weightConventional shear strength 0 36.0 NO pore pressures 6 Medium sand 125 = unit weight Conventional shear strength 0 32 NO pore pressures 7 Med Dense Sand 126 = unit weight Conventional shear strength 0 38 NO pore pressures 8 Clay 106 = unit weight Conventional shear strength 1400 7 NO pore pressures 9 Dense Sand 126 = unit weightConventional shear strength 0 38 NO pore pressures SURFACE PRESSURES 0 -55.0 3025 0 453 -55.0 3025 0 469 -47.0 2575 0 512 -26.0 1420 0 537 -14.0 759 0 440 566 -1.0 0 120 0 582 8.0 588 11.0 0 0 593 12.0 0 0 606 11.0 0 0 0 0 657 13.0 0 0 678 22.0 692 0 31.0 0 706 35.0 0 0 37.0 0 0 725 0 747 0 43.0 761 47.7 0 0 769 48.0 0 0 2000 46.0 0 0 SLOPE GEOMETRY 0 -55.0 453 -55.0 469 -47.0 512 - 26.0 537 -14.0 566 -1.0 582 8.0

593 12.0 606 11.0 657 13.0 678 22.0 692 31.0 706 35.0 725 37.0 747 43.0 761 47.7 769 48.0 2000 46.0 ANALYSI S/COMPUTATI ON NonCircular Search 535.0, -14 570.0, -27 640.0, -26 725.0, 10 10, 60 I TErati ons 500 WATER DEPTH 4.0 FACTOR OF SAFETY 10.0 CHANGE TRIAL FACTOR COMPUTE ASCI I PRI NT

KI TB101887. out. txt Station 101+887 GLOBAL FS = 3.85 TRIAL -5-UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 TABLE NO. 1 * COMPUTER PROGRAM DESIGNATION - UTEXAS3 * * Originally Coded By Stephen G. Wright * Version No. 1.120 * Last Revision Date 10/08/92
* (C) Copyright 1985-1992 S. G. Wright
* All Rights Reserved **** RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER * PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY * HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS * PROGRAM BEFORE ATTEMPTING ITS USE. * NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT * MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS OR ADAPTABILITY OF THIS COMPUTER PROGRAM. * * * * * * * * * * * * * * UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 2 __ * * * * * * * * * * * * * * * * NEW PROFILE LINE DATA * ***** PROFILE LINE 1 - MATERIAL TYPE = 1 Top Spoil Material Point Х Υ 771.000 47.000 1 2 2000.000 47.000 PROFILE LINE 2 - MATERIAL TYPE = 2Top DA Dike (SM-SC-MH-OH) 0/32 Poi nt Х γ 1 400.000 48.000 769.000 48.000 2 3 800.000 20.000 4 2000.000 20.000 PROFILE LINE 3 - MATERIAL TYPE = 3 Directly Beneath Dike & Spoil Area 0/30 Page 1

1

Poi nt Х Υ 1 300.000 11.000 2 2000.000 11.000 PROFILE LINE 4 - MATERIAL TYPE = 4 SP River Bank . 2/28 Х Poi nt Υ . 000 8.000 1 2 2000.000 8.500 PROFILE LINE 5 - MATERIAL TYPE = 5 Underlying Softer (SC) (Old marsh deposits) 0/36 Poi nt Х Y -3.000 1 . 000 480.000 -3.000 2 3 585.000 5.000 2000.000 5.000 4 PROFILE LINE 6 - MATERIAL TYPE = 6 Sands (SM-SP) 0/32 Υ Poi nt Х . 000 1 -10.000 480.000 -10.000 2 585.000 . 000 3 4 2000.000 . 000 PROFILE LINE 7 - MATERIAL TYPE = 7 Medium Dense Sands 0/38 Poi nt Х Υ -26.000 1 . 000 2 2000.000 -28.000 PROFILE LINE 8 - MATERIAL TYPE = 8 Clay Layer .7/7 Poi nt Х Υ . 000 587. 000 1 -47.000 2 -44.000 2000.000 -44.000 3 PROFILE LINE 9 - MATERIAL TYPE = 9 Dense Sand 0/38 Poi nt Х Υ -54.000 1 . 000 2 2000.000 -54.000 All new profile lines defined - No old lines retained UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia

Page 2

KI TB101887. out. txt End of construction loading Single circular loading TABLE NO. 3 * NEW MATERIAL PROPERTY DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * DATA FOR MATERIAL TYPE 1 Spoi I Unit weight of material = 98.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - -. 000 Friction angle - - - - 16.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 2 Sand (Dike) Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS No (or zero) pore water pressures DATA FOR MATERIAL TYPE 3 Sand Unit weight of material = 122.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - . 000 Friction angle - - - - 30.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 4 Upper Embankment lean clay and clayey sand Unit weight of material = 95.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - 200.000 Friction angle - - - - 28.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 5 SP Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS . 000 Cohesion - -Friction angle - - - - 36.000 degrees No (or zero) pore water pressures

KI TB101887. out. txt DATA FOR MATERIAL TYPE 6 Medium sand Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS . 000 Friction angle - - - - 32.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 7 Med Dense Sand Unit weight of material = 126.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS . 000 Friction angle - - - - 38.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 8 CI ay Unit weight of material = 106.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - -Friction angle - - - -1400.000 7.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 9 Dense Sand Unit weight of material = 126.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - -Cohesion - - - - - - .000 Friction angle - - - - 38.000 degrees . 000 No (or zero) pore water pressures All new material properties defined - No old data retained UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 10 * NEW SURFACE PRESSURE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * ALL NEW DATA INPUT - NO OLD DATA RETAINED Surface Pressures -Normal Shear Point Х Υ Pressure Stress 1 . 000 -55.000 3025.000 . 000

Page 4

KI TB101887. out. txt -55.000 2 453.000 3025.000 . 000 3 469.000 -47.000 . 000 2575.000 512.000 537.000 -26.000 4 1420.000 . 000 5 -14.000 759.000 . 000 566.000 -1.000 440.000 6 . 000 7 582.000 8.000 120.000 . 000 8 588.000 11.000 . 000 . 000 . 000 9 593.000 12.000 . 000 10 . 000 606.000 11.000 . 000 11 657.000 13.000 . 000 . 000 678.000 . 000 12 22.000 . 000 13 692.000 31.000 . 000 . 000 14 706.000 35.000 . 000 . 000 725.000 747.000 15 37.000 . 000 . 000 43.000 . 000 16 . 000 761.000 17 47.700 . 000 . 000 . 000 18 769.000 48.000 . 000 . 000 2000.000 46.000 19 . 000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Time: 12:41:49 4: 13: 2003 Ínput file: k2 Date: Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular Loading TABLE NO. 9 ***** * NEW SLOPE GEOMETRY DATA * All new data input - No old data retained Slope Coordinates -Poi nt Υ Х . 000 -55.000 1 2 453.000 -55.000 3 469.000 -47.000 4 5 512.000 537.000 -26.000 -14.000 6 7 566.000 -1.000 582.000 8.000 8 9 588.000 11.000 593.000 12.000 10 606.000 11.000 657.000 11 13.000 678.000 12 22.000 692.000 706.000 13 31.000 14 35.000 725.000 37.000 15 747.000 16 43.000 761.000 47.700 17 769.000 18 48.000 19 2000.000 46.000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 15 **** * NEW ANALYSIS/COMPUTATION DATA * Page 5

1

Noncircular Shear Surface(s)

Automatic Search Performed

Coordinates of points on shear surface which are to be shifted -

Poi nt Х Υ Shift Angle 1 535.000 -14.000 angle to be computed - moveable 2 570.000 -27.000 angle to be computed - moveable angle to be computed - moveable angle to be computed - moveable 3 640.000 -26.000 725.000 10.000 4

Initial distance for shifting points on shear surface = 10.000 Maximum steepness permitted for toe of shear surface = 60.00 degrees

Maximum number of iterations allowed for calculating the factor of safety = 500

Depth of water in crack = 4.000

Initial trial estimate for the factor of safety = 10.000

Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be changed during search

THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES:

Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only)

Allowed force imbalance for convergence = 100.000

Allowed moment imbalance for convergence = 100.000

Number of increments for slice subdivision = 30

Unit weight of water in crack = 62.400

Seismic coefficient = .000

1

Conventional (single-stage) computations to be performed

Procedure used to compute the factor of safety: SPENCER UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular Loading

For the initial trial noncircular shear surface at X = 535.00 the Y coordinate was adjusted to -14.96 because the point was above the surface of the slope

Crack depth computed to be - - -27.00 5.091 7.39 13 TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 1 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor of Side Force Poi nt Х Υ Inclination Safety I terations 525.98 -19.29 4.874 7.57 3 1 1 544.10 -10.82 5.494 7.04 3 568.37 -36.87 5.849 7.70 2 4 2 -17.13 7.18 3 571.63 5.183 3 637.86 -16.23 4.871 6.75 3 6.024 8.15 3 642.14 -35.77 4 8.95 5.276 3 4 715.05 7.35 12.63 4 734.65 4.831 7.80 3 Maximum distance shifted for new estimate of shear surface is 10.000 at point 1 Coordinates For New Estimate of Shear Surface Poi nt Υ Х 525.98 -19.29 1 2 570.64 -23.14 3 637.86 -16.23 4 734.65 12.63 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - 4.445 Side Force Inclination - - - - - - 7.18 Number of Iterations - - - - - 4 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 2 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor Side Force of Poi nt Х Υ Safety Inclination Iterations Page 7

-23.61 See Message on Next Line(s) 516.97 SHEAR SURFACE SEGMENT BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN POI NTS 4 AND 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED -14.96 4.597 7.10 1 535.00 3 -13.14 4.844 2 2 570.55 6.86 4 4.817 570.72 -33.14 7.85 4 3 635.90 -6.43 4.612 5.95 4 639.83 -26.04 4.545 7.87 3 3 3 725.00 10.00 4.666 6.69 Δ 744.30 3 4 15.26 4.267 7.60 Maximum distance shifted for new estimate of shear 10.000 at point surface is 4 Coordinates For New Estimate of Shear Surface Poi nt Х Υ 525.98 -19.29 1 2 570.64 -23.31 3 -17.47 638.11 4 744.30 15.26 FOR NEW ESTIMATE OF SHEAR SURFACE 4.261 7.70 Number of Iterations - - - - - - - - - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading

TABLE NO. 23 * * * * * * * * * * * * * * * * * * * SEARCH TRIAL NUMBER 3 *

1

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00

Poi nt	x		1-Stage Factor of Safety	Side Force Inclination	lterations
1 SHEAR SU	516.97 RFACE SEGMENT	-23.61 S BETWEEN	ee Messa POINTS	ge on Next Lin 1 AND 2 CRO	e(s) SSES SLOPE BETWEEN
POI NTS	4 AND 5 AF	TER SHIFT	- THIS	TRIAL SHEAR SU	RFACE WAS REJECTED
1 2 3 3 4 4	535.00 570.62 570.66 636.17 640.05 734.65 753.83	-14.96 -33.31 -13.31 -7.66 -27.28 12.63 18.29	4. 392 4. 641 4. 588 4. 387 4. 466 4. 439 4. 081	7.62 8.30 7.41 6.72 8.43 7.29 8.17	3 4 4 4 3 3

Maximum distance shifted for new estimate of shear surface is 10.000 at point 4

KI TB101887. out. txt Coordinates For New Estimate of Shear Surface

Poi nt	Х	Y
1	525.98	-19.29
2	570.64	-22.94
3	637.88	-16.31
4	753.83	18.29

FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - 4.087 Side Force Inclination - - - - - 8.09 Number of Iterations - - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading

TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 4 * ****

Point

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00

1-Stage Factor Side Force of Х Inclination Iterations Υ Safety

1 516.97 -23.61 See Message on Next Line(s) SHEAR SURFACE SEGMENT BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN

4 AND 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED POI NTS

1 2	535.00 570.55	-14.96 -12.94	4. 199 4. 358	8.03 7.82	3 4
2	570.72	-32.94	4.450	8.69	4
3	635.93	-6.50	4.214	7.14	4
3	639.83	-26. 11	4. 172	8.66	3
4	744.30	15.26	4.270	7.61	3
4	763.51	20.79	3.966	8.40	3

Υ

Maximum distance shifted for new estimate of shear surface is 10.000 at point Δ

Coordinates For New Estimate of Shear Surface

Poi nt Х

1	525.98	-19.29
2	570.63	-22.21
3	638.07	-17.27
4	763.51	20. 79

FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - - 3.972 Side Force Inclination - - - - - - 8.45 Number of Iterations - - - - - - - - - - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia Page 9

KI TB101887. out. txt End of construction loading Single circular loading TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 5 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 10.00 1-Stage Factor Side Force of Poi nt Inclination Х Υ Safety I terati ons 516.97 -23.61 See Message on Next Line(s) SHEAR SURFACE SEGMENT BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED POI NTS 4 AND -14. 96 -12. 21 -32. 21 8.39 1 535.00 4.062 3 2 570.59 4. 227 8.18 3 4.275 2 8.96 570.67 4 -7.45 4.072 7.63 3 3 636.22 4.120 639.92 -27.10 3 9.07 3 753.83 18.29 4.095 8.14 3 4 20.99 See Message on Next Line(s) 4 773.51 ERROR AT SLICE 45 X = .770E+03 Y = . 200E+02 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear .967 at point surface is 3 Coordinates For New Estimate of Shear Surface Poi nt Х Υ 1 525.98 -19.29 -21.79 2 570.63 3 637.89 -16.32 4 763.51 20.79 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - -3.978 8.38 Number of Iterations - - - - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 23 **** * SEARCH TRIAL NUMBER 6 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 7.00 1-Stage Factor Page 10

KI TB101887. out. txt of Side Force Poi nt Х Υ Safety Inclination I terati ons -22.32 -16.26 519.67 3.940 8.46 3 1 532.30 3 4.028 8.42 1 4.123 3 2 570.61 -15.21 8.30 2 570.66 -29.21 4.112 8.74 3 3 3 -10.39 4.022 7.94 636.78 8.84 3 639.37 -24.15 4.020 3 19.25 4.041 8.29 756.68 3 4 770.50 21.00 See Message on Next Line(s) Λ ERROR AT SLICE 46 . 770E+03 X = Y = . 208E+02 NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear surface is 7.000 at point 1 Coordinates For New Estimate of Shear Surface Poi nt Х Υ 519.67 -22.32 1 -22.34 2 570.63 3 638.09 -17.34 4 763.51 20.79 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - 3.938 Side Force Inclination - - - - - 8.47 Number of Iterations - - - - - 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 **** * SEARCH TRIAL NUMBER 7 * ***** INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 7.00 1-Stage Factor of Side Force Poi nt Х Υ Inclination Safety Iterations 513.36 -25.35 See Message on Next Line(s) SHEAR SURFACE SEGMENT BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN POI NTS 4 AND 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED 3.970 525.98 -19.29 1 8.46 3 -15.34 See Message on Next Line(s) BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN 2 570.38 SHEAR SURFACE SEGMENT BETWEEN POINTS POI NTS 4 AND 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED -29.34 2 570.89 4.070 8.77 3 -10.47 3. 983 7.93 3 3 636.79 Page 11

KI TB101887. out. txt 639.39 3 -24.22 3. 988 8.87 3 19. 25 4.004 4 756.68 8.31 3 770.50 21.00 See Message on Next Line(s) Δ ERROR AT SLICE 45 X = .770E+03 Y = .208E+02NO PROFILE DATA FOR TOP OF SLICE Maximum distance shifted for new estimate of shear .209 at point surface is 3 Coordinates For New Estimate of Shear Surface Υ Poi nt Х 1 519.67 -22.32 -22.34 2 570.63 3 638.05 -17.14 4 763.51 20.79 FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - 3.938 Side Force Inclination - - - - - 8.45 Number of Iterations - - - - 2 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 * * * * * * * * * * * SEARCH TRIAL NUMBER 8 * ************************ INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 4.00 1-Stage Factor of Side Force Poi nt Х Υ Inclination Iterations Safety 3. 927 1 516.07 -24.05 8.47 2 -20.59 See Message on Next Line(s) 523.28 1 SHEAR SURFACE SEGMENT BETWEEN POINTS 1 AND 2 CROSSES SLOPE BETWEEN 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED POI NTS 4 AND 570.49 -18.34 See Message on Next Line(s) 2 SHEAR SURFACE SEGMENT BETWEEN POINTS ĭ1 AND 2 CROSSES SLOPE BETWEEN POI NTS 4 AND 5 AFTER SHIFT - THIS TRIAL SHEAR SURFACE WAS REJECTED 2 570.78 -26.34 3.895 8.53 3 637.34 3.953 3 3 -13.41 8.19 3 3.954 3 638.83 -21.27 8.71 759.55 767.50 3 4 20.21 3.955 8.45 20.94 3.951 3 8.38 4

Maximum distance shifted for new estimate of shear surface is 4.000 at point 2

Coordinates For New Estimate of Shear Surface Page 12

Υ

Point X

1 516.07 2 570.78 3 638.06 4 763.76	-24.05 -26.34 -17.23 20.80
---	-------------------------------------

FOR NEW ESTIMATE OF SHEAR SURFACE
1-Stage Factor of Safety - - - - - - 3.875
Side Force Inclination - - - - - - 8.52
Number of Iterations - - - - - - - 3
UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT
Date: 4:13:2003 Time: 12:41:49 Input file: k2
Kings Island Turning Basin, Station 101+887, Savannah, Georgia
End of construction loading
Single circular loading

1

1

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 4.00

Poi nt	х	Y	1-Stage Factor of Safety	Side Force Inclination	lterations
1 2 2 3 3	512.46 519.67 570.59 570.97 637.21 638.92	-25.78 -22.32 -22.34 -30.33 -13.32 -21.13	3.861 3.896 3.928 4.108 3.902 3.877	8.52 8.52 8.46 8.83 8.24 8.75	2 2 3 4 3 2
4 4	759. 79 767. 76	20. 29 20. 95	3. 885 3. 890	8. 51 8. 44	2 3

Maximum distance shifted for new estimate of shear surface is 4.000 at point 1

Coordinates For New Estimate of Shear Surface

Point X Y 1 512.46 -25.78 2 570.72 -25.07 3 638.43 -18.90 4 763.41 20.79

FOR NEW ESTIMATE OF SHEAR SURFACE
1-Stage Factor of Safety - - - - - 3.874
Side Force Inclination - - - - - 8.62
Number of Iterations - - - - - 2
UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT
Date: 4:13:2003 Time: 12:41:49 Input file: k2
Kings Island Turning Basin, Station 101+887, Savannah, Georgia
End of construction loading
Single circular loading

KITB101887.out.txt * SEARCH TRIAL NUMBER 10 *

1

INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 4.00 1-Stage Factor of Side Force Poi nt Х Υ Safety Inclination I terati ons 508.87 8.58 1 -27.53 3.923 3 3.886 2 3 1 516.07 -24.05 8.61 2 570.51 -21.08 3.953 8.56 3 3 2 570.93 -29.07 4.079 8.80 3 637.63 -14.98 3.883 8.35 3 3 3 639.23 -22.82 3.894 8.84 4 759.46 20.18 3.892 8.59 3 4 767.41 20.94 3.886 8.53 Maximum distance shifted for new estimate of shear 1.232 at point surface is 1 Coordinates For New Estimate of Shear Surface Poi nt Х Υ 513.57 -25.25 1 2 570.68 -24.18 3 638.28 -18.16 4 763.85 20.81 FOR NEW ESTIMATE OF SHEAR SURFACE 3.891 8.55 3 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 23 ***** * SEARCH TRIAL NUMBER 11 * INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES = 1.00 1-Stage Factor

Point X Y Safety Inclination	
1 511.56 -26.21 3.872 8.62	2
1 513.36 -25.35 3.877 8.61	2
2 570.67 -24.07 3.890 8.60	2
2 570.77 -26.07 3.861 8.63	2
3 638.23 -17.92 3.874 8.55	2
3 638.63 -19.88 3.876 8.67	2
4 762.41 20.75 3.872 8.63	2
4 764.41 20.83 3.877 8.60	2

Maximum distance shifted for new estimate of shear Page 14 surface is 1.000 at point 1

Coordinates For New Estimate of Shear Surface

Poi nt	Х	Y
1	511. 56	-26.21
2	570. 77	-26.07
3	638. 23	-17.92
4	762. 41	20.75

FOR NEW ESTIMATE OF SHEAR SURFACE

 1-Stage Factor of Safety - - - - - 3.855

 Side Force Inclination - - - - - 8.59

 Number of Iterations - - - - - 3

 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT

 Date: 4:13:2003 Time: 12:41:49 Input file: k2

 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading

TABLE NO. 23 * * * * * * * * * * * * * * * * * * * SEARCH TRIAL NUMBER 12 *

1

1

1 00 INCREMENTAL SHIFT DISTANCE USED TO COMPUTE DERIVATIVES =

1	00	

Poi nt	Х	Y	1-Stage Factor of Safety	Side Force Inclination	lterations
1	510.66	-26.65	3. 881	8.55	3
1	512.46	-25.78	3.858	8.59	2
2	570.71	-25.07	3.869	8.57	2
2	570.83	-27.07	4.000	8.67	3
3	638.02	-16.95	3.857	8.52	2
3	638.44	-18.90	3.856	8.65	2
4	761.42	20.72	3.853	8.59	2
4	763.41	20.79	3.858	8.57	2

Maximum distance shifted for new estimate of shear 1.000 at point surface is

Υ

Coordinates For New Estimate of Shear Surface

Point Х

3 638.33 -18. 4 761.42 20.

FOR NEW ESTIMATE OF SHEAR SURFACE 1-Stage Factor of Safety - - - - - - -3.859 Side Force Inclination - - - - - 8.62 Number of Iterations - - - - - 2 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading

1

TABLE NO. 25 * FINAL CRITICAL SHEAR SURFACE (FOUND AFTER 12 TRIAL POSITIONS) * Y Х 511.56 -26.21 570.77 -26.07 -17.92 638.23 762.41 20.75 1-Stage Factor of Safety = 3.855 Side Force Inclination = 8.59 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading TABLE NO. 26 Coordinate, Weight, Strength and Pore Water Pressure Information for Individual Slices for Conventional * * Computations or First Stage of Multi-Stage Computations. (Information is for the Critical Shear Surface in the * * Case of an Automatic Search.) ***** SLice Pore Slice Matl. Friction Х Υ Weight Type Cohesi on Pressure No. Anal e 511.6 -26.2 1 511.8 -26.2 5.8 . 00 32.00 6 . 0 -26.2 512.0 -26.2 -26.2 516.2 2 2294.7 . 00 32.00 6 . 0 520.3 3 -26.2 524.5 6440.6 6 . 00 32.00 . 0 528.7 -26.2 4 532.8 -26.2 10586.6 6 . 00 32.00 . 0 537.0 -26.2 5 540.3 -26.1 11385.2 . 00 32.00 6 . 0 543.7 -26.1 547.0 -26.1 13869.9 6 6 . 00 32.00 . 0 550.4 -26.1 7 553.7 -26.1 16354.5 . 00 32.00 6 . 0 557.0 -26.1 8 560.4 -26.1 18839.0 6 . 00 32.00 . 0 563.7 -26.1 9 564.9 -26.1 7043.2 . 00 32.00 . 0 6 566.0 -26.1 568.4 -26.1 10 15762.1 . 00 32.00 . 0 6 570.8 -26. 1 11 573.1 -25.8 16501.1 6 . 00 32.00 . 0 575.4 -25.5 578.7 -25.1 12 25611.6 6 . 00 32.00 . 0 582.0 -24.7 -24.7 13 582.1 1163.9 . 00 32.00 6 . 0 582.3 -24.7 11019.6 14 -24.5 583.6 6 . 00 32.00 . 0

1

			ΤΒ101887. οι	it.tx	t		
15	585.0 586.0	-24.4 -24.2	8358.3	6	. 00	32.00	. 0
16	587.0 587.5	-24.1 -24.1	4248.0	6	. 00	32.00	. 0
17	588.0 590.5	-24.0 -23.7	21478.3	6	. 00	32.00	. 0
18	593.0 596.3	-23.4 -23.0	27560. 2	6	. 00	32.00	. 0
19	599.5 602.8	-22.6 -22.2	26515.7	6	. 00	32.00	. 0
20	606.0 610.0	-21.8 -21.3	31890. 7	6	. 00	32.00	. 0
21	614. 1 618. 1	-20.8 -20.4	31228.1	6	. 00	32.00	. 0
622.1 -19.9 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading							
TABLE N		* * * * * * * * * *	* * * * * * * * * * *	****	* * * * * * * * * * * *	* * * * * * * * * *	* *
* Info * Comp * (Inf	ormation outations formation	for Indivi or First is for th	duaľ Slices Stage of Mu e Critical	s for 1 ti- Shea	e Water Pres Conventior Stage Compu ar Surface i	nal Itations. n the	* * * * *
SIice No.	х	Y		atl. /pe	Cohesi on	Friction Angle	Pore Pressure
22	622. 1 626. 1	-19.9 -19.4	30565.5	6	. 00	32.00	. 0
23	630. 2 634. 2	-18.9 -18.4	29902.7	6	. 00	32.00	. 0
24	638.2 641.4	-17.9 -16.9	22295.9	6	. 00	32.00	. 0
25	644.5 647.6	-16.0 -15.0	20963.6	6	. 00	32.00	. 0
26	650. 7 653. 9	-14.0 -13.1	19631.5	6	. 00	32.00	. 0
27	657.0 660.5	-12.1 -11.0	21577.1	6	. 00	32.00	. 0
28	664.0 667.5	-9.9 -8.8	22294.2	6	. 00	32.00	. 0
29	671.0 674.5	-7.7 -6.6	23011.3	6	. 00	32.00	. 0
30	678.0 681.5	-5.5 -4.4	24384.6	6	. 00	32.00	. 0
31	685.0 688.5	-3.4 -2.3	26414.2	6	. 00	32.00	. 0
32	692.0 693.9	-1.2 6	14783.8	6	. 00	32.00	. 0
33	695.8 698.3 700.9	.0 .8 1.6	19921.5	5	. 00	36.00	. 0
34	700.9 703.4 706.0	2.4 3.2	19837.1	5	. 00	36.00	. 0
35	708.9 711.8	3. 2 4. 1 5. 0	22155.2	5	. 00	36.00	. 0
36	714.4	5.8	18795.6 Page 17	4	200.00	28.00	. 0

1

1

	74 (0		(I TB101887.)	out.txt			
37	716.9 719.5	6.6 7.4	18367.1	4	200.00	28.00	. 0
38	722. 0 723. 5 725. 0	8.2 8.6 9.1	10395.2	3	. 00	30.00	. 0
39	728.0 728.0 731.1	9. 1 10. 1 11. 0	21160. 7	3	. 00	30.00	. 0
40	735.1 739.0	11.0 12.2 13.5	27340.0	2	. 00	32.00	. 0
41	743.0 747.0	13.3 14.7 16.0	27034.1	2	. 00	32.00	. 0
42	750.5 754.0	17.0 18.1	23741.0	2	. 00	32.00	. 0
Date: Kings End c	4:13:20 s Island of const	03 Time:	0/08/92 - 12:41:49 Basin, Stat Dading	Input	file: k2		gi a
* Coor * Info * Comp * (Inf	rdinate, ormation outation formatio	Weight, S for Indiv s or First n is for t	Strength and idual Slic Stage of he Critica Search.)	d Pore W es for C Multi-St I Shear	ater Press onventiona age Comput Surface in	ure l ations. the	* * *
SIice No.	Х	Y		Matl. Type C	F ohesi on	riction Angle	Pore Pressure
43	754. 0 757. 5 761. 0	18. 1 19. 2 20. 3	23889.7	2	. 00	32.00	. 0
44	761. 7 762. 4	20. 5 20. 8	4808.2	2	. 00	32.00	. 0
 762.4 20.8 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading 							
* Seis * Indi * Firs * (Inf * Case	smic For vidual st Stage formatio of an	ces and Fo Slices for of Multi- n is for t Automatic	orces Due to Conventio Stage Comp che Critica Search.)	o Surfac nal Com utations I Shear	e Pressure putations Surface in	s for * or the * the *	
			Y for	FORCE	S DUE TO S	URFACE PR	RESSURES
SIice No.	х	Seismic Force	Seismic Force	Normal Force	Shear Force	Х	Y
1 2 3 4 5 6 7	511. 8 516. 2 524. 5 532. 8 540. 3 547. 0 553. 7	0. 0. 0. 0. 0. 0.	-26.2 -25.1 -23.1 -21.1 -19.3 -17.8 -16.3 Page 1	695. 12108. 10071. 8034. 5285. 4747. 4210.	0. 0. 0. 0. 0. 0.	511.8 516.0 524.4 532.7 540.3 547.0 553.6	-26. 1 -24. 1 -20. 1 -16. 1 -12. 5 -9. 5 -6. 5

Date: Kings End	4:13:20 s Island of const	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		3673. 1137. 2148. 1572. 1420. 38. 264. 89. 11. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	e: k2		$\begin{array}{c} -3. \ 6\\ -1. \ 5\\ 2. \ 9\\ 5. \ 1\\ 8\\ 9. \ 7\\ 11. \ 8\\ 9. \ 7\\ 11. \ 8\\ 11. \ 5\\ 11. \ 8\\ 11. \ 5\\ 11. \ 8\\ 11. \ 5\\ 11. \ 8\\ 11. \ 5\\ 11. \ 8\\ 11. \ 5\\ 11. \ 8\\ 11. \ 5\\ 11. \ 5\\ 24. \ 8\\ 31. \ 5\\ 32. \ 3\\ 35. \ 9\\ 36. \ 8\\ 37. \ 7\\ 39. \ 7\\ a\end{array}$
TABLE I		* * * * * * * * * *	****	* * * * * * * * * *	* * * * * * * *	* * * * * * * *	

			Y for	FORCES D	UE TO SU	RFACE PRES	SURES
SIice No.	Х	Seismic Force	Sei smi c Force	_	Shear Force	Х	Y
Date: Kings End	4:13:20 s Island of const	03 Time:	Basin, Statio Dading	Input fil	e: k2		41.9 44.2 46.5 47.7

* Information Generated During Iterative Solution for the Factor * of Safety and Side Force Inclination by Spencer's Procedure Tri al Tri al Factor Side Force Force Moment Delta Iterof Inclination Imbalance Imbalance Del ta-F Theta ation Safety (degrees) (lbs.) (ft. - | bs.) (degrees) 1 10.00000 15.0000 .8419E+05 .1591E+08 First-order corrections to F and THETA 1 10.00000 -. 157E+02 -. 975E+00 Values factored by .318E-01 - Deltas too large -. 500E+00 -. 310E-01 2 9.50000 14.9690 .8137E+05 .1537E+08 First-order corrections to F and THETA -. 137E+02 -. 999E+00 Values factored by .365E-01 - Deltas too large -. 500E+00 -. 365E-01 . 1479E+08 . 7823E+05 9.00000 14.9325 3 First-order corrections to F and THETA Values factored by .423E-01 - Deltas too large -. 118E+02 -. 103E+01 -. 500E+00 -. 434E-01 4 8.50000 14.8891 .7472E+05 .1413E+08 First-order corrections to F and THETA -. 101E+02 -. 106E+01 Values factored by .497E-01 - Deltas too large -. 500E+00 -. 526E-01 . 1339E+08 5 8.00000 14.8364 .7078E+05 .1339E+08 First-order corrections to F and THETA 8.00000 -.844E+01 -.110E+01 Values factored by .593E-01 - Deltas too large -. 500E+00 -. 651E-01 6 7.50000 14.7714 .6630E+05 .1255E+08 First-order corrections to F and THETA -. 694E+01 -. 115E+01 Values factored by .720E-01 - Deltas too large -. 500E+00 -. 825E-01 7.00000 14.6889 .6118E+05 . 1159E+08 7 First-order corrections to F and THETA -. 558E+01 -. 121E+01 Values factored by .896E-01 - Deltas too large -. 500E+00 -. 108E+00 8 6.50000 14.5809 .5528E+05 .1048E+08 First-order corrections to F and THETA -. 435E+01 -. 128E+01 Values factored by .115E+00 - Deltas too large -. 500E+00 -. 148E+00 9 6.00000 14.4334 .4839E+05 .9197E+0 First-order corrections to F and THETA 9197E+07 -. 324E+01 -. 139E+01 Values factored by .154E+00 - Deltas too large -. 500E+00 -. 213E+00 10~5.50000~14.2199~.4025E+05~.7682E+07 First-order corrections to F and THETA $\ldots\ldots$ Values factored by .220E+00 - Deltas too large -. 227E+01 -. 153E+01 -. 500E+00 -. 336E+00 . 3050E+05 5.00000 11 13.8835 . 5877E+07 First-order corrections to F and THETA -. 143E+01 -. 174E+01 Values factored by .350E+00 - Deltas too large -. 500E+00 -. 609E+00 12 4.50000 13.2747 .1864E+05 .3702E+07 First-order corrections to F and THETA Values factored by .696E+00 - Deltas too large -. 718E+00 -. 207E+01 -. 500E+00 -. 144E+01 13 4.00000 11.8320 .4053E+04 .1099E+07 First-order corrections to F and THETA -. 143E+00 -. 252E+01 Second-order correction - Iteration 1 -. 139E+00 -. 252E+01 Second-order correction - Iteration 2 - . 139E+00 - . 252E+01

Page 20

TABLE NO. 29

	r correct ler correc	ions to F tion - It€	and THETA eration 1		586E-02721E+00 584E-02721E+00 584E-02721E+00
First-orde	r correct	ions to F	and THETA		124E-04139E-02 124E-04139E-02
			1501E-01 and THETA		. 272E-06 176E-04
Factor of Safety 3.855 Side Force Inclination 8.59 Number of Iterations 16 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading					
					* * * * * * * * * * * * *
* Final R * (Result ********	esults fo s for Cri ********	r Stresses tical Shea ********	s Along the ar Surface	Shear Surf in Case of	ace * a Search.) * ******
				TOR OF SAFE e Inclinati	TY on = 8.59 Degrees
	VAL	JES AT CEN		E OF SLICE-	
Slice No. X-	center Y	-center	Total Normal Stress	Effective Normal Stress	Shear Stress
1 2 3 4 5 6 7 8 9	511.8 516.2 524.5 532.8 540.3 547.0 553.7 560.4	-26. 2 -26. 2 -26. 2 -26. 2 -26. 1 -26. 1 -26. 1 -26. 1	1581.9 1721.0 1988.5 2256.1 2536.5 2837.4 3138.3 3439.1	1581.9 1721.0 1988.5 2256.1 2536.5 2837.4 3138.3	256.4 278.9 322.3 365.6 411.1 459.9 508.6

27	660.5	-11.0	2872.7	2872.7	465.6
28	667.5	-8.8	2968.1	2968.1	481.1
29	674.5	-6.6	3063.6	3063.6	496.5
30	681.5	-4.4	3246.4	3246.4	526.2
31	688.5	-2.3	3516.6	3516.6	570.0
32	693.9	6	3646.1	3646.1	590.9
33	698.3	. 8	3618.5	3618.5	681.9
34	703.4	2.4	3603.2	3603.2	679.0
35	708.9	4.1	3525.7	3525.7	664.4
36	714.4	5.8	3435.1	3435.1	525.6
37	719.5	7.4	3356.6	3356.6	514.8
38	723.5	8.6	3285.0	3285.0	491.9
39	728.0	10. 1	3239.6	3239.6	485.1
40	735.1	12.2	3204.6	3204.6	519.4

1

1

----- VALUES AT CENTER OF BASE OF SLICE------

SIice No.	X-center	Y-center	Total Normal Stress	Effective Normal Stress	Shear Stress
41	743.0	14.7	3168. 8	3168.8	513.6
42	750.5	17.0	3160. 7	3160.7	512.3
43	757.5	19.2	3180. 5	3180.5	515.5
44	761.7	20.5	3118. 2	3118.2	505.4

CHECK SUMS - (ALL SHOULD BE SMALL) SUM OF FORCES IN VERTICAL DIRECTION = .02 (= .200E-01) SHOULD NOT EXCEED .100E+03 SUM OF FORCES IN HORIZONTAL DIRECTION = .03 (= .264E-01) SHOULD NOT EXCEED .100E+03 SUM OF MOMENTS ABOUT COORDINATE ORIGIN =94 (=942E+00) SHOULD NOT EXCEED .100E+03 SHEAR STRENGTH/SHEAR FORCE CHECK-SUM = .00 (= .419E-02) SHOULD NOT EXCEED .100E+03 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 12:41:49 Input file: k2 Kings Isl and Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading						
TABLE NO. 39 * Final Results for Side Forces and Stresses Between Slices. * * (Results for Critical Shear Surface in Case of a Search.) *						
SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY Factor of Safety = 3.855 Side Force Inclination = 8.59 Degrees						
SI i ce No.	X-Ri ght	Si de	Y-Coord. of Side Force Location	Fraction of	Sigma at Top	Sigma at
1 2 3 4 5	512.0 520.3 528.7 537.0 543.7	421. 8035. 15119. 21671. 26592.	-24.3 -22.5 -21.0	. 563 . 456 . 448 . 428 . 412	2934. 7 1396. 1 1259. 3 1008. 4 819. 3	1319.2 2393.6 2398.8 2533.3 2656.4

6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 24 26 7 8 9 30 1 32 33 4 35 37 38 39	$\begin{array}{c} 550.\ 4\\ 557.\ 0\\ 563.\ 7\\ 566.\ 0\\ 570.\ 8\\ 575.\ 4\\ 582.\ 0\\ 582.\ 3\\ 585.\ 0\\ 587.\ 0\\ 588.\ 0\\ 593.\ 0\\ 593.\ 0\\ 599.\ 5\\ 606.\ 0\\ 614.\ 1\\ 622.\ 1\\ 630.\ 2\\ 644.\ 5\\ 650.\ 7\\ 657.\ 0\\ 664.\ 0\\ 671.\ 0\\ 678.\ 0\\ 692.\ 0\\ 695.\ 8\\ 700.\ 9\\ 706.\ 0\\ 711.\ 8\\ 716.\ 9\\ 722.\ 0\\ 725.\ 0\\ 731.\ 1\end{array}$	KI TB10 ⁷ 31616. 36741. 41968. 43787. 47796. 49316. 51130. 51197. 52169. 52349. 52349. 53234. 54369. 55461. 56774. 58060. 59319. 60550. 57412. 54460. 51697. 48659. 45521. 42281. 38848. 35130. 33048. 30748. 28458. 25899. 23089. 20349. 18762. 15531.	$\begin{array}{c} 1887. \ \text{out. tx}^{-18. \ 9} \\ -18. \ 1 \\ -17. \ 3 \\ -17. \ 1 \\ -16. \ 6 \\ -15. \ 7 \\ -14. \ 6 \\ -14. \ 2 \\ -14. \ 0 \\ -13. \ 9 \\ -13. \ 3 \\ -12. \ 5 \\ -11. \ 7 \\ -10. \ 8 \\ -9. \ 8 \\ -7. \ 8 \\ -6. \ 3 \\ -4. \ 8 \\ -7. \ 8 \\ -6. \ 3 \\ -4. \ 8 \\ -3. \ 4 \\ -1. \ 9 \\ \ 3 \\ 1. \ 3 \\ 2. \ 9 \\ 4. \ 6 \\ 5. \ 5 \\ 6. \ 6 \\ 7. \ 8 \\ 9. \ 0 \\ 10. \ 3 \\ 11. \ 5 \\ 12. \ 2 \\ 13. \ 6 \end{array}$	t . 396 . 380 . 364 . 357 . 342 . 329 . 308 . 307 . 299 . 293 . 292 . 289 . 296 . 305 . 314 . 321 . 329 . 305 . 314 . 321 . 329 . 337 . 340 . 343 . 336 . 310 . 278 . 244 . 209 . 180 . 170 . 157 . 145 . 132 . 124 . 115 . 109 . 095	653.0 485.8 317.9 239.6 91.9 -43.5 -238.4 -246.0 -313.9 -365.0 -365.0 -366.9 -398.8 -354.9 -281.2 -205.0 -136.5 -54.7 41.7 83.2 117.1 28.2 -259.8 -561.9 -798.9 -956.4 -1003.4 -995.5 -1007.3 -1007.3 -1007.4 -922.7 -886.0 -793.0	$\begin{array}{c} 2799. \ 9\\ 2960. \ 3\\ 3131. \ 4\\ 3194. \ 0\\ 3313. \ 3\\ 3318. \ 0\\ 3329. \ 5\\ 3330. \ 2\\ 3338. \ 7\\ 3345. \ 7\\ 3357. \ 6\\ 3412. \ 0\\ 3507. \ 8\\ 3599. \ 7\\ 3696. \ 2\\ 3781. \ 3\\ 3599. \ 7\\ 3696. \ 2\\ 3781. \ 3\\ 3599. \ 7\\ 3696. \ 2\\ 3781. \ 3\\ 3858. \ 0\\ 3925. \ 0\\ 3902. \ 9\\ 3904. \ 5\\ 3940. \ 7\\ 3975. \ 6\\ 3931. \ 3\\ 3794. \ 5\\ 3529. \ 6\\ 3185. \ 4\\ 3032. \ 9\\ 2908. \ 3\\ 3794. \ 5\\ 3529. \ 6\\ 3185. \ 4\\ 3032. \ 9\\ 2908. \ 3\\ 2790. \ 8\\ 2682. \ 4\\ 2513. \ 7\\ 2334. \ 3\\ 2203. \ 8\\ 1903. \ 3\end{array}$
40	739.0	11682.	15.5 AT RIGHT SI	.074 LDE OF SLL	-657.7 CF	1502.2
SIice No.		Y-(Side Sid	Coord. of de Force ocation	Fraction of	Sigma at Top	Sigma at
41 42 43 44	747.0 754.0 761.0 762.4	7877. 4534. 1171. 0.	17.4 19.0 21.1 216.4	. 033 . 029	-484.3 -296.4 -77.6 .0	1057.9 625.9 162.5 .0
SUM OF SH SUM OF SH SUM OF SHEAR S	UMS - (ALL S FORCES IN VI OULD NOT EXO FORCES IN HO OULD NOT EXO MOMENTS ABOO OULD NOT EXO TRENGTH/SHE OULD NOT EXO	ERTICAL DIRE CEED . 10 DRIZONTAL DI CEED . 10 JT COORDINA CEED . 10 AR FORCE CHE	ECTIÓN = DOE+03 RECTION = DOE+03 FE ORIGIN = DOE+03 ECK-SUM =		$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$	264E-01) 242E+00)

END-OF-FILE ENCOUNTERED WHILE READING COMMAND WORDS - END OF PROBLEM(S) ASSUMED

KI TB101887CI R. IN. txt STATION 101+887 CIRCULAR ARC FS = 3.1 **HEADI NG** Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading PROFILE LINES 1 1 Top Spoil Material 771 47 2000 47 2 2 Top DA Dike (SM-SC-MH-OH) 0/32 400 48.0 769 48.0 800 20.0 2000 20.0 3 3 Directly Beneath Dike & Spoil Area 0/30 300 11.0 2000 11.0 SP River Bank . 2/28 4 4 0 8.0 2000 8.5 Underlying Softer (SC) (Old marsh deposits) 0/36 5 5 0 -3.0 480 -3.0 5.0 585 2000 5.0 6 Sands (SM-SP) 0/32 6 0 -10.0 480 -10.0 585 0.0 2000 0.0 77 Medium Dense Sands 0/38 -26.0 0 2000 -28.0 8 8 Clay Layer .7/7 0 -47.0 587 -44.0 2000 -44.0 99 Dense Sand 0/38 -54.0 0 2000 -54.0 MATERIAL PROPERTIES 1 Spoil 98[°] = unit weight Conventional shear strength 0 16 NO pore pressures 2 Sand (Di ke) 125 = unit weight Conventional shear strength 0 32 NO pore pressures 3 Sand Page 1

122 = unit weightConventional shear strength 0 30 NO pore pressures 4 Upper Embankment Lean clay and clayey sand 95 = unit weight Conventional shear strength 200 28 NO pore pressures 5 SP 125.0 = unit weightConventional shear strength 0 36.0 NO pore pressures 6 Medium sand 125 = unit weight Conventional shear strength 0 32 NO pore pressures 7 Med Dense Sand 126 = unit weightConventional shear strength 0 38 NO pore pressures 8 Clay 106 = unit weight Conventional shear strength 1400 7 NO pore pressures 9 Dense Sand 126 = unit weightConventional shear strength 0 38 NO pore pressures SURFACE PRESSURES 0 -55.0 3025 0 453 -55.0 3025 0 469 -47.0 2575 0 512 -26.0 537 -14.0 1420 0 759 0 566 -1.0 440 0 582 8.0 120 0 588 11.0 0 0 593 0 0 12.0 606 0 0 11.0 0 0 657 13.0 678 22.0 0 0 31.0 0 0 692 0 706 0 35.0 0 725 37.0 0 747 0 0 43.0 0 761 47.7 0 769 48.0 0 0 2000 46.0 0 0 SLOPE GEOMETRY 0 -55.0 453 -55.0 469 -47.0 512 - 26.0 537 -14.0 566 -1.0

582 8.0 588 11.0 593 12.0 606 11.0 657 13.0 678 22.0 692 31.0 706 35.0 725 37.0 747 43.0 47.7 761 769 48.0 2000 46.0 ANALYSI S/COMPUTATI ON NonCircular Search 535.0, -14 570.0, -27 640. 0, -26 725. 0, 10 10, 60 I TErati ons 500 WATER DEPTH 4.0 FACTOR OF SAFETY 10.0 CHANGE TRIAL FACTOR ANALYSIS/COMPUTATION data follow -Circle Search 570 250 5 -60 Point through which circles pass follows -600 -10 COMPUTE ASCII **PRINT**

KI TB101887CI R. OUT. txt

UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 TABLE NO. 1 * COMPUTER PROGRAM DESIGNATION - UTEXAS3 * * Originally Coded By Stephen G. Wright * Veršion No. 1.120 * Last Revision Date 10/08/92 * (C) Copyright 1985-1992 S. G. Wright * All Rights Reserved RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER * PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS PROGRAM BEFORE ATTEMPTING ITS USE. NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT * MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR * IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS * OR ADAPTABILITY OF THIS COMPUTER PROGRAM. * * * * * * * * * * * * * * * * * * UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 2 **** * NEW PROFILE LINE DATA * PROFILE LINE 1 - MATERIAL TYPE = 1 Top Spoil Material Point Х Υ 771.000 47.000 1 2 2000.000 47.000 PROFILE LINE 2 - MATERIAL TYPE = 2 Top DA Dike (SM-SC-MH-OH) 0/32 Poi nt Х Υ 48.000 400.000 1 48.000 2 769.000 3 800.000 20.000 2000.000 20.000 4 PROFILE LINE 3 - MATERIAL TYPE = 3 Directly Beneath Dike & Spoil Area 0/30 Poi nt Х γ

Page 1

1

KI TB101887CI R. OUT. txt

1 2	300. 000 2000. 000	11. 000 11. 000			
PROFILE LINE SP River Bank	4 - MATERIAL T .2/28	YPE = 4			
Poi nt	х	Υ			
1 2	. 000 2000. 000	8. 000 8. 500			
	5 - MATERIAL T fter (SC) (Old	YPE = 5 marsh deposits) 0/36			
Poi nt	Х	Y			
1 2 3 4	. 000 480. 000 585. 000 2000. 000	-3.000 -3.000 5.000 5.000			
PROFILE LINE Sands (SM-SP)	6 - MATERIAL T 0/32	YPE = 6			
Point	Х	γ			
1 2 3 4	. 000 480. 000 585. 000 2000. 000	-10.000 -10.000 .000 .000			
PROFILE LINE Medium Dense S	7 - MATERIAL T Sands 0/38	YPE = 7			
Poi nt	х	Υ			
1 2	. 000 2000. 000	-26.000 -28.000			
PROFILE LINE Clay Layer .	8 - MATERIAL T 7/7	YPE = 8			
Poi nt	Х	Y			
1 2 3	. 000 587. 000 2000. 000	-47.000 -44.000 -44.000			
PROFILE LINE Dense Sand O	9 - MATERIAL T /38	YPE = 9			
Poi nt	х	Υ			
1 2	. 000 2000. 000	-54.000 -54.000			
All new profile lines defined - No old lines retained UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Geor					

Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular Loading

TABLE NO. 3 * NEW MATERIAL PROPERTY DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * * * * * * * * * * * DATA FOR MATERIAL TYPE 1 Spoi I Unit weight of material = 98.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - . 000 Friction angle - - - - 16.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 2 Sand (Dike) Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesi on - - - - - - - -. 000 Friction angle - - - - 32.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 3 Sand Unit weight of material = 122.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - . 000 Friction angle - - - - 30.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 4 Upper Embankment Lean clay and clayey sand Unit weight of material = 95.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - - 200.000 Friction angle - - - - 28.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 5 SP Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - -. 000 No (or zero) pore water pressures DATA FOR MATERIAL TYPE 6 Medium sand

Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - -. 000 Friction angle - - - - 32.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 7 Med Dense Sand Unit weight of material = 126.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS No (or zero) pore water pressures DATA FOR MATERIAL TYPE 8 CI ay Unit weight of material = 106.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS 1400.000 Cohesi on - - - - - - -Friction angle - - - - -7.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 9 Dense Sand Unit weight of material = 126.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS . 000 Cohesion - -Friction angle - - - - 38.000 degrees No (or zero) pore water pressures All new material properties defined - No old data retained UTEXAS3 - VER. 1. 120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4: 13: 2003 Time: 13: 9: 22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 10 * NEW SURFACE PRESSURE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * ALL NEW DATA INPUT - NO OLD DATA RETAINED Surface Pressures -Normal Shear Υ Pressure Point Х Stress . 000 . 000 1 -55.000 3025.000 453.000 . 000 2 -55.000 3025.000 469.000 -47.000 2575.000 . 000 3

1

KI TB101887CI R. OUT. txt 4 512.000 -26.000 1420.000 . 000 5 537.000 -14.000 759.000 . 000 440.000 6 566.000 -1.000 . 000 582.000 588.000 7 8.000 120.000 . 000 8 11.000 . 000 . 000 593.000 12.000 . 000 Q . 000 10 606.000 11.000 . 000 . 000 . 000 . 000 11 657.000 13.000 12 678.000 22.000 . 000 . 000 13 692.000 31.000 . 000 . 000 14 706.000 35.000 . 000 . 000 725.000 747.000 15 37.000 . 000 . 000 16 43.000 . 000 . 000 761.000 47.700 17 . 000 . 000 769.000 48.000 . 000 18 . 000 19 2000.000 46.000 . 000 . 000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT 4: 13: 2003 Time: 13: 9:22 Date: Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 9 ***** * NEW SLOPE GEOMETRY DATA * All new data input - No old data retained Slope Coordinates -Y Poi nt Х 1 . 000 -55.000 453.000 2 -55.000 3 469.000 -47.000 4 512.000 -26.000 5 537.000 -14.000 566.000 582.000 6 7 -1.000 8.000 8 588.000 11.000 9 593.000 12.000 10 606.000 11.000 11 657.000 13.000 12 678.000 22.000 13 692.000 31.000 14 706.000 35.000 725.000 747.000 15 37.000 43.000 16 761.000 47.700 17 48.000 769.000 18 19 2000.000 46.000 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT 4: 13: 2003 Time: 13: 9:22 Date: Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction I oading Single circular loading TABLE NO. 15 * NEW ANALYSIS/COMPUTATION DATA *

NEW ANALISIS/COMPUTATION DATA

1

1

KI TB101887CI R. OUT. txt Nonci rcul ar Shear Surface(s)

Automatic Search Performed

1

Coordinates of points on shear surface which are to be shifted -Poi nt Х Shift Angle Υ 1 535.000 angle to be computed - moveable -14.000 570.000 -27.000 angle to be computed - moveable 2 3 640.000 -26.000 angle to be computed - moveable 4 725.000 10.000 angle to be computed - moveable Initial distance for shifting points on shear surface = 10.000 Maximum steepness permitted for toe of shear surface = 60.00 degrees Maximum number of iterations allowed for calculating the factor of safety = 500Depth of water in crack = 4.000 Initial trial estimate for the factor of safety = 10.000 Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be changed during search THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES: Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only) Allowed force imbalance for convergence = 100.000 Allowed moment imbalance for convergence = 100.000 Number of increments for slice subdivision = 30 Unit weight of water in crack = 62.400 Seismic coefficient = .000 Conventional (single-stage) computations to be performed Procedure used to compute the factor of safety: SPENCER UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 15 **** * NEW ANALYSIS/COMPUTATION DATA * Circular Shear Surface(s) Automatic Search Performed Starting Center Coordinate for Search at -Х = 570.000

```
Page 6
```

KI TB101887CI R. OUT. txt Y = 250.000 Required accuracy for critical center (= minimum spacing between grid points) = 5.000 Critical shear surface not allowed to pass below Y = -60.000 For the initial mode of search all circles pass through the point at -600.000 X = Y = -10.000 THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES: Initial trial estimate for the factor of safety = 10.000 Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only) Maximum number of iterations allowed for calculating the factor of safety = 500 Allowed force imbalance for convergence = 100.000 Allowed moment imbalance for convergence = 100.000 Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be changed during search Maximum subtended angle to be used for subdivision of the circle into slices = 3.00 degrees Depth of crack = . 000 Search will be continued to locate a more critical shear surface (if one exists) after the initial mode is complete Depth of water in crack = 4.000 Unit weight of water in crack = 62.400 Seismic coefficient = .000 Conventional (single-stage) computations to be performed Procedure used to compute the factor of safety: SPENCER UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 17 INFORMATION FOR CURRENT MODE OF SEARCH - AII Circles Pass Through the Fixed Point at X = 600.000 and Y = -10.0001-Stage Side Force Center Coordinates Factor of Inclination Х Y (degrees) Radi us Safety I terations

1

KI TB101887CI R. OUT. txt 420.00 100.00 210.95 Bottom of circle exceeds allowable depth - CIRCLE REJECTED 114.02 570.00 100.00 4.730 6.34 13 162.79 Bottom of circle exceeds allowable 720.00 100.00 depth - CIRCLE REJECTED 316.23 Bottom of circle exceeds allowable 420.00 250.00 depth - CIRCLE REJECTED 261.73 3.591 11.78 570.00 250.00 16 286.36 See Message on Next Line(s) 720.00 250.00 ERROR AT SLICE 24 . 770E+03 Y = -.320E+02X = NO PROFILE DATA FOR TOP OF SLICE 447.77 4.539 9.68 420.00 400.00 14 411.10 See Message on Next Line(s) 570.00 400.00 ERROR AT SLICE 27 X = . 770E+03 Y = . 408E+02 NO PROFILE DATA FOR TOP OF SLICE 720.00 400.00 427.20 See Message on Next Line(s) ERROR AT SLICE 23 X = .770E+03 Y = -.243E+02NO PROFILE DATA FOR TOP OF SLICE 545.00 225.00 241.35 4.510 6.43 14 570.00 225.00 236.91 3.839 11.55 15 225.00 3.393 11.59 595.00 235.05 16 545.00 250.00 4.224 9.01 265.75 14 595.00 260.05 250.00 3.259 11.72 16 545.00 275.00 290.26 3.861 10.87 15 570.00 275.00 286.57 3.444 11.78 16 595.00 275.00 285.04 3.151 11.85 17 260.77 See Message on Next Line(s) 620.00 250.00 ERROR AT SLICE 31 X = .770E+03 Y = . 367E+02 NO PROFILE DATA FOR TOP OF SLICE 275.00 285.70 See Message on Next Line(s) 620.00 ERROR AT SLICE 29 X = . 770E+03 Y = . 318E+02 NO PROFILE DATA FOR TOP OF SLICE 300.00 311.45 3.325 11.84 570.00 3 300.00 310.04 See Message on Next Line(s) 595.00 ERROR AT SLICE 31 X = .770E+03 Y = .441E+02NO PROFILE DATA FOR TOP OF SLICE 620.00 300.00 310.64 See Message on Next Line(s) ERROR AT SLICE 27 X = . 770E+03 Y = . 280E+02 NO PROFILE DATA FOR TOP OF SLICE

270. 74 3. 398 270. 05 3. 208 580.00 260.00 11.75 4 11.80 595.00 260.00 3 270.19 See Message on Next Line(s) 610.00 260.00 X = . 770E+03 ERROR AT SLICE 30 Y = .423E+02

NO PROFILE DATA FOR TOP OF SLICE

KI TB101887CI R. OUT. txt 285. 70 3. 324 11. 79 275.00 580.00 275.00 285.18 See Message on Next Line(s) 610.00 ERROR AT SLICE 30 NO PROFILE DATA FOR TOP OF SLICE 300.67 3.253 11.87 290.00 580.00 3 300.04 See Message on Next Line(s) 595.00 290.00 ERROR AT SLICE 30 X = .770E+03 Y = .461E+02NO PROFILE DATA FOR TOP OF SLICE 300.17 See Message on Next Line(s) X = .770E+03 Y = .360E+02 610.00 290.00 ERROR AT SLICE 30 NO PROFILE DATA FOR TOP OF SLICE 280. 183. 22211. 83280. 043. 16711. 85 590.00 270.00 3 270.00 595.00 2 280.00 See Message on Next Line(s) 600.00 270.00 X = . 769E+03 Y = . 470E+02 ERROR AT SLICE 31 NO PROFILE DATA FOR TOP OF SLICE 285.18 3.198 11.87 600<u>.</u>00 275.00 3 285.00 See Message on Next Line(s) 275.00 ERROR AT SLICE 31 X = .770E+03 Y = .461E+02NO PROFILE DATA FOR TOP OF SLICE 290. 17 3. 177 11. 89 590.00 280.00 290.04 See Message on Next Line(s) 595.00 280.00 ERROR AT SLICE 30 X = . 769E+03 Y = . 480E+02 NO PROFILE DATA FOR TOP OF SLICE 600.00 280.00 290.00 See Message on Next Line(s) X = .770E+03 Y = .451E+02 ERROR AT SLICE 31 NO PROFILE DATA FOR TOP OF SLICE At the end of the current mode of search the most critical

circle which was found has the following values -X-center = 595.00 Y-center = 275.00 Radius = 285.04 Factor of Safety = 3.151 Side Force Inclination = 11.85 ***** CAUTION ***** FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME

OF GRID POINTS AROUND THE MINIMUM ***** RESULTS MAY BE ERRONEOUS ***** UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction loading Single circular loading

1

TABLE NO. 18 INFORMATION FOR CURRENT MODE OF SEARCH - All Circles Are Tangent to a Horizontal Line at Y = -10.044 ------

KITB101887CIR.OUT.txt Center Coordinates Factor Side Force of Inclination X Y Radius Safety (degrees) Iterations

445.00 125.00 135.04 See Message on Next Line(s) CIRCLE DOES NOT INTERSECT SLOPE

NO PROFILE DATA FOR TOP OF SLICE

 $445.\,00$ $275.\,00$ $285.\,04$ See Message on Next Line(s) CIRCLE DOES NOT INTERSECT SLOPE

745.00275.00285.04See Message on Next Line(s)ERROR AT SLICE16X = ...770E+03Y = -..894E+01

NO PROFILE DATA FOR TOP OF SLICE

445.00 425.00 435.04 See Message on Next Line(s) CIRCLE DOES NOT INTERSECT SLOPE

595.00 425.00 435.04 See Message on Next Line(s) ERROR AT SLICE 26 X = .770E+03 Y = .267E+02 NO PROFILE DATA FOR TOP OF SLICE

745.00 425.00 435.04 See Message on Next Line(s) ERROR AT SLICE 14 X = ...770E+03 Y = -..932E+01NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

580.00	260.00	270.04	3. 416	11.75	4
595.00	260.00	270.04	3.208	11.80	3
		Pag	e 10		

610.00 260.00 270.04 See Message on Next Line(s) ERROR AT SLICE 30 X = .770E+03 Y = .425E+02

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

NO PROFILE DATA FOR TOP OF SLICE

600.00 280.00 290.04 See Message on Next Line(s) ERROR AT SLICE 31 X = .770E+03 Y = .450E+02

NO PROFILE DATA FOR TOP OF SLICE

1

At the end of the current mode of search the most critical circle which was found has the following values - X-center = 595.00 Y-center = 275.00 Radius = 285.04 Factor of Safety = 3.151 Side Force Inclination = 11.85

***** CAUTION ***** FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME OF GRID POINTS AROUND THE MINIMUM ***** RESULTS MAY BE ERRONEOUS ***** UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular Loading

1

TABLE NO. 21 1-STAGE FINAL CRITICAL CIRCLE INFORMATION ***** * * * * * 595.000 275.000 285.044 Radius -Factor of Safety - - - - - - - - -3. .c 11. 85 Side Force Inclination - - - - - -Number of circles tried - - - - -70 No. of circles F calc. for - - - -33 ***** CAUTION ***** FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME UTEXAS3 - VER. 1. 120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4: 13: 2003 Time: 13: 9: 22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia End of construction Loading Single circular loading TABLE NO. 26 ******* Coordinate, Weight, Strength and Pore Water Pressure * * * Information for Individual Slices for Conventional Computations or First Stage of Multi-Stage Computations. * (Information is for the Critical Shear Surface in the * * ++++ Slice Slice Matl. Friction Pore Υ Х Weight Type Cohesi on Pressure No. Angle 552.8 -6.9 1 558.3 -7.6 4280.3 . 00 32.00 . 0 6 -8.3 563.7 2 564.9 -8.4 1986.0 6 . 00 32.00 . 0 566.0 -8.6 3 570.7 -9.0 12401.6 6 . 00 32.00 . 0 -9.4 575.4 -9.6 578.7 4 12698.8 . 00 32.00 . 0 6 582.0 -9.7 5 582.1 -9.8 620.0 6 . 00 32.00 . 0 -9.8 582.3 -9.8 583.6 6041.1 . 00 32.00 6 6 . 0 -9.9 585.0 7 -9.9 . 0 586.0 4775.1 6 . 00 32.00 587.0 587.5 -9.9 -9.9 8 2484.6 6 . 00 32.00 . 0 -10.0 588.0 -10.0 9 590.5 12920.9 6 . 00 32.00 . 0 593.0 -10.0 10 594.0 -10.0 5284.8 . 00 32.00 . 0 6 595.0 -10.0 600.5 -9.9 11 28237.4 . 00 32.00 . 0 6 606.0 -9.8 -9.3 12 613.4 36885.9 6 . 00 32.00 . 0 -8.9 620.9 628.3 35277.5 13 -8.0 6 . 00 32.00 . 0 635.7 -7.1 643.1 14 -5.9 32157.4 . 00 32.00 6 . 0 650.4 -4.6 13119.3 15 653.7 -3.9 6 . 00 32.00 . 0

Page 12

1

1

	(FB101887CI R	. OUT. †	txt		
16	657.0 663.5	-3.2 -1.6	26922.0	6	. 00	32.00	. (
17	670.0 674.0	.0 1.2	18303.6	5	. 00	36.00	. (
18	678.0 682.2	2.3 3.7	21165.7	5	. 00	36.00	. (
19	686.4 689.2	5.0 6.0	15892.6	4	200.00	28.00	. (
20	692.0 693.6	7.0 7.6	9676.3	4	200.00	28.00	. (
21	695.3 698.9 702.5	8.2 9.6 11.0	21071.1	3	. 00	30.00	. (
Date: Kings End o	3 - VER. 4: 13: 2003	1.120 - 1 3 Time: Furning B uction lo	13: 9:22 asin, Stati ading	Ìnpu	85-1992 S. t file: k2 1+887, Sava		
TABLE N	10. 26		-		* * * * * * * * * * *		
* Info * Comp * (Inf	ormation 1 outations Formation	for Indiv or First is for t	idual Slice Stage of M he Critical	es for Aulti- Shea	Water Pres Conventior Stage Compu r Surface i	nal utations. n the	* * * *
SIice No.	х	Y		latl. Type	Cohesi on	Friction Angle	Pore Pressur
22	702.5 704.2	11. 0 11. 7	9992.0	2	. 00	32.00	. (
23	706.0 712.8	12.5 15.5	34266. 2	2	. 00	32.00	. (
24	719.6 722.3 725.0	18.6 20.0 21.3	11323.1	2	. 00	32.00	. (
25	731.5 738.1	24.9 28.5	22730.8	2	. 00	32.00	. (
26	742.5 747.0	31.2 33.9	11811.0	2	. 00	32.00	. (
27	753.2 759.4	38. 0 42. 2	10977.2	2	. 00	32.00	
28	760. 2 761. 0	42. 7 43. 3	936.7	2	. 00	32.00	
29	764. 2 767. 3	45.6 47.9	1744.2	2	. 00	32.00	. (
Date: Kings End c	3 - VER. 4: 13: 2003	1.120 - 1 3 Time: Furning B uction lo	13: 9:22 asin, Stati ading	l npu	85-1992 S. t file: k2 1+887, Sava		
TABLE N ******* * Seis * Indi * Firs	NO. 27 Smic Force vidual SI St Stage o Formation	es and Fo ices for f Multi-	*********** rces Due to Conventior Stage Compu he Critical	o Surf nal C utatio	********** ace Pressur omputations ns. r Surface i	res for s or the	* * * * *

KI TB101887CI R. OUT. txt FORCES DUE TO SURFACE PRESSURES

			V for	FORCES	DUE TO	SURFACE	PRESSURES
SIice No.	Х	Seismic Force	Y for Seismic Force	Normal Force	Shear Force	х	Y
Date: Kings End c	4:13:20 Island of const	O3 Time:		İnput fi	ile: k2	564. 570. 578. 582. 583. 585. 587. 590. 594. 600. 613. 628. 643. 628. 643. 653. 663. 674. 682. 689. 693. 698. 704. 712. 722. 731. 742. 753. 760. 764. G. WRI GH	8 -1.5 3 5.9 3 5.9 1 8.1 5 8.8 9.9 10.7 5 11.9 11.9 11.4 12.5 11.9 11.9 12.5 12.9 20.3 22 29.2 33.05 7 22 35.7 35.5 7 36.7 8 37.7 4 47.8 47.8
* Info	rmati on	Generated	*********** During Ite rce Inclina ********	rative So	olution	for the	Factor *
Iter-	of	Inclinati	ce Force on Imbalan) (Ibs.	ce Imbal	ance		Del ta Theta (degrees)
1 1 First-c Values	0.00000 order co factore	15.000 rrections d by .232	0 .6039E+ to F and TH E-01 - Delt	05 .104 ETA as too la	42E+08 	215E+02 500E+00	408E+00 946E-02
First-c	order co	rrections	5 .5891E+ to F and TH E-01 - Delt	ETA			415E+00 110E-01
First-c	9.00000 order co factore	rrections	6 .5727E+ to F and TH E-01 - Delt	ETA		165E+02 500E+00	424E+00 128E-01

1

Page 14

KI TB101887CI R. OUT. txt 4 8.50000 14.9667 .5544E+05 .9563E+07 First-order corrections to F and THETA -. 143E+02 -.435E+00 Values factored by .350E-01 - Deltas too large -.500E+00 -.152E-01 5 8.00000 14.9515 .5337E+05 .9208E+07 First-order corrections to F and THETA -. 122E+02 -. 448E+00 Values factored by .411E-01 - Deltas too large -. 500E+00 -. 184E-01 7.50000 14. 9331 . 5103E+05 . 8806E+07 First-order corrections to F and THETA -. 102E+02 -. 463E+00 Values factored by .489E-01 - Deltas too large -. 500E+00 -. 226E-01 7 7.00000 14.9105 .4836E+05 .8345E+07 First-order corrections to F and THETA Values factored by .593E-01 - Deltas too large -.843E+01 -.481E+00 -. 500E+00 -. 285E-01 . 7815E+07 8 6.50000 14.8820 .4527E+05 First-order corrections to F and THETA -. 680E+01 -. 504E+00 -. 500E+00 -. 370E-01 Values factored by .735E-01 - Deltas too large 9 6.00000 14.8449 .4166E+05 .7195E+07 First-order corrections to F and THETA Values factored by .938E-01 - Deltas too large -.533E+01 -.533E+00 -.500E+00 -.500E-01 10 5.50000 14.7949 .3739E+05 .6463E+07 First-order corrections to F and THETA -. 402E+01 -. 573E+00 Values factored by .124E+00 - Deltas too large -. 500E+00 -. 713E-01 11 5.00000 14.7236 .3227E+05 .5586E+07 First-order corrections to F and THETA -. 287E+01 -.629E+00 Values factored by .174E+00 - Deltas too large -.500E+00 -.110E+00 12 4.50000 14.6140 .2601E+05 .4516E+07 First-order corrections to F and THETA -. 187E+01 -. 713E+00 Values factored by .267E+00 - Deltas too large -. 500E+00 -. 190E+00 . 3184E+07 14 3.50000 14.0139 .8193E+04 .1497E+07 First-order corrections to F and THETA -. 370E+00 -. 113E+01 Second-order correction - Iteration 1 -. 339E+00 -. 113E+01 2 -. 339E+00 -. 113E+01 Second-order correction - Iteration 15 3.16137 12.8840 -.7757E+02 .9128E+05 First-order corrections to F and THETA -.110E-01 -.103E+01 . 9128E+05 Second-order correction - Iteration 1 -. 109E-01 -. 103E+01 Second-order correction - Iteration 2 -. 109E-01 -. 103E+01

 16
 3.15051
 11.8495
 .6641E-01
 -.4874E+03

 First-order corrections to F and THETA
 .630E-04
 .501E-02

 Second-order correction
 - Iteration
 1
 .631E-04
 .501E-02

 17 3.15057 11.8545 .1953E-02 .1214E+01 First-order corrections to F and THETA -.195E-06 -.963E-05 Factor of Safety - - - - - - -3.151 Side Force Inclination - - - -11.85 Number of Iterations - - - - 17 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia Page 15

1

End of construction loading Single circular loading

TABLE NO. 38

SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY Factor of Safety = 3.151 Side Force Inclination = 11.85 Degrees

----- VALUES AT CENTER OF BASE OF SLICE------

SIice No.	X-center	Y-center	Total Normal Stress	Effective Normal Stress	Shear Stress
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 3 4 5 6 7 8 9 10 11 22 23 4 5 6 7 8 9 20 21 22 3 4 5 26 27 8 9 20 21 22 3 4 5 26 27 8 9 20 11 22 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 20 11 12 23 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 20 11 12 23 4 5 6 7 8 9 20 11 12 23 4 5 6 7 8 9 20 11 12 23 4 5 6 7 8 9 20 11 12 23 4 5 6 7 8 9 20 11 22 23 24 5 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	590. 5 594. 0 600. 5 613. 4 628. 3 643. 1 653. 7 663. 5 674. 0 682. 2 689. 2 693. 6 698. 9 704. 2 712. 8 722. 3	$\begin{array}{c} -9.0\\ -9.6\\ -9.8\\ -9.8\\ -9.9\\ -9.9\\ -10.0\\ -10.0\\ -9.9\\ -9.3\\ -8.0\\ -5.9\\ -3.9\\ -1.6\\ 1.2\\ 3.7\\ 6.0\\ 7.6\\ 9.6\\ 11.7\\ 15.5\\ 20.0\\ 24.9\\ 31.2\\ 38.0 \end{array}$	2633. 6 2714. 7 2761. 3 2656. 7 2515. 0 2365. 1 2126. 2 1909. 8 1954. 7 2121. 0 2311. 0 2568. 5 2671. 8 2616. 1 2523. 8 2204. 9 1800. 4 1469. 1 1100. 7 718. 5	$\begin{array}{c} 2268.7\\ 2403.3\\ 2469.4\\ 2572.0\\ 2633.6\\ 2714.7\\ 2761.3\\ 2656.7\\ 2515.0\\ 2365.1\\ 2126.2\\ 1909.8\\ 1954.7\\ 2121.0\\ 2311.0\\ 2568.5\\ 2671.8\\ 2616.1\\ 2523.8\\ 2616.1\\ 2523.8\\ 2204.9\\ 1800.4\\ 1469.1\\ 1100.7\\ 718.5\\ 472.3\end{array}$	498. 8 469. 1 421. 7 378. 8 387. 7 489. 1 532. 9 497. 0 514. 4 479. 4 500. 6 437. 3 357. 1
SUM OF	SUMS - (ALL FORCES IN IOULD NOT E	SHOULD BE S	SMALL) RECTION 100E+03	= . (1 (= .116E-01)
SUM OF	FORCES IN	HORI ZONTAL I XCEED . 2	DI RECTI ON	= . (2 (= .176E-01)
SUM OF	MOMENTS AB	OUT COORDINA	ATE ORIGIN	= -1.3	0 (=130E+01)
SHEAR S	TRENGTH/SH	EAR FORCE CH	HECK-SUM	= . 0	0 (= .329E-02)

SHEAR STRENGTH/SHEAR FORCE CHECK-SUM = .00 (= .329E-C SHOULD NOT EXCEED .100E+03 UTEXAS3 - VER. 1.120 - 10/08/92 - (C) 1985-1992 S. G. WRIGHT Date: 4:13:2003 Time: 13: 9:22 Input file: k2 Kings Island Turning Basin, Station 101+887, Savannah, Georgia

End of construction loading Single circular loading

1

TABLE NO. 39

SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY Factor of Safety = 3.151 Side Force Inclination = 11.85 Degrees

----- VALUES AT RIGHT SIDE OF SLICE ------

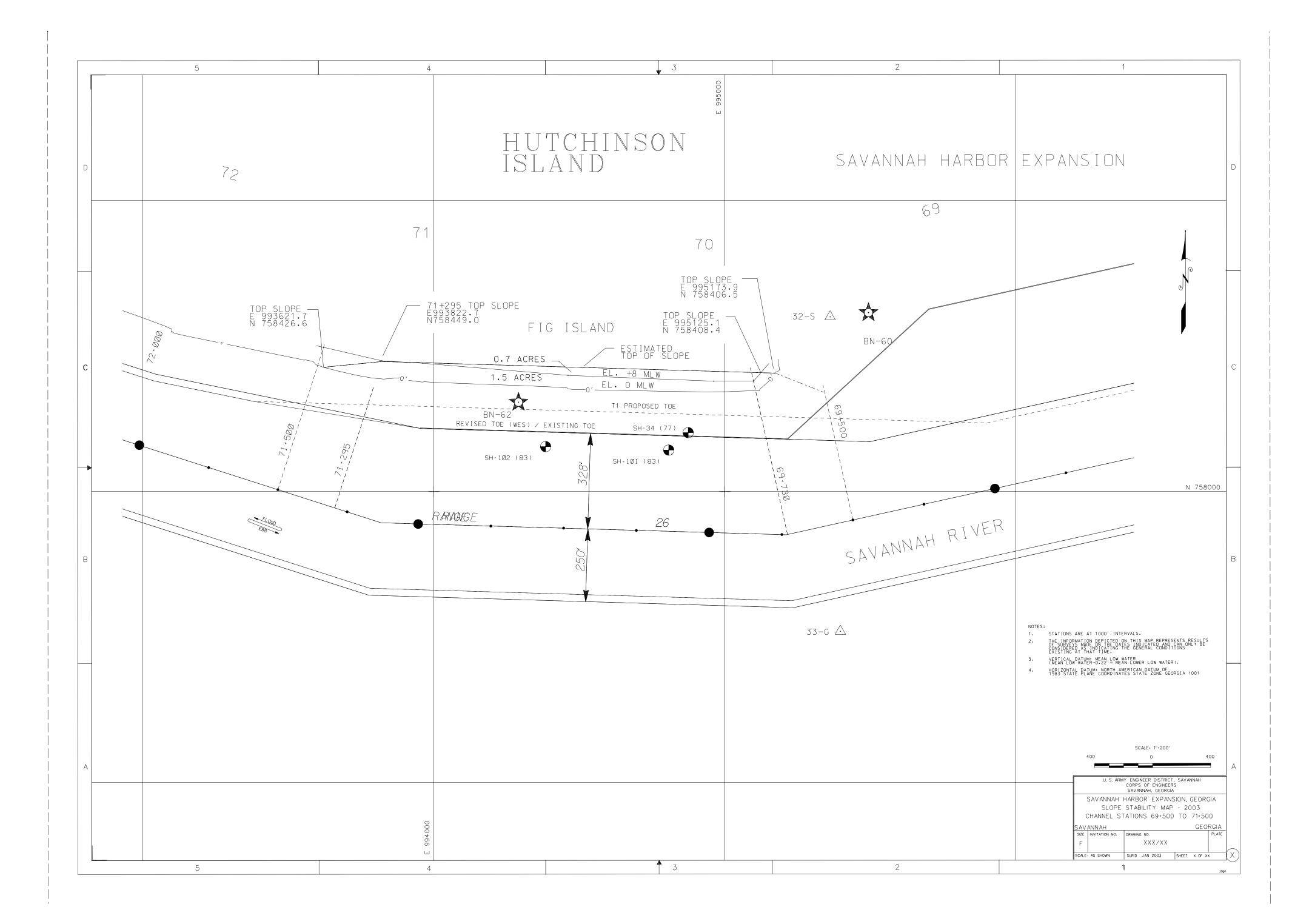
SI i ce No.	X-Ri ght	Si de Force	Y-Coord. of Side Force Location	Fraction of Height	Sigma at Top	Sigma at Bottom
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29	$\begin{array}{c} 563. \ 7\\ 566. \ 0\\ 575. \ 4\\ 582. \ 0\\ 582. \ 3\\ 585. \ 0\\ 587. \ 0\\ 588. \ 0\\ 593. \ 0\\ 593. \ 0\\ 595. \ 0\\ 606. \ 0\\ 620. \ 9\\ 635. \ 7\\ 650. \ 4\\ 657. \ 0\\ 670. \ 0\\ 678. \ 0\\ 678. \ 0\\ 692. \ 3\\ 702. \ 5\\ 706. \ 0\\ 719. \ 6\\ 725. \ 0\\ 738. \ 1\\ 747. \ 0\\ 759. \ 4\\ 761. \ 0\\ 767. \ 3\end{array}$	6520 8058 14958 19604 19795 21544 22793 23403 26373 27512 32858 37966 40854 41723 41567 39283 37489 35178 33604 29587 27526 19799 16804 9969 5896 1620 1227 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 459 . 434 . 378 . 340 . 339 . 327 . 317 . 318 . 314 . 320 . 367 . 429 . 491 . 567 . 564 . 521 . 461 . 392 . 360 . 354 . 354 . 354 . 354 . 354 . 364 . 402 . 415 . 480 . 490 . egin{array}{c} 766.\ 2\\ 610.\ 2\\ 290.\ 5\\ 44.\ 5\\ 35.\ 7\\ -43.\ 9\\ -104.\ 7\\ -100.\ 0\\ -135.\ 6\\ -95.\ 7\\ 302.\ 9\\ 1037.\ 9\\ 1956.\ 3\\ 3295.\ 6\\ 3220.\ 9\\ 2391.\ 7\\ 1463.\ 8\\ 577.\ 5\\ 229.\ 4\\ 170.\ 3\\ 158.\ 9\\ 226.\ 8\\ 451.\ 4\\ 499.\ 1\\ 566.\ 6\\ 543.\ 4\\ 545.\ 2\\ 864.\ 8\\ .0 \end{array}$	$\begin{array}{c} 1261.8\\ 1403.5\\ 1857.2\\ 2118.2\\ 2128.2\\ 2221.1\\ 2288.3\\ 2325.6\\ 2492.9\\ 2555.7\\ 2721.6\\ 2596.0\\ 2189.9\\ 1412.5\\ 1432.4\\ 1854.4\\ 2353.8\\ 2700.3\\ 2671.0\\ 2598.0\\ 2359.3\\ 2671.0\\ 2598.0\\ 2359.3\\ 2238.9\\ 1725.2\\ 1528.6\\ 1046.8\\ 693.5\\ 87.0\\ -256.5\\ .0\\ \end{array}$	

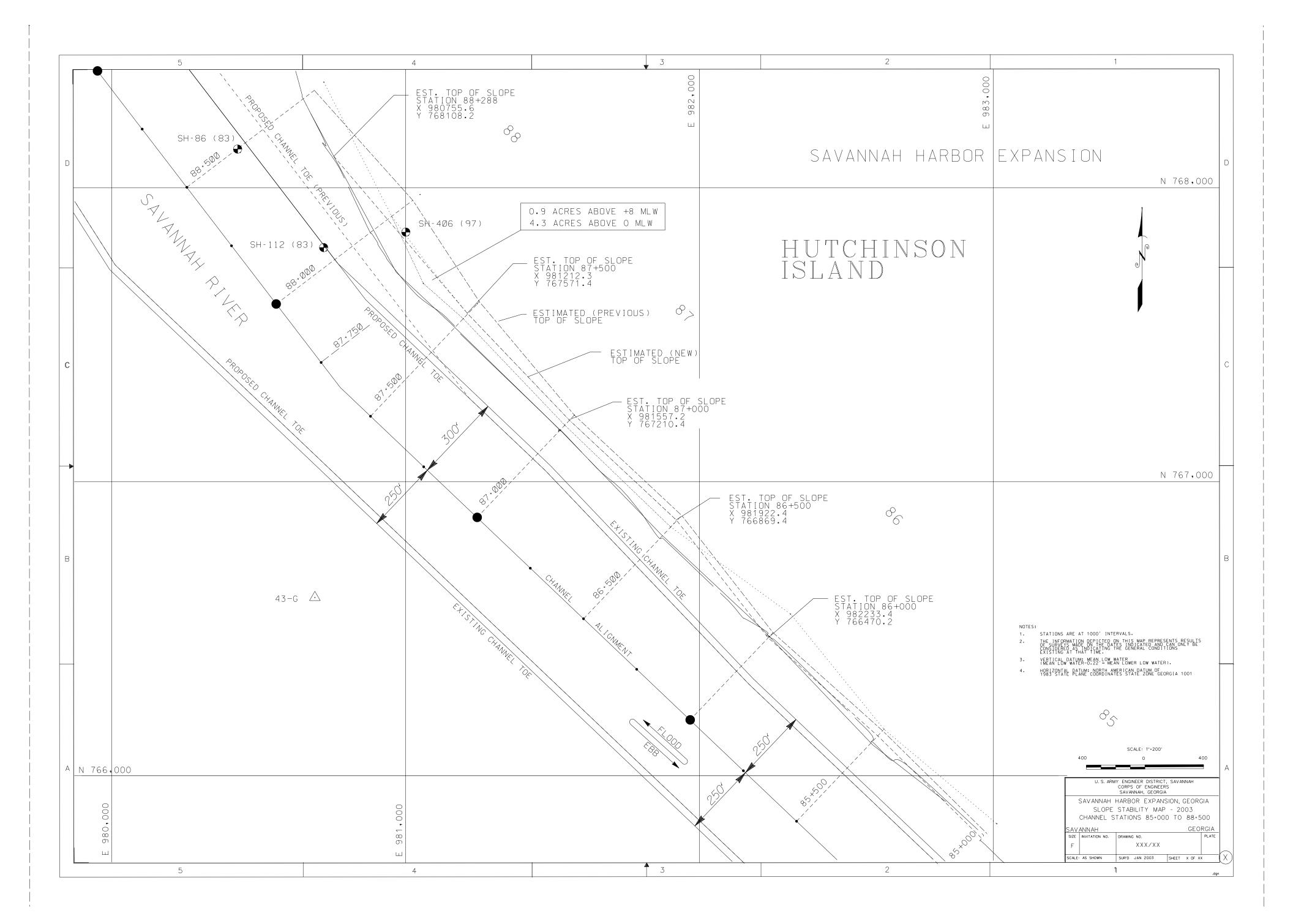
CHECK SUMS - (ALL SHOULD BE SMALL) SUM OF FORCES IN VERTICAL DIRECTION SHOULD NOT EXCEED . 100E+03	=	. 01	(= .116E-01)
SUM OF FORCES IN HORIZONTAL DIRECTION SHOULD NOT EXCEED . 100E+03	=	. 02	(= .176E-01)
SUM OF MOMENTS ABOUT COORDINATE ORIGIN	=	-1.30	(=130E+01)
SHOULD NOT EXCEED . 100E+03 SHEAR STRENGTH/SHEAR FORCE CHECK-SUM SHOULD NOT EXCEED . 100E+03	=	. 00	(= .329E-02)

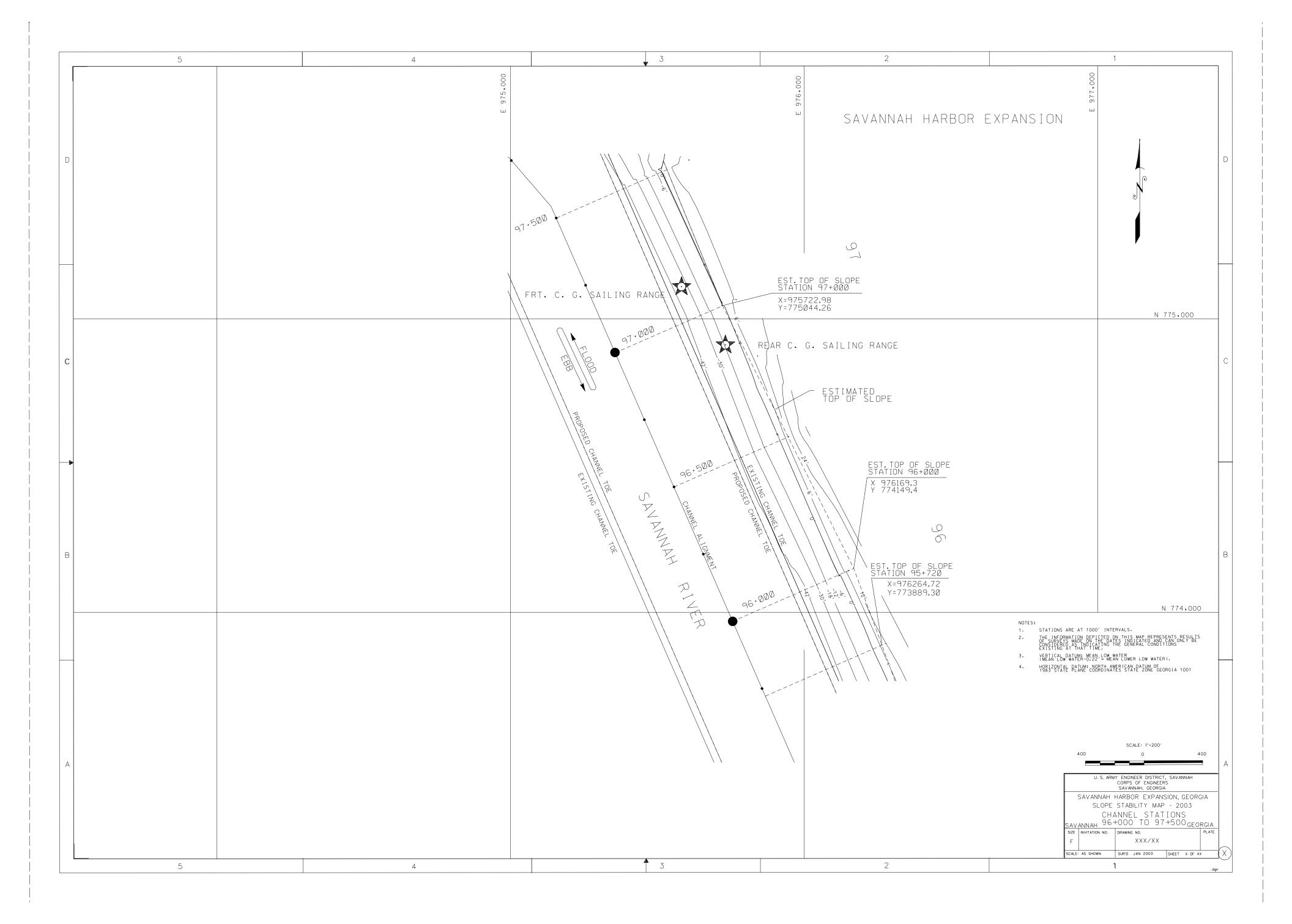
END-OF-FILE ENCOUNTERED WHILE READING COMMAND WORDS - END OF PROBLEM(S) ASSUMED

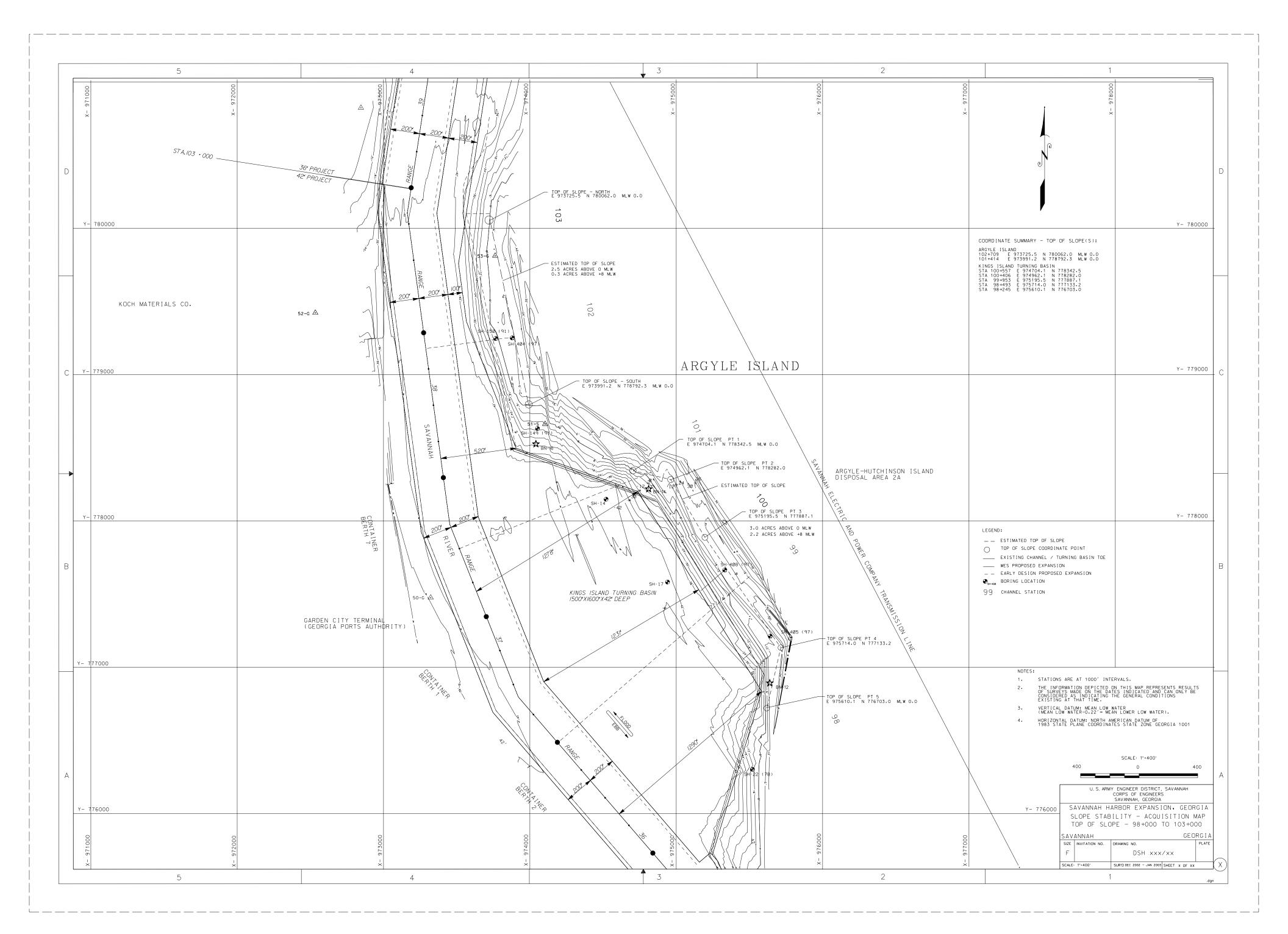
APPENDIX F

MAPS ACQUISITION (Links Below)


MAP 1 - 69+500 to 71+295 1.5ac/0 + 0.7ac/+8 MLW


MAP 2 - 86+000 to 88+500 4.3ac/0 + 0.9ac/+8 MLW


MAP 3 - 96+000 to 97+000 (owner State of Georgia)


MAP 4 - 98+200 to 100+500 Kings Island Turning Basin

MAP 4a - 101+200 to 102+500 2.5ac/0 + 0.3ac/+8 MLW

APPENDIX G

INSPECTION SUMMARY

(Click here)

CESAS-EN-GS

MEMORANDUM FOR RECORD

SUBJECT: Trip Report, Savannah Harbor Expansion, Savannah, GA; Inspection of Dock Structures, Inner Harbor

1. DATE OF TRIP: 14 and 15 NOV 2001

2. PURPOSE OF TRIP: To inspect the condition of existing docks and structures located on the Savannah River. Inspection is intended only to document existing conditions prior to the work anticipated for the Savannah Harbor Expansion.

3.	PERSONS	MAKING	TRIP:	Joseph Hudak Jr.,	EN-GS
				Judy Wood,	PD-EI
				Wilbur Wiggins,	EN-HC
				Gabriele Supon,	PD-E
				Cone Bostwick,	OP-NE

4. PERSONS CONTACTED:

None

5. BACKGROUND: The Savannah Harbor expansion proposes to deepen the existing shipping channel from approximately -42 to -48 feet mean low water (mlw), while maintaining the existing channel side slopes. The work also anticipates expanding Kings Island Turning Basin and widening selected areas at curves or turns to allow larger ship size(s) access to the port facilities. Based on past experience involving property owners and their claims that channel dredging could impact their facilities, it was decided by the Savannah Harbor Expansion Team that we should try to document conditions of existing facilities along the banks of the proposed new work. Therefore, a trip was planned to take photos and notes under low tide conditions using a small boat and camera.

6. OBSERVATIONS:

The following docks and structures were photographed over a two-day period, 14 and 15 November, 2001. The majority of structures appear to be in good to excellent condition, to the extent they could be observed from a low tide condition. All observations were made while the tide was at or near zero mean low water (mlw) elevation. Photographs are attached illustrating observations. The following condition assessments are the subjective opinion of the observer and do not reflect detailed analyses, as-built research, or underwater investigations. Exceptions to the good or excellent opinion are discussed separately herein.

Property	Condition						
	Excellent	Good	Fair	Poor	Very Poor		
Couthown Energy Co. Dogla	x						
Southern Energy Co. Docks							
Kemira Inc. Docks	Х						
Old Fort Jackson, Moat/Riprap			Х				
ST Services #1, Concrete & Steel	Х						
Unocal Docks	Х						
ST Services #2, Wood & Steel		Х					
Standard Concrete Products	Х						
Georgia Pacific Gypsum		Х					
Wood Chip Exp. Facility		Х					

Property (Con't)	Excellent		dition Fair	Poor	Very Poor
East Cost Terminal, Wood Dock U.S. Army Corps of Engineers, Dock Marriott Hotel, Deck		X X			Х
River Walk/Savannah Electric Retaining Structure, Wood (73+000 to Weston Hotel, Steel Convention Center, Steel	73+400) X X	Х			Х
Moran Towing, Dock Parking and Ferry Dock, 74+500 River Street, 74+800 to 75+200		X X		Х	
Crescent Towing, Wood Piles Crescent Towing, Brick Wall T.I.C		Х	Х		Х
Powell Duffryn Dock, Piles River Street/Hyatt, Concrete Piles Savannah Electric Substation, Steel	Х	X X			
Savannah Marine Services, 77+300 Former Graham Radio Property, 78+000 Blue Circle Cement, Concrete/Steel Tallmadge Bridge Pier North, Concrete Georgia Ports Authority Docks (All)	(No Dock X e X X	•		in widene ener Area	,
and others on GA Side, 79+300 to 103 Colonial Terminals Intermarine Union Camp, GA Side, Steel Citgo, Steel	+000	X X X X		х	
Georgia Kaolin Terminals, Steel		X			

Old Fort Jackson:

The timber piles and wood retaining structure supporting the moat foundation were observed to be in a deteriorated condition. The newer steel sheet piling supporting the moat intake structure was observed to be in excellent condition. Rip rap on both sides of the moat, upstream and downstream, had minor deficiencies consisting of sloughed or failed riprap areas. The Fort Jackson area is designated for remedial work under the O&M program and will not be addressed as a part of the Savannah Harbor Expansion work.

East Coast Terminal Docks:

There's a new concrete dock structure located downstream of East Coast's wood supported docks that appears to be in excellent condition. However, at the time of this writing, it is not clear whether this dock is the property of East Coast Terminal. The wood piling and foundations supporting East Coast's dock was observed to be in an advanced state of disrepair. The vast majority of wood piles and cross-member supports were observed to be worn, broken, and reduced from original size by wear and tear over an extended period of time. All of East Coast Terminal docks are located from 90 feet to 120 feet from the shipping channel.

The retaining structure consists (consisted) of wood piling driven along the riverbank to help retain the softer soils placed for filling an old connecting waterway (many years ago). Some of these piles were removed, and a small

Retaining Structure, Wood, (73+000 to 73+400), Between the Engineer Yard and Slip No.1 $\,$

portion remains. Due to the expected soft nature of the bank material, side slopes flatter than 1 vertical on 3 horizontal may result. For this reason, subsurface investigation is planned to determine the extent of possible sloughing. It is also noted that the bank at zero mlw is located approximately 130 feet to 150 feet from the shipping channel, well outside the influence of proposed dredging operations.

Parking Area and Ferry Dock, River Street Area, Approximately 74+500

The parking area and dock facility is supported on concrete type bent structures supported on wood piling. The bottom of the concrete and the top of piling occurs at approximate elevation +2 mlw. The contact between the concrete and the wood was observed to mostly open, meaning that a gap exists between the piling and the concrete. The gap is estimated to vary approximately evenly from several inches on the outside to complete contact near the shoreline. While both the wood and the concrete appeared to be in reasonably good condition, the gap suggests that repetitive loading and unloading of the dock resulted in pushing the wood piling lower than original design. Tops of piles did not appear to be 'broommed', broken or otherwise damaged. Minor spalling of the concrete portion was noted and photographed. The distance (horizontal) between the nearest piling and the shipping channel is approximately 100 feet.

Crescent Towing & Salvage Co., Brick Wall, Approximately 75+600

The condition of the brick wall and the observable wood supporting structure appears to be in a deteriorated condition. However, the piling and dock immediately behind the wall appear to be in good to fair condition. The horizontal distance between the wall and the shipping channel is approximately 150 feet.

Union Camp, GA Side, Steel, Approximately 87+000 to 88+000

The sheet-piling wall along the Union Camp property was observed to be in an altered, modified and/or deteriorated condition from approximate elevation of 0 to plus 2 mean low water (mlw). The condition noted consisted of irregular to rectangular shape holes breaching the sheet piling. Holes are estimated to be approximately 1 to 2 square feet in size each. The proximity of the sheet piling to the shipping channel varies from approximately 230 feet to 300 feet.

7. DISCUSSION:

a. General

Approximately 101 photographs representing 36 separate properties have been taken and are attached to this report. The properties photographed and addressed herein are not all inclusive of all properties along the Savannah River Expansion Project. Properties outside the scope of work and above channel station 103+000 were not included nor viewed. Properties within the scope of work and located well beyond the proposed new work were not observed or addressed herein. Distances estimated from aerial survey maps and channel alignments of 300 to 1000 feet or more are examples of properties considered beyond the influence of the new work. However, each of these areas was reviewed using the available maps and soundings at the time of this report.

Properties within the scope of work between 91+000 and 103+00 on the Georgia side were observed, but not photographed. These properties are identified on the Annual Survey Sheets as Southern Bulk Industries, National Gypsum Company, Rubberoid Company, G.A.F. Corporation, PAK Tank Incorporation, and GPA's Garden City Terminals. These facilities exist in locations where soundings indicate relatively deep water. Due to existing river depths and proximity of the property to the shipping channel, the proposed expansion work is not anticipated to have any effect whatsoever on these facilities or their respective bank slopes.

The U.S. Coast Guard Station at Tybee, the Savannah Bar Pilots Dock and Oysterbed Island Training Wall were not observed during this trip. However, the depth of water and their respective distances (190 feet to more than 1000 feet)from the shipping channel suggest that the proposed work will have no effect on these structures whatsoever.

b. Structures Considered in Excellent and/or Good Condition

The structures observed and considered in excellent and/or good condition are either (1) in good condition and by their proximity or distance away from the shipping channel, not likely to be influenced by the proposed expansion; or (2) appear to be well engineered, soundly constructed, well maintained, and unlikely to be effected by the proposed expansion regardless of proximity. Again, the above statement is based on observations of the visible and is the opinion of the observer.

c. Structures Considered as Fair, Poor, or Very Poor Condition

Each of these structures appears to need repairs, replacement, or other remedial effort. The proposed expansion work is not expected to affect these structures. However, the property owners should probably be advised of observations made and we should request additional information regarding the asbuilt construction of these structures (if available) as a supplement to observations.

d. Structures and Properties Located Adjacent to Channel Wideners

Several properties and structures are located in widening areas where such 'wideners' will likely have some impact. These areas are itemized in the following:

(1) Kings Island Turning Basin and North to Station 103+00 adjacent to DMCA 2A. The turning basin expansion and wideners proposed will result directly in a 'taking' situation.

(2) Union Camp Property, Hutchinson Island, Stations 87+500 to 88+300. The proposed widener will result directly in a 'taking' situation.

(3) Savannah Marine Services and the former Graham Radio Corp. Property, Stations 77+500 to 77+800. The proposed widener should be expected to influence the stability of Savannah Marine's sheet pile wall, depending on the as-built construction properties of the wall and may result in a 'taking' situation. Immediately adjacent is the former Graham Radio property and unprotected riverbank where the proposed widener is expected to result directly in a 'taking' situation.

(4) T.I.C. Station 76+200. The proposed widener should be expected to influence the stability of T.I.C.'s sheet pile wall, depending on the as-built construction properties of the wall and may result in a 'taking' situation.

(5) Wood Chip Exporting Corp., Stations 65+900 to 66+200. The proposed widener will result directly in a 'taking' situation.

8. RECOMMENDATIONS:

The only recommendation at this time would be to notify all property owners along the proposed harbor expansion of the intent to deepen and selectively widen certain areas of the shipping channel and request from them any available structural as-built dock information. Specifically, ask for depths of piles, types and sizes of piles, size and location of pile wall tie-backs, and any other information regarding year of construction, type of construction, and allow owners to add any other information they feel is appropriate.

9. If you have any questions, please call Mr. Joe Hudak at (912) 652-5681.

JOSEPH D. HUDAK JR., P.E. Geotechnical & HTRW Branch, Soils Section

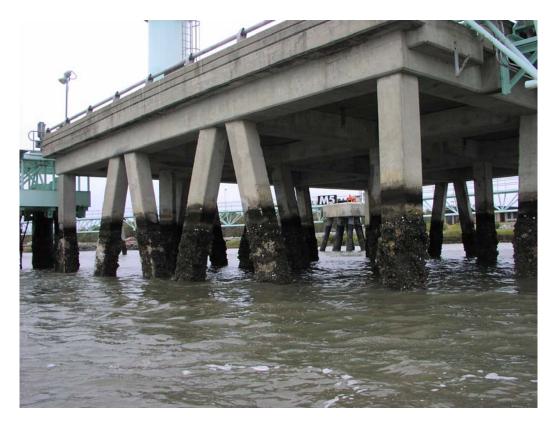
Trip photos are attached from the following files. Each photo has a short description and associated channel station location.

Trip Report photos 'p14NovA.doc' (first) Attached

Trip Report photos 'p14NovB.doc' (Second) Attached

Trip Report photos 'p15NovA.doc' Attached

Southern Energy Company LNG–Location M2 between Stations 38+300 to 39+500, Concrete and Steel Piling, Excellent Condition


Southern Energy Company LNG–Dock Fender between Stations 38+300 to 39+500, Steel Piling, Excellent Condition

Southern Energy Company LNG–Dock Piling between Stations 38+300 to 39+500, Concrete Piling, Excellent Condition

Southern Energy Company LNG–Location M2 between Stations 38+300 to 39+500, Concrete and Steel Piling, Excellent Condition

Southern Energy Company LNG–Dock and Piling between Stations 38+300 to 39+500, Concrete Piling, Excellent Condition

Kemira Inc. River Station 56+000, Pipe Dock. Wood Piles, Good Condition

Kemira Inc. River Station 56+000, Pipe Dock. Wood Piles, Good Condition

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Foundation – Concrete and Steel, Good Condition

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Foundation – Concrete and Steel, Good Condition

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Foundation – Good Condition, Looking Downstream

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Piling Foundation – Good Condition, Steel Dock Beams Showing Deterioration

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Piling Foundation – Good Condition, Steel Beams Showing Deterioration

Kemira Inc. Dock and Pier. Stations 57+000 to 58+000, Piling Foundation – Good Condition,

Old Fort Jackson, Downstream RipRap, Station 58+500

Old Fort Jackson, Downstream Moat Brickwork, Station 58+500

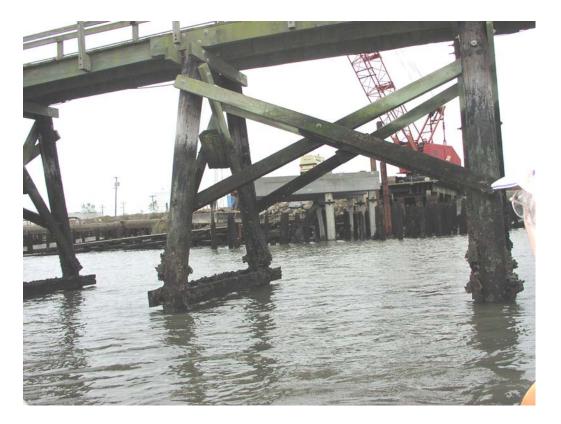
Old Fort Jackson, Downstream Moat Brickwork, Station 58+500

Old Fort Jackson, Upstream Riprap, Station 58+700

ST Services #1, Concrete Piling, Station 60+500, Good Condition

ST Services #1, Concrete and Steel Piling, Station 60+500, Good Condition

Unocal, Concrete Piles, Station 61+000, Good Condition


Unocal, Concrete Piles, Station 61+100, Good Condition

ST Services #2, Station 61+900, Wood Piles, Fair Condition

ST Services #2, Station 62+000, Steel Piles, Good Condition

ST Services #2, Station 62+200, Wood Piles, Fair Condition

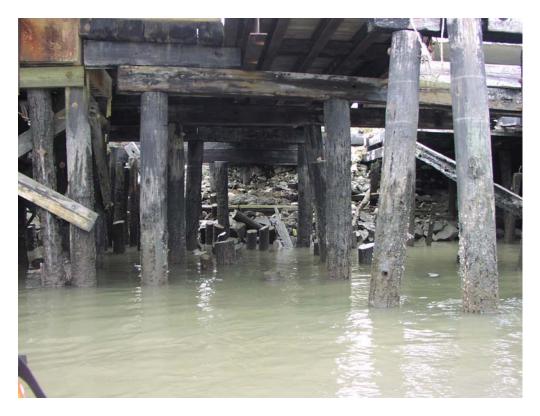
ST Services #2, Station 62+300, Wood Piles, Fair Condition

Georgia Pacific Gypsum, Station 63+250, Concrete Piles, Good Condition

Georgia Pacific Gypsum, Station 63+250, Concrete Piles, Good Condition (Close-Up)

Standard Concrete Products, Steel Piles, Station 62+700, Good Condition

Georgia Pacific Gypsum, Steel Piles, Station 63+000, Good Condition


Georgia Pacific Gypsum, Steel Piles, Station 63+000, Good Condition

Wood Chip Facility, Station 66+800, Steel Piling, Good Condition

Wood Chip Facility, Station 67+000, Steel Piling, Good Condition

East Coast Terminal Company, Station 68+500, Wood Piles

East Coast Terminal Company, Station 69+800, Wood Piles

East Coast Terminal, Station 68+100, Wood Piling, Berth 4, Deteriorated/Broken Condition

East Coast Terminal, Station 68+100, Wood Piling, Berth 4, Deteriorated/Broken Condition

East Coast Terminal, Station 68+500, Wood Piling, Berth 4, Deteriorated/Broken Condition

East Coast Terminal, Station 68+500, Wood Piling, Deteriorated/Broken Condition

East Coast Terminal, Station 69+400, Wood Piling, Deteriorated/Broken Condition

East Coast Terminal, Station 70+000, Wood Piling, Deteriorated Condition

Marriott Hotel, Concrete Piles, Station 72+300, Good Condition

Marriott Hotel, Concrete Piles, Station 72+350, Good Condition

Marriott Hotel, Concrete Piles, Station 72+500, Good Condition Note blocked and broken flap gate at drainage pipe

River Walk/Savannah Electric, Concrete Piles, Station 72+600, Good Condition

River Walk/Savannah Electric, Concrete Piles, Station 72+800, Good Condition

Turecamo/Parking Lot, Concrete Support on Wood Piles, Station 74+400, Poor Condition

Parking Lot/Ferry Dock, Concrete Support on Wood Piles, Station 74+600, Poor Condition Note: Several to many wood piles not in contact with concrete support(s), Elevation ~1 MLW.

River Street, Station 74+800

River Street, Approximate Station 75+200, Concrete and Steel Piling, Good Condition City Hall Area

River Street, Approximate Station 75+500, Hyatt Area

River Street/Savannah Electric, Station 77+000

Savannah Electric Peaking Plant, Station 77+000, Good Condition


Savannah Electric Peaking Plant, Approx. Station 77+500, Good Condition

Colonial Terminals, Approx. Station 83+000, Piling in Good Condition

Station 83+500

Intermarine, Station 83+900, Dock and Piling in Good Condition

Colonial Terminals, Station 86+000, Concrete Piles, Excellent Condition

Colonial Terminals/Union Camp Corp. Approx. Station 86+900

Union Camp Corp., Approx. Station 88+000, Steel Sheet Piling rusted thru at low water line

Union Camp Corp., Approx. Station 88+000, Steel Sheet Piling rusted thru at low water line

Union Camp Corp., Approx. Station 88+000, Steel Sheet Piling rusted thru at low water line

Union Camp Corp., Approx. Station 88+000, Steel Sheet Piling

Citgo Asphalt Refining Co., Station 90+000, Steel Sheet Piling, Good Condition

Citgo Asphalt Refining Co., Station 90+000, Steel Sheet Piling, Good Condition

Georgia Kaolin Terminals, Station 90+700, Steel Sheet Piles, Good Condition

North of Kings Island TB, Station 101+400, Widener/Taking Area

North of Kings Island TB, Station 102+200, Widener/Taking Area

Standard Concrete Products, Station 62+600, Concrete Piers and Beams, Excellent Condition

ST Services #2, Station 62+200, Wood/Steel Piling, Good Condition

ST Services #2, Station 62+200 to 61+800, Wood/Steel Piling, Good Condition

ST Services #2, Station 61+900, Wood/Steel Piling, Good Condition

Unocal, Station 61+800, Wood Piling, Good Condition

U.S. Army Corps of Engineers Yard, Concrete Piles, Station 72+500, Good Condition

U.S. Army Corps of Engineers Yard, Concrete Sheet Piles, Station 72+800, Good Condition

Artifact Area, Wood Piles/Retaining, Station 73+000

Artifact Area, Wood Piles/Retaining, Station 73+400

Weston Hotel, Steel Sheet Piles, Station 74+000, Good Condition

Weston Hotel, Steel Sheet Piles, Station 74+000, Good Condition

Weston Hotel, Steel Sheet Piles, Station 74+500, Good Condition

Convention Center, Steel Sheet Piles, Station 74+700, Good Condition

Convention Center, Steel Sheet Piles, Station 74+700, Good Condition

Convention Center, Steel Sheet Piles, Station 75+000, Good Condition

Cresent Towing & Salvage Company, Station 75+500, Brick Retaining Wall

Cresent Towing & Salvage Company, Station 75+600, Brick Retaining Wall

TIC, Station 76+000, Spud Barge

TIC, Station 76+000, Spud Barge

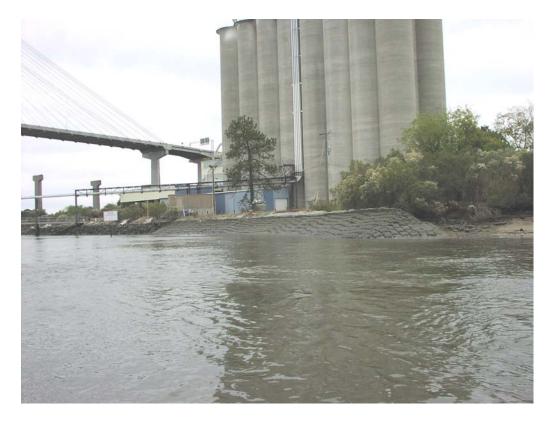
TIC, Approx. Station 76+100, Steel Sheet Piling in Good Condition

Powell Duffryn Dock, Station 76+200

Powell Duffryn Dock, Station 76+300

Powell Duffryn Dock, Station 76+500

Powell Duffryn Dock, Station 77+000


Savannah Marine Services, Station 77+250

Savannah Marine Services, Station 77+350

Chatham County/Old Radio Station Property, Station 78+000

Blue Circle Cement, Approx. Station 78+300

Blue Circle Cement, Approx. Station 78+550, Steel Shell Piles, Excellent Condition

Blue Circle Cement, Approx. Station 78+600, Steel Shell Piles, Excellent Condition

Blue Circle Cement, Approx. Station 78+800, Steel Shell Piles, Excellent Condition

Tallmadge Bridge Pier North Side, Station 79+300, Good Condition

Georgia Ports Authority Berth 13, Station 79+700, Concrete Piles, Excellent Condition

APPENDIX H

PRELIMINARY ASSESSMENT

(Click here)

SOIL BORING ANALYSES LOCATIONS / PRELIMINARY ASSESSMENT

31 January 2002

1. The existing Savannah Harbor is approximately 32 miles long (along the centerline of the channel), stretching from the Atlantic Ocean to the former New Cut Channel (Channel Stations –60+000 to 103+000). The Savannah Harbor Expansion Project proposes to add 25,000 feet of outer channel (New Channel Stations (-60+000 to - 85+000), widen selected turns within the inner harbor, and enlarge the existing Kings Island Turning Basin (Inner harbor). The outer channel work does not impact privately owned real estate. The inner harbor, for the purpose of this study, shall be described as being all reaches from Channel Station 0+000 to 103+000. There is approximately 20 miles of land on each side of the river (approximately 40 miles of river banks), and many properties that could be affected by the project depending, in part, on the proximity of the land to the proposed channel deepening and/or widening. The Corps of Engineers does not recommend taking soil samples from all properties located along the Savannah River and in the Savannah Harbor.

2. The publications by the Department of the Army, Corps of Engineers, Office of the Chief Engineers entitled "Engineering and Design, Geotechnical Investigations," EM 1110-1-1804 (29 February 1984) and "Soil Sampling," EM 1110-2-1907, are the primary sources on how to take soil samples. These engineering manuals indicate how to take the samples, but do not identify with any specificity the locations where samples must be taken. There are no regulations, internal guidelines, policies or other directives that specify the conditions under which soil samples must be obtained or the properties from which soil samples must be taken. The designing soils engineer has the discretion to decide, based on his or her best judgment as an engineer, the locations where it will be necessary to take soil samples for analysis.

3. The soils engineering staff for the Corps of Engineers is responsible for determining where soil samples for slope stability and demolition purposes will be taken in connection with the Savannah Harbor Expansion Project. During the course of determining the locations where it would be necessary for the Corps of Engineers to take soil samples for analysis, we considered the following factors: 1) the proximity of a property to the proposed project, 2) the type of material likely to be encountered (as obtained from past soil borings in the vicinity), 3) the slope of the riverbank, 4) the configuration of the existing channel, 5) hydrographic surveys, 6) topographic surveys and aerial photographs, 7) the configuration of the proposed navigation channel, 8) whether the proposed channel intersects with adjacent property, 9) the proposed method of dredging, 10) the available budget, 11) the cost of taking and analyzing soil borings,¹ and 12) the likelihood that soil sample analysis will yield necessary information. In

¹ The cost of a soil boring, including laboratory testing and analysis, and subsequent analysis of the drilling and test results, varies from approximately \$10,000.00 to \$12,500.00, per boring.

addition, we considered historic information, including: 1) most recent surveys, 2) problems arising out of most recent dredging projects, and 3) historic structures and artifacts.

4. In connection with the Savannah Harbor Expansion Project, we also conducted site inspections of all areas that could be affected by the project, by boat and by land. Documentation, photographs, and comment from the most recent inspections are contained in Memorandum For Record dated 06 December 2001, Subject: Trip Report, Savannah Harbor Expansion, Savannah, GA; Inspection of Dock Structures, Inner Harbor.

5. The decision whether to test certain property is based on an analysis of the above factors, and not the ownership of the property. The taking of soil samples, like any other expenditure in connection with a harbor expansion project, must be justifiable. Engineering judgment is used to determine the locations where the taking of soil samples will yield necessary information.

6. Soil borings and samples were taken during preliminary study analysis which will need to be augmented based on the now proposed channel configuration, and again (possibly) augmented after final model studies have been completed. Each of the following areas represents a 'taking' or real estate acquisition necessary to accommodate proposed channel widening. Areas which are known to involve 'taking' by virtue of direct intersection of proposed work to the existing channel/river configuration or where there is some question regarding existing bulkhead and/or channel bank stability are 1) Argyle Island between Channel Stations 101+000 and 103+000, 2) Kings Island Turning Basin between Channel Stations 98+700 and 100+500, 3) International Paper, northeast riverbank, between Channel Stations 87+450 and 89+500, 4) Savannah Marine Services and the former Graham Radio Corp. Property, Channel Stations 77+250 to 77+650, 5) T.I.C., Channel Stations 76+000 to 76+200, and 6) Property located at or adjacent to Wood Chip Exporting Corp., Channel Stations 65+950 to 66+200. Each of the above described areas either have been or will be investigated with regard to subsurface condition, profiles, material strength and bank stability.

7. Areas of concern that do not involve a direct intersection of the proposed project to the existing river configuration, and are recommended for soil testing are listed in the following:

a. Hutchinson/Fig Island between the U.S. Army Corps of Engineers Yard and Slip No.1, known as an archeological site consisting of soft fill materials and old ship/boat wrecks (Approximate Channel Stations 72+700 to 73+700). This area is recommended for subsurface exploration and testing to better determine bank stability with regard to the proposed project.

b. South Channel Training Wall, Elba Island side, Channel Stations 50+000 to 51+700, and near Southern Energy Corporation's natural gas pipeline crossing. Channel widening proposed along this reach will likely involve debris and/or training wall (or remnant) removal. Exploratory investigation is planned to determine size and extent of possible debris removal.

c. The extended bar channel area from -60+000 to -85+000. While not of concern to adjacent properties (none), subsurface sampling and testing will be performed to determine the character of materials proposed for removal.

d. Other areas are subject to subsurface testing and analysis. Such include aquifer studies for salt-water intrusion, which are considered beyond the scope of this writing.

8. Problematic areas exist that involve deteriorated, broken and/or highly questionable structures with regard to their stability and are located near or adjacent to the proposed project. These areas are not recommended for subsurface study, but will need to be addressed as separate issues. Each is listed in the following:

a. Cantilevered Parking Lot and Dock Facility (Owner: Sylvan Byck) located between Moran Towing and the eastern end of the original Rousakis Plaza, located opposite the Shrimp Factory on River Street, and approximately between Channel Stations 74+270 and 74+400. The foundation for the cantilevered concrete parking area consists of wood piling. As noted in the trip report dated 06 December 2001, a gap or open area exists that varies from about 1 foot to less than 1 foot between the pile tops and the concrete, depending on pile location. Given the relatively good condition of the pile tops, it is surmised that repeated loading and unloading of the parking lot has subsequently driven the piles into supporting soils beyond the depth that piles were originally installed. In any case, the gap between the pile tops and supporting concrete indicates a pile bearing failure that leaves the concrete section free to flex and move within existing constraints. Repeated movement or flexing of the concrete structure could lead to (if not already) structural problems for the parking facility. This facility in its present condition requires substantial foundation repair(s).

With regard to the proposed harbor expansion, it should be noted that over-swing normally associated with pipeline dredging (estimated at approximately 4 to 6 feet) could lead to an approximate loss of 2 feet of channel side slope soil material that currently helps support the outermost piling. While true for the outermost piles, the estimated 2 feet of possible material loss is unlikely to have an appreciable effect on remaining interior piles. In addition, it is noted that the same amount of remedial or repair work will be required, with or without the harbor expansion project.

Subsurface sampling and testing in this area isn't likely to yield any new or useful information with regard to the facility and therefore is not recommended. It is recommended that the property owner be advised of the foundation conditions discovered before actual dredging occurs

b. International Paper (formerly Union Camp), southwest side, located between Channel Stations 87+500 and 89+600. The sheet-piling bulkhead contains numerous holes approximately 1-foot square in size at or near the zero mlw elevation. It is unclear whether these holes have been cut deliberately (given the near uniform hole sizes), perhaps as a previous drainage effort, or if the holes are the result of long term pile corrosion at the low water mark.

With regard to the proposed project in this vicinity, the resulting side slope from project dredging is not expected to change or alter existing conditions directly adjacent to the

bulkhead. The above expectation is based on the distance of the bulkhead from the proposed channel work and considering usual dredging practices.

Subsurface sampling and testing in this area is not likely to yield any new or useful information with regard to the facility or project and therefore is not recommended. However, it is recommended that the property owner be advised of the bulkhead conditions discovered during our site inspection.

c. Crescent Towing and Salvage Company approximately located between Channel Stations 75+500 and 75+800. Crescent's brick wall and brick retaining wall structures appear to be supported or partially supported on wood piling. The wall is severely cracked, with portions of the wall either removed, or broken and subsequently fallen into the river. The wood piling behind the brick wall and supporting the dock facility appears to exist in a fair to good condition.

With regard to the proposed project and the Crescent property, the harbor expansion could have some effect on the stability of the brick wall and supporting piles. While it is not recommend that sampling and testing be performed solely for this facility, testing and sampling is currently planned for Crescent's neighboring facility, T.I.C., located approximately 400 feet upstream. Given the contiguous nature and similar histories for this reach, the sampling, testing and analysis currently planned should be considered sufficient and cost effective. The results of the analysis for the reach between Channel Stations 75+500 and 76+250 will be applied to the landmass / riverbank without regard to who owns which part. Any subsequent recommendations will be addressed after analysis has been completed.

d. East Coast Terminal Company, approximate Channel Stations 68+000 to 69+700. Observations reveal the supporting foundation for the dock facility at East Coast Terminal exists in an advanced state of deterioration and disrepair. This includes piling, pile bracing, wood retaining structures and portions of the concrete deck.

With regard to the proposed project in this vicinity, the resulting side slope from project dredging is not expected to change or alter existing conditions adjacent to the East Coast dock facility. This conclusion is based on the distance of the dock from the proposed channel work (80 to 120 feet) and considered usual dredging practices.

Subsurface sampling and testing in this area is not is not recommended. However, it is recommended that the property owner be advised of the dock facility foundation conditions discovered during our site inspection.

9. The remaining properties, structures and/or other items within the scope of the proposed harbor expansion exists in or belongs to one of the following conditions:

a. Located by sufficient distances from the proposed work so as not to be impacted and are not recommended for sampling and testing of soil materials or further studies.

b. Located near, but outside, the proposed work and exist in an excellent to good condition. Sampling and testing in the vicinity of such facilities will not provide any

useful information with regard to the proposed work and such sampling and testing is not recommended.

c. Is currently under design for remediation / repair of structural facilities to be implemented as an item separate from the proposed project. i.e. Old Fort Jackson moat and bank protection.

d. Belongs to a group or class probably best described as obstructions and are being addressed as separate issues. i.e. CSS Georgia, sunken barges, training wall(s), etc..

APPENDIX I

GENERAL CORRESPONDENCE

GENERAL CORRESPONDENCE

NOTE: Not all files available in the Correspondence directory are listed below. Reading availability is dependent on viewing software programs including Arc Info, Arc GIS, MicroStation and/or AutoCad, and Visio.

- **1.** Assumptions and Problems
- 2. Bridge Article
- 3. Container Facilities Feasibility Study
- 4. Expansion Plan Formulation
- 5. Preliminary Alternative SavHarb Expansion
- 6. Savannah Harbor Expansion
- 7. Savannah Harbor Questions
- 8. Savannah Harbor
- 9. Savannah Harbor Area Map

APPENDIX J

REVIEW OF PREVIOUS STUDIES

REVIEW OF PREVIOUS STUDIES

The following links represent partial, but important reviews of past geotechnical and slope stability studies made in the process of widening and deepening the Savannah River.

Appendix D of the first DM listed, starting on page 168, contains earlier slope stability studies performed for the Savannah River. (Required reading for the not-so feint of heart)

1992 Savannah Harbor Deepening - Design Memorandum and Appendices B-E - Vol 1

1992 Savannah Harbor Deepening - Design Memorandum Appendices F through I - Vol 2

1992 Savannah Harbor Comprehensive Study Main Report

1975 Feasibility Report