

GEORGIA SILVER JACKETS

HOUSEKEEPING RULES

- Please remain muted at all times unless you have a question.
- Use the raised hand function or the chat box to ask questions.
- Hold all questions until the end of each presentation.
- When asking a question, please double check to make sure you are not double muted.
- Enjoy the workshop!

Presenters

Kimberly Garvey – U.S. Army Corps of Engineers, Savannah District Blair Holloway – National Oceanic and Atmospheric Administration, National Weather Service Jared Lopes – U.S. Army Corps of Engineers, Savannah District Idris Dobbs – U.S. Army Corps of Engineers, Jacksonville District John McCombs – National Oceanic and Atmospheric Administration, Office of Coastal Management Andrew Condon, Ph.D., P.E. – U.S. Army Corps of Engineers, Coastal Hydraulics Lab Ashby Worley, CFM – The Nature Conservancy Haydn Blaize – Georgia Department of Natural Resources, Environmental Protection Division Doug Marcy – National Oceanic and Atmospheric Administration, Office of Coastal Management Tashya Allen – National Oceanic and Atmospheric Administration, Office of Coastal Management Jessica Brown, P.E. – University of Georgia Marine Extension and Georgia Sea Grant Jennifer Kline – Georgia Department of Natural Resources, Coastal Resources Division Scott Pippin, J.D., CFM – University of Georgia, Carl Vinson Institute of Government Jack Krolikowski – Georgia Emergency Management Agency, Homeland Security

Georgia

Resilience

Workshop

WELCOME ?

ASSESS | COMMUNICATE | ADDRESS

GEORGIA SILVER JACKETS COASTAL RESILIENCE WORKSHOP

ASSESS | COMMUNICATE | ADDRESS

Georgia Coastal Flood Trends and Experimental Coastal Flood Extent Maps

Blair Holloway NOAA/National Weather Service

Blair.Holloway@noaa.gov

COASTAL RESILIENCE WORKSHOP

GEORGIA COASTAL FLOOD TRENDS AND EXPERIMENTAL COASTAL FLOOD EXTENT MAPS | ASSESS

OUTLINE

- NWS Charleston coastal flood program
- Coastal flood trends at the Fort Pulaski, GA tide gauge
- Introduce the recently released experimental coastal flood extent maps

GEORGIA SILVER JACKETS

HW-80 looking toward Tybee Island – 10/27/2015 Fort Pulaski peak observed tide – 10.43 ft MLLW

GEORGIA COASTAL FLOOD TRENDS AND EXPERIMENTAL COASTAL FLOOD EXTENT MAPS | ASSESS

NWS Charleston Coastal Flood Program

GEORGIA SILVER JACKETS

- Limited coastal/tide gauge coverage along the GA coast
 - Fort Pulaski (NOS)
 - Meridian (USGS)
 - St. Simons (USGS)
 - Cumberland Island (USGS)
- NWS office coverage
 - NWS Charleston: Savannah River to the Altamaha River
 - NWS Jacksonville: Altamaha River to the FL state line

GEORGIA COASTAL FLOOD TRENDS AND EXPERIMENTAL COASTAL FLOOD EXTENT MAPS | ASSESS

NWS Charleston Coastal Flood Program

GEORGIA SILVER JACKETS

- Coastal flood program for the southeast GA coast is based on the Fort Pulaski (NOS) tide gauge
- A Total Water Level (TWL) forecast is created at least twice each day
- Coastal Flood Watch, Warning, Advisory decisions are made based on the TWL forecast
- Fort Pulaski tide gauge
 - Complete annual data back to 1936
 - Action stage: 9.2 ft MLLW
 - Minor flood stage: 9.5 ft MLLW
 - Moderate flood stage: 10.0 ft MLLW
 - Major flood stage: 10.5 ft MLLW
- Coastal Flood Event Database
 - https://www.weather.gov/chs/coastalflood

COASTAL RESILIENCE WORKSHOP

Fort Pulaski, GA 9.5 ft MLLW Tide Events by Month

Year

GEORGIA COASTAL FLOOD TRENDS AND EXPERIMENTAL COASTAL FLOOD EXTENT MAPS | ASSESS

Experimental Coastal Flood Extent Maps

- Purpose is to provide partners with a visualization of potential coastal flood extent
- Created by NOAA Office for Coastal Management
- Based on digital elevation data and NWS defined coastal flood thresholds at coastal gauge locations
- Only highlights wet vs. not wet
- Does not provide depth
- Not a forecast of flood extent

Experimental Potential Coastal Flood Extent Maps (How to use this information?)

Low-lying Areas Minor Extent Moderate Extent Major Extent Major +1 Ft Extent Major +2 Ft Extent Major +3 Ft Extent Opacity 0.0 0.2 0.4 0.6 0.8 1.0 Note: The potential coastal flood extent overlays illustrate the **extent** of potential stillwater flooding at a flood category threshold, not the

vers do not account for the effects of wind, rainfall, wave action, erosion, subsidence, or t

COASTAL RESILIENCE WORKSHOP

GEORGIA SILVER JACKETS

GEORGIA COASTAL FLOOD TRENDS AND EXPERIMENTAL COASTAL FLOOD EXTENT MAPS | ASSESS

Experimental Coastal Flood Extent Maps

GEORGIA SILVER JACKETS

- Minor, Moderate, Major flood stage thresholds determined by NWS offices for each gage location
- Layers indicate wet or dry areas due to the threshold level of flooding
- Yellow areas indicate low lying areas where rain/fresh water can be trapped and salt water can reach through storm drains
- Uses a still water assumption (no waves/wave setup)
- The layers do not account for the effects of wind, rainfall, wave action, erosion, subsidence, or future construction
- e Cross-section view

https://www.weather.gov/erh/coastalflood

ASSESS | COMMUNICATE | ADDRESS

SOUTH ATLANTIC COASTAL STUDY (SACS) TIER 1 RISK ASSESSMENT

PRESENTED BY JARED M. LOPES, WATER RESOURCES PLANNER U.S. ARMY CORPS OF ENGINEERS | SAVANNAH DISTRICT

Jared.M.Lopes@usace.army.mil

PRESENTATION OUTLINE

- A. Overview of the SACS Tier 1 Risk Assessment
- **B.** Tool Demonstration
- C. Learn More / Questions

SACS TIER 1 RISK ASSESSMENT - OVERVIEW

- •Developed by: : USACE; methodology consistent with analysis and data employed in the North Atlantic Coast Comprehensive Study (NACCS)
- •What it Does: Provides consistent regional assessment of coastal storm hazards and potential risk caused by storm surge inundation and seal-level rise (SLR) across USACE South Atlantic Division boundaries
- Access: <u>https://data-sacs.opendata.arcgis.com/</u> | https://www.sad.usace.army.mil/SACS/
- Input: National-level data sets
- •Output: Composite Risk Index = Composite Exposure Index x Hazard
- Note: Hazard is defined as annual exceedance probability (AEP) of a flooding hazard
- •Date Published/Update: 2019
- •Additional Software/Hardware Requirements: Google Chrome, Microsoft Edge
- Special Permissions Needed: None
- Caveats? Tier 1 does not consider additional coastal hazards (e.g., erosion, wave attack, compound flooding)

SACS TIER 1 RISK ASSESSMENT - OVERVIEW

COMPOSITE RISK INDEX = COMPOSITE EXPOSURE INDEX x HAZARD

Exposure Defined: Composite Exposure Index (CEI) A sum of 3 independent, weighted exposure indices:

Population and Exposure Index (60% weighting):

Population density: number of persons within an aerial extent across the study area Infrastructure: critical infrastructure that supports the population and communities

Environmental and Cultural Resources Exposure Index (30% weighting):

Important habitat and cultural resources listed in the National Register of Historic Places (NRHP) that would be affected by storm surge

Social Vulnerability Exposure Index (10% weighting):

Characterization includes certain segments of the population that may have more difficulty preparing for and responding to coastal flood events (CDC SVI)

GEORGIA SILVER JACKETS

COMPOSITE RISK INDEX = COMPOSITE EXPOSURE INDEX x HAZARD

Existing and Future Flood Hazard

Assessment of coastal hazards caused by storm surge inundation and sea level rise for the following water levels:

 10-percent Annual Exceedance Probability (AEP) water levels (10-year storm) (Source: U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory - ERDC/CHL)

•1% annual exceedance probability water levels (100-year storm) (Source: National Flood Hazard Laver - NFHL)

 \rightarrow 3 feet of sea-level rise was added to the 1% and 10% AEP water levels to simulate future flooding events given relative sea level rise (3 feet of SLR is expected to occur in the next 50-100 years, based on the USACE Medium and High SLR curves)

•Cat 5 Maximum of Maximum (MOM) hazard (Source: NOAA's Sea, Lake and **Overland Surges – SLOSH- model**

COMPOSITE RISK INDEX = COMPOSITE EXPOSURE INDEX x HAZARD

Potential Areas of Risk

The Composite Risk Index (CEI) and coastal flood inundation hazards were combined to identify potential areas at risk

•Defines risk as function of probability of hazard occurrences (with 3 feet of sea level rise) and exposure (composite exposure index)

•Future condition Composite Risk Index (bottom map) identifies areas that could see a potential increase in risk from coastal storms as a result of 3 feet of sea level rise

*Census places ranked from highest to lowest total area affected. Rows in blue highlight greatest percentage increase in affected area.

APPLIED EXERCISES AND ACCESSING THE TOOL

Technical Study Products

- Problem: Composite Risk Index -Comparison between the existing and future condition (+3' SLR)
- Example location: St Mary's, Georgia

Open the Tier 1 Risk Assessment through the SACS website:

https://www.sad.usace.army.mil/SACS/

Step 1: Open the SACS Geoportal

Step 2: Open the SACS Tier 1 Risk Assessment

APPLIED EXERCISE #1: COMPOSITE RISK INDEX

 Use the "Composite Risk Index" tab to assess changes in projected flood risks between the existing and future condition with SLR.

B

Step 1 Select "Risk Index Comparison" tab from top toolbar (Note: User can use dropdown menu in upper right-hand corner if screen isn't wide enough to display)

Step 2 Once in the tab, click on "layers" under the map heading

GEORGIA SILVER JACKETS

Step 3 Select the "Composite Risk Index" layer from the menu

10

Deselect the "Composite Risk Index" layer and select the "Composite Risk Index Plus SLR"" from the menu

APPLIED EXERCISE #1: COMPOSITE RISK INDEX

Assess coastal flooding risk projections between the existing and future condition

B

APPLIED EXERCISE #2: RISK INDEX COMPARISON

Use the "Risk Index Comparison" tab to identify the primary drivers of risk

B

Select "Risk Index Comparison" tab.

Analyze which AEP hazard or exposure indices are contributing towards the CRI. Note: Population and Exposure Index is weighted at 60%.

APPLIED EXERCISE #2: RISK INDEX COMPARISON

Use the "Risk Index Comparison" tab to identify the primary drivers of risk

GEORGIA SILVER JACKETS

B

Select "Risk Index Comparison" tab.

Analyze which AEP hazard or exposure indices are contributing towards the CRI. Note: Population and Exposure Index is weighted at 60%.

COASTAL RESILIENCE WORKSHOP

- The South Atlantic Coastal Study (SACS) applies the Tier 1 Risk Assessment to identify potential high-risk locations in the Main Report, Georgia Appendix, and Georgia Focus Area Action Strategies (Chatham County, Glynn County)
- Tier 1 GIS data layers can be downloaded from the geoportal to:
 - Create high resolution maps
 - Conduct additional analyses

Questions?

ASSESS | COMMUNICATE | ADDRESS

SOUTH ATLANTIC COASTAL STUDY (SACS) TIER 2 ECONOMIC RISK ASSESSMENT (ERA)

PRESENTED BY IDRIS DOBBS, PLANNER ECONOMICS BRANCH, JACKSONVILLE DISTRICT

Idris.L.Dobbs@usace.army.mil

GEORGIA SILVER JACKETS COASTAL RESILIENCE WORKSHOP

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

Developed by: USACE and utilizes FEMA's HAZUS model for coastal storm surge inundation

What it does:

- Estimates storm surge inundation risk to public and private property and critical infrastructure
- Helps users to assess/understand the spatial distribution of storm surge risk to economic development in the existing condition and future condition (3 feet of sea level rise added to model)
- Includes all coastal and riverine areas within the zone of tidal influence in GEORGIA and throughout the South Atlantic Division

Caveat? Tier 2 does not consider additional coastal hazards (e.g., erosion, wave attack, compound flooding)

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

SACS TIER 2 ERA - OVERVIEW

Input:

- National Structure Inventory (NSI)
- HAZUS (Level-1): North Carolina, South Carolina, Georgia, GEORGIA, Alabama, and Mississippi (CONUS)
- FAST (Flood Assessment Structure Tool): Puerto Rico and U.S. Virgin Islands (OCONUS)

Output:

- Damages aggregated to the Census Place and Census Block Level and expressed in Annual Expected Damages (AED)
- Consequences: \$ damage, depreciated losses from 10, 50, 100, and 500-year return periods
- Risk: Expected Annual Damages (EAD) in any given year (if consequence likelihoods and magnitudes are evenly distributed over time)

Incorporating Sea Level Rise

Scenarios presented as a range between low (existing conditions) and high (future)

- Existing Conditions (low): no sea level change included
- Future Conditions (high): sea level change included
 - ► CONUS: 3' of sea level rise
 - ► OCONUS: 2.33' of sea level rise

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

Relationship with Other SACS Products: Pairs with the SACS Measures and Cost Library (MCL) to quantitatively assess the feasibility of coastal risk management solutions/alternative plans to address storm surge inundation risk

Access: Tier 2 ERA report and tools can be accessed through the SACS website and SACS Geoportal (free and publicly accessible)

Date Published: Published in 2020 using FY18 values

ERA Dashboard for Savannah, vicinity Savannah / Tybee Island area ERA through SACS GIS

GEORGIA SILVER JACKETS

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

A SACS TIER 2 ERA – OVERVIEW/GEORGIA

Georgia:

- Existing Risk: \$134 Million
- Future Risk: \$383 Million
- Comparison of highest risk census places, counties, and planning reaches throughout Georgia

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE SACS TIER 2 ERA – OVERVIEW/GEORGIA COAST

Future Maximum Surge Elevation per Return Period Event by County

Future Risk

\$198,652,24

\$118,204,100

\$27,734,354

\$16.071.284

\$14,531,720

\$8,186,691

383.380.39

SACS Planning Reach GA_05 (Georgia Coast):

Existing Risk: \$134 M

Α

- Future Risk: \$383 M
- Maximum surge elevation ranges
 - Existing: 5.7ft 11.8 ft
 - Future: 8.7 ft 14.8 ft
- Highest risk places include St Simons, Skidway Island, Wilmington Island, Savannah, and Brunswick, etc.

R	each										
GA 05 : Georgia Coast					Existing & Future Risk by County						
GA_05 : Georgia Coast			~	County	# Census Blocks	Acres	Existing Risk	Futur			
				Chatham	2149	199,607	\$72,620,842	Ť			
	\$133,683,550	\$383,380,396		Glynn	409	211,457	\$38,698,980				
	Existing Risk	Future Risk		Camden	660	262,342	\$9,047,954				
	1,125,717	4992		Bryan	249	86,316	\$5,032,298				
	# Acres Impacted	# Census Blocks Impacted		Liberty	296	149,093	\$4,617,847				
	# Acres impacted	# Census blocks impacted		McIntosh	229	216,908	\$3,665,629				
	6	30		Total	4992	1,125,717	\$133,683,550	1			
	# Counties Impacted	# Census Places Impacted									

			(ft)		
Coastal Counties	Shoreline	EC_10Yr	EC_SOW	EC_100Yr	EC_S00Yr
McIntosh	Ocean	5.90	8.10	9.15	11.30
Liberty	Ocean	6.00	8.30	9.45	11.60
Glynn	Ocean	5.70	7.80	8.86	10.90
Chatham	Ocean	6.10	8.40	9.59	11.80
Camden	Ocean	5.70	7.80	8.86	10.90
Bryan	Ocean	6.00	8.30	9.45	11.60

Existing Risk by Census Block

Future Risk by Census Block

6.082 \$12.931.472

\$19,551,772

\$29,447,963

\$42,033,603

\$29,718,740

18,569

46.918

4992 1,125,717 \$133,683,550

104,433

CB Risk Rating # Census Blocks

1-High

2-Med High

4-Low-Med

5-Low

GEORGIA SILVER JACKETS

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE B SACS TIER 2 ERA – HOW TO USE

- Annual Exceedance Probability (AEP): The percent chance a hazard of a certain magnitude or lesser will occur in any given year. Higher
 magnitude events are associated with lower AEPs.
- Damages (Consequences): The damages are the consequences expressed in dollars given the occurrence of an AEP event. These damages
 represent the cost of replacing structure and content asset losses minus the depreciation of those assets.
- Expected Annual Damages (EAD): The damages expressed as a monetary value that occur in any given year if all AEP event probabilities and magnitudes were spread out equally over time. expense that would occur in any given year if monetary damages from all hazard probabilities and magnitudes were spread out equally over time. This is not to imply that the same level of damages will happen every year ; some years could see large impacts, other years could receive moderate impacts, while other years could see minimal to no impacts. EAD is a reflection of economic risk and is linked to the NED (National Economic Development) account.

GEORGIA SILVER JACKETS

SACS TER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE B SACS TIER 2 ERA – HOW TO USE

Step1: Clearly define problem/opportunity in terms of:

- Who, What, Where, Why, and How
- Step 2: Using Tier 2 ERA web app tools, select

census blocks that define the extent of the problem

- Step 3: Record range of risk
 - Risk between \$1.4M (existing condition/low range) - \$3.7M (future condition/high range)
 - Record range of consequences per return period (user discretion)

GEORGIA SILVER JACKETS

Steps 4 – 6 : Continued with discussion of the SACS MCL

Problem: Damages to property & infrastructure adjacent to Goulds inlet from storm surge , waves, and erosion

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE **APPLIED EXERCISES AND ACCESSING THE TOOL**

Coastal Hazards System

Provides wave and water levels derived from

numerical modeling.

Go to the Coastal Hazards System

Geoportal

Study data and additional information of

various SACS products, including the Tier 1

and Tier 2 Risk Assessment, Environmental

Analysis, and more...

Go to the Geoportal

Problem: Damages to property & infrastructure adjacent to Goulds inlet from storm surge, waves, and erosion

Open the Tier 2 Economic Risk Assessment Report and Dashboard through the SACS website and SACS Geoportal:

GEORGIA SILVER JACKETS

COASTAL RESILIENCE WORKSHOP

Estimated storm surge inundation risk expressed as dollar damages to public and private property and limited critical

Go to the Tier 2 Economic Risk Assessment

View Draft Tier 2 Economic Risk Assessment

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE **APPLIED EXERCISE #1: SELECTING CENSUS BLOCKS**

Use the Lasso shape selection to determine the potential economic risk range from storm surge inundation for the southern tip of St. Simons Island, Ga.

Step 1

Click on drop-down menu in upper left-hand corner of dashboard and select the lasso shape in order to draw around specific census blocks on interest

Step 2

which provide the existing and future expected annual

damages (EAD) (Note: Highlighting census places in one map

will also apply to the other map)

Existing Conditions \$11.145M Expected Annual Damages

Future Conditions \$35.704M Expected Annual Damages

Step 3

The economic risk ranges from \$11.1M (existing conditions) -\$35.7M (future condition with 3 feet of sea level rise) using outputs from the ERA web tool

GEORGIA SILVER JACKETS **COASTAL RESILIENCE WORKSHOP**

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

APPLIED EXERCISE #2: IDENTIFY SPECIFIC AEP DAMAGES

Use the blue bar graphs in the ERA dashboard to determine the amount of economic damages(consequences) associated with the 5% (50-year) AEP to the selected St Simons Island Area with 3 feet of sea level rise

* AEP: Annual exceedance probability

Step 1

Building off the last applied exercise, circle the City of St. Augustine census blocks and zoom into the blue bar graphs associated with the future condition outputs (right-hand map)

Step 2

The bar graphs show the damage from the 10, 50, 100, and 500-year AEP storms with 3-feet of sea level rise (the 50-year is the second bar from the left) **Step 3** The total economic damages

associated with a 50-year storm are \$416.4 Million

GEORGIA SILVER JACKETS

SACS TIER 2 ECONOMIC RISK ASSESSMENT (ERA) | ASSESS AND COMMUNICATE

- The SACS Tier 2 Economic Risk Assessment report and dashboard are available through the SACS Website: <u>https://www.sad.usace.army.mil/SACS/</u>
- The South Atlantic Coastal Study (SACS) applies the Tier 2 Economic Risk Assessment to identify potential high-risk locations in the Main Report, GEORGIA Appendix, and Georgia Focus Area Action Strategies
- Tier 2 ERA GIS data layers can be downloaded from the geoportal to:
 - Create high resolution maps
 - Conduct additional analyses

Coastal Flood Exposure Mapper

John McCombs NOAA Office for Coastal Management John.McCombs@NOAA.gov

Outline

- Overview of Tool
- Description of Layers
- Georgia Focused Examples
- FEMA Community Rating System

Coastal Flood Exposure Mapper

Tool Overview

- Developed by: NOAA Office for Coastal Management
- What it Does: This online visualization tool supports communities that are assessing their coastal hazard risks and vulnerabilities. The tool creates a collection of user-defined maps that show the people, places, and natural resources exposed to coastal flooding.
- Access: <u>coast.noaa.gov/floodexposure/</u>
- Input: National-level data sets
- Output: Customizable maps
- Date Published/Update: 2022
- Additional Software/Hardware Requirements: None
- Special Permissions Needed: None
- Caveats? intended to support screening-level analysis

Coastal Flood Exposure Mapper

APPLIED EXERCISE: Infrastructure and Development

- Your favorite city
- Examine Infrastructure features and various Hazards

coast.noaa.gov/floodexposure/

APPLIED EXERCISE: Infrastructure and Development

Step 1 Zoom to your area of interest **Step 2** Examine hazards against infrastructure Step 3 Save maps

Community Rating System

The Community Rating System (CRS) is a voluntary incentive program that recognizes and encourages community floodplain management practices that exceed the minimum requirements of the <u>National Flood</u> <u>Insurance Program (NFIP)</u>. Over 1,500 communities participate nationwide.

- 58 communities in Georgia are eligible as of April 2022
- ~14% discount in Special Flood Hazard Areas (SFHA), 6.4% non-SFHA

Community Rating System

The CFEM can be used to support multiple activities with the CRS to help communities receive discounted flood insurance premiums

- Create and provide custom maps of areas at risk
- Perform outreach activities
- Identify open space areas for protection and preservation
- Identify and plan for natural floodplain protection

COMMUNITY INFORMATION BULLETIN

Reduce Insurance Premiums and Keep Money in Your Pocket with Coastal Flood Exposure Mapper

NOAA's Coastal Flood Exposure Mapper

Implementing flood-reduction programs makes communities more resilient and allows homeowners to save on flood insurance premiums—sometimes by as much as 45 percent. The Coastal Flood Exposure Mapper, a new tool from the National Oceanic and Atmospheric Administration (NOAA), can be a valuable ally for communities seeking to reap these rewards.

Communities participating in the National Flood Insurance Program's Community Rating System can use the data and visualization capabilities found within this tool to support coastal flooding discussions and planning activities. Such activities can help communities improve their Community Rating System score—and pay less in homeowner flood insurance—because they are working to implement flood-reduction efforts that go beyond minimum standards. "The money saved by the Community Rating System, which is over \$1 million annually, is money that stays in Myrtle Beach - it doesn't go to insurance companies in Hartford, in Omaha...it stays at home to make an impact here."

The tool provides a wealth of information. Printable, shareable maps show not only flood hazards but also different aspects of community exposure—people, places, and natural resources. Community Rating System participants find this information particularly useful for Floodplain Management Planning (Activity 510), Element 512.a, which identifies a 10-step planning process for comprehensive floodplain management.

John T. Rhodes, Mayor Myrtle Beach, South Carolina

Ecosystem Exposure Maps

Natural areas help reduce flooding by storing extra water. This section of the tool provides the maps that show where wetlands, beaches and dunes, and other open spaces are located. Communities use this information to improve their score in the following sections:

Map Information Services (Activity 320), Element 322.g – Credit for providing information about areas that should be protected because of their natural floodplain functions.

- Open Space Preservation (Activity 420), Element 422.a Credit for preserving open space in the floodplain. Element 422.c – Credit for preserving open space in areas where natural Rodplain functions are preserved or restored.
- Floodplain Management Planning (Activity 510), Element 512.c – Credit for adopting plans that protect one or more natural functions within the community's floodplain.

Flood Hazard Maps

Informative maps found under this section show flood hazard areas designated by the Federal Emergency Management Agency as well as shallow coastal flooding areas, sea level rise scenarios, and storm surge scenarios. Communities use this information to improve their Community Rating System score in the following sections:

 Map Information Services (Activity 320), Element 322.c – Credit for information about other flood hazards not shown on the Flood Insurance Rate Map.

 Outreach Projects (Activity 330), Element 332.a – Credit for designing and carrying out public outreach projects.

Coastal Flood Exposure Mapper

www.coast.noaa.gov/digitalcoast/tools/flood-exposure

This tool is one of many resources available from NOAA's Digital Coast at www.coast. noaa.gov/digitalcoast. To learn more, see the Community Rating System Coordinator's Manual (www.fema.gov/media-library/assets/documents/87687/d-2434) or contact your state (www.floodsmart.gov/floodsmart/pages/srs/contact2.jp).

CFEM for CRS

LEARN MORE

- https://coast.noaa.gov/digitalcoast/tools/flood-exposure.html
- Data: Links to all the <u>Exposure data and information</u>
- Stories: <u>Identifying Areas Vulnerable to Sea Level Rise in Georgia</u>, <u>Identifying Infrastructure Vulnerable to</u> <u>Shallow Coastal Flooding in South Carolina</u>
- Training: <u>Adaptation Planning for Coastal Communities</u>, <u>How to Map Open Space for Community Rating System</u>

Frequently Asked Questions			
· Access the map services and	data used in the tool		
	o let us know how you are using the r	napper, contact	
NOAA's Office for Coastal Ma	anagement.		
		(8)	(15
(5)			
5			
5	AR	Sea Level Rise	
	See Related	Sea Level Rise	See Related
5 See Related	See Related		See Related

NOAA OFFICE FOR COASTAL MANAGEMENT

JOHN.MCCOMBS@NOAA.GOV

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

ASSESS | COMMUNICATE | ADDRESS Coastal Hazards System

PRESENTED BY Drew Condon, Ph.D., P.E. – Research Civil Engineer U.S. ARMY CORPS OF ENGINEERS | Coastal Hydraulics Lab

andrew.j.condon@usace.army.mil

PRESENTATION OUTLINE

- A. Overview of Product/Tool
- B. Applied Exercise (How to Use)
- C. Learn More

Coastal Hazards System Publications and Website

- Developed by: USACE Engineering Research and Development Center Coastal Hazards Group
- What it Does: Provides consistent assessment of coastal hazards caused by storm surge and wave attack under current day and future sea levels across USACE South Atlantic Division (NC to FL to MS, including PR and USVI)
- Access: <u>https://chs.erdc.dren.mil/</u>
- Input: High-fidelity hydrodynamic and wave modeling of probabilistically defined cyclones under current day and future sea level
- Output: Time series and peak values of model results; Annual Exceedance Frequencies – 1000's of save points
- Date Published/Update: 2021
- Additional Software/Hardware Requirements: Chrome, Edge, Firefox, Safari
- Special Permissions Needed: None
- Caveats? Regional scale follow-on site-specific assessments may be needed

GEORGIA SILVER JACKETS

A COASTAL HAZARDS SYSTEM – OVERVIEW continued

What is the Coastal Hazards System

- CHS is a national-scale effort for the quantification of coastal storm hazards and distribution of Probabilistic Coastal Hazard Analysis (PCHA) results and statistics.
- Provides a centralized location for PCHA data to support feasibility studies, economics analyses, evaluation of naturebased features, stochastic engineering designs, and risk and resilience assessments

GEORGIA SILVER JACKETS

CHS Components

- PCHA framework integrating comprehensive characterization of regional storm climatology, advanced joint probability analysis, high-resolution atmospheric and hydrodynamic numerical modeling, and cutting-edge machine learning techniques and metamodels
- Data repository numerical model output and hazard curves for storm surge, waves, currents, and wind fields associated with tropical and extratropical cyclones.
- Web-tool / website for easy access to results, documentation, and metadata
- https://chs.erdc.dren.mil/

A COASTAL HAZARDS SYSTEM – OVERVIEW continued

A COASTAL HAZARDS SYSTEM – OVERVIEW continued

Probabilistic Coastal Hazard Analysis (PCHA)

GEORGIA SILVER JACKETS

- Why use synthetic storms?
 - Tropical Cyclone (TC) hazard is spatially and temporally underrepresented in historical record.
- Joint probability method (JPM) is the standard Joint Probability Analysis (JPA) model approach for TCs.
 - JPM-OS (Resio 2007; Toro 2008)
 - USACE PCHA (Nadal-Caraballo et al. 2014, 2020).
- Standard TC Forcing Parameters.
 - Track position (reference location, x_0)
 - Track angle (heading direction, θ)
 - Intensity (central pressure deficit, \(\Delta p\)
 - Size (radius of maximum winds, R_{max})
 - Translational speed, V_t
- TCs with Hurricane Michael's characteristics can be represented within JPM probability space.

A COASTAL HAZARDS SYSTEM – OVERVIEW continued

GEORGIA SILVER JACKETS

- SACS CHS Study Domains
- Puerto Rico / USVI
 - 300 simulated synthetic tropical cyclones
 - 348,000 augmented suite
- North Carolina to Southeast Florida
 - 1,060 simulated synthetic tropical cyclones
 - 1,160,100 augmented suite
- Southwest Florida to Mississippi
 - 1,085 simulated synthetic tropical cyclones
 - 1,252,200 augmented suite

North Carolina to South Florida

A COASTAL HAZARDS SYSTEM – OVERVIEW continued

GEORGIA SILVER JACKETS

CHS Sea Level Change

- CHS Dynamically Incorporates
 Sea Level Change
 - Accounts for non-linearities in coupled surge / SLC
- Results available at three initial water levels
 - 0.00 ft of SLC (MSL, 1983 2001 tidal epoch)
 - 2.73 ft of SLC
 - ~ 40 50 years under USACE High
 - ~ 100 years under USACE Intermediate
 - 7.35 ft SLC
 - ~ 100 years under USACE High

COASTAL HAZARDS SYSTEM – OVERVIEW continued

GEORGIA SILVER JACKETS

GEORGIA SILVER JACKETS

 Problem: Storm surge inundation annual exceedance frequency (AEF) at Tybee Island for current and future sea level

https://www.sad.usace.army.mil/SACS/

or

https://chs.erdc.dren.mil/

COASTAL RESILIENCE WORKSHOP

10

APPLIED EXERCISE #1: AEFs at Tybee Island

Step 1

- Three options are presented to search for data:
 - 1) Study
 - 2) Location
 - 3) Storm
- Select by Study

BEGIN BY MAKING A SELECTION BELOW FOR YOUR DESIRED WEB-TOOL FUNCTION

The Coastal Hazards System (CHS) is a national coastal storm hazard data resource for probabilistic coastal hazard assessment (PCHA) results and statistics, storing numerical and probabilistic modeling results including storm surge, astronomical tide, waves, currents, and wind. CHS is an up-to-date and easily accessible environment for development, storage, and rapid access to PCHA hazard results, additional information such as tides, wind and rainfall, and documentation of the results. Based on high-resolution numerical modeling of coastal storms that spanning practical probability and forcing-parameters, PCHA results directly support prohabilistic devine nrisk assessment.

APPLIED EXERCISE #1: AEFs at Tybee Island

COASTAL HAZARDS SYSTEM, V2.0 Itome Web-Tool Studies Tools Library Help Login
CHS performs best in Chrome, Edge, Firefox and Safari. Internet Explorer is no longer supported due to Microsoft's End-of- Life support.
You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions: -The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations. - At any time, the USG may inspect and seize data stored on this IS - Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose. - This IS includes security measures (e.g., authentication and access controls) to protect USG interests—not for your personal benefit or privacy. - Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.
Guest User

Select Guest User

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

COASTAL HAZARDS SYSTEM | ASSESS AND COMMUNICATE

 Read and close out of the disclaimer

B

Step 4

- Enter Latitude and Longitude along with Search Radius for your location of interest
 - Latitude: 32.00°

B

- Longitude: -80.80°
- Radius: 5 Miles
- Select Search

APPLIED EXERCISE #1: AEFs at Tybee Island

Step 5

 Bottom Left: Select Regional Study

B

 South Atlantic Coastal Study (SACS)

APPLIED EXERCISE #1: AEFs at Tybee Island

 Zoom into area of interest – Tybee Island

B

B

- Use the data selection tool to select point(s) of interest
 - Pointer
 - Polygon ٠
 - Rectangle
 - Circle
- Select
 - ADCIRC Save Point 14977

Coordinates

Latitude (Decimal):

32.000000

-80.800000

Radius (Miles):

5

APPLIED EXERCISE #1: AEFs at Tybee Island

Step 8

B

- Explore Data Options / Details
 - AEF
 - AEFCond
 - ADCIRC
 - STWAVE
 - Details

APPLIED EXERCISE #1: AEFs at Tybee Island

Step 9

Download Data

Select Arrow

Select Co-Located ID

B

- Only one in our example
- Could be many if select points by polygon / shape

		CHS	COASTAL SYSTEM,	. HAZARDS V2.0				-		-			
倄 / Web-Tool / Loca	Selected Save Poin	Save Points									;	×	Data Selection Tool
Update: Filters must Status: See Quick Sta	uick Sta												
SACS: Tropical Histor Model Condition/Are		Co-Located IDs	:	Models	:	Statistics	:	Lat	:	Long	:		
Coordinates		1991 - STWAVE (Grid 11) 14577 - ADCIRC, AEF, AEF (Hm AEF (Tp), AEFCond	0), AEF (SWL),	ADCIRC STWAVE (Grid 11)		AEF AEF (Hm0) AEF (SWL) AEF (Tp) AEFCond		32.0027		-80.8242	^		
32.000000 Longitude (Decimal): -80.800000 Radius (Miles):													
5											v		
Regional Coastal Stu		<u></u>									•		
South Atlantic Coast	al study (SAC	5)	and the second	/Lon 32.007 -80.804 Scale 1 sri, HERE, Garmin	:36112 Zoom 14								Powered by E

Step 11

- Select All data
- Download as CSV files

B

Share View View This PC > Documents > SAJ > GA_CoastalResilience > CHS > CHSFileDownload_2022-07-11_14-27-49 O Marre Date modified Type Size Sts CV 7/11/2022 3:37 PM File folder Adv 7/11/2022 3:37 PM File folder Ats 7/11/2022 3:27 PM Normal text file	Unzip the file Explore the data	tep 12a
Normal Starte View Image: Starte View Image: Starte Vie	Naming Convention	https://cha.exid.dren.ml/. Contact information is also located at that website. FILENAMING CONVENTION FORMAT The CHS filename convention has a standard set of unique identifiers which make up the filenames for the data files print in the system. These identifiers allow each filename to be self-describing. Detailed information for each identifier for CHS-ASC data files is provided below. All filenames have: • 7 identifiers provided below. All filenames have: • 7 identifiers jourded below. All filenames have: • 7 identifiers identifiers [identifier for CHS-ASC data files is provided below. All filenames have: • 7 identifiers [identifiers] [identifier for CHS-ASC data files is provided below. All filenames have: • 7 identifier [identifier for CHS-ASC data files is provided below. All filenames have: • 7 identifier [identifier] Identifier [identifier for CHS-ASC data mass separated by underscores • Table of identifier being demonstrated is indicated by triat brackets, for example (SP001) • Table of identifier format code and description * Identifier1 = Project Region Sub-region * Identifier1 = Project Region Sub-region

APPLIED EXERCISE #1: AEFs at Tybee Island

Naming Convention

- Identifier1_Identifier2_Identifier3_Identifier4_Identified5_Identifier6_Identifier7.ext Naming Convention
- Identifier1 Project | Region | Sub-region
 - SACS-SA
- Identifier2 Storm Type | Data Type
 - TS | XH | TH | CC
- Identifier3 Simulation
 - Sim0 | SimB | SimB1RT | SimBHT | SimBslc1 | SimBslc2

GEORGIA SILVER JACKETS

- Identifier4 Post-processing
 - Post0
- Identifier5 Save point | Station | Statistics | Storm
 - SP
- Identifier6 Model
 - ADCIRC | STWAVE | Stat
- Identifier7 Result Type | Input Type
 - TimeSeries | Peaks | AEF | AEFCond
- Identifier8 Filename extension
 - [,] .csv | .h5

Step 12a -Readme

06 CHS_SACS_Naming_Convention_Readme_25May2022.txt

INTRODUCTION

last updated 25 May 2022

- Unzip the file Explore the data
- Readme
- Naming Convention

* Example: <CHS-PR> TS SimB Post0 SP001 STWAVE04 Timeseries.h5

GEORGIA SILVER JACKETS

COASTAL HAZARDS SYSTEM | ASSESS AND COMMUNICATE

Home Share View					~ (
↑ → This PC → Docum	nents > SAJ > GA_CoastalResilience > CHS > CHSFileDownload_20	22-07-11_14-27-49	~	⊖ ⊃ Searc	h CHSFileDownload_2022-07-11_14-27-49				
k access	Date modified Type	Size					Fxn	lore the	e data
cuments * CSV	7/11/2022 3:37 PM File fold 7/11/2022 3:37 PM File fold						-		
vnloads 🖈 README							• (CSV - D)ata
ures 💉 📈 PATHLO	OKUP 7/11/2022 3:27 PM Normal	ext file 7 KB						53V - L	
mSim 🖈							. A	В	ср
s 20							1 Save Poir	t IE Save Point Latitude S	Save Point Longitud Vertical
🚽 🖓 📑 🗧 CSV							2 3 145		lecimal deg -80.824224 NAVD88
File Home Share	View					~ 0	4 145		-80.824224 NAVD88
						· •	5 145	77 32.002673	-80.824224 NAVD88
🗧 🔶 👻 🛧 📙 > This P	PC → Documents → SAJ → GA_CoastalResilience → CHS → CHSFil	Download_2022-07-11_14-27-49	> CSV	5 V	Search CSV		6 145 7 145		-80.824224 NAVD88 -80.824224 NAVD88
	Name	Date modified	Туре	Size		^	8 145		-80.824224 NAVD88
Quick access							9 145		-80.824224 NAVD88
	CHS-SA_CC_SimB_Post_SP14577_Stat_AEF	7/11/2022 3:23 PM	Microsoft Excel C	16 KB			10 145		-80.824224 NAVD88 -80.824224 NAVD88
	CHS-SA_CC_SimB_Post_SP14577_Stat_AEFcond	7/11/2022 3:23 PM	Microsoft Excel C	8 KB			12 145		-80.824224 NAVD88
	CHS-SA_CC_SimBsIc1_Post_SP14577_Stat_AEF	7/11/2022 3:23 PM	Microsoft Excel C	16 KB			13 145	77 32.002673	-80.824224 NAVD88
	CHS-SA_CC_SimBslc1_Post_SP14577_Stat_AEFcond	7/11/2022 3:23 PM	Microsoft Excel C	8 KB			14 145		-80.824224 NAVD88
	B CHS-SA_CC_SimBslc2_Post_SP14577_Stat_AEF	7/11/2022 3:23 PM	Microsoft Excel C	16 KB 8 KB			15 145 16 145		-80.824224 NAVD88 -80.824224 NAVD88
	CHS-SA_CC_SimBslc2_Post_SP14577_Stat_AEFcond CHS-SA_CC_SimBslc2_Post_SP1401_STM40/011_Posture	7/11/2022 3:23 PM 7/11/2022 3:24 PM	Microsoft Excel C Microsoft Excel C	8 KB 2 KB			17 145	77 32.002673	-80.824224 NAVD88
- Constraints	CHS-SA_TH_SimB_Post0_SP1991_STWAVE11_Peaks CHS-SA_TH_SimB_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:24 PM	Microsoft Excel C	2 KB 256 KB			18 145		-80.824224 NAVD88
	CHS-SA_IH_SIMB_POSID_SP1551_STWAVE11_INTESETES	7/11/2022 3:24 PM	Microsoft Excel C	2 KB			19 145 20 145		-80.824224 NAVD88 -80.824224 NAVD88
CHS	CHS-SA_TH_SimB_Post0_SP14577_ADCIRC01_Feaks CHS-SA_TH_SimB_Post0_SP14577_ADCIRC01_Timeseries	7/11/2022 3:23 PM	Microsoft Excel C	2.048 KB			21 145		-80.824224 NAVD88
CCT and much	CHS-SA_TH_SimB1HT_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			22 145		-80.824224 NAVD88
	CHS-SA_TH_SimB1HT_Post0_SP14577_ADCIRC01_Peaks	7/11/2022 3:26 PM	Microsoft Excel C	2 KB			23 145 24 145		-80.824224 NAVD88 -80.824224 NAVD88
	CHS-SA_TH_SimB1HT_Post0_SP14577_ADCIRC01_Timeseries	7/11/2022 3:24 PM	Microsoft Excel C	2,048 KB			25 145		-80.824224 NAVD88
J SD Objects	CHS-SA_TS_SimB_Post0_SP1991_STWAVE11_Peaks	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			26 145		-80.824224 NAVD88
CHS-Data	CHS-SA_TS_SimB_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:26 PM	Microsoft Excel C	32,768 KB			27 145 28 145		-80.824224 NAVD88 -80.824224 NAVD88
	CHS-SA_TS_SimB_Post0_SP14577_ADCIRC01_Peaks	7/11/2022 3:23 PM	Microsoft Excel C	256 KB			29 145		-80.824224 NAVD88
Documents	CHS-SA_TS_SimB_Post0_SP14577_ADCIRC01_Timeseries	7/11/2022 3:24 PM	Microsoft Excel C	131,072 KB			30 145	77 32.002673	-80.824224 NAVD88
	B CHS-SA_TS_SimB1RT_Post0_SP1991_STWAVE11_Peaks	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			31 145 32 145		-80.824224 NAVD88 -80.824224 NAVD88
👌 Music	CHS-SA_TS_SimB1RT_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:27 PM	Microsoft Excel C	32,768 KB			32 145		-80.824224 NAVD88
	CHS-SA_TS_SimB1RT_Post0_SP14577_ADCIRC01_Peaks	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			34 145	77 32.002673	-80.824224 NAVD88
videos	CHS-SA_TS_SimBslc1_Post0_SP1991_STWAVE11_Peaks	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			35 145		-80.824224 NAVD88
Windows (C:)	CHS-SA_TS_SimBslc1_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:26 PM	Microsoft Excel C	32,768 KB			36 145 37 145		-80.824224 NAVD88 -80.824224 NAVD88
= 74 (NA-)	CHS-SA_TS_SimBslc1_Post0_SP14577_ADCIRC01_Peaks	7/11/2022 3:23 PM	Microsoft Excel C	256 KB			38 145	77 32.002673	-80.824224 NAVD88
<u> </u>	CHS-SA_TS_SimBslc1_Post0_SP14577_ADCIRC01_Timeseries	7/11/2022 3:25 PM	Microsoft Excel C	131,072 KB			39 145		-80.824224 NAVD88
_	CHS-SA_TS_SimBslc2_Post0_SP1991_STWAVE11_Peaks	7/11/2022 3:24 PM	Microsoft Excel C	256 KB			40 145 41 145		-80.824224 NAVD88 -80.824224 NAVD88
	B CHS-SA_TS_SimBslc2_Post0_SP1991_STWAVE11_Timeseries	7/11/2022 3:26 PM	Microsoft Excel C	16,384 KB			42 145		-80.824224 NAVD88
INETWORK	CHS-SA_TS_SimBslc2_Post0_SP14577_ADCIRC01_Peaks	7/11/2022 3:23 PM	Microsoft Excel C	256 KB			43 145		-80.824224 NAVD88
	B CHS-SA_TS_SimBslc2_Post0_SP14577_ADCIRC01_Timeseries	7/11/2022 3:26 PM	Microsoft Excel C	131,072 KB		~	44 145 45 145		-80.824224 NAVD88 -80.824224 NAVD88
ems						800	46 145		-80.824224 NAVD88
							47 145	77 32.002673	-80.824224 NAVD88

EFs at Tybee Island

-	A	в	С	D	E	F	G	Н	1	J	К	
				Vertical Datum		Parameter	s Units	s Best Estimate AE	Confidence Limit 10% for AEF	Confidence Limit 16% for AEF	Confidence Limit 84% for AE	Confidence Limit 90% for A
:	14577	decimal deg 32.002673	decimal deg -80.824224	NALIDOO	yr^-1 10	Hm0	-	NaN	NaN	NaN	NaN	NaN
-	14577	32.002673	-80.824224			Hm0	m	NaN		NaN	NaN	NaN
	14577	32.002673	-80.824224			Hm0	m	1.678708851	0.97970059	1.133269806	2.224147895	NaN 2.3777171
	14577	32.002673	-80.824224			Hm0	m	2.51373855	1.547566409	1.759830423	3.267646677	3.4799106
	14577	32.002673	-80.824224			Hm0	m	3.160597057	2.030317329	2.278635099	4.042559015	4.29087678
	14577	32.002673	-80.824224			Hm0		4.081109886		3.060020935	5,102198836	5.38968802
-	14577	32.002673	-80.824224			Hm0	m	4.786367994		3.685785333		6.19682142
	14577	32.002673					m				5.886950654	
_			-80.824224			Hm0	m	5.333420988		4.183578437	6.483263539	6.807003
_	14577 14577	32.002673 32.002673	-80.824224 -80.824224			Hm0 Hm0	m	5.8286028		4.641609189	7.015596412	7.3497963
-							m	6.078327856		4.874856039		7.62063904
	14577	32.002673	-80.824224		0.005		m	6.254903053		5.04058765	7.469218456	7.81111085
_	14577	32.002673	-80.824224		0.002		m	6.411597546		5.188178339	7.635016752	7.97947234
_	14577	32.002673	-80.824224		0.001		m	6.490583512		5.262750499	7.718416525	8.0641148
	14577	32.002673	-80.824224		0.0005		m	6.546356646		5.315475064	7.777238227	8.12379486
	14577	32.002673	-80.824224		0.0002		m	6.595852026		5.362311095	7.829392957	8.1766983
	14577	32.002673	-80.824224		0.0001		m	6.620007164		5.385183865	7.854830462	8.2024968
_	14577	32.002673	-80.824224		5.00E-05		m	6.620163279		5.385331725	7.854994833	8.202663
)	14577	32.002673	-80.824224		2.00E-05		m	6.620369652		5.385527186	7.855212118	8.2028839
_	14577	32.002673	-80.824224		1.00E-05		m	6.620525767	5.038000893	5.385675047	7.855376488	8.2030506
:	14577	32.002673	-80.824224		5.00E-06		m	6.620681883		5.385822908	7.855540857	8.2032173
:	14577	32.002673	-80.824224		2.00E-06		m	6.620888256		5.386018371	7.855758141	8.203437
F .	14577	32.002673	-80.824224		1.00E-06		m	6.621044371		5.386166233	7.855922509	8.2036043
5	14577	32.002673	-80.824224			Тр	s	NaN		NaN	NaN	NaN
5	14577	32.002673	-80.824224			Tp	s	NaN		NaN	NaN	NaN
1	14577	32.002673	-80.824224			Тр	s	11.10945749		10.18278647	11.82437841	12.000683
3	14577	32.002673	-80.824224			Тр	s	12.14958671		11.22628528	12.87695068	13.057857
1	14577	32.002673	-80.824224			Tp	s	12.78222223		11.88798693	13.49895192	13.678516
)	14577	32.002673	-80.824224			Тр	s	13.52738206		12.6909189	14.21382961	14.3875
	14577	32.002673	-80.824224			Tp	s	14.01391495		13.22529139	14.6718246	14.83961
2	14577	32.002673	-80.824224	NAVD88	0.05		s	14.35416438	13.36125688	13.60194639	14.98900566	15.151787
3	14577	32.002673	-80.824224	NAVD88	0.02		s	14.6394647	13.69018204	13.91883708	15.25350528	15.411672
ŧ.	14577	32.002673	-80.824224		0.01		s	14.77624038		14.07093701	15.37995182	15.5357973
5	14577	32.002673	-80.824224		0.005	Tp	s	14.87033448	13.95660323	14.17560255	15.46683386	15.621047
5	14577	32.002673	-80.824224	NAVD88	0.002	Tp	s	14.95211847	14.05096714	14.26658007	15.54228993	15.695065
2	14577	32.002673	-80.824224		0.001	Tp	s	14.99275543	14.09784511	14.31178366	15.57976466	15.731818
3	14577	32.002673	-80.824224	NAVD88	0.0005	Tp	s	15.02121853	14.13067459	14.34344391	15.60600642	15.7575530
3	14577	32.002673	-80.824224	NAVD88	0.0002	Tp	s	15.04632022	14.15962316	14.37136383	15.62914499	15.7802424
	14577	32.002673	-80.824224	NAVD88	0.0001	Tp	s	15.05851735	14.17368812	14.38492983	15.64038689	15.791265
	14577	32.002673	-80.824224	NAVD88	5.00E-05	Тр	s	15.05859607	14.17377889	14.38501738	15.64045944	15.791336
:	14577	32.002673	-80.824224	NAVD88	2.00E-05	Тр	s	15.05870012	14.17389888	14.38513312	15.64055535	15.791430
	14577	32.002673	-80.824224	NAVD88	1.00E-05	Tp	s	15.05877884	14.17398964	14.38522066	15.6406279	15.791501
	14577	32.002673	-80.824224	NAVD88	5.00E-06	Tp	s	15.05885755	14.1740804	14.38530821	15.64070044	15.791573
;	14577	32.002673	-80.824224	NAVD88	2.00E-06	Тр	s	15.0589616	14.17420038	14.38542393	15.64079634	15.79166
	14577	32.002673	-80.824224	NAVD88	1.00E-06	Tp	s	15.05904031	14.17429114	14.38551148	15.64086888	15.791738
	14577	32.002673	-80.824224	NAVD88	10	SWL	m	NaN	NaN	NaN	NaN	NaN
	14577	32.002673	-80.824224	NAVD88		SWL	m	NaN		NaN	NaN	NaN
	14577	32.002673	-80.824224			SWL	m	1.562117504	0.942819498	1.078876702	2.045358307	2.1814155
	14577	32.002673	-80.824224			SWL	m	2.048480808		1.507604114	2.589357503	2.7416421
	14577	32.002673	-80.824224			SWL	m	2.367817858		1.801337872	2.934297845	3.0937911
	14577	32.002673	-80.824224			SWL	m	2,734920864		2.146806798	3.323034929	3.4886193

Step 12c - CSV

GEORGIA SILVER JACKETS COASTAL RESILIENCE WORKSHOP

- https://chs.erdc.dren.mil/Home/Help
- https://chs.erdc.dren.mil/Home/Library

UPDATES	LIBRARY
(2021/12/10) SACS Tropical Historic (2021/11/16) CHS User Guide and CHS Quick Start Guide Updated (2021/11/04) SACS:NCSEFL Tropical Historical ADCIRC Timeseries Files Replaced (2021/07/26) Modifications as part of Revisions to the New CHS	(2021/12/17) Kyprioti et al. 2021 - 'Storm hazard analysis over extended geospatial grids utilizing surrogate models'

Questions?

ASSESS | COMMUNICATE | ADDRESS

DECISION SUPPORT TOOLS FOR NATURE-BASED SOLUTIONS

PRESENTED BY ASHBY NIX WORLEY, CFM COASTAL CLIMATE ADAPTATION DIRECTOR

THE NATURE CONSERVANCY

ASHBY.WORLEY@TNC.ORG

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

PRESENTATION OUTLINE

- A. Nature Based Solutions (NBS)
- B. Resilient Coastal Sites
- C. CRS Open Space Explorer
- D. Additional Guidance & Resources

Oyster reef

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

NATURE-BASED SOLUTIONS TO REDUCE COASTAL RISK

Natural Infrastructure

- •Barrier islands
- •Beaches & dune systems
- •Marshes & wetlands
- •Oyster reefs
- •Preserved floodplains
- •Natural open space

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

RESILIENT COASTAL SITES – OVERVIEW

Marsh Migration

 Adjacent, low-lying land suitable for supporting tidal habitats in the future, and into which current habitats could migrate as sea levels rise.

Coastal Strongholds

People and wildlife depend on coastal habitats for food, water and shelter. But these habitats could disappear forever under rising sea levels. "Coastal strongholds" offer escape routes for threatened habitats to migrate inland and continue to support people and nature. The ability of habitats to migrate inland is determined by an area's land forms, open space and other characteristics. For example, cliffs can block habitat escape routes.

> Shorelines hardened by buildings, sea walls, and other man-made structures prevent threatened habitats from migrating inland.

Seagrass beds provide shelter and nursery grounds for fish and shellfish.

Sand dunes and beaches shield communities from storm surges, and serve as breeding grounds for sea turtles and other wildlife.

Tidal marshes provide breeding, refuge, nursery, and forage habitats for a varietyof marine species.

> Coastal strongholds give hope that threatened habitats can escape rising sea levels and continue to thrive. But we must act now to keep these areas strong.

B RESILIENT COASTAL SITES

- Developed by: The Nature Conservancy
- What it Does: Coastal sites vary widely in their ability to accommodate rising seas, based on inherent natural features and the degree of human influence on key ecological processes. Scientists from The Nature Conservancy evaluated over 1,200 coastal sites in the South Atlantic for their capacity to sustain biodiversity and natural services under increasing inundation from sea level.
- Access: www.nature.org/resilientcoasts
- Input: National and regional datasets
- Output: Each site received a resilience "score" based on the likelihood that its coastal habitats can and will migrate to adjacent lowlands.
- Date Published/Update: 2019
- Additional Software/Hardware Requirements: None both online web tool or downloadable datasets available

GEORGIA SILVER JACKETS

Special Permissions Needed: None

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

RESILIENT COASTAL SITES – OVERVIEW

What is a Resilient Coastal Site?

PHYSICAL ATTRIBUTES

- Large migration space
- Many future tidal classes
- Lots of shared upland edge with migration space
- Large tidal complex
- Large buffer area with diverse coastal landforms and maritime highlands

CONDITION ATTRIBUTES

• Few anthropogenic barriers to marsh migration (low development of upland edge)

GEORGIA SILVER JACKETS

- Positive sediment balance
- Good water quality index
- Minimal freshwater flow alteration
- Natural buffer area with high wetland connectivity

migration space (SLR scenario) 1.5 ft. 3.0 ft. 4.0 ft. 6.5 ft. St. Catherine's Sound, Georgia buffer area tidal marsh migration space

COASTAL RESILIENCE WORKSHOP

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS RESILIENT COASTAL SITES – OVERVIEW

Resilience Scores (Stratified by Coastal Shoreline Region)

B

COASTAL RESILIENCE WORKSHOP

GEORGIA SILVER JACKETS

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS RESILIENT COASTAL SITES – OVERVIEW

Migration Space of Resilient Coastal Sites at 6.5-ft. SLR

B

COASTAL RESILIENCE WORKSHOP

GEORGIA SILVER JACKETS

Resilient Coastal Sites - Applied Exercises

west of St. Catherines Sound, Georgia

Future Development

tidal marsh

predicted future development for 2100 (with 50% transparency)

migration space of resilient site predicted to be developed by 2100

Hunter Army Airfield, Georgia

Resilient Coastal Sites - Applied Exercises

Restoration: Water Quality

Restoration: Flow Alteration

St. Andrews Sound, Georgia

0.91 - 1.00 (Good)

tidal marsh

Savannah River, Georgia/South Carolina

Resilient Coastal Sites - Applied Exercises

Impoverished Areas

near Savannah, Georgia

© Mac Stone.

As sea

South

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

Sustaining Georgia's Tidal Habitats into the Future

GEORGIA SILVER JACKETS COASTAL RESILIENCE WORKSHOP

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

CRS OPEN SPACE EXPLORER – OVERVIEW

Open Space Preservation

CRS rewards communities that participate in activities that reduce flood risk with reduced flood insurance premiums

Identifying flood risk reduction opportunities an applying for credits can be overwhelming for communities that lack the capacity to take full advantage of the program.

GOALS:

- Help identify areas that count towards "Open Space Preservation" activities (Including Natural Functioning Open Space, Coastal Erosion Open Space, and Natural Shoreline Protection)
- Provide maps and supporting information necessary for CRS application & review
- Prioritize *future* open space in the floodplain
- Communications and outreach

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS Community Rating System (CRS) Open Space Explorer

- Developed by: The Nature Conservancy
- What it Does: The CRS Explorer helps planners visualize areas that are eligible for Open Space Preservation (OSP) credits in FEMA's Community Rating System (CRS) to reduce flood risk and premiums.
- Access: https://crs.tnc.org/
- Input: Local and national datasets
- Output: Identified parcels in the SFHA that have natural land uses but are not currently eligible for OSP because they are not legally protected from development. Additionally, the tool identifies the number of OSP credits that parcel would provide if protected, as well as parcel ownership and value information.
- Date Published/Update: 2021-2022
- Additional Software/Hardware Requirements: None online web tool and downloadable datasets
- Special Permissions Needed: None
- Caveats? This tool is currently only available for Camden & Glynn Counties

GEORGIA SILVER JACKETS

COASTAL RESILIENCE WORKSHOP

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

CRS OPEN SPACE EXPLORER – OVERVIEW

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

CRS OPEN SPACE EXPLORER – OVERVIEW

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

CRS Open Space Explorer – OVERVIEW

How Have Others Used the CRS Explorer?

- 1) In NC, an average of 546 additional OSP credits across 8 communities were identified with 5 communities able to raise a class, increasing their discount.
- 2) Dare County, NC prioritized 6 large private tracts to protect through longterm easements before their next CRS review.
- 3) Currituck Co, NC used to guide "conservation subdivisions," a land use zoning approach that allows development density bonuses when environmentally sensitive areas are set aside in conservation
- 4) St. Marys and Camden County have just completed theirs in 2020 and are using to identify landowners to discuss land protection options
- 5) Glynn County, City of Brunswick and Jekyll Island maps in progress

How can I use the CRS Explorer?

- 1) Prepare for CRS credit submission
- 2) To validate already submitted OSP credits
- 3) Prioritize future OSP
- 4) Influence zoning/policy
- 5) Outreach & stakeholder engagement

DECISION SUPPORT TOOLS FOR NBS | ASSESS, COMMUNICATE, ADDRESS

Additional Guidance & Resources

Community Incentives for Nature-Based Flood Solutions: A Guide for FEMA's Community Rating System for Conservation Practitioners explains how naturebased solutions are creditable components of FEMA's National Flood Insurance Program Community Rating System (CRS). The guide provides a brief overview of the CRS and discusses how the conservation community can further nature-based solutions through the CRS. Two case studies illustrate how nature-based solutions can be used to improve a community's rating class and obtain more discounts on flood insurance costs

Promoting Nature-Based Hazard Mitigation Through FEMA Mitigation Grants is a guidance document that is intended for stakeholders pursuing FEMA HMA grants for nature-based solutions to mitigate risks associated with flooding (riverine and coastal) and wildfire. Many of the HMA grant programs can fund projects that mitigate other hazards, but this document is limited in discussion to flooding and wildfire. This document is designed to give users a better understanding for how HMA grants are a viable funding source for nature-based solutions to hazard mitigation. This includes an overview of selecting appropriate NBS for a given hazard and location, FEMA HMA requirements, and how to maximize benefits for a given project.

Questions?

Georgia Coastal Resilience Workshop August 31 & September 1, 2022

Topic: Mapping the 1% Annual Chance Flood in Coastal Areas

Presented by: Haydn Blaize Manager Floodplain Unit Georgia Department of Natural Resources Environmental Protection Division

Role of State

- The State of Georgia entered into a Cooperating Technical Partner (CTP) agreement with FEMA's Region IV in August 1999.
- State of Georgia now develops and updates the flood hazard maps for communities in all 159 counties

https://msc.fema.gov/portal/home

Role of State Cont'd

The Floodplain Unit also provides community outreach and assistance through a structured Community Assistance Program State Support Services Element (CAP SSSE)

Georgia Flood M.A.P. Program

State Program aligned with FEMA's Risk MAP Program

- Increase focus on risk assessment and planning
- Continue partnerships with Federal, State, & Local Agencies
- Acquire and utilize high accuracy topographic data
- Deliver risk products and datasets

Enhanced Outreach Program

- Outreach Guidebooks
- Increased Community Engagement
- Robust Website (www.georgiadfirm.com)

Role of Community

- State and local governments are required to enforce <u>floodplain</u> <u>management ordinances</u> that meet the minimum standards of the NFIP
- Communities can adopt standards higher than the minimum NFIP
- Residents and business owners with buildings in SFHAs that carry a federally backed mortgage are required to purchase flood insurance
- Not in the regulatory floodplain ? ALL can purchase flood insurance

Role of Community (Cont'd)

- A community that does not participate in the NFIP faces the following challenges:
 - Flood insurance not available through the NFIP
 - No federal flood related grants or loans available
 - No federal flood related disaster assistance available
 - No federal mortgage insurance or loan guarantees provided

Why Update the Coastal Flood Risk Study?

Flood risk changes over time

- Effective Surge Analysis was performed in 1989. 25+ years old when new study was funded in FY10!
- Analyses were dated and did not utilize the current LiDAR data or lates models
- To gain a complete and current picture of coastal flood risks. This helps community:
 - Plan for the risk
 - Communicate the risk to your citizens
 - Take action to reduce flood risk to lives and property
 - Build smarter and safer

Study Phases

Coastal studies are generally more complex in nature and require more time to process/analyze than Inland (Riverine) studies

In recognition of this, GA DNR split the FY 10 mapping project into two (2) phases:

- Inland (Riverine): Undertaken by GADNR mapping contractor
- Coastal Phase

Coastal Analyses

- The Coastal Phase: undertaken by two separate mapping partners/contractors.
 - The modeling and engineering of the coastal inundation was performed by the FEMA Region 4 Production and Technical Services (PTS) contractor
 - The mapping by GA DNR's Mapping Study Contractor after receipt of completed engineering data generated FEMA Region 4 PTS contractor.

Field Surveys

Gathered Field Data

- Coordinated with community officials and stakeholders regarding available data
- Conducted thorough data investigation
- Conducted field investigations

Topography

Gathered LiDAR, Topographic Data

 Procurement and Processing: Partners

Processing: Partnership with NOAA, Coastal RDC, GADNR & FEMA

• 2008-2010, 18 cm vertical RMSE (36 cm at 95% confidence interval)

Bathymetric Data

Gathered Bathymetric Data

Digital Elevation Model (DEM)

Seamless DEM for GA-North East Florida (NEFL)

Climatology and Storm Analysis

		Criteria Sorting of Storms				
1. Local Landfall	2. Significant WL Difference	3. WL Data Availability (> 3 Stations)	4. Wave Data Availability (2 or more stations)			
Cleo	Dora (5.91 ft)	Frances (15)	Frances (5)			
Dora	David (5.55 ft)	Charley (14)	Ophelia (5)			
David	Jeanne (4.22 ft)	Jeanne (14)	Tammy (5)			
Chris	Tammy (4.07 ft)	Ophelia (9)	Fay (5)			
Edouard	Fay (3.99 ft)	Tammy (9)	Jeanne (4)			
Tammy	Frances (3.85 ft)	Dennis 99 (8)	Edouard (3)			
Fay	Gabrielle (3.82 ft)	Edouard (8)	Charley (3)			
	Floyd (3.8 ft)	Floyd (7)	Chris (2)			
	Ophelia (3.04 ft)	Irene (7)	Dennis99 (2)			
	Abby (2.93 ft)	Fay (6)	Floyd (2)			
	Irene (2.92 ft)	David (5)	Irene (2)			
	Bertha (2.62 ft)					
	Bob (2.44 ft)					
	Erin (2.43 ft)					
	Cleo (2.35 ft)					
	Dennis 99 (2.24 ft)					

Base Flood Elevation

Base Flood Elevation (BFE) on FIRM includes 4 components:

- 1. Storm surge stillwater elevation (SWEL)
- 2. Amount of wave setup
- 3. Wave height above storm surge (SWEL) elevation
- 4. Wave runup above storm surge elevation (where present)

Flood Zones

Map Update Process 4-6 Years Typical

Flood Insurance Rate Map (FIRM)?

https://msc.fema.gov/portal

FLOOD INSURANCE **RATE** MAP OR FLOOD INSURANCE **REQUIREMENT** MAP?

Coastal Flood Risk Products

- Wave Height Grids
- Erosion Risk Determination Areas
- Depth Plus Grids
- Risk Assessment
- Flood Risk Report

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

(Based on Impacts from 1% annual chance flood for Flood Insurance Purposes)

County	Community	
	Bryan UA	
Bryan	City of Pembroke	
	City of Richmond Hill	
	Camden UA	
Camdan	City of Kingsland	
Camden	City of St. Marys	
	City of Woodbine	
	Chatham UA	
	City of Bloomingdale	
	City of Garden City	
	City of Pooler	
Chatham	City of Port Wentworth	
	City of Savannah	
	City of Tybee Island	
	City of Vernonburg	
	Town of Thunderbolt	

County	Community	
	City of Brunswick	
Glynn	Glynn UA	
	Jekyll Island State Park Authority	
	City of Flemington	
	City of Gumbranch	
	City of Hinesville	
ih o utu i	City of Midway	
iberty	City of Riceboro	
	City of Walthourville	
	Liberty UA	
	Town of Allenhurst	
Aslatach	City of Darien	
Vicintosh	McIntosh UA	
6	29	

Role of Community Cont'd

Community Rating System

- Voluntary incentive program
- Encourages community floodplain management activities that exceed the minimum NFIP requirements.
 - based on 19 creditable activities, organized under four categories encompassing Public Information Activities, Mapping and Regulations, Flood Damage Reduction Activities, and Warning & Response
- Will reduce flood insurance premium rates

FEMA

Coastal Communities Participating in the Community Rating System

CID	Community Name	County	CRS Rating	Discount
130016#	BRYAN COUNTY *	BRYAN COUNTY	6	20%
130017#	PEMBROKE, CITY OF	BRYAN COUNTY	9	5%
130018#	RICHMOND HILL, CITY OF	BRYAN COUNTY	7	15%
130262#	CAMDEN COUNTY*	CAMDEN COUNTY	6	20%
130027#	ST. MARYS, CITY OF	CAMDEN COUNTY	6	20%
130452#	BLOOMINGDALE, CITY OF	CHATHAM COUNTY	8	10%
130030#	CHATHAM COUNTY*	CHATHAM COUNTY	5	25%
135161#	GARDEN CITY, CITY OF	CHATHAM COUNTY	6	20%
130261#	POOLER, CITY OF	CHATHAM COUNTY	6	20%
135163#	SAVANNAH, CITY OF	CHATHAM COUNTY	5	25%
130460#	THUNDERBOLT, TOWN OF	CHATHAM COUNTY	6	20%
135164#	TYBEE ISLAND, CITY OF	CHATHAM COUNTY	5	25%
130076#	EFFINGHAM COUNTY *	EFFINGHAM COUNTY	7	15%
130093#	BRUNSWICK,CITY OF	GLYNN COUNTY	6	20%
130092#	GLYNN COUNTY *	GLYNN COUNTY	6	20%
130201#	JEKYLL ISLAND, STATE PARK AUTHORITY	GLYNN COUNTY	5	25%
130125#	HINESVILLE,CITY OF	LIBERTY COUNTY	6	20%
L7				

Intelline, voltability

National Flood Insurance Program Community Rating System

Coordinator's Manual

P14-15/2011

S FEMA

NFIP Statistics Georgia Statewide/Coastal

Description	Georgia State-wide	Coastal Georgia	
Structures in Regulatory Floodpl	ain (Bing Footprints)	88,000	29,160
Flood Insurance Policies in Place	Regulatory Floodplain	29,548	22,590
	Outside Regulatory Floodplain	46,888	24,879
Total Coverage		\$21.5 billion	\$15.8 billion
Total Annual Premiun		\$53 million	\$35 million
# of claims since 1978		22,520	7,585
Value of Claims paid since 1978		\$455.4 million	129.2 million

Georgia CTP Program at a Glance

\$56M >40,000 mi In mapping since FY2008 Model Back Studies **16%** of Region IV Inventory 690 Communities 100% Modernized 26,216 mi NVUE Compliant | 16,430 mi Unverified | 61.4% NVUE Compliance 201 **95** Counties receiving BLE by Communities have active Risk 2022 = **25,724** miles (2d/1d) **MAP** Projects **581** Communities participate in 54 **Communities Participate in CRS** NFIP 96.4% higher standards & **35** are a class **7** or higher 74 **\$6.4** M in CRS community Communities with mapped SFHA still do not participate in NFIP savings BUT 19 Communities without Statewide LiDAR mapped SFHA do participate

Completed Projects **Active Projects** ORG VIRONMENTAL PROTECTION DIVISION

by 2022

Website

georgiadfirm.com

25

Thank You

Haydn Blaize, Manager, Floodplain Unit haydn.blaize@dnr.ga.gov (470) 607-2604

Joseph Martinenza

Brian Shoun

Olivia Martin

Emily Wingo

Christopher Costley

Environmental
Engineer
Environmental
Engineer
Environmental
Engineer
Community
Assistance Official
Environmental
Environmental
Engineer

(470) 938-3355; joseph.martinenza@dnr.ga.gov

(470) 607-2915; brian.shoun@dnr.ga.gov

(470) 845-1108; Olivia.martin@dnr.fa.gov

(470) 938-3382; emily.wingoWdnr.ga.gov

(470) 607-2779; christopher.costley@dnr.ga.gov

Understanding local sea level rise impacts, including latest science and resources

Doug Marcy

NOAA Office for Coastal Management

Georgia Coastal Resilience Workshop 2022

From USGCRP NCA4

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

IPCC AR6 Working Group I – Summary for Policy Makers

Historical Land and Sea Temperature

From USGCRP NCA4

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Historical Sea Level Rise

 b) Contiguous United States versus global mean sea level

Sweet et al, 2022

Sea Level Change

What causes the sea level to change?

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

From USGCRP NCA4

National Sea Level Rise

- Projections vary by location.
- 10-12 inch rise in last 100 years; same amount of rise projected in next 30 years.
- Results: profound shift in coastal flooding over next 30 years.
- Results: damaging floods projected 10+ times as often.

DETAILS 2022 Sea Level Rise Technical Report

- Federal Interagency Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Task Force
- Most up-to-date sea level rise projections available
- Key input for 5th National Climate Assessment
- Data informs sea level rise adaptation plans at all scales

2022 Sea Level Rise Technical Report CONTENT

- Sea level rise scenarios at global, U.S., regional, and local levels
- Observation trends and extrapolations from 1970-2050
- Extreme water level probabilities for various heights
- Description of scientific data and methods employed

2022 Sea Level Rise Technical Report KEY TAKEAWAYS

- U.S. Coast: average 10-12 inches sea level rise in next 30 years.
 - Equals change seen over past 100 years.
 - Rates will be lower or higher in different regions.
- Results: More extreme tides and damaging storm surges.
- Results: Profound shift in coastal flooding over next 30 years. By 2050, "moderate" (typically damaging) flooding likely to occur 10+ times more often.

2022 Sea Level Rise Technical Report KEY TAKEAWAYS

- Emissions Matter: Likely at least two additional feet by 2100 due to current emissions alone. Rising emissions could cause a sea level spike upwards of 7 feet by 2100.
- Greater certainty than previous projections for the next 30 years.
- Uncertainty increases after 2050, and is highly dependent on future emissions.
- Continued observations will enhance future predictions.

Near-Term Sea Level Change (2020-2050)

Sweet et al, 2022

What has changed from 2017?

Southeast

Tide Gauge	2017 Intermed-low 2080	2022 Intermed-low 2080	2017 Intermed-high 2080	2022 Intermed-high 2080
Fort Pulaski, GA	1.64 feet	1.90 feet	4.36 feet	3.51 feet
Fernandina Beach, FL	1.41 feet	1.67 feet	4.10 feet	3.31 feet
Mayport, FL	1.44 feet	1.71 feet	4.17 feet	3.35 feet

Future Temperature

What else is new?

Year

How confident are we?

Gridded Sea Level Rise Data (with Tide Gauges Overlaid)

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Sweet et al, 2022
Local Sea Level Rise

1.13 feet in 100 years

tidesandcurrents.noaa.gov

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Increase in High Tide Flooding Events

Sweet et al, 2022

High Tide Flooding Averages

- Some regions have 400 -1,100% increase in frequency.
- Acceleration is seen at 80% of East and Gulf Coast locations.
- By 2050, minor high tide flooding is normal occurrence at most locations.

Annual Relative Sea Level Since 1960 and Projections to 2100

8670870 Fort Pulaski

High Tide Flooding Projections

A map showing the projected number of high tide flooding days at National Water Level Observation Network stations at yearly intervals out to 2050. Flooding thresholds supplied by NOAA's Office for Coastal Management.

Southeast State of High Tide Flooding & 2022

Outlook

This region of the U.S. is composed of many low-lying areas prone to minor flooding. Coupled with land subsidence and sea level rise, high tide flooding events are becoming more common. Last year, Springmaid Pier (Myrtle Beach, SC) observed 11 flood days, tying its 2021 record. This year's outlook predicts fewer flood events due to Earth's place at the furthest proximity from the moon in a Perigean cycle. Though this year's outlook is moderate, this region has seen an almost 300% increase in high tide flooding events since the year 2000. 3 to 7 high tide flood events are predicted.

Flooding at high tide.
 Photo Credit: Anonymous, @nc_kingtides on Flickr
 Location: 9th & Bay St, Martha's Mission Cupboard, Morehead City, North Carolina

Physical Factors Directly Contributing to Coastal Flood Exposure

SLR Will Make Future Storms Worse

OFFICE FOR COASTAL MANAGEMENT

Combined Flooding

https://coast.noaa.gov/stormwater-floods/

OFFICE FOR COASTAL MANAGEMENT NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Implications for Local Planning MIXED NEWS

- Narrower range of possible scenarios until 2050, so more certainty
- Rate of sea level rise has accelerated over the last few decades
- More time to plan for the highest levels than previously projected (though unabated emission levels could change this)
- The tidal flooding regime shift predicted over the next
 30 years means planning can't wait

ADVICE FOR COMMUNITIES Consider Risk Tolerance, Type of Asset

- Some use higher scenarios because they are risk averse and know building a little higher buys extra protection from compound flooding (e.g. storm surge, heavy precipitation events)
- Cost is a factor. Elevating a building an extra foot is different than elevating a major road an extra foot.
- For natural infrastructure, the narrower range of possible scenarios helps avoid the "over building" that impacts ecosystem benefits

Selecting a SLR Scenario (example)

- A 2.0 foot increase will be used for short-term, less vulnerable investment, such as a parking lot.
- A 3.0 foot increase will be used for more critical longer term investments, such as emergency routes and public buildings.

What Are We Going To Do?

Digital Coast Coastal Inundation Topics Page

Visualize

the Information

"Seeing" potential flooding

impacts is an important step

in understanding risks and

vulnerabilities and where communities can improve their resilience

Our nation's coasts are increasingly at risk from rising seas, changing water levels in the Great Lakes, and more frequent and intense storms. These changes are forcing communities to plan for and adapt to coastal flooding using time scales associated with both weather (hourly, daily, and weekly) and climate (seasonally, annually, by decade, and beyond).

Communities can benefit from the resources provided below as they work to increase community resilience.

Get

Started

Access the most current information about climate change, its impacts, and future flooding. Key Data

Use these data to develop a comprehensive understanding of your community's water levels.

Access

Communicate the Issue

Increase your skills when it comes to communicating with your stakeholders. Take Action

Find resources to help fund research and other resilience implementation plans.

https://coast.noaa.gov/digitalcoast/topics /coastal-inundation.html

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Sea Level Rise Viewer Visualize scenarios and impacts using local maps and photos

https://coast.noaa.gov/digitalcoast/tools/slr.html

OFFICE FOR COASTAL MANAGEMENT NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

FIGURE 4.2: US HIGHWAY 80 TO TYBEE ISLAND. HIGHLIGHTED RED PORTION SHOWS STRETCH FROM BULL RIVER TO LAZARETTO CREEK BRIDGES.

OFFICE FOR COASTAL MANAGEMENT

Adapting Stormwater Management for Coastal Floods

Communities can use this website to determine how the flooding of today and tomorrow can affect their stormwater systems, and generate reports that can be used to:

(2)

- Display local information about the current and future flooding impacts
- Inform planning efforts

 $(\mathbf{1})$

Learn more about coastal flooding and sea level rise.

UNDERSTAND

ASSESS

Calculate current and future coastal flood

frequency and impacts.

Office for Coastal Management

Questions?

Doug Marcy

doug.marcy@noaa.gov

OFFICE FOR COASTAL MANAGEMENT

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

ASSESS | COMMUNICATE | ADDRESS

Nature-Based Solutions for Coastal Hazards

Presented by Tashya Allen NOAA Office for Coastal Management

tashya.allen@noaa.gov

NATURE-BASED SOLUTIONS FOR COASTAL HAZARDS: THE BASICS | ADDRESS

PRESENTATION OUTLINE

- **A. Overview of Products**
- B. How to Use
- C. Learn More

PRODUCT OVERVIEW

- Developed by: NOAA Office for Coastal Management
- What it Does: Learn an approach to identify green infrastructure
- Access: coast.noaa.gov/digitalcoast/training/nbs-basics.html
- Input: Local knowledge
- Output: Part 1 of community green infrastructure plan
- Date Published/Update: 2021
- Additional Software/Hardware Requirements: None
- Bonuses: Available in Spanish, Planners receive one credit hour

Welcome!

I'm Lauren, with NOAA's Office for Coastal Management. This self-paced module focuses on the use of green infrastructure (or nature-based solutions) to address coastal hazards.

As you work through this module, you will complete the first steps in a green infrastructure plan to explore how you might implement green infrastructure in your community.

Plan to spend approximately an hour.

To go deeper, our organization offers virtual and in-person training that expands on this plan and helps you build a green infrastructure strategy for a specific project, while interacting with local experts and peers.

Work Through Each Step

Learn an approach to choosing green infrastructure practices

Nature-Based Solutions for Coastal Hazards: The Basics

Nature-Based Solutions for Coastal Hazards: The Basics

Green Infrastructure Plan

Work through the rest of this module to complete this worksheet with information about your community.

The worksheet is the beginning of your community's green infrastructure plan.

To start, print the **Green Infrastructure Plan** (PDF) for your use during this module or open the document (DOC) on your computer.

Green Infrastructure Plan

Use this worksheet to identify green infrastructure practices for your community.

Part 1

For more guidance in completing these steps, check out Nature-Based Solutions for Coastal Hazards: The Basics.

 ${\small Step 1. } Identify a \ coastal \ hazard \ impacting \ your \ community. }$

Step 2. Identify an at-risk location.

Coastal hazard:

Location:

Step 3. Identify ecosystem services that mitigate the impacts of the coastal hazard. List up to three ecosystem services.

Step 4. For each ecosystem service, identify up to three green infrastructure practices that provide that ecosystem service. Consider practices at each scale. It's okay to use the same practice multiple times, or to leave some boxes or rows empty.

	Ecosystem service:	Ecosystem service:	Ecosystem service:
Green infrastructure practices for <i>landscape</i> and watershed scales			
Green infrastructure practices for <i>community</i> and site scales			
Green infrastructure practices for <i>shoreline</i> scale			

Menu

Green Infrastructure Plan (PDF)

Green Infrastructure Plan (DOC)

Step 1 – Identify A Coastal Hazard Impacting Your Community

Step 1. Identify a Coastal Hazard Impacting Your Community								
Instruction	Hazards	Case Study						
In this step, select a coastal hazard affecting your community, and record it on your Green Infrastructure Plan worksheet.		Coastal hazard: Lo Stormwater runoff		Location:	.ocation:			
			Ecosystem service:		Ecosystem service:			
Consider the one that has the greatest impact to your community or the one you are most interested in.		Green infrastructure practices for landscape and watershed scales						
Explore the tabs above for more information.		Green infrastructure practices for <i>community</i> <i>and site</i> scales						
		Green infrastructure practices for <i>shoreline</i> scale						
Menu					Knowledge Check			

GEORGIA SILVER JACKETS

Step 1. Identify a Coastal Hazard Impacting Your Community

Instruction

Case Study

Coastal hazards affect communities in a variety of ways. Select each example to learn more.

Hazards

Stormwater runoff	Wave action
Coastal flooding	Coastal erosion
High tide flooding	Tsunami
River flooding	Seiche
Storm surge	Great Lakes water level fluctuations
Sea level rise inundation	Other

Stormwater runoff occurs in areas with many paved surfaces that receive too much rain, too fast. The stormwater system can become overwhelmed, causing streets, yards, and basements to flood. Stormwater runoff also carries pollutants into rivers and lakes, causing water

quality issues.

Knowledge Check

Step 2 – Identify An At-Risk Location

Step 2. Identify an At-Risk Location Step 2. Identify an At-Risk Location Instruction **Mapping Tool** Instruction **Mapping Tool** -Q Searc Coastal hazard: Location: To identify specific problem areas using NOAA's Coastal For your selected coastal hazard, indicate Stormwater runoff Downtown city and environs Flood Exposure Mapper, enter a location in the search box a location where it is occurring in your and select the hazard and other map layers as appropriate. community. Ecosystem service: Ecosystem service: UNITED STATES Link will open in a Coastal Flood Exposure Mapper 🚿 Local knowledge is critical when new browser window. identifying current coastal hazard impacts, The mapper is available for coastal counties along the East and West Green infrastructure as are maps that show community assets Coasts, Gulf of Mexico, and Caribbean and Pacific islands and territories. practices for landscape located in potential hazard areas. and watershed scales If your geography is in the Select the Mapping Tool tab to explore. Green infrastructure Great Lakes region, visit practices for community Lake Level Viewer 📎 NOAA's Lake Level Viewer and site scales and Coastal County Coastal County Snapshots 📎 Snapshots to see impacts Green infrastructure practices for from changing lake levels Links will open in new browser windows. Select the play button to begin an animated demo of the mapper. shoreline scale There is no audio in this demo. and location of flood zones. Knowledge Knowledge Menu Check Check

Step 3 – Identify Ecosystem Services That Mitigate Impacts

Step 4 – Identify Green Infrastructure Practices That Provide Ecosystem Services

Step 4. Identify (Green Infrastru	icture Practice	es that Provid	e Ecosystem Services	Step 4. Identify Gre	een Infrastruc	cture Practices	that Provide Ecosystem Service	s	
Instruction	Scales	Practices	Case Stu	dy	Instruction	Scales	Practices	Case Study		
So far, you've identified • coastal hazard • location and	d the	Coastal hazard: Stormwater	Locati	on: Downtown city and environs	Types of	Scale		practices to find ecosystem services he hazard at the appropriate scale.		
• ecosystem services.			Ecosystem service:	Ecosystem service:	Green Infrastructure	J & O & K				
Now it's time to think a infrastructure practice			Stormwater retention	Water infiltration	Land Preservation	L W C Sh	and the second			
restore, or re-create th services.		Green infrastructure practices for <i>landscape</i>	Urban	Conservation	Forestry Green Streets	L W C		Carl Street Contraction of the Street Contract		
Choose green infrastr	ucture practices	and watershed scales	forestry	easements	Bioretention	C Si		Same and the second of the second second		
that provide each ide		Green infrastructure		Permeable	Green and Blue Roofs Permeable Pavements	C Si C Si	and an a state of the			
	service. It's okay to use the same practice multiple	practices for <i>community</i> and site scales	Bioswales	pavement	Dunes and Beaches	Sh		ND COASTAL WETLANDS		
times or leave a box/row empty, but make	Green infrastructure			Salt Marsh / Coastal Wetlands	s Sh		Practices: salt marsh and coastal wetland preservation and restoration, submerged aquatic vegetation preservation			
sure you are considerir scale.	ng practices at each	practices for shoreline scale	Land acquisition	Salt marsh preservation	Oyster and Coral Reefs	Sh		Ecosystem services provided: coastal flood control, sediment transport, erosion control, coastal buffering, wave attenuation,		
SCAIE.		shoreline scale	н н		Hybrid Shorelines	Sh	water filtration, groundwater recharge, evapotrar			
Menu				Knowledge Check	Menu		urban heat	island reduction Knowledge Check		

Step 5 – Brainstorm Barriers And Opportunities

Trainings: In-Person – learn from local experts and develop a green infrastructure strategy

Virtual – learn from local experts

coast.noaa.gov/digitalcoast/training/green.html

GI Project Plan Location: Glenvice Elementary Sustainable School Descripto 00 School UPCOMING 00 remodel to practices to da on-site + AF-Site sprmwater whole Pare Practicos coold include: Even Steels For both Elin St + 14 St. Using biorefution, a blue root system to use as grey write for irrightion + building needs street + other trass, + son amendment in green areas to encourage & militador. Stakeholders: Glenica Negliberhand Assoc 2) School administrators Teacher + students H) Tax pager Asepc. 5) Ground's Keepers Partner ships Source Shal Bruid City Administraction Trust for Public Lands tunding Existing school bond for importances 2) TPL sto school mitudine in Fordation X Grant to state 31 Steps to More Fridad: Dere info on practices

Green Infrastructure Effectiveness Database

			About				
Green Infrastructure Effectiveness Database This database is a compilation of literature resources documenting the effectiveness of using green infrastructure to reduce impacts from coastal hazards.							
• Please fill in one or more fields below to narrow the search. Use quotes to search for an exact phrase. Return to basic search +							
Title:	Enter a (partial) title	Green Infrastructure Type:					
Author(s):	e.g. author(s), comma separated	Hazards:	~				
Year published:	1980 2021	Methodological Approaches:	~				
Source:	e.g. journal name	Study Scale:	~				
Source Type:	~	Region:	· ·				
Keywords:	e.g. keyword(s), comma separated	State:	· ·				
			Clear form				
		Search					

coast.noaa.gov/digitalcoast/training/gi-database.html

Benefits, Costs, And Economic Assessments

coast.noaa.gov/digitalcoast/training/gi-practices-and-benefits.html

GEORGIA SILVER JACKETS

Funding And Financing Nature-Based Solutions Quick Reference and Webinar Series

coast.noaa.gov/digitalcoast/training/financing-resilience.html

Learn More

coast.noaa.gov/digitalcoast/topics/green-infrastructure.html

GEORGIA SILVER JACKETS

NATURE-BASED SOLUTIONS FOR COASTAL HAZARDS- THE BASICS | ADDRESS

Questions

Tashya Allen NOAA Office for Coastal Management *tashya.allen@noaa.gov* **INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE**

ASSESS | COMMUNICATE | ADDRESS Stormwater Management

PRESENTED BY JESSICA T. R. BROWN, P.E. MARINE EXTENSION AND GEORGIA SEA GRANT

jtrbrown@uga.edu

Marine Extension and Georgia Sea Grant UNIVERSITY OF GEORGIA

GEORGIA SILVER JACKETS COASTAL RESILIENCE WORKSHOP

STORMWATER MANAGEMENT | ASSESS AND ADDRESS

PRESENTATION OUTLINE

- A. Applicability to State Statutes/Laws
- **B.** Overview of Products/Tools
 - Coastal Low Impact Development Inventory
 - Brunswick's Rethinking Runoff Plan
 - Stormwater Operation, Inspection, and Maintenance Tools
- C. Applied Exercises (How to Use)
- D. Learn More

Brunswick road closure due to flooding
INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

STORMWATER MANAGEMENT | ASSESS AND ADDRESS

Bioretention (Camden County Extension)

Rainwater Harvesting (Brunswick)

Permeable Pavement & Bioretention (St. Marys)

Bioretention (Jekyll Island)

GEORGIA SILVER JACKETS

APPLICABILITY TO STATE STATUTES/LAWS

 National Pollutant Discharge Elimination System Municipal Separate Storm Sewer Systems (MS4) Permit Compliance

"The permittee shall update, implement, and enforce a SWMP designed to reduce the discharge of pollutants from MS4 to the maximum extent practicable, in order to protect water quality and to satisfy the appropriate water quality requirements of the State Act and Rules (391-3-6-16). The SWMP must include management practices, control techniques and system design and engineering methods, and other provisions appropriate for the control of such pollutants."

 Opportunity: Activity 450 (Stormwater Management) FEMA Community Rating System

Voluntary incentive program that recognizes and encourages floodplain management practices that exceed the minimum requirements of the National Flood Insurance Program.

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

B COASTAL LOW IMPACT DEVELOPMENT (LID) INVENTORY

- Developed by: UGA Marine Extension and Georgia Sea Grant, Georgia Coastal Management Program, Ecological Planning Group, LLC (2016), Center for Watershed Protection (2016), Goodwyn, Mills, Cawood (2021)
- What it Does: Inventory of stormwater green infrastructure practices located on civic, public, commercial and mixeduse properties. Conducted using a combination of data collection and field verification. Includes narrative summary and photographs.

https://www.arcgis.com/home/item.html?id=19e663171d

GEORGIA SILVER JACKETS

Date Published/Update: 2017; 2022

6f4d8fa04500ea0c8e98b9

Access:

USING THE COASTAL LID INVENTORY

Step 1

Search by "location" or "practice" i.e., "LID Practice type is Permeable Pavement"

Step 2

Zoom in and select a site. "Liberty City Community Center" Step 3 View photos.

- 91+ new practices, on-going assessments
- Reevaluated 146 locations (Dec 2021) (PP=107, Bio/RG/BS=39)
- About half static visual assessment (PP = 43%, Bio = 56%)

- Permeable Pavement
 Infiltration Study
- Cost Pilot Study

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

STORMWATER MANAGEMENT | ASSESS AND COMMUNICATE

RETHINKING RUNOFF PLAN

- Developed by: City of Brunswick, UGA Marine Extension and Georgia Sea Grant, Goodwyn, Mills, Cawood
- What it Does: Identifies priority locations to implement stormwater green infrastructure. Developed as a resource for decision-makers. Locations address water quality or flooding issue, focus on public properties, and educational opportunities.
- Access: Coming soon; ASM Plan -<u>https://gacoast.uga.edu/wp-</u> <u>content/uploads/2021/01/FINAL-ASM-Hinesville_ADA.pdf</u>
- Date Published/Update: Fall 2022

RETHINKING RUNOFF PLAN

SITE EXAMPLE

Liberty County Justice Center

The vegetated quadrant at the main entrance can be retrofitted with four bioretention systems to capture, treat, and infiltrate runoff from the adjacent sidewalk. Runoff from the parking lot on the south side of the site can be treated by a permeable pavement system. Downspouts on the western edge of the building can be disconnected to allow stormwater to infiltrate into the vegetated areas adjacent to the building.

B

DISCONNECTION AREA		TREATMENT AREA		RUNOFF VOLUME		RUNOFF Reduction / Recharge		ESTIMATED COST	
IMPERVIOUS	COMPACTED	GI / LD TYPE	GI/LID AREA	WATER QUALITY Event Depth (1.2")	ANNUAL I (50		CREDIT	estimated Volume	CONSTRUCTION
8,500 sq.ft	9,650 sq. ft.	PERMEABLE Pavement	9,650 sq. ft.	1,740 cu. ft.	72,100 cu. ft.	0.54 Mgal	100%	0.54 Mgal / yr	\$237,000
15,750 sq.ft	0 sq. ft.	BIORETENTION	1,400 sq. ft.	1,630 cu. ft.	64,900 cu. ft.	0.49 Mgal	100%	0.49 Mgal / yr	\$49,500

Goodyear Park

2209 Parkwood Drive

OVERVIEW

Stormwater runoff from various impervious surfaces throughout the park (tennis court, fitness court, and planned pavilion) and stormwater runoff from adjacent streets (Park Ave) can be routed to permeable pavement parking stalls. Parking stalls will be located on the eastern and western edges of the park. The permeable pavement will be used to capture and infiltrate stormwater runoff and reduce erosion along the perimeter of the park. Additionally, the green space at the northwest corner of the park should be prioritized for preservation. Educational signage is proposed for the planned pavilion.

GEORGIA SILVER JACKETS

COASTAL RESILIENCE WORKSHOP

B PHOTO-BASED OPERATION, INSPECTION AND MAINTENANCE TOOLS

- Developed by: UGA Marine Extension and Georgia Sea Grant, Georgia Coastal Management Program, Goodwyn, Mills, Cawood
- What it Is: A suite of photo-based resources for inspectors and maintenance staff engaged in stormwater management to be used in training and inspections for operation and maintenance of green infrastructure.

Access:

<u>https://gacoast.uga.edu/outreach/programs/stormwater</u> <u>-management/</u>, "Stormwater Operation, Inspection and Maintenance Tools"

GEORGIA SILVER JACKETS

Date Published/Update: 2020

PHOTO-BASED OPERATION, INSPECTION B **AND MAINTENANCE TOOLS**

20. Rate 1 21. Rate 1 22. Rate 1 23. Rate 1 24. Rate 1 56 cmm1 percent

the presence of sediment accumulation in the bioretention surface area.	GOOD (<25% of area)	M
the presence of debris (s.g., issues, mash, grass clappings) in the bioretention surface area.	600D (<25% of area)	M
the presence of undesirable vegetation.	GOOD (<25% of area)	M
the condition of plant health per landscaping plan and site objectives.*	GOOD (<25% dying)stressed	MARG
the condition of plant density per landscaping plan and site objectives.*	GOOD (~50% segetation coverage)	MARG
ercentages provided if konducaping plan and site objectives are not available		

14. MULCH (<2"), 1 UNDESRABLE VEGETATION (MARCINAL 8 14. PLANT AN

D POOR I-SITE direct

DOOR (Sandh

POOR (>50%

POOR (>50%)

RGINAL (DE-EOR

ARGINAL (25-50%) INAL (25%-50% dying to

GEORGIA SILVER JACKETS

COASTAL RESILIENCE WORKSHOP

PHOTO-BASED O&M TOOLS IMPACT

- 2020 Training 98% agree or strongly agreed to put something they learned into practice within 12 months.
- 44% of permitted municipalities have included the tools as recommended resources in GI/LID Plan updates
- 95% of the GI/LID practices are being assessed by municipalities using the tools

Online training course – Fall 2022

- Rethinking Runoff Lunch Workshop September 15th
- https://gacoast.uga.edu/outreach/programs/stormwater-management/
- Georgia Stormwater Management Manual updated 2016, Coastal Stormwater Supplement ?

https://atlantaregional.org/natural-resources/water/georgia-stormwater-management-manual/

Questions?

COASTAL RESOURCES DIVISION

Jennifer Kline, Coastal Hazards Specialist Georgia Coastal Management Program

Resilience at a state level

\sim

- o Department of Agriculture
- o Department of Natural Resources
- o Department of Community Affairs
- o Department of Public Health
- Georgia Emergency Management & Homeland Security
- o Georgia Forestry Commission
- o Georgia Chamber of Commerce
- o University System of Georgia

JURISDICTION

MARSH & SHORE

- Coastal Marshlands
 Protection Act
- o Shore Protection Act
- o Revocable Licenses
- o Federal Consistancy

COASTAL MANAGEMENT PROGRAM

- o 368,000 acres of marshlands
- 300 square miles of Atlantic Ocean
- 3,400 miles of shorelines
- o 105 miles of beaches
- o 11 counties
- o 680,000 people

It is our goal to make Georgia's coast more resilient to hazards by providing training, technical assistance & funding.

COASTAL MANAGEMENT

OCEAN & COASTAL MANAGEMENT

02 MARSH & SHORE MANAGEMENT

01

COMPLIANCE & 03 ENFORCEMENT

04 SHELLFISH & WATER QUALITY

01

COASTAL & OCEAN MANAGEMENT

GREEN GROWTH

Building & planning best practices; Low-impact development

COASTAL HAZARDS

Community resiliency; Disaster recovery; Assessing climate change

GIS & PLANNING

Regional LIDAR; Imagery gathering; Web-based mapping

WETLANDS

Assessing health; Monitoring dieback; Promoting restoration

COASTAL & OCEAN MANAGEMENT

COASTAL INCENTIVE GRANTS

01

Nearly 450 projects funded over 20 years, representing \$40 million including matching funds

Over \$3 million in resiliency projects

Over \$3 million to resiliency

69 percent Universities

30 percent

Local governments

l percent State agencies

DISASTER RECOVERY & REDEVELOPMENT PLANNING

Long-term, holistice, community level planning

- All 11 Coastal Georgia Counties
- Includes Shoreline Change and Sea Level Rise
- All coastal military installations participated

Georgia is the first state in the US to have a completely resilient coast based on FEMA's National Disaster Recovery Framework.

RESPONSE

MARINE DEBRIS

Private docks, marinas and sunken vessels

UNMANNED AERIAL VEHICLES

Assistance to state and local governments

ENHANCING COASTAL RESILIENCE WITH GREEN INFRASTRUCTURE

Freshwater

Stormwater/precepitation flooding Bioswales, raingardens, pervious paving, rainwater harvesting

Saltwater

High-tide flooding Tide gates, living shorelines, salt-tolerant vegetation, enhanced dunes

PACKAGE IT UP

People

Social Vulnerability Underserved Communities Natural Resources Climate Change Coast

Place

Protection

NBI & GI Resources and Tools Ordinances

BUILDING RESILIENCY WITH NATURE-BASED INFRASTRUCTURE

In West

GEORGIA CLIMATE CONFERENCE

MINIMIZING GEORGIA'S RISKS. MAXIMIZING GEORGIA'S FUTURE.

FLOOD LITERACY PROJECT

Terminology is critical

COASTAL LAND CONSERVATION

(formally known as CELCP)

Funding to assist in land conservation.

GEORGIA COASTAL HAZARDS COMMUNITY OF PRACTICE

GOVERNMENT

Dept. of Public Health Dept. of Community Affairs U.S. Army Corps Georgia Emergency Mgmt. Coastal Regional Comm.

NONPROFIT

Nature Conservancy Georgia Conservancy

• RESEARCH

H-H

University of Georgia Georgia Southern University Emory University Savannah State University Georgia Tech

NATURAL RESOURCES

Coastal Resources Div. Skidaway Institute Jekyll Island Sapelo Island N.E.R.R.

ffi

GEORC

GEORGIA DEPARTMENT OF NATURAL RESOURCES

COASTAL RESOURCES DIVISION

INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE

ASSESS | COMMUNICATE | ADDRESS

Resilient Infrastructure Systems

J. Scott Pippin, JD, CFM

jspippin@uga.edu

Carl Vinson Institute of Government UNIVERSITY OF GEORGIA

Since 1927, the **Carl Vinson Institute of Government** has been an integral part of the University of Georgia. A public service and outreach unit of the university, the Institute of Government is the largest and most comprehensive university based organization serving governments in the United States through research services, customized assistance, training and development, and the application of technology.

Carl Vinson Institute of Government UNIVERSITY OF GEORGIA

Services & Research

Economic	Fiscal & Economic	Strategic Planning	Planning &
Development	Analysis		Environmental Services
Human Resources	Survey Research	Applied Demography	State & Local
Management	& Evaluation		Government Services
	Workforce Development	Data Analytics and Visualization Services	

Carl Vinson Institute of Government Services & Research

Disciplines Involved

ENHANCING Coastal Resilience

WITH GREEN INFRASTRUCTURE

Environmental Law & Policy

ENVIRONMENTAL	HAZARDS & RESILIENCE	LOCAL, STATE	URBAN DESIGN & PLANNING
LAW & POLICY	PLANNING	& REGIONAL PLANNING	
	GREEN INFRASTRUCTURE & LOW IMPACT DEVELOPMENT	NATURAL & NATURE-BASED INFRASTRUCTURE	

Jekyll Island Land Use Update, 2021

Strategic Planning & Natural Resource Planning

WATER QUALITY	ASSET-BASED COMMUNITY	LOCAL, STATE	URBAN DESIGN & PLANNING
REGULATIONS	DEVELOPMENT	& REGIONAL PLANNING	
STRATEGIC PLANNING	LAND CONSERVATION	GREEN INFRASTRUCTURE & LOW IMPACT DEVELOPMENT	LAND USE

Policy Research and Analysis

ENVIRONMENTAL LAW & POLICY	POLICY ANALYSIS & RESEARCH	COASTAL LAW
PUBLIC ENGAGEMENT	LOCAL, STATE & REGIONAL PLANNING	LAND USE

9

Downtown Development

LANDSCAPE DESI	GN	DOWNTOWN DEVEL	OPMENT	URBAN DESIGN & P	LANNING
		D & COMPUTER RENDERING			

11

Visualization & Graphics

NATURAL & NATURE-BASED INFRASTRUCTURE	GREEN INFRASTRUCTURE & LOW IMPACT DEVELOPMENT	LANDSCAPE DESIGN	ENVIRONMENTAL LAW & POLICY
HAZARDS & RESILIENCE PLANNING	HAND & COMPUTER RENDERING		URBAN DESIGN & PLANNING

Institute for Resilient Infrastructure Systems (IRIS)

Carl Vinson Institute of Government UNIVERSITY OF GEORGIA

Institute for Resilient Infrastructure Systems UNIVERSITY OF GEORGIA

Institute for Resilient Infrastructure Systems **UNIVERSITY OF GEORGIA**

Vision

Natural and conventional infrastructure working together for thriving communities, businesses and natural systems.

Mission

- Advance the integration of natural and conventional infrastructure systems to strengthen long term resilience to flooding, sea level rise, drought, and other disruptions.
- Empower communities and businesses to discover wise infrastructure solutions that maximize social, economic, and environmental benefits.
- Support informed decision making through interdisciplinary expertise, advanced tools and techniques, and collaborative partnerships.

- College of Engineering
- College of Agricultural and Environmental Sciences
- Carl Vinson Institute of Government
- College of Environment and Design
- Franklin College of Arts and Sciences (including Anthropology, Geology, Geography, Marine Science, Psychology)

- Marine Extension and Georgia Sea Grant
- s College of Public Health
 - Odum School of Ecology
- Warnell School of Forestry and Natural Resources
- Skidaway Institute of Oceanography
- School of Social Work

- Ecologists
- Hydrologists
- Economists
- Landscape architects
- Meteorologists
- Anthropologists
- Social workers

- Civil, Mechanical, Environmental, & Computer Engineers
- Psychologists
- Geologists
- Marine Scientists and Oceanographers
- Foresters
- Lawyers

US Army Corps of Engineers®

Engineering With Nature

<image>

Natural Infrastructure

Natural Infrastructure

Coastal wetlands (Salt marsh)

Beaches and Dunes

Barrier Islands

Oyster/coral reefs

Levee Setbacks

Engineering With Nature®

US Army Corps of Engineers®

EV

- Engineering not "against," not "for," but "WITH" nature
- Intentional alignment of engineering and natural processes that requires us to understand:
 - Natural processes
 - NI not as just things in space, but as processes in time
 - System interactions

Network for Engineering with Nature (N-EWN)

19

N-EWN

MCE Initiative

Responsibilities and Activities:

Conduct basic and applied science. Develop technical practices and methodologies. Coordinate academic educational activities. Outreach and engagement with industry. Collaborative planning with communities and military installations. Develop pilot project concepts.

Facilitate the adoption of EWN best practices and concepts.

Conduct/inform legal, policy, and social science research activities.

Military Community Engagement Initiative

Carl Vinson Institute of Government UNIVERSITY OF GEORGIA

UGA Military Community Engagement Initiative

Engineering With Nature[®] for Climate Resilience on Military Installations

WILDFIRES

STORMS

DROUGHT

THE UNIVERSITY OF GEORGIA-FORT BENNING PARTNERSHIP

The University of Georgia's (UGA) Institute for Resilient Infrastructure Systems (IRIS) and the Carl Vinson Institute of Government are engaging with Fort Benning to apply Engineering With Nature (EWN) principles and practices to develop plans that addresses the local priorities and vulnerabilities defined by the installation and the surrounding communities.

CURRENT PROJECTS OF THIS PARTNERSHIP INCLUDE:

- Assessing opportunities for EWN projects both inside the installation and across adjacent communities;
- Assessing opportunities to reduce wildfire risk and drought vulnerability;
- Supporting Fort Benning in applying the Army Climate Assessment Tool (ACAT);
- Building improved models of stormwater systems and other infrastructure;
- Evaluating potential operational efficiencies that can improve resilience planning and EWN project implementation; and
- Conducting additional inventories and assessments to understand the root causes of vulnerabilities on the installation and across adjacent communities.

PROBLEM

Climate change poses a variety of threats to military operations based on:

- The nature of the mission of the specific installation
- · The geographic and ecological setting in which it operates
- Age and design of local infrastructure systems
- · The interconnections the installation has with the surrounding community

APPROACH

- Climate change is a universally shared challenge, but one where the threats and necessary adaptations are intensely local.
- Through direct engagement with civilian and military personnel and in surrounding communities, this effort will provide practical resources to address local vulnerabilities through application of EWN principles and implementation of natural infrastructure projects to address Army and DOD climate resilience priorities.

OUTCOME

This effort will create a network of resilience professionals to share information, drive
practical and applied research, and spur innovative projects that can effectively and
efficiently address threats to the military mission in all of the widely varied contexts in
which the military operates.

THE PROCESS

- Assess the economic and fiscal impact of existing compatible use programs as well the potental impacts of proposed programs.
- Conduct a feasibility study designed to evaluate potential revenue generating compatible land use activities.
- Conduct robust community engagement in the counties affected by the ACUB priority areas.
- Conduct engagement with Base personnel for input, ideas, needs within the rural region.
- Identify common needs, issues, priorities, and opportunities related to and compatible with mission and ACUB land acquisition efforts.
- Develop a resource and asset inventory describing local opportunities for mission compatible economic development.
- Focus on non-regulatory and incentive-based programs, policies, and activities that can facilitate market driven land use practices that promote compatible long-term development.
- Outline a regional approach with concrete action items to further an economic development strategy.

Develop an Implementation Strategy that identifies funding and resources to support the execution of short-term and long-term action items described in the Plan.

Questions / Discussion

Carl Vinson Institute of Government UNIVERSITY OF GEORGIA

Institute for Resilient Infrastructure Systems UNIVERSITY OF GEORGIA **INCREASING COMMUNITY RESILIENCE TO COASTAL STORMS AND SEA LEVEL RISE**

ASSESS | COMMUNICATE | ADDRESS

Hazard Mitigation Assistance Grants PRESENTED BY: GEMA/HS

gema-hazmitpoc@gema.ga.gov

GEORGIA SILVER JACKETS

COASTAL RESILIENCE WORKSHOP

Georgia Emergency Management & Homeland Security Agency (GEMA/HS): "Protection of life and property"

GEMA/HS Hazard Mitigation Department: "Mitigation is any sustained action taken to reduce or eliminate the long-term risk to human life and property from hazard events."

What is risk, then?

Where are we headed?

National Institute of Building Sciences

<u>Natural Hazard Mitigation Saves Report</u>

National Institute of BUILDING SCIENCES ^{TT} Cost (\$ billion) Benefit (\$ billion)	ADOPT CODE 11:1 \$1/year \$13/year	ABOVE CODE 4:1 \$4/year \$16/year	BUILDING RETROFIT 4:1 \$520 \$2200	LIFELINE RETROFIT 4:1 \$0.6 \$2.5	FEDERAL GRANTS 6:1 \$27 \$160
Riverine Flood	6:1	5:1	6:1	8:1	7:1
👌 Hurricane Surge	not applicable	7:1	not applicable	not applicable	not applicable
윽 Wind	10:1	5:1	6:1	7:1	5:1
문arthquake ·	12:1	4:1	13:1	3:1	3:1
Wildland-Urban Interface Fire	not applicable	4:1	2:1	not applicable	3:1

Copyright © 2019 The National Institute of Building Sciences

Cost-effectiveness (Return on Investment)

- "Benefits" are <u>avoided losses</u> or <u>avoided service</u> <u>delivery interruption</u>
- No less than \$2.33 in federal dollars for every \$1 invested by the local government
 - Up to 9:1 under the current Hazard Mitigation Grant Program

FEMA Community Lifelines Framework

Consideration	Building Resilient Infrastructure & Communities^	Building ResilientHazard Mitigationfrastructure & Communities^Grant Program^		
Availability	Annually	After Presidentially Declared Disaster	Annually	
Current Funding	\$1B (minimum \$1M to GA)	~\$90M (~\$80M for Covid-19 Pandemic)	\$160M	
Competition	Nationwide	Statewide	Nationwide	
Eligible (Sub)Applicants	State and Local Governments	State and Local Governments, Qualifying Private Non-Profits	State and Local Governments	
Cost Share (Federal %/Non-federal %)	70/30	90/10	75/25	
Maximum Award (Federal Share)	\$50M	Scales with Disaster	\$30M	
Grant Deadline	Last week of January	Per Disaster Declaration Date	Last week of January	
Application Review	~1 year to 18 months	~18 months to 2 years	~1 year to 18 months	
Administration	Reimbursement*	Reimbursement*	Reimbursement*	

^All local government subapplicants must participate in the National Flood Insurance Program *Actual physical work cannot occur prior to award or final approval

Stephen Clark Hazard Mitigation Manager

Phone: (404) 635-4573 1-800-TRY-GEMA stephen.clark@gema.ga.gov

Alan Sloan

Hazard Mitigation Planning Supervisor

> Phone: (229) 276-2773 1-800-TRY-GEMA <u>alan.sloan@gema.ga.gov</u>

Jack Krolikowski Hazard Mitigation Deputy Manager

Phone: (404) 333-9469 1-800-TRY-GEMA jack.krolikowski@gema.ga.gov

Alicia Schoening

Hazard Mitigation Projects Supervisor

Phone: (404) 635-4573 1-800-TRY-GEMA <u>alicia.schoening@gema.ga.gov</u>