Appendices AVIAN VACUOLAR MYELINOPATHY REDUCTION FOR J. STROM THURMOND (JST) LAKE

Appendix A: Grass Carp Biological Opinion

- Appendix B: Lake-wide Aquatic Plant Survey, J. Strom Thurmond Lake
- Appendix C: April 2015 Fact Sheet Avian Vacuolar Myelinopathy (AVM)
- Appendix D: JST Species List
- Appendix E: Comments and Responses to Comments

Appendix A: Grass Carp Biological Opinion

United States Department of the Interior

FISH AND WILDLIFE SERVICE WASHINGTON, D.C. 20240

. . .

ADDRESS ONLY THE DIRECTOR.

Biological Opinion

Use of Triploid Grass Carp in Public Waters of South Carolina

Robert E. Stevens, Chairman FWS Grass Carp Committee

Triploid grass carp were produced by J.M. Malone & Sons Enterprises in 1983 for the purpose of producing sterile grass carp. Triploid fish, in theory, are sterile because the odd chromosomes cannot synapse in gametogenesis. Gonads are structually deformed and reproduction cannot occur.

In order to test this concept, Julia Doroshev at the University of California at Davis, California, conducted histological examinations of the gonads of the original triploid grass carp of both sexes at one year of age in 1984 and again at two years of age in the summer of 1985. She reported that both investigations demonstrated that the gonads of females were abnormal and that no functional oocytes were visible. She concluded that female triploid grass carp will be incapable of producing eggs at maturity. The gonads of triploid male grass carp produced only a few sperm cells which lacked flagella. She concluded that the sperm of male triploid grass carp will probably not be functional at the time of spawning.

Several States have long since accepted the triploid grass carp as sterile and have permitted their use in open water systems.

There seems to be no compelling reason to prohibit the use of certified triploid-grass carp in open systems because there is every reason to assume that they will not reproduce themselves. Any adverse impact on desirable aquatic plants will be short-lived and reversible.

It is concluded that the stocking of triploid grass carp in either closed or open water situations will result in no adverse impact on the environment.

Robert Steven 12/2/85

Biological Opinion Evaluation of Sterility of Triploid Grass Carp FWS Hybrid Grass Carp Committee Robert E. Stevens, Chairman Jon G. Stanley, Member

Triploidy, in theory, produces complete sterility of individual animals because the odd chromosomes cannot synapse in gametogenesis. Gonads are structurally deformed and reproduction will not take place.

The gonads of triploid grass carp examined by Julia Doroshov at the University of California at Davis are very abnormal. It is extremely unlikely that reproduction could occur. We believe the triploid grass carp are completely safe for stocking in ponds where large numbers are unlikely to escape to large rivers.

There is one reservation. In amphibians, triploids are partially fertile--they can be artifically reproduced in the laboratory. A few viable gametes are produced because of chance combination of the correct chromosomes. Very few viable eggs are produced. The production of viable spermatozoa is greater but still diminished compared to normal animals. In animals with a high fecundity, such as grass carp, there is a possibility that triploids could form some viable gametes. Reproduction, however, is not likely to occur in nature because of diminished fertility. Nevertheless, I recommend that stocking be restricted to ponds and lakes without direct connections to major rivers, until the reproductive status is more fully explored. Nearly complete protection can thus be afforded against naturalization. Ingrams Pond clearly fits this category.

Certification of sterility of each individual is impossible without breeding trials. Instead, each fish could be tested to determine its ploidy, and only certified triploids need be stocked. Such certified fish are available from reputable dealers in Arkansas. Alternatively, the agency could analyze each fish to determine the ploidy. Instruments needed are a modern Coulter counter that measures sizes of cells, or a cytometer that measures DNA content. Both methods are extremely precise and diploid contaminates can be detected with certainty.

Triploids are as effective as diploid grass carp in control of aquatic vegetation. In tests done in California the triploids fed slightly faster. In Washington, they grew slightly slower. In both preliminary tests, there were not statistically significant differences.

Finally, this review is not an endorsement for biological control of aquatic plants. If, however, one wished to destroy aquatic plants in a body of water, triploid grass carp are the safest and most effective method. Hybrid grass carp and bighead carp are not recommended because they are ineffective in controlling aquatic vegetation.

ENVIRONMENTAL ASSESSMENT

Evaluation of a biological method of vegetation control

2/1/86-1/31/89

I. Purpose and Need

Introduction

Aquatic vegetation has become the most serious problem in many of Delaware's public and private ponds in recent years. Two submergent exotic plant species, <u>Hydrilla verticillata</u> (hydrilla) and <u>Cabomba caroliniana</u> (fanwort), which have proven difficult to control in a limited number of ponds are rapidly spreading to most of the ponds in Sussex County. Although total eradication of these species is not feasible, some control of plant abundance and biomass is required to lessen adverse impacts both on fish populations and water-based recreational activities.

Colle and Shireman (1980) found that if hydrilla density occupied the entire water column, a marked reduction in growth and condition of bluegill and largemouth bass occurred. A comparison of condition factor change with macrophyte abundance indicated that hydrilla coverage in excess of 40% caused a decline in condition which was magnified in larger bass and bluegill. This density level has been common in many of the infested Delaware ponds from August into November. Angling and other waterbased recreation have also been negatively affected by plant abundance. Fishing in several ponts with nearly 100% coverage by hydrilla and/or fanwort has been virtually impossible during the summer and early fall. Increasing complaints of anglers, boaters and shoreline residents requires additional emphasis on weed control.

The objectives of the proposal discussed in this assessment are to evaluate the efficacy of a herbivorous fish in controlling aquatic weeds in a Delaware pond and to determine the impact of this fish on existing fish populations.

Background

The problems presented by over-abundant aquatic vegetation in Delaware were recognized in the mid-seventies and resulted in a research project, Aquatic Vegetation Control in Delaware Ponds (D-J Project F-27-R). Both mechanical and chemical methods of control were tested under this project with varying degrees of success, dependent upon the plant species involved (Bonner 1978). A survey and classification of trophic conditions of 30 Delaware ponds was conducted from March 1979 to March 1980 under the EPA Clean Lakes Program (Ritter 1981). Most of the ponds in Delaware were classified as highly eutrophic, indicating that aquatic weeds will be a long-term problem. During the mid to late seventies, fanwort, the primary problem weed in the Sussex county ponds, was controlled by winter water level drawdowns. However, in 1981 hydrilla was positively identified from three Delaware By the fall of 1983, hydrilla with or without ponds. fanwort had been documented in seven public ponds and four private ponds (Table 1). In most cases, the two species of weeds now occur together.

When fanwort is controlled, hydrilla quickly moves into the cleared areas. Hydrilla, which has been documented as a major nuisance in southern waters (Haller 1978), effectively negates the positive effects of the winter drawdown.

Description of Area

Ingrams Pond, the test area, is located one mile west of the Town of Millsboro (Figure 1). It consists of 9.9 ha surface area with a mean depth of 1.3 m and maximum depth of 3.1 m. It is typical of the hydrilla-fanwort infested ponds, being slightly acidic (pH 6.2-7.0) with a muck bottom, low turbidity and high light penetration. The major portion of the drainage basin is forest (62%) with some agricultural lands, primarily broiler operations (Ritter 1981).

6min

The present fish community consists of: largemouth bass (<u>Micropterus salmoides</u>), chain pickerel (<u>Esox niger</u>), black crappie (<u>Pomoxis nigromaculatus</u>), bluegill (<u>Lepomis macrochirus</u>), pumpkinseed (<u>L. gibbosus</u>), bluespotted sunfish (<u>Ennaecanthus</u> <u>gloriosus</u>), golden shiner (<u>Notemigonus crysoleucas</u>), brown bullhead (<u>Ictalurus nebulosus</u>), mosquitofish (<u>Gambusia affinis</u>) and swamp darter (<u>Etheostoma</u> <u>fusiforme</u>). A variety of amphibian, reptile, bird and small mammal species also inhabit the area.

- 3 -

Bald eagles occur within a five-mile radius and frequently fly over the ponds in the area to obtain fish for food.

Prior to the presence of hydrilla and fanwort, the typical plant species were: bladderwort (<u>Utricularia spp.</u>), bushy pondweed (<u>Najas gracillima</u>), water lily (<u>Nymphaea</u> odorata) and spatterdock (Nuphar spp.) (Lesser 1966).

Concerns

Public concern has been expressed by increasing complaints and inquiries as to plans for weed control. Public meetings in the fall of 1983 were held in the Towns of Laurel and Millsboro to present information on aquatic weed biology, the effect on fishes and control methods and costs. Both meetings were well attended with legislators, anglers, boaters, municipal officials and shoreline residents represented. The primary concerns were negative influence of the weeds on recreation, possible environmental effects of herbicide application, negative impact of weeds on tourist activities and cost of treatment. Legislative concern was evidenced by a legislative appropriation of \$75,000 for the purchase of a mechanical weed harvester to aid in the control of aquatic weeds. A machine was demonstrated in 1983 and evaluated in terms of control effected and numbers of fish harvested incidental to plant biomass.

II. Alternatives

There are four alternatives to consider in the aquatic weed control study:

1) Do nothing to control aquatic weeds. This is impractical due to the public outcry for control and the continual spread of the two target species to additional ponds from those currently infested.

- 4 -

2) Use herbicides to control hydrilla and fanwort. This alone provides only short-term control using currently registered herbicides and is economically infeasible. The current weed control budget and manpower allocation within the Division of Fish and Wildlife cannot provide weed control for the acreage currently infested by these two plant species. Public concern on possible long-term adverse environmental impacts of herbicide use also precludes complete dependence on this alternative.

3) Mechanical vegetation control is a third alternative. Mechanical methods include seasonal water level drawndown or weed harvesting. The water level drawdown from November until March does not control hydrilla and therefore is known to be unacceptable. Harvesting via a mechanical weed harvester is being investigated. However, it is slow and short-term and the use of the harvester is subject to a priority listing for all state-owned ponds, which includes ponds that have problems with other weeds such as filamentous algae. Only limited control in a few ponds is practical using a weed harvester.

4) The fourth alternative is to evaluate a herbivorous fish to control the target weeds. The test fish would be the sterile triploid grass carp (<u>Ctenopharyngodon idella</u> which is being subjected to considerable testing in Florida beginning in 1984. This job will be activated only if results of the Florida testing prove favorable. Only sterile fish would be used to prevent any lasting impact on native fish populations if the introduced fish were to escape from the test pond.

III. Affected Environment

Fileson

If aquatic weeds are not controlled, fish populations would revert from predaceous game fish species to herbivorous or crustacean-eating species. As the plant biomass increases, the amount of silt retained within each pond would increase and accelerate the filling of the pond. The ponds would shortly revert to a freshwater marsh habitat. More habitat would become available to reptiles and amphibians but no change in their species composition would be expected.

If aquatic weeds are controlled, the public will continue to utilize the ponds for angling, boating, canoeing, picknicking and birdwatching. -

The bald eagle is the only endangered species occurring within the test area. Eagles frequently visit ponds within the area to obtain fish for food and would be negatively impacted by a pond reverting to a marsh habitat. Limited utilization of a stocked exotic species of 9-12 inches by bald eagles would be probable.

There will be no planned activities that would affect the floodplain.

IV. Environmental Consequences of Alternatives

In the evaluation of the effects this proposal may have on the environment, issues relating to the physical, biological and social categories have been reviewed. Those which would be affected are: wildlife, vegetation, water quality, economy, aesthetics, and land use.

A comparison of alternatives for the aquatic vegetation control program is presented in a matrix format following discussion of the four alternatives (Table 2).

Alternative #1 - No action

If no action is taken, there will be no impact on native fish species by chemical herbicides, mechanical harvesters or exotic species of fishes. Additionally, there would be no immediate economic drain on the pond owner, whether state, municipal or private individual. The negative impacts of this alternative would be many. Fanwort and hydrilla would continue to grow within the affected ponds and continue to spread to other ponds. As the plant biomass within Ingrams Pond increased, game fish species' growth and condition would decline. Silt accumulation would accelerate. The aesthetic qualities of a pond would be greatly reduced with a possible decline in values of land adjacent to the pond. Angling and other water-based recreational activities would decline, resulting in less public use of the area and a negative economic impact on tradesmen (bait and tackle shops, restaurants, gas stations, etc.) within the area. Public demand for control already expressed to government officials and legislators would override this alternative.

Alternative #2 - Chemical control

Any herbicides used for aquatic weed control would be EPA registered and applied by State Certified Pesticide Applicators at recommended rates. The effect of most herbicides on weeds is relatively quick acting, so control would be achieved within a short time period. Proper safety clothing and procedures will minimize risk to individuals involved in mixing and application of the pesticides. Signs would be posted at the treated ponds citing time restrictions on irrigation, angling and other water-based activities.

The high cost of chemical treatment (\$200 per acre) and the relatively short-term effect for each application (two months) are major negative impacts of a continuing chemical control program. Limited funding is not sufficient to control the present pond surface acreage impacted, so a priority list of treatment areas would have to be drawn up. The lower priority ponds would have no weed control programs. Although currently registered chemicals for hydrilla and fanwort control (Diquat and Cutrine Plus) have had no documented evidence of adverse impact on human health, there still remains public concern on long-term environmental impacts of periodic herbicide use. In many cases, agricultural interests and adjacent landowners would be adversely impacted by irrigation restrictions of treated waters. Restrictions on angling following pesticide applications would be dependent on the chemical used.

Alternative #3 - Mechanical Control

Neither over-winter water level drawdowns nor mechanical harvesting pose environmental hazards to humans or require restrictions on water use for agricultural interests or shoreline residents. Another positive aspect of a weed harvesting operation is that a harvester was purchased in 1983 and is available for use. Harvested plant material is actually removed from the pond thereby diminishing nutrients by a minute amount within the system.

The major negative impact of a winter water level drawdown is that it will not control hydrilla; only fanwort is controlled by this method. Because the two species generally occur together, control of fanwort is followed by immediate colonization by hydrilla of the control area. Although spring/fall drawdowns are recommended for hydrilla control, this method takes two or more years to be effective. This schedule would also have the greatest negative impact on fishermen by preventing fishing during the peak angling season. There are several negative aspects of the mechanical weed harvester. The harvester can only be used to harvest plant material within the upper water column because of stumps at shallow depths. Both target species are rooted in the sediments at depths of up to eight feet. The effect of harvesting is short-term due to the rapid growth rate of hydrilla. Harvesting is a slow process with a maximum of two acres harvested per day under ideal conditions. To achieve seasonal

- 8 -

control, the harvester would have to remain in no more than two ponds over the entire growing season (June-October). Two men are required for operation of the harvester. Some young-of-the-year fishes are retained by the harvester incidental to plant material harvest although in very limited numbers with negligible impact on the total fish population (Martin 1983).

Alternative #4 - Stocking of herbivorous fish species

Four positive aspects of this alternative are apparent. There is the greatest chance of long-term weed control with no concern over the use of pesticides. Secondly, a relatively low investment is required to purchase and stock adequate numbers of fish for a full evaluation of their efficacy in controlling the target weed species. No restrictions on water use by agricultural interests, anglers, shoreline residents, etc. would be required. Stringent evaluation of the effects of sterile grass carp on native fishes in Delaware would be conducted during this study.

Negative aspects of this fish introduction are divided into two categories - physical and biological. The major physical impact would be the relatively slow progress of control. It would take some time before noticeable control could be achieved as a result of plant biomass consumption by herbivorous fishes. However, a major concern is for an exotic to escape to areas outside the stocking site and the chance for an exotic fish to become established in the area if the stocked fish are not sterile. These concerns should be minimized by the construction of a trap or barrier at the outfall of Ingrams Pond and the use of a certified sterile triploid grass carp. The barrier would be constructed prior to stocking to prevent egress of the stocked fish. Additionally, only certified sterile fish would be stocked to prevent any possibility of the species reproducing and becoming established within the state.

- 9 -

V. Consultation/Coordination

AND NOT STORE

1. State Clearinghouse - review to determine that project is in accordance with state goals and objectives.

2. Rue Hestand and Jeff Underwood, Florida Game and Freshwater Fish Commission - update on status and testing program of sterile triploid grass carp.

3. Public meeting - Laurel, Delaware, October 25, 1983 receive information on needs and concerns of interested citizens on pond weed problems in western Sussex County.

4. Public meeting - Millsboro, Delaware, November 15, 1983 - receive information on needs and concerns of interested citizens on pond weed problems in eastern Sussex County.

-10-

Literature Cited

- Bonner, F.C. 1978. Aquatic vegetation control in Delaware ponds. Ann. Rep. Fed. Aid Fish. Restor. Proj. F-27-R-2 (D.J.), De. Div. Fish Wildl., Dover, De. 22 pp.
- Colle, D. E. and J. V. Shireman. 1980. Coefficients of concondition for largemouth bass, bluegill and redear sunfish in hydrilla-infested lakes. Trans. Amer. Fish. Soc. 109 (5): 521-531.
- Haller, W.T. 1978. Hydrilla a new and rapidly spreading aquatic weed problem. University of Florida Agriculture Exp. Stat. Circular S-245. Gainesville, Fla. 13 pp:
- Lesser, C.A. 1966. Aquatic vegetation survey. Final report Fed. Aid. Fish. Restor. Proj. F-21-R (D.J.) De. Bd. Game and Fish Commission, Dover, De. 65 pp.
- Martin, C.C. 1983. Delaware pond management program. Fed. Aid. Rep. Fish Restor. F-32-R (D.J.) De. Div. Fish Wildl., Dover, De. In preparation.
- Ritter, W.F. 1981. Survey and classification of Delaware's public lakes. Univ. De. for Div. Fish Wildl., Newark, De. 469 pp.

	· · · · · · · · · · · · · · · · · · ·	
Ponds	Hydrilla only	Hydrilla and fanwort
Public ponds:		
Horseys		x
Ingrams		х
Records		х
Trap		х
Trussum	<u> </u>	
Tubmill ¹		
Waples	x	
Private ponds:	-	
Betts	•	x
Burtons	х	
Concord	x	
Fleetwood	х	

Table 1. Incidence of hydrilla and fanwort in Delaware's ponds, 1983.

¹Occurs in limited quantities

0

ب ج

-12-

• •

ः अ

23

Ç

t ...

		`	,		
		#1	#2	#3	#4
	Criteria	No action	Chemical	Mechanical	Fish stocking
	Constant of the second s				
1.	Controls both target				
	species	-	+	-	+
2.	Offers possibility of				
	long-term effect	-	-		Ŧ
٦.	Addresses public concern				
	over weed problems		+	+	+
	Ξ.	120			
4.	Maximizes public use of				
	area		+	+	+
-					
5.	over use of chamical				
	berbicides	+		• +	+
	nerbreides	·			
6.	Minimizes restrictions on				
	irrigation and other				
	water uses	+	-	+	+
7	Niniminan Alexand officia				
/.	on water quality		_	· +	+
••	on adder quarter				
8.	Minimizes economic losses				
	due to loss of tourism				
	and trade	-	+	+	+
0	Miniminon individual				· .
9.	exposire to chemical				
	herbicides	+	-	+	+
10.	Economically feasible	+	-	+	+
, ,	Drawidan fact action				
T T•	control of weeds	-	+	-	
	control or weeds				•
	TOTAL	4	5	· 8	10

Table 2. Comparison of alternatives for control of hydrilla and fanwort in Delaware's ponds.

Rating System: + High probability criteria would be satisfied

- Low probability criteria would be satisfied

Figure 1. Map of Ingram Pond and vicinity.

.

United States Department of the Interior

1.1

FILE CCPY Surname:

anithe service and the service of th

198-

FISH AND WILDLIFE SERVICE WASHINGTON, D.C. 20240

ADDRESS ONLY THE DIRECTOR, FISH AND WILDLIFE SERVICE

¥.,

.....

Mr. Carl R. Sullivan Executive Director American Fisheries Society 5410 Grosvenor Lane Bethesda, Maryland 20814

Dear Sully:

I know you are well aware of the growing interest in this country in the use of grass carp to control vexing aquatic weed problems. We have received numerous appeals from the Federal, State, and private levels for the Fish and Wildlife Service to assume a role in certification of triploid grass carp used for this purpose. I am happy to report that we have made arrangements to carry out this role.

We have assigned the responsibility to our Fish Farming Experimental Station (FFES) at Stuttgart, located about 40 miles from the Malone and Hill Farms, the current principal suppliers of the triploid grass carp.

Our protocol will be as follows:

- Malone and Hill will process the blood of each fish for snipment through a Coulter Counter and certify each fish to be triploid.
- (2) At the time of shipment, a scientist from the FFES will go to each farm and randomly select from each truckload a number of fish to be determined by the protocol of the receiving State. This sample will again be processed through the Coulter Counter. If all fish in the sample are triploid, the scientist will certify that fact. If one or more diploids are found, the entire load will be rejected.

I hope we have your support in this decision.

Sincerely,

ROBERT A. JANTZEN

. • •

Director

cc: Directorate Reading File R&D Reading File

DD Chron FR Reading File

FWS/FR/GRuhr:fran:9/6/85:gr#4

Appendix B: Lake-wide Aquatic Plant Survey, J. Strom Thurmond Lake

Final Report:	Lake-wide Aquation	Plant Survey, J.	Strom	Thurmond	Lake
---------------	--------------------	------------------	-------	----------	------

Duration: September 1, 2015 – November 19, 2015

Participants: U.S. Army Corps of Engineers, Savannah District, Georgia Department of Natural Resources, South Carolina Department of Natural Resources, and University of Georgia, Warnell School of Forest Resources

Objective:

Determine the distribution of aquatic plants in J. Strom Thurmond Lake and the abundance of *Hydrilla verticillata* (hydrilla).

Methods:

The survey was divided into two phases; plant distribution and hydrilla abundance. The lake was divided into nine lake strata (survey routes), each strata contained approximately 275 survey points (Figure 1).

The distribution phase of the study was conducted from September 1 through October 7, 2015. The study participants used the point intercept method to survey the aquatic plant community. This method involved spot observations of presence or absence of any submersed, floating leaf or emergent aquatic plants at the survey point. Sampled points were evenly spaced every ½-mile of reservoir shoreline. The survey teams were provided maps and also used GPS equipment to assist in locating each survey point. A double-tined rake attached to a rope was used to collect submersed plant specimens. At each point the rake was tossed into the water near the shoreline and then drug out to a depth of at least 15-feet. After a collection was made, each plant species was identified and marked as present. Shoreline emergent species were also noted if present.

The hydrilla abundance phase of the study was conducted from November 10 through November 19, 2015. The abundance survey points were chosen by randomly selecting 5% of the point intercept survey points from each strata where hydrilla was noted as present. There were 70 total survey points randomly selected. The selected points were surveyed with either a Lowrance High Definition System (HDS) consumer echosounder or Lowrance Elite CHIRP consumer echosounder. Both Lowrance systems had single-beam 200-kHz transducers (208 by 208 half-power beam angle) oriented vertically and mounted on the boat stern approximately 8-inches below the surface. Echosounder settings were those recommended by Navico BioBase for the Lowrance units. Ping rate was 10 pings per second and boat speed varied, but was always less than 5 mph. The GPS and acoustic signals were logged to data storage cards in sl2 format. The acoustic echograms were collected at the selected survey points by backing the boat into the shoreline as shallow as possible (less than 3-feet water depth) and then proceeding perpendicular to the bank until reaching 20-feet of water depth or until again intersecting shallow water, whichever came first.

The 70 collected echograms were uploaded to Navico BioBase, a signal processing software designed specifically for aquatic plant and bathymetry surveys using recreational acoustic equipment. An independent report was generated by Navico BioBase for each of the 70 survey points. An example of a Navico BioBase transect report is attached as Figure 2.

Figure 2 -Sample Navico BioBase Transect Report BIOFBASE J. Strom Thurmond Reservoir, Columbia County Georgia Generated: 11/23/2015 8:41:38 PM (UTC ody Size: 27,632.37 ha (68,281.10 ac report lin Data Collector James Sykes Data Collection Date 11/17/2015 5:15:02 PM (UTC) Survey Area: 0.91 ha (2.25 acres) 23,145.70 cu. m (18.76 acre ft) Settings Track Buffer: Grid Cell Size: Min. BV Detect Min. Veg Depti 25 m 5 m 5% 0.73152 m Average 17.79° C k, lan Locat Start End: 33.64999771, -82.4649200-33.64881897, -82.4658203 Type ? PAC ? Avg BVp ? SD BVp ? Avg BVP ? SD BVv ? Depth Range Avg Depth Distance No. Points Point 45.1% 15.5% s2.7% 7% s2.7% 101-5.14 m 227 m 174.14 m 153 Ord 51.5% 14.1% s6.1% 7.3% s2.3% 0.02-5.14 m 2.40 m 227 tion Scatter Chart 100 - Al Data oution Scatter Chart 90 80 70 30 20 -10 -0 lume Analysis by Qu 5-20% 32.68% **20-40% 40-60% 60-80%** >80% 0-5% is by Depth Avg BVw ? 9.7% 6% 10.1% 25.8% 8.7% 0% Avg BVp ? 22.7% 13.5% 16% 25.8% 21.1% PAC 7 42.9% 44.6% 63% 100% 41.2% 0% SD BVp ? SD BVw ? Type ? ±14.3% ±6.3% ±10.9% ±0% ±6.6% ±14.6% ±7.9% ±11.6% ±0% ±11.2% ±0% -0.1m 1.2m 2.3m 3.4m 4.5m 6.7m 7.8m 8.9m 0.1m 1.2m 1.2m 3.4m 4.5m 5.6m 6.7m 7.8m 7.8m 92 27 1 -51.6% 59.1% 66.7% 93.8% 28.2% 0% -12.9% 15% 13.6% 16.4% 9% + ±5.7% ±5.5% ±6.9% ±6.9% ±2.6% 6.6% 8.9% 9.1% 15.4% 2.5% 0% ±7.6% ±8.5% ±8.6% ±7.7% ±4.3% ±0% 30 16

Area of Interest: Defines the individual transects or configuous data samples as depicted by the color coding of each trip line. Seperate areas of interest can be generated through merging of multiple trips, appending data to a single sonar log or lapses in time (greater than five minutes) within a sonar log.

Boy Boy Manu (Pland): Refers to the percentage of the water column taken up by vegetation when vegetation exists. Areas that do not have any vegetation are not taken into consideration for this calculation.

BVW Elsowatine (All water): Refers to the average percentage of the water column taken up by workation regardless of whether wegetation exists. In areas where no vegetation exists, a zero value is entered into the calculation, thus reducing the overall bloodume of the entre area covered by the survey.

Percent Area Covered: Refers to the overall surface area that has vegetation growing.

Grid Geostatistical Merpolated Grid: Interpolated and evenly spaced values representing triged (smoothed) output of aggregated data points. The gridded data is most ac summary of individual survey areas.

Point Individual Condinate Point: A single point represents a summary of sonar pings and the derived bottom and canopy depths. Individual point data create an irregularit spaced dataset that may have overlaps and/or gaps in the data resulting in a increased potential for error.

Results and Discussion:

There were 2,319 total point intercept survey locations in the distribution portion of the survey. Table 2 summarizes the results. The most predominant plant was hydrilla which was present at 1,312 surveyed locations. Hydrilla was found along an estimated 613.3-miles of shoreline, including 386.8 miles in Georgia and 226.5 miles in South Carolina. A map of the hydrilla distribution is included as Figure 3.

Other commonly found species included; Chara, Maidencane and Najas. There were a total of 25 different species noted including submersed, floating leaf and shoreline emergent species (Table 1).

Table 1 – Aquatic Plant Survey Results		
		Percent
		Occurrence
Total Points Surveyed	2319	
Hydrilla Present	1312	56.6%
Hydrilla Absent	1007	43.4%
Other Vegetation:		
Chara	560	24.15%
Illinois Pondweed	7	0.30%
Najas	364	15.70%
Nitella	161	6.94%
Slender Pondweed	226	9.75%
Variable-leaf Pondweed	16	0.69%
American Pondweed	2	0.09%
Duckweed	14	0.60%
Alligator weed	27	1.16%
Arrowheads	2	0.09%
Cattail	6	0.26%
Creeping Burhead	8	0.34%
Maidencane	442	19.06%
Parrotfeather	1	0.04%
Pennywort	2	0.09%
Road Grass / Spikerush (Eleocharis)	87	3.75%

Table 1. Continued		
Rushes	84	3.62%
Sedges	35	1.51%
Water Primrose	49	2.11%
Water Willow	3	0.13%
Cut Grass	2	0.09%
American Lotus	2	0.09%
Luziola (southern watergrass)	1	0.04%

With the use of GIS and a 1-foot bathymetric contour map layer of JST Lake, a "potential acreage where hydrilla is present" was calculated in all areas where hydrilla was found by estimating the total acreage between elevations 330 msl and 315 msl. The total "potential acreage where hydrilla is present" was determined to be 10,644.3 acres.

To determine the abundance of hydrilla, the results from 67 of the 70 acoustic transects were analyzed to determine a mean "percent area coverage" (PAC) for the reservoir. PAC is defined by the BioBase analytical software as "the overall surface area that has hydrilla growing". Due to changes in the lake elevation during the period between the 2015 growing season and the abundance survey, data from each transect less than 3.3 feet were eliminated from the PAC analysis. Also, transect data at depths greater than 19.7 feet were also eliminated from the analysis. PAC results were applied to the "potential acreage where hydrilla is present" to estimate the lakewide abundance of hydrilla at 2,363 acres.

Appendix C: April 2015 Fact Sheet - Avian Vacuolar Myelinopathy (AVM)

FACT SHEET AVIAN VACUOLAR MYELINOPATHY (AVM) Updated April 2015

1. Background:

a. The first bald eagle death attributed to AVM at J. Strom Thurmond (JST) lake occurred in 1998. The first known bald eagle death from AVM occurred at DeGray Lake, Arkansas in 1994.

b. AVM has been linked to mortality not only in bald eagles, but also in other raptors (hawks and great horned owls) and waterfowl.

c. Research suggests that an epiphytic blue-green algae (cyanobacteria) produces a toxin which causes the neurological disease AVM. Aquatic plants such as milfoil, hydrilla, and elodea provide a substrate for the blue-green algae. Lakes with submerged vegetation that do not have this particular blue-green algae (*Aetokthonos hydrillicola*) do not have AVM.

d. Hydrilla was first observed in JST in 1995.

e. Herbicides were used at JST from 1995-1998 in an attempt to control hydrilla; however, hydrilla coverage increased from several hundred acres to over 2,000 acres by 1999.

f. The typical food chain link for eagle mortality occurs when coots eat hydrilla which has the blue-green algae. Coots develop neurological symptoms and become easy prey for bald eagles. Eagles consume the coots and develop AVM.

g. AVM occurs seasonally when the blue-green algae begins to produce toxins. The peak period is November through February. During this time, water chemistry changes as the lake cools and begins to mix. Hydrilla also begins to senesce; however, the environmental factors that trigger toxin production have not been identified.

2. Current Conditions:

a. There have been 81 dead bald eagles found at JST from 1998 to 2015. There were four mortalities in winter of 2014-2015. These mortality events have been attributed to AVM; however, less than half of the birds (29) could be confirmed with AVM due to the extent of decomposition. One bird from 2013 was confirmed non-AVM resulting from Aspergillosis.

b. AVM meetings to discuss ongoing research have been hosted at J. Strom Thurmond Project in 2004, 2005, 2007, 2009, 2011, 2012, and 2014. Researchers from the University of Georgia (UGA) continue to evaluate AVM, hydrilla, and the possible environmental factors affecting toxin production. c. As a result of the 2007 AVM meeting, the Corps received letters from GADNR and SCDNR regarding the AVM issue. They provided four recommendations: 1) document hydrilla coverage and expansion using best available techniques; 2) initiate a public involvement and stakeholder process examining hydrilla and resource issues relating to hydrilla; 3) conduct public involvement with input from the US Fish and Wildlife Service and state agencies; and 4) utilize ERDC to prepare a management plan to address AVM using input from the public involvement process.

d. In October 2010, the Corps, with assistance from GADNR and SCDNR, completed a comprehensive survey of hydrilla at JST. The total area with some hydrilla coverage is 11,271 acres. Based on an acoustic survey to determine actual bottom coverage (density), hydrilla covers about 44% of the area where it has been located, so actual bottom coverage (areal coverage) would be approximately 4,959 acres.

f. With input from UGA, USFWS, and state agencies, a survey was developed to evaluate public opinion regarding hydrilla and impacts to the resource at JST. The stakeholder survey was completed in May 2013 and a final report was received in September 2013. The survey was completed through modification of an existing cooperative agreement with ERDC and included questions about sterile grass carp which will be the most controversial treatment method if it is determined that hydrilla eradication is the preferred alternative. Results indicate that 84.5% of respondents prefer less hydrilla or only native plants and 74.3% are either indifferent or in support of stocking grass carp. Survey results are available at

http://www.sas.usace.army.mil/Portals/61/docs/lakes/thurmond/UGA%20Perception%2 0Survey_Final%20Report.pdfA

g. During the May 2014 meeting, the USFWS suggested that continued eagle mortalities at Thurmond could require a "take permit" pursuant to the Bald and Golden Eagle Protection Act. When we raised the issue that "take" typically involves some action or activity that results in the "take", USFWS responded that "in-action" to prevent eagle mortality could be considered a "take". In August 2014, we met with GADNR and SCDNR to get their input and position regarding controlling hydrilla in Thurmond. They requested we send a letter, proposing an action to control hydrilla and the agency would provide a position.

h. In December 2014, we sent a letter to both state agencies and USFWS proposing an integrated plan using grass carp and herbicide to control hydrilla. USFWS and SCDNR concurred and offered technical assistance; GADNR wanted a better explanation of the extent of control, impacts to native species, and other details worked out through the EA process.

i. Funding was received in FY15 for an EA/AVM management Plan. Planning Division is in the process of preparing an EA with treatment alternatives. The POC for the EA is Ellie Covington, PD.

3. Future Direction:

a. Coordination with PD, state agencies, USFWS, and UGA researchers is ongoing for development of the EA and AVM plan.

b. We anticipate completion of the EA and plan during FY15. During budget development, we will add a budget package for aquatic plant control related to AVM.

c. Research is ongoing to better determine effects from AVM. In April 2015, transmitters were attached to three bald eagle nestlings. These transmitters will allow UGA researchers to track movements and determine if these birds remain onsite and develop AVM at some point in the future or if they move offsite to another location.

d. UGA has provided a proposal to USFWS for funding that would allow an experimental stocking of grass carp in several coves on lake Thurmond as a telemetry study to evaluate grass carp movement. To date, USFWS has not completed evaluation of the proposal and determined if they would provide funding.

Savannah District POC: Jeff Brooks, District Wildlife Biologist, OP-SR

Appendix D: JST Species List

Commonly Occurring Terrestrial and Aquatic Plants of JST Project			
Common Name	Scientific Name		
Overstory			
Southern Sugar Maple	Acer baratum		
Red Maple	Acer rubrum		
Silver Maple	Acer saccharium		
River Birch	Betula nigra		
Bitternut Hickory	Carya cordiformis		
Pignut Hickory	Carya glabra		
Shagbark Hickory	Carya ovata		
Mockernut Hickory	Carva tomentosa		
White Ash	Faxinus americana		
Sweetgum	Liquidamber styraciflua		
Yellow Poplar	Liriodendron tulipifera		
Southern Magnolia	, Magnolia grandiflora		
Blackgum	Nyssa sylvatica		
Shortleaf Pine	Pinus echinata		
Slash Pine	Pinus elliottii		
Longleaf Pine	Pinus pulustris		
Loblolly Pine	Pinus taeda		
Sycamore	Plantanus occidentallis		
Eastern Cottonwood	Populus deltoides		
White Oak	Quercus alba		
Scarlet Oak			
Southern Red Oak	Quercus falcata		
Laural Oak			
Blackjack Oak	Quercus marilandica		
Water Oak	Quercus nigra		
Pin Oak	Quercus nalustris		
Willow Oak	Quercus phellos		
Swamp Chestnut Oak			
Northern Red Oak			
Post Oak	Quercus stellata		
Black Oak			
Winged elm			
American elm			
Midetory	ointas ancheana		
Boyelder	Acer pequado		
Beauty-berry	Callicarpa americana		
American Hornbeam, Musclewood			
Hackberry			
Redbud	Cercis canadensis		
Fringetree			
Degwood			
Louthorn	Contras nonua		
Parsimmon	Diospyros virginiano		
American Holly Block Wolput			
Diack Walnut			
Ded Mulherry	Juniperus virginiana		
vvaxmyrtie	IVIYICA CETITETA		

Commonly Occurring Terrestrial and Aquatic Plants of JST Project			
Common Name	Scientific Name		
Eastern Hop Hornbeam, Ironwood	Ostrya virginiana		
Sourwood	Osydendron arboreum		
Black Cherry	Prunus serotina		
Wild Plum	Prunus sp.		
Winged Sumac	Rhus copallia		
Blacklocust	Robinia pseudoacacia		
Palmetto	Sabal minor		
Black Willow	Salix nigra		
Sassafras	Sassafras albidum		
Southern Catapala	Catalpa bignonioides		
Sparkleberry	Vaccinium sp.		
Blueberry	Vacinium corymbosum		
Ground Covers	· · · ·		
Trumpet Creeper	Campis radicans		
Yellow jassamine	Gelseminum sempervirens		
Virginia Creeper	Parthenocissus quinquefolia		
Ferns	Polystichum sp.		
Poison Oak	Rhus quercifolia		
Poison Ivy	Rhus radicans		
Poison Sumac	Rhus vernix		
Black Berry	Rubus sp.		
Greenbrier, Smilax	Smilax sp.		
Wood grass	Uniola sessiliflora		
Periwinkle	Vinca minor		
Muscadine	Vitis rotundifloia		
Aquatic Plants	•		
Brazilian elodea, egeria	Egeria densa		
Waterhyacinth	Eichhornia crassipes		
Hydrilla	Hydrilla verticillata		
Water primrose	Ludwigia hexapetala		
Parrotfeather	Myriophyllum aquaticum		
Eurasian watermilfoil	Myriophyllum spicatum		
American lotus, lotus lily	Nelumbo lutea		
Alligatorweed	Alternanthera philoxeriodes		
Fanwort	Cabomba caroliniana		
Coontail, hornwort	Ceratophyllum demersum		
Chara, musk grass	Chara sp.		
Elodea	Elodea canadensis		
Marsh Hibiscus	Hibiscus moscheutos		
Southern watergrass	Hvdrochloa caroliniensis		
Water pennywort	Hvrocotvle umbellata		
Waterwillow	Justicis americana		
Southern naiad	Naias quadalupensis		
Slender naiad spiny-leaf naiad	Najas minor		
Fragrant waterlily	Nymphaea odorata		
Water nasnalum	Paspalum fluitans		
Pickerelweed	Pontederia cordata		
Pondweed	Potemogeton sp		
Arrowbeads	Sagittaria sp		
Cattail	Typha sp.		
Bladderwort	l Itricullaria sp		
	ourouliaria sp.		

Commonly Occurring Terrestrial and Aquatic Plants of JST Project			
Common Name	Scientific Name		
Exotics			
Japanese honeysuckle	Lonicera japonica		
China-berry	Melia azedarach		
Kudzu	Pueraria lobata		
Wisteria	Wisteria frutesus		
Chinese Tallow	Sapium sebiferum		
Gaint Reed	Arundo donax		
Chinese Privet	Ligustrum sinense		
Old World Climbing Fern	Lygodium microphyllum		
Johnson Grass	Sorghum halepense		
Autumn Olive or Eleagnus	Eleagnus umbellata		
Bamboo	Phyllosachys sp		
Hydrilla	Hydrilla verticillata		
Alligator Weed	Alternanthera philoxeroides		
Parrot Feather	Myriophyllum aquaticum		

Commonly Occurring Bird Species of JST project			
Common Name	Scientific Name	Season	
Wood Duck	Aix sponsa	Summer	
Mallard	Anas platyrhynchos	Summer	
Canada Goose	Branta canadensis	Summer	
Hooded Merganser	Lophodytes cucullatus	Summer	
Blue-winged Teal	Anas discors	Winter	
Green-winged Teal	Podilymbus podiceps	Winter	
Northern Shovelers	Anas clypeata	Winter	
Canvasback	Aythya valisinera	Winter	
Redhead	Aythya americana	Winter	
Ring-necked Duck	Aythya collaris	Winter	
Greater Scaup	Aythya marila	Winter	
Lesser Scaup	Aythya affinis	Winter	
Long-tailed Duck	Clangula hyemalis	Winter	
Bufflehead	Bucephala albeola	Winter	
Common Golden eye	Bucephala clangula	Winter	
Common Merganser	Mergus merganser	Winter	
Red Breasted Merganser	Mergus serrator	Winter	
Ruddy Duck	Oxyura jamaicensis	Summer	
Pacific Loon	Gavia Pacifica	Winter	
Common Loon	Gavia immer	Winter	
Red Throated Loon	Gavia stellata	Winter	
Pied Billed Grebe	Podilymbus podiceps	Summer/Winter	
Horned Grebe	Podiceps auritus	Winter	
Eared Grebe	Podiceps nigricollis	Winter	
American Coot	Fulica americana	Winter	
Double-crested Cormorant	Phalacrocorax auritus	Summer/Winter	
Anhinga	Anhinga anhinga	Summer	
Belted Kingfisher	Megaceryle alcyon	Summer	
Great Egret	Ardea alba	Summer	
Great Blue Heron	Ardea herodias	Summer	
Green Heron	Butorides virescens	Summer	
White Ibis	Eudocimus albus	Summer	
Least Bittern	Ixobryhus exilis	Summer	

Commonly Occurring Bird Species of JST project			
Common Name	Scientific Name	Season	
Wood Stork	Mycteria americana	Late summer	
Brown Pelican	Pelecanus occidentalis	Winter	
White Pelican	Pelecanus erythrorhynchos	Winter	
Chimney Swift	Chaetura pelagica	Summer	
Ruby-throated Hummingbird	Archilochus colubris	Summer	
Chuck-will's-widow	Caprimulgus carolinensis	Summer	
Whip-poor-will	Caprimulgus vociferus	Summer	
Common Nighthawk	Chordeiles minor	Summer	
Killdeer	Charadrius vociferus	Summer	
Cooper's Hawk	Accipiter cooperii	Summer	
Sharp-shinned Hawk	Accipiter striatus	Summer	
Red-tailed Hawk	Buteo jamaicensis	Summer	
Broad-winged Hawk	Buteo playtypterus	Summer	
Red-shouldered Hawk	Buteo lineatus	Summer	
Bald Eagle	Haliaeetus leucocephalus	Summer/Winter	
Osprey	Pandion haliaetus	Summer/Winter	
Turkey Vulture	Cathartes aura	Summer/Winter	
Black Vulture	Coragyps atratus	Summer/Winter	
Peregrine Falcon	Falco peregrinus	Winter	
American Kestrel	Falco sparverius	Winter	
Mourning Dove	Zenaida macroura	Summer/Winter	
Yellow-billed Cuckoo	Coccyzus americanus	Summer	
Northern Bobwhite	Colinus virginianus	Summer/Winter	
Wild Turkey	Meleagris gallopavo	Summer/Winter	
Cedar Waxwing	Bombycilla cedrorum	Winter	
Northern Cardinal	Cardinalis cardinalis	Summer/Winter	
American Crow	Corvus brachyrhynchos	Summer/Winter	
Fish Crow	Corvus ossifragus	Summer/Winter	
Blue Jay	Cyanocitta cristata	Summer/Winter	
Eastern Towhee	Pipilo erythrophthalmus	Summer/Winter	
American Goldfinch	Carduelis tristis	Summer/Winter	
House Finch	Carpodacus mexicanus	Summer/Winter	
Red-winged Blackbird	Agelaius phoeniceus	Summer	
Orchard Oriole	Icterus spurius	Summer	
Brown-headed Cowbird	Molothrus ater	Summer	
Common Grackle	Quiscalus quiscula	Summer	
Eastern Meadowlark	Sturnella magna	Summer	
Loggerhead Shrike	Lanius Iudovicianus	Summer	
Northern Mockingbird	Mimus polyglottos	Summer/Winter	
Brown Thrasher	Toxostoma rufum	Summer/Winter	
Tufted Titmouse	Baeolophus bicolor	Summer/Winter	
Carolina Chickadee	Poecile carolinensis	Summer/Winter	
Pine Warbler	Dendroica pinus	Summer/Winter	
Yellow-breasted Chat	Icteria virens	Summer	
Prothonotary Warbler	Protonotaria citrea	Summer	
American Redstart	Setophaga ruticilla	Summer	
Hooded Warbler	Wilsonia citrina	Summer	
Ovenbird	Seiurus aurocapilla	Summer	
Louisiana Waterthrush	Seiurus motacilla	Summer	
Black-and-White Warbler	Mniotila varia	Summer	
Kentucky Warbler	Oporornis formosus	Summer	
Common Yellowthroat	Geothlypis trihas	Summer	

Commonly Occurring Bird Species of JST project			
Common Name	Scientific Name	Season	
Hooded Warbler	Wilsonia citrina	Summer	
Northern Parula	Parula Americana	Summer	
Pine Warbler	Dendroica pinus	Summer	
Yellow-throated Warbler	Dendroica dominica	Summer	
Prairie Warbler	Dendroica discolor	Summer	
Yellow-Breasted Chat	Icteria virens	Summer	
Bachman's Sparrow	Aimophila aestivalis	Summer/Winter	
Chipping Sparrow	Spizella passerine	Summer/Winter	
Field Sparrow	Spizella pusilla	Summer/Winter	
Grasshopper Sparrow	Ammodramus savannarum	Summer/Winter	
Song Sparrow	Melospiza melodia	Summer/Winter	
White-throated Sparrow	Zonotrichia albicollis	Winter	
Summer Tananger	Piranga rubra	Summer	
Northern Cardinal	Cardinalis cardinalis	Summer/Winter	
Blue Grosbeak	Passerina caerulea	Summer/Winter	
Indigo Bunting	Passerina cyanea	Summer	
Red-winged Blackbird	Agelaius phoeniceus	Summer/Winter	
Eastern Meadowlark	Sturnella magna	Summer	
House Finch	Carpodacus mexicnus	Summer/Winter	
American Goldfinch	Carduelis tristis	Summer/Winter	
Ruby-crowned Kinglet	Regulus calendula	Winter	
Brown-headed Nuthatch	Sitta pusilla	Summer/Winter	
European Starling	Sturnus vulgaris	Summer/Winter	
Blue-gray Gnatcatcher	Polioptila caerulea	Summer	
Summer Tanager	Piranga rubra	Summer	
Carolina Wren	Thryothorus Iudovicianus	Summer/Winter	
Wood Thrush	Hylocichla mustelina	Summer	
Eastern Bluebird	Sialia sialis	Summer/Winter	
American Robin	Turdus migratorius	Summer/Winter	
Great Crested Flycatcher	Myiarchus crinitus	Summer	
Eastern Phoebe	Sayornis phoebe	Summer	
Eastern Kingbird	Tyrannus tyrannus	Summer	
Red-eyed Vireo	Vireo olivaceus	Summer	
White-eyed Vireo	Vireo Grieus	Summer	
Pileated Woodpecker	Dryocopus pileatus	Summer/Winter	
Red-bellied Woodpecker	Melanerpes carolinus	Summer/Winter	
Red-headed Woodpecker	Melanerpes erythrocephalus	Summer/Winter	
Downy Woodpecker	Picoides pubescens	Summer/Winter	
Yellow-bellied Sapsucker	Sphyrapicus varius	Winter	
Great Horned Owl	Bubo virginianus	Summer/Winter	
Eastern Screech-Owl	Megascops asio	Summer/Winter	
Barred Owl	Strix varia	Summer/Winter	
**compiled from "Georgia Breeding Bird A	Atlas", Georgia Ornithological Society	/ Records,	
UGA Museum of Natural History Records, and field observations			

Common Mammals of JST Project	
Common Name	Scientific Name
Hispid Cotton Rat	Sigmodon hispidus
Golden Mouse	Ochrotomys nuttalli
Eastern Harvest Mouse	Reithrodontomys humulis
White-footed Mouse	Peromyscus leucopus
Cotton Mouse	Peromyscus gossypinus

.

Common Mammals of JST Project	
Common Name	Scientific Name
Common Muskrat	Ondatra zibethicus
Oldfield Mouse	Peromyscus polionotus
Southern Flying Squirrel	Glaucomys volans
Eastern Gray Squirrel	Sciurus carolinensis
Eastern Fox Squirrel	Sciurus niger
Eastern Chipmunk	Tamias striatus
Southern Short-tailed Shrew	Blarina carolinensis
Least Shrew	Cryptotis parva
Eastern Mole	Scalopus aquaticus
Eastern Cottontail	Sylvilagus aquaticus
Swamp Rabbit	Sylvilagus floridanus
Eastern Pipistrille	Pipistrellus subflavus
Rafineques Big Eared bat	Corynorhinus rafinesquii
Southeastern Myotis	Myotis austroriparius
Big Brown Bat	Eptesicus fuscus
Little Brown Bat	Myotis lucifugus
Silver-haired Bat	Lasionycteris noctivagans
Eastern Red Bat	Lasiurus borealis
Hoary Bat	Lasiurus cinereus
Seminole Bat	Lasiurus seminolus
Evening Bat	Pipistrellus subflavus
Coyote	Canis latrans
Gray Fox	Urocyon cinereoargenteus
Red Fox	Vulpes vulpes
Bobcat	Lynx rufus
Striped Skunk	Mephitis mephitis
Spotted Skunk	Spilogale putorius
Long-tailed Weasel	Mustela frenata
Mink	Mustela vison
Northern Raccoon	Procyon lotor
Northern River Otter	Lontra canadensis
Virginia Opossum	Didelphis virginiana
American Beaver	Castor canadensis
Nine-banded Armadillo	Dasypus novemcinctus
White-tailed Deer	Odocoileus virginianus

Common Reptiles of JST project	
Common Name	Scientific Name
Snakes	
Eastern Black Racer	Coluber constrictor
Corn Snake	Elaphe guttata
Rat Snake	Elaphe obsoleta
Eastern Hognose Snake	Heterodon platirhinos
Southern Hognose	Heterodon simus
Mole Snake	Lampropeltis calligaster
Eastern King Snake	Lampropeltis getula
Scarlet King	Lampropeltis triangulum elapsoides
Coachwhip	Masticophis flagellum
Plain-bellied Watersnake	Nerodia erythrogaster
Northern Watersnake	Nerodia sipedon
Brown Watersnake	Nerodia taxispilota
Rough Green Snake	Opeodrys aestivus

Common Reptiles of JST project		
Common Name	Scientific Name	
Queen Snake	Regina septemvittata	
Brown Snake	Storeria dekayi	
Red-bellied Snake	Storeria occipitomaculata	
Southeastern Crowned Snake	Tantila coronata	
Eastern Ribbon Snake	Thamnophis suaritus	
Common Garter Snake	Thamnophis sirtalis	
Rough Earth Snake	Virginia striatula	
Smooth Earth Snake	Virginia valeriae	
Copperhead	Agkistrodon contortrix	
Cottonmouth	Agkistrodon piscivorus	
Timber Rattlesnake	Crotalus horridus	
Pygmy Rattlesnake	Sistrurus miliarius	
Lizards		
Eastern Fence Lizard	Sceloporus undulatus	
Green Anole	Anolis carolinensis	
Five-lined Skink	Eumeces fasciatus	
Southeastern Five-lined Skink	Eumeces inexpectatus	
Six-lined Racerunner	Cnemidophorus sexlineatus	
Slender Glass Lizard	Ophisaurus attenuatus	
Eastern Glass Lizard	Ophisaurus ventralis	
Broadhead Skink	Eumeces laticeps	
Ground Skink	Scincella lateralis	
American Alligator	Alligator mississippiensis	
Turtles		
Common Snapping Turtle	Chelydra serpentina	
Eastern Box Turtle	Terrapene carolina	
Pond Slider	Trachemys scripta	
Painted Turtle	Chrysemys picta	
River Cooter	Pseudemys coninna	
Eastern Musk Turtle	Kinosternon subrubrum	
Common Musk Turtle	Sternotherus odoratus	
Spiny Softshell	Apalone spinifera	
Compiled utilizing "Amphibians and Reptiles of Georgia" and the UGA Museum of Natural History Records website		

Common Amphibians of JST Project	
Common Name	Scientific Name
Frogs and Toads	
American Toad	Bufo americanus
Fowler's Toad	Bufo fowleri
Northern Cricket Frog	Acris crepitans
Bird-voiced Treefrog	Hyla avivoca
Cope's Gray Treefrog	Hyla chrysoscelis
Green Treefrog	Hyla cinerea
Barking Treefrog	Hyla gratiosa
Squirrel Treefrog	Hyla squirella
Spring Peeper	Pseudacris crucifer
Upland Chorus Frog	Pseudacris feriarum
Southern Chorus Frog	Pseudacris nigrita
Eastern Narrowmouth Toad	Gastrophryne carolinensis
Eastern Spadefoot Toad	Scaphiopus holbrookii
Bullfrog	Rana catesbeiana

Common Amphibians of JST Project	
Common Name	Scientific Name
Green Frog / Bronze Frog	Rana clamitans
Pickerel Frog	Rana palustris
Southern Leopard Frog	Rana sphenocephala
Salamanders	
Spotted Salamander	Ambystoma maculatum
Marbled Salamander	Ambystoma opacum
Mole Salamander	Ambystoma talpoideum
Two-toed Amphiuma	Amphiuma means
Spotted Dusky Salamander	Desmognathus conanti
Two-lined Salamander	Eueycea bislineata complex
Three-lined Salamander	Eueycea guttolineatta
Atlantic Coast Slimy Salamander	Plethodon chlorobryonis
Savannah Slimy Salamander	Plethodon savannah
Mud Salamander	Pseudotriton montanus
Red Salamander	Pseudotriton ruber
Compiled utilizing "Amphibians and Reptiles of Georgia" and the UGA Museum of Natural History Records website	

Commonly Occurring Fish Species of JST Project	
Common Name	Scientific Name
Game Fish	
Bass	Serranidae
Striped bass*	Morone saxatilis
White bass	Morone chrysops
Hybrid bass*	Morone saxaltils x Morone chrysops
White perch	Morone americana
Sunfish	Centrarchidae
Largemouth bass	Micropterus salmoides
Black crappie	Pomoxis migromaculatus
White crappie	Pomoxis annularis
Bluegill	Lepomis macrochirus
Redbreast	Lepomis auritus
Green sunfish	Lepomis cyanellus
Pumpkinseed	Lepomis gibbosus
Flier	Centrarchus macropterus
Warmouth	Chaenobryttus coronaris
Redear	Lepomis microlophus
Perch	Percidae
Yellow perch	Perca flavescens
Rough Fish	
Catfish	Lepisosteidae
Channel catfish	Ictalurus punctatus
White catfish	Ictalurus catus
Flat bullhead	Ictalurus platycephalus
Brown bullhead	Ictalurus nebulosus
Flathead catfish	Pylodictis olivaris
Other	
Longnose gar	Lepospsteus osseus
Chain pickeral (jack)	Esox niger
Redhorse sucker	Maxostoma spp.
Northern hogsucker	Hypentelium nigricans
Spotted sucker	Minytrema melanops

Commonly Occurring Fish Species of JST Project		
Common Name	Scientific Name	
Carp	Cyprinus carpio	
Forage Species		
Shad and herring	Clupeidae	
Gizzard shad	Dorosoma cepedianum	
Threadfin shad	Dorosoma petenense	
Blueback herring	Alosa aestivalis	
Minnows	Cyprinidae	
Spottail shiner	Notropics hudsonius	
Golden shiner	Notemigonus chrysoleucas	
Livebearers	Poeciliidae	
Mosquito fish	Gambusia affinis	
*Stocked Species		

Appendix E: Comments and Responses to Comments

Table of Content	
Sign-In Sheets McCormick, SC Meeting	1
Sign-In Sheets Appling, GA Meeting	3
Comment Cards	5
Comments By Mail or e-mail	12
Responces to Comment	86