Appendix B

SAVANNAH RIVER BASIN COMPREHENSIVE STUDY Integrated Feasibility Study and Draft Environmental Assessment

ENGINEERING

Table of Contents

Та	ble o	f Con	tents	i
Та	ble o	f Figu	res	iii
Та	ble o	f Plat	es	vii
Та	ble o	f Tab	es	/iii
Та	ble o	f Scre	ens	/iii
1	Pu	rpose		.1
2	Dat	ta Us	ed in the Study	. 1
	2.1	Unir	npaired Inflow Data Set	.1
2	2.2 W	/ater	Use Data	. 1
3	Мо	dels ı	used in this study	. 2
4	Мо	del C	ertification	. 2
5	De	script	on of Models	. 6
	5.1	.1	HEC-ResSim (Version 3.3.0.333 used for study)	.6
	5.1	.2	Graphical User Interface	. 6
	5.1	.3	Map-Based Schematic	. 6
	- 4	4	Pula Pasad Operationa	7
	5.1	.4	Rule-Based Operations	
į	5.1 5.2		-1	
	5.2	RIV		8
I	5.2 Hydro	RIV odyna	-1	8 8
ļ	5.2 Hydro	RIV odyna r Qua	-1mics	8 8 8
ļ	5.2 Hydro Wate	RIV odyna r Qua EFE	-1 mics lity	8 8 8
ļ	5.2 Hydro Wate 5.3	RIV odyna r Qua EFE 5.1	-1 mics lity DC Hydrodynamic Model	8 8 9 9
ļ	5.2 Hydro Wate 5.3 5.3	RIV odyna r Qua EFE 5.1	-1 mics lity DC Hydrodynamic Model Savannah Hydrodynamic Model History	8 8 9 9 12
	5.2 Hydro Wate 5.3 5.3 5.3	RIV odyna r Qua EFE 3.1 3.2 3.3	-1 mics lity OC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model	8 8 9 9 12 13
	5.2 Hydro 5.3 5.3 5.3 5.3 5.3	RIV odyna r Qua EFE 3.1 3.2 3.3 HEC	-1 mics Iity OC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage	8 8 9 9 12 13 13
6	5.2 Hydro 5.3 5.3 5.3 5.3 5.3	RIV odyna r Qua EFE 3.1 3.2 3.3 HEC	-1 mics Iity OC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage C-EFM	8 8 9 9 12 13 13 14
6	5.2 Hydro 5.3 5.3 5.3 5.3 5.3 5.4 Me	RIV odyna r Qua EFE 3.1 3.2 3.3 HEC trics/0	-1 mics lity OC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage C-EFM Dbjectives	8 8 9 9 12 13 13 14
6	5.2 Hydro 5.3 5.3 5.3 5.3 5.3 5.4 Me 6.1	RIV odyna r Qua EFE 3.1 3.2 4.3 HEC trics/0 Floo Hyd	-1 mics lity DC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage C-EFM Dbjectives	8 8 9 12 13 13 14 16 17
6	5.2 Hydro Wate 5.3 5.3 5.3 5.3 5.4 Me 6.1 6.2	RIV odyna r Qua EFE 3.1 3.2 4.1 5.2 HEC trics/C Floo Hyd	-1 mics lity OC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage C-EFM Dbjectives od Management	8 8 9 9 12 13 13 14 16 17
6	5.2 Hydro Wate 5.3 5.3 5.3 5.3 5.3 5.4 Me 6.1 6.2 6.2	RIV odyna r Qua EFE 3.1 3.2 3.3 HEC trics/C Floc Hyd	1	8 8 9 9 12 13 13 14 16 17 17
6	5.2 Hydro Wate 5.3 5.3 5.3 5.3 5.3 5.4 Me 6.1 6.2 6.2 6.2	RIV odyna r Qua EFC 3.1 3.2 4trics/0 Floo Hyd 2.1 2.2 Env	1 mics lity DC Hydrodynamic Model Savannah Hydrodynamic Model History WASP Water Quality Model Model Linkage C-EFM Dbjectives od Management ropower Objectives Energy Capacity	8 8 9 9 12 13 13 14 16 17 17 18 19

6.	3.3	Fish Spawn	19
6.	3.4	Augusta Shoals	20
6.4	Wa	ter Supply	20
6.5	Wa	ter Quality	21
6.6	Red	creation	22
6.7	Na	vigation	22
7 Al	lternat	ives	23
7.1	Sur	nmary of Alternatives	23
7.2	NA	A (No Action Alternative)	24
7.3	AL1	T-1 (Extreme Low Flow)	25
7.4	AL1	Γ-2 (Simplify NAA and Raise Level 3)	26
7.5	AL1	T-3 (Environmental Objectives)	27
7.6	AL1	T-4 (3600 cfs at Level 1 with wintertime reductions)	33
7.7	AL1	Γ-5 (Attempts to combine the best features of Alt-2 and Alt-3)	34
7.8	AL1	T-6 (Alt 5 with additional drought rules to pull pools to 10% remaining)	35
8 H	EC-RE	ESSIM OUTPUT ANALYSIS	35
		ah River Basin Comprehensive Study II: 2009 – 2013 Unimpaired Flow Data	62
10		ex B - Savannah River Basin Comprehensive Study II: HEC-ResSim Model	
11		ex C - Savannah River Basin Comprehensive Study II: ResSim Model Output	
12		ex D - Savannah River Basin Comprehensive Study II: Riv-1 Output	
13		ex E - Savannah River Basin Comprehensive Study II: EFDC Output	
13.1		inity Analysis by Zone	
		Average Salinity	
	3.1.2	Average Salinity Delta Change from NAA	
	3.1.3	90 Percentile Salinity	
	3.1.4	90 Percentile Salinity Delta Change from NAA	
13.2		solved Oxygen	
	3.2.1	Surface Daily Dissolved Oxygen Analysis	
	3.2.2	Water Column Average Daily Dissolved Oxygen	
	3.2.3	Bottom Daily Dissolved Oxygen	
13.3		ly Average Temperature	
13	3.3.1	Temperature by Zone	

13.3.2	Delta Change in Temperature	57
13.4 Ch	lorides – Abercorn Creek	59
13.4.1	Average Chloride Levels	60
13.4.2	Delta Change in Chlorides from NAA	64
13.4.3	Average Chloride Levels – Days when Chlorides greater than 12	67
13.4.4	Delta Change in Chlorides from NAA	71
13.5 Sa	vannah Harbor Zone Information- Location and Model Grid Cells	73
14 Ann	ex F - CLIMATE CHANGE	1

Table of Figures

Figure 5-1(Model linkage between EFDC and WASP)	. 13
Figure 6-1 (Summary list of the metrics)	
Figure 6-2 (FERC Agreement, Augusta Canal)	. 20
Figure 6-3 (Comparison of Current and 2050 Water Supply Demands)	. 21
Figure 7-1 (Summary of Alternatives)	
Figure 7-2 (No Action Alternative (NAA))	. 24
Figure 7-3 (Alternative 01, Extreme Low Flow)	. 25
Figure 7-4 (Alternative 2, Simplify NAA and Raise Level 3)	. 26
Figure 7-5 (Alternative 3, Environmental Objectives)	
Figure 7-6 (Wet States, 2009-2013 Unimpaired Flow Data Extension)	. 28
Figure 7-7 (Average States, 2009-2013 Unimpaired Flow Data Extension)	. 28
Figure 7-8 (Dry States, 2009-2013 Unimpaired Flow Data Extension)	. 29
Figure 7-9 (Drought States, 2009-2013 Unimpaired Flow Data Extension)	. 29
Figure 7-10 (Alternative 04, 3600 cfs at Level 1 with wintertime reductions)	. 33
Figure 7-11 (Alternative 05, Combine features of Alternatives 2 & 3)	. 34
Figure 7-12 (Alternative 06, Alternative 5 with additional drought rules to pull pools to	
10% remaining)	35
Figure 2. (Flow loss at Augusta node.)	. 68
	. 68
Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.)	. 68 . 69
Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.)	. 68 . 69
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). 	. 68 . 69 . 69
Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and	. 68 . 69 . 69
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). 	. 68 . 69 . 69 . 75
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and 	. 68 . 69 . 69 . 75 . 75
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue)). 	. 68 . 69 . 69 . 75 . 75
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)) Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)) Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue) Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). 	. 68 . 69 . 69 . 75 . 75 . 75
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). 	. 68 . 69 . 69 . 75 . 75 . 75
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). Figure 7a. (Comparison of Hartwell elevation (2009-2012): simulated (red) and 	. 68 . 69 . 69 . 75 . 75 . 75 . 76
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). Figure 7a. (Comparison of Hartwell elevation (2009-2012): simulated (red) and observed (blue).). 	. 68 . 69 . 69 . 75 . 75 . 75 . 76
 Figure 2. (Flow loss at Augusta node.) Figure 3. (Natural flow loss at Burtons Ferry node.) Figure 4. (Natural flow loss at Cylo node.) Figure 5a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)). Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)). Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). Figure 6b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue). Figure 7a. (Comparison of Hartwell elevation (2009-2012): simulated (red) and 	. 68 . 69 . 69 . 75 . 75 . 75 . 76 . 76 . 77

Figure 8b. (Comparison of Russell elevation (2013): simulated (red) and observed (blue))	Figure 8a. (Comparison of Russell elevation (2009-2012): simulated (red) and observ (blue))	
Figure 9a. (Comparison of Thurmond elevation (2009-2012): simulated (red) and observed (blue))	Figure 8b. (Comparison of Russell elevation (2013): simulated (red) and observed	
Figure 9b. (Comparison of Thurmond elevation (2013): simulated (red) and observed (blue))	Figure 9a. (Comparison of Thurmond elevation (2009-2012): simulated (red) and observed (blue)).	79
Figure 5-2 (Average Salinity - Alternative 01) 3 Figure 5-3 (Average Salinity - Alternative 02) 3 Figure 5-4 (Average Salinity - Alternative 04) 4 Figure 5-5 (Average Salinity - Alternative 05) 5 Figure 5-6 (Average Salinity - Alternative 06) 5 Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-15 (90 Percentile Salinity - Alternative 01) 9 Figure 5-17 (90 Percentile Salinity - Alternative 02) 10 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Salinity - Alternative 06) 12 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 03) 14 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-23 (90 Percentile Delta S	Figure 9b. (Comparison of Thurmond elevation (2013): simulated (red) and observed (blue))	d 79
Figure 5-3 (Average Salinity - Alternative 02) 3 Figure 5-4 (Average Salinity - Alternative 04) 4 Figure 5-5 (Average Salinity - Alternative 05) 5 Figure 5-6 (Average Salinity - Alternative 06) 5 Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-13 (90 Percentile Salinity - NaA) 9 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 02) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-21 (90 Percentile Salinity - Alternative 04) 11 Figure 5-21 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 02) 13 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 04) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-23 (90 Percenti		
Figure 5-4 (Average Salinity - Alternative 04) 4 Figure 5-5 (Average Salinity - Alternative 05) 5 Figure 5-6 (Average Salinity - Alternative 06) 5 Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-16 (90 Percentile Salinity - Alternative 01) 9 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-20 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14		
Figure 5-5 (Average Salinity - Alternative 05) 5 Figure 5-6 (Average Salinity - Alternative 06) 5 Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 02) 7 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-14 (90 Percentile Salinity - Alternative 01) 9 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 <	Figure 5-3 (Average Salinity - Alternative 02)	3
Figure 5-6 (Average Salinity - Alternative 06)	Figure 5-4 (Average Salinity - Alternative 04)	4
Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 02) 6 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-16 (90 Percentile Salinity - Alternative 01) 9 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average	Figure 5-5 (Average Salinity - Alternative 05)	5
Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01) 6 Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 02) 6 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-16 (90 Percentile Salinity - Alternative 01) 9 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Salinity - Alternative 05) 11 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average	Figure 5-6 (Average Salinity - Alternative 06)	5
Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 02) 6 Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-14 (90 Percentile Salinity - Alternative 02) 10 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 04) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Salinity - Alternative 06) 12 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – Alternative 01)<		
Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03) 7 Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-15 (90 Percentile Salinity - Alternative 01) 9 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Salinity - Alternative 06) 12 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 15 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18<		
Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04) 7 Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-15 (90 Percentile Salinity - Alternative 01) 9 Figure 5-16 (90 Percentile Salinity - Alternative 02) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Salinity - Alternative 06) 12 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 02		
Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05) 8 Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-14 (90 Percentile Salinity - Alternative 01) 9 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) <td></td> <td></td>		
Figure 5-12 (Average Delta Salinity Increase from NAA Alternative 06) 8 Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-14 (90 Percentile Salinity - Alternative 01) 9 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-19 (90 Percentile Salinity - Alternative 05) 11 Figure 5-20 (90 Percentile Salinity - Alternative 06) 12 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – Alternative 06) 15 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 0		
Figure 5-13 (90 Percentile Salinity - NAA) 9 Figure 5-14 (90 Percentile Salinity - Alternative 01) 9 Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 03) 10 Figure 5-18 (90 Percentile Salinity - Alternative 04) 11 Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) </td <td></td> <td></td>		
Figure 5-14 (90 Percentile Salinity - Alternative 01)9Figure 5-15 (90 Percentile Salinity - Alternative 02)10Figure 5-16 (90 Percentile Salinity - Alternative 03)10Figure 5-17 (90 Percentile Salinity - Alternative 04)11Figure 5-18 (90 Percentile Salinity - Alternative 05)11Figure 5-19 (90 Percentile Salinity - Alternative 06)12Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01)13Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02)13Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03)14Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04)14Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05)15Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05)15Figure 5-26 (Surface Average Dissolved Oxygen – NAA)16Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01)16Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03)17Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04)18Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04)18Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 06)19Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20 </td <td></td> <td></td>		
Figure 5-15 (90 Percentile Salinity - Alternative 02) 10 Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen – Alternative 06) 19 Figure 5-34 (Average Delta		
Figure 5-16 (90 Percentile Salinity - Alternative 03) 10 Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20		
Figure 5-17 (90 Percentile Salinity - Alternative 04) 11 Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 2		
Figure 5-18 (90 Percentile Salinity - Alternative 05) 11 Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA		
Figure 5-19 (90 Percentile Salinity - Alternative 06) 12 Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01) 13 Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01)13Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02)13Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03)14Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04)14Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05)15Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06)15Figure 5-26 (Surface Average Dissolved Oxygen – NAA)16Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01)16Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02)17Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03)17Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04)18Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05)18Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06)19Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01)20Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)20		
Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02) 13 Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03) 14 Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Dissolved Oxygen – Alternative 06) 19 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04) 14 Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen – Alternative 06) 19 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05) 15 Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Dissolved Oxygen – Alternative 06) 19 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06) 15 Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-26 (Surface Average Dissolved Oxygen – NAA) 16 Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-27 (Surface Average Dissolved Oxygen – Alternative 01) 16 Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-33 (Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02) 17 Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-29 (Surface Average Dissolved Oxygen – Alternative 03) 17 Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04) 18 Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-31 (Surface Average Dissolved Oxygen – Alternative 05) 18 Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06) 19 Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01) 20 Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20 Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02) 20		
01)		
02)		
Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative		
	Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternat	ive

Figure 5-36 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternativ	ve
04)	. 21
Figure 5-37 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternativ	ve
05)	. 22
Figure 5-38 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternativ	ve
06)	
Figure 5-39 (10 Percentile Surface Dissolved Oxygen – NAA)	. 23
Figure 5-40 (10 Percentile Surface Dissolved Oxygen – Alternative 01)	. 23
Figure 5-41 (10 Percentile Surface Dissolved Oxygen – Alternative 02)	. 24
Figure 5-42 (10 Percentile Surface Dissolved Oxygen – Alternative 03)	. 24
Figure 5-43 (10 Percentile Surface Dissolved Oxygen – Alternative 04)	. 25
Figure 5-44 (10 Percentile Surface Dissolved Oxygen – Alternative 05)	. 25
Figure 5-45 (10 Percentile Surface Dissolved Oxygen – Alternative 06)	. 26
Figure 5-46 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 01)	. 27
Alternative 01) Figure 5-47 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 02)	
Figure 5-48 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 03)	. 28
Figure 5-49 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 04)	. 28
Figure 5-50 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 05)	. 29
Figure 5-51 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA –	
Alternative 06)	
Figure 5-52 (Water Column Average Dissolved Oxygen – NAA)	
Figure 5-53 (Water Column Average Dissolved Oxygen – Alternative 01)	
Figure 5-54 (Water Column Average Dissolved Oxygen – Alternative 02)	
Figure 5-55 (Water Column Average Dissolved Oxygen – Alternative 03)	
Figure 5-56 (Water Column Average Dissolved Oxygen – Alternative 04)	
Figure 5-57 (Water Column Average Dissolved Oxygen – Alternative 05)	
Figure 5-58 (Water Column Average Dissolved Oxygen – Alternative 06)	
Figure 5-59 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	
Alternative 01)	. 34
Figure 5-60 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	
Alternative 02)	. 34
Figure 5-61 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	
Alternative 03)	. 35
Figure 5-62 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	
Alternative 04)	. 35
Figure 5-63 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	
Alternative 05)	. 36
Figure 5-64 (Average Delta, Water Column Dissolved Oxygen Increase from NAA –	_
Alternative 06)	
Figure 5-65 Number of Days Daily Dissolved Oxygen below 5 m/gL	
Figure 5-66 Number of Days Daily Dissolved Oxygen below 5 m/gL for FR6	. 37

Figure 5-68 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 01) 38 Figure 5-69 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 02) 39 Figure 5-70 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 03) 39 Figure 5-71 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 04) 40 Figure 5-72 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 05) 40 Figure 5-73 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 06) 41 Figure 5-74 (Change in Number of Days below 5 mg/L from NAA – Alternative 01)...... 42 Figure 5-75 (Change in Number of Days below 5 mg/L from NAA – Alternative 02)...... 42 Figure 5-76 (Change in Number of Days below 5 mg/L from NAA – Alternative 03)..... 43 Figure 5-77 (Change in Number of Days below 5 mg/L from NAA – Alternative 04)...... 43 Figure 5-78 (Change in Number of Days below 5 mg/L from NAA – Alternative 05)...... 44 Figure 5-79 (Change in Number of Days below 5 mg/L from NAA – Alternative 06)...... 44 Figure 5-81 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 01) 45 Figure 5-82 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 02) 46 Figure 5-83 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 03) 46 Figure 5-84 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 04) 47 Figure 5-85 (Average Bottom Dissolved Oxygen by Critical Zone - Alternative 05) 47 Figure 5-86 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 06) 48 Figure 5-87 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-88 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-89 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-90 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-91 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-92 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA -Figure 5-95 (Average Temperature – Alternative 02) 54 Figure 5-97 (Average Temperature – Alternative 04) 55 Figure 5-100 (Average Delta Temperature Increase from NAA – Alternative 01)........... 57 Figure 5-104 (Average Delta Temperature Increase from NAA – Alternative 05)........... 59 Figure 5-105 (Average Delta Temperature Increase from NAA – Alternative 06)........... 59

Figure 5-107 (Average Chloride Levels – Alternative 01)	61
Figure 5-108 (Average Chloride Levels – Alternative 02)	
Figure 5-109 (Average Chloride Levels – Alternative 03)	
Figure 5-110 (Average Chloride Levels – Alternative 04)	
Figure 5-110 (Average Chloride Levels – Alternative 04)	
Figure 5-112 (Average Chloride Levels – Alternative 05)	
Figure 5-112 (Average Chloride Levels Delta Change from NAA – Alternative 01)	
Figure 5-114 (Average Chloride Levels Delta Change from NAA – Alternative 01)	
Figure 5-115 (Average Chloride Levels Delta Change from NAA – Alternative 02)	
Figure 5-116 (Average Chloride Levels Delta Change from NAA – Alternative 04)	
Figure 5-117 (Average Chloride Levels Delta Change from NAA – Alternative 05)	
Figure 5-118 (Average Chloride Levels Delta Change from NAA – Alternative 06)	
Figure 5-119 (Days When Average Chloride Levels > 12 - NAA)	
Figure 5-120 (Days When Average Chloride Levels > 12 – Alternative 01)	
Figure 5-121 (Days When Average Chloride Levels > 12 – Alternative 02)	
Figure 5-122 (Days When Average Chloride Levels > 12 – Alternative 03)	
Figure 5-123 (Days When Average Chloride Levels > 12 – Alternative 04)	
Figure 5-124 (Days When Average Chloride Levels > 12 – Alternative 05)	
Figure 5-125 (Days When Average Chloride Levels > 12 – Alternative 06)	
Figure 5-126 (Delta Change in Chloride Levels from NAA – Alternative 01)	
Figure 5-127 (Delta Change in Chloride Levels from NAA – Alternative 02)	
Figure 5-128 (Delta Change in Chloride Levels from NAA – Alternative 03)	
Figure 5-129 (Delta Change in Chloride Levels from NAA – Alternative 04)	
Figure 5-130 (Delta Change in Chloride Levels from NAA – Alternative 05)	73
Figure 5-131 (Delta Change in Chloride Levels from NAA – Alternative 06)	
Figure 5-132 (Grid Coordinates of the Zones)	74
Figure 6-1 (HUC0306 Summary Results (Flood Risk Reduction))	2
Figure 6-2 (HUC0306 Summary Results (Ecosystem Restoration))	
Figure 6-3 (HUC0306 Summary Results (Hydropower))	3
Figure 6-4 (HUC0306 Summary Results (Navigation))	3
Figure 6-5 (HUC0306 Summary Results (Recreation))	
Figure 6-6 (HUC0306 Summary Results (Water Supply))	
Figure 6-7 (Nationwide HUC Comparison (Ecosystem Restoration))	
Figure 6-8 (Nationwide HUC Comparison (Flood Risk Management))	7
Figure 6-9 (Nationwide HUC Comparison (Hydropower))	
Figure 6-10 (Nationwide HUC Comparison (Navigation))	
Figure 6-11 (Nationwide HUC Comparison (Recreation))	
Figure 6-12 (Nationwide HUC Comparison (Water Supply))	9

Table of Plates

Plate 4-1 (Status of HH&C Software, HEC ResSim)	. 3
Plate 4-2 (Status of HH&C Software, CEQUAL – RIV1)	. 3
Plate 4-3 (Status of HH&C Software, EFDC)	. 4
Plate 4-4 (Status of HH&C Software, WASP)	
Plate 4-5 (Status of HH&C Software, HEC-EFM)	

Table of Tables

Table 5-1 (SEPA Weekly Minimum Energy Requirements)	. 17
Table 8-1 (Basic Statistics)	36
Table 8-2 (Jocassee Pool Frequency Analysis)	37
Table 8-3 (Keowee Pool Frequency Analysis)	
Table 8-4 (Hartwell Pool Frequency Analysis)	
Table 8-5 (Russell Pool Frequency Analysis)	39
Table 8-6 (Thurmond Pool Frequency Analysis)	. 39
Table 8-7 (Thurmond Outflow Frequency Analysis)	40
Table 8-8 (Augusta Shoals Flow Frequency Analysis)	41
Table 8-9 (Augusta Canal Flow Frequency Analysis)	42
Table 8-10 (Augusta Flow Frequency Analysis)	
Table 8-11 (Fish Spawn Metrics Evaluation, Jocassee)	45
Table 8-12 (Fish Spawn Metrics Evaluation, Keowee)	
Table 8-13 (Fish Spawn Metrics Evaluation, Hartwell)	. 47
Table 8-14 (Fish Spawn Metrics Evaluation, Russell)	48
Table 8-15 (Fish Spawn Metrics Evaluation, Thurmond)	. 49
Table 8-16 (Fish Spawn Metrics Evaluation, Shoals)	. 50
Table 8-17 (Fish Spawn Metrics Evaluation, Augusta)	. 51
Table 8-18 (Fish Spawn Metrics Evaluation, Waynesboro)	52
Table 8-19 (Fish Spawn Metrics Evaluation, Millhaven)	. 53
Table 8-20 (Fish Spawn Metrics Evaluation, Clyo)	
Table 8-21 (Boat Ramp Access Metrics Evaluation)	. 55
Table 8-22 (Beach Access Metrics Evaluation)	. 55
Table 8-23 (In-Lake Water Supply Intake Metrics Evaluation)	. 56
Table 8-24 (In-Lake Water Supply Intake Metrics Evaluation, Percentiles)	. 57
Table 8-25 (Downstream Water Supply Intake Metrics Evaluation)	. 58
Table 8-26 (Downstream Water Supply Intake Metrics Evaluation, Percentiles)	. 59
Table 8-27 (USACE Hydropower Metrics Evaluation)	. 60
Table 8-28 (Augusta Canal Hydropower Metrics Evaluation)	. 60
Table 8-29 (SEPA Capacity and Energy Pricing)	

Table of Screens

Annex B - Screen 1 (Basin Diagram)	. 1
Annex B - Screen 2 (Hartwell Physical Attributes)	. 2
Annex B - Screen 3 (Russell Physical Attributes)	. 3
Annex B - Screen 4 (Thurmons Physical Attributes)	. 4
Annex B - Screen 5 (Hartwell Elevation-Storage-Area Attributes)	. 5
Annex B - Screen 6 (Russell Elevation-Storage-Area Attributes)	. 6
Annex B - Screen 7 (Thurmond Elevation-Storage-Area Attributes)	.7
Annex B - Screen 8 (Hartwell Tailwater Rating Curve)	. 8
Annex B - Screen 9 (Russell Tailwater Rating Curve)	. 9
Annex B - Screen 10 (Thurmond Tailwater Rating Curve)	10

Annex B - Screen 11 (Hartwell Gate Capacity Curve)	
Annex B - Screen 12 (Russell Gate Capacity Curve)	
Annex B - Screen 13 (Thurmond Gate Capacity Curve)	
Annex B - Screen 14 (Hartwell Power Plant Outflow Capacity)	
Annex B - Screen 15 (Russell Power Plant Outflow Capacity)	
Annex B - Screen 16 (Thurmond Power Plant Outflow Capacity)	16
Annex B - Screen 17 (Hartwell Power Plant Generation Capacity)	
Annex B - Screen 18 (Russell Power Plant Generation Capacity)	
Annex B - Screen 19 (Keowee Release Allocation)	
Annex B - Screen 20 (Jocassee Release Allocation)	
Annex B - Screen 21 (Hartwell Release Allocation)	
Annex B - Screen 22 (Russell Release Allocation)	
Annex B - Screen 23 (Thurmond Release Allocation)	22
Annex B - Screen 23 (Thurmond Release Allocation)	23
Annex B - Screen 25 (NAA, Thurmond Induced Surcharge Pool Rule Stack)	
Annex B - Screen 26 (NAA, Thurmond Flood Pool Rule Stack)	
Annex B - Screen 27 (NAA, Thurmond Conservation Pool Rule Stack)	
Annex B - Screen 28 (NAA, Thurmond Trigger Level 1 Rule Stack)	
Annex B - Screen 29 (NAA, Thurmond Trigger Level 2 Rule Stack)	
Annex B - Screen 30 (NAA, Thurmond Trigger Level 3 Rule Stack)	
Annex B - Screen 31 (NAA, Thurmond Inactive Pool Definition)	
Annex B - Screen 32 (NAA, Thurmond Induced Surcharge Envelope Definition)	32
Annex B - Screen 33 (NAA, Thurmond IS Pool, Augusta Max Rule)	33
Annex B - Screen 34 (NAA, Thurmond IS Pool, Thurmond Min 3600 cfs Rule)	34
Annex B - Screen 35 (NAA, Thurmond IS Pool, Augusta Min 3600 cfs Rule)	35
Annex B - Screen 36 (NAA, Thurmond Flood Pool, Augusta Min 3600 cfs Rule)	
Annex B - Screen 37 (NAA, Thurmond Conservation Pool, Fish Spawn Rule)	
Annex B - Screen 39 (NAA, Thurmond Conservation Pool, System Power Rule)	
Annex B - Screen 40 (NAA, Thurmond Conservation Pool, Level 1 Bell Gage Rule).	
Annex B - Screen 41 (NAA, Thurmond Conservation Pool, Level 2 Bell Gage Rule).	
Annex B - Screen 42 (NAA, Thurmond Conservation Pool, Level 3 Rule)	
Annex B - Screen 43 (ALT1, Thurmond Induced Surcharge Pool Rule Stack)	
Annex B - Screen 44 (ALT1, Thurmond Flood Pool Rule Stack)	
Annex B - Screen 45 (ALT1, Thurmond Conservation Pool Rule Stack)	
Annex B - Screen 46 (ALT1, Thurmond Trigger Level 1 Rule Stack)	
Annex B - Screen 47 (ALT1, Thurmond Trigger Level 2 Rule Stack)	
Annex B - Screen 48 (ALT1, Thurmond Trigger Level3 Rule Stack)	
Annex B - Screen 49 (ALT1, Thurmond Inactive Pool Definition)	
Annex B - Screen 50 (ALT1, Thurmond Conservation Pool, Level 1 Bell Gage Rule)	
Annex B - Screen 51 (ALT1, Thurmond Conservation Pool, Level 2 Bell Gage Rule)	54
Annex B - Screen 52 (ALT1, Thurmond Conservation Pool, Level 3 Rule)	55
Annex B - Screen 53 (ALT2, Thurmond Induced Surcharge Pool Rule Stack)	56
Annex B - Screen 54 (ALT2, Thurmond Flood Pool Rule Stack)	57
Annex B - Screen 55 (ALT2, Thurmond Conservation Pool Rule Stack)	58
Annex B - Screen 56 (ALT2, Thurmond Trigger Level 1 Rule Stack)	
Annex B - Screen 57 (ALT2, Thurmond Trigger Level 2 Rule Stack)	
	-

Anney D., Cereen EQ (ALTO, Thurmond Trigger Level 2 Dule Steel)	C 4
Annex B - Screen 58 (ALT2, Thurmond Trigger Level 3 Rule Stack)	
Annex B - Screen 59 (ALT2, Thurmond Inactive Pool Definition)	
Annex B - Screen 60 (ALT2, Conservation Pool, Level 1 Bell Gage Rule)	
Annex B - Screen 61 (ALT2, Conservation Pool, Level 2 Bell Gage Rule)	
Annex B - Screen 62 (ALT2, Conservation Pool, Level 3 Rule)	
Annex B - Screen 63 (ALT2, Conservation Pool, Thurmond Min 3600 cfs Rule)	. 66
Annex B - Screen 64(ALT2, Conservation Pool, Augusta Min 3600 cfs Rule)	. 66
Annex B - Screen 65 (ALT3, Induced Surcharge Pool Rule Stack)	. 67
Annex B - Screen 66 (ALT3, Induced Flood Pool Rule Stack)	. 68
Annex B - Screen 67 (ALT3, Conservation Pool Rule Stack)	. 69
Annex B - Screen 68 (ALT3, Trigger Level 1 Rule Stack)	. 70
Annex B - Screen 69 (ALT3, Trigger Level 2 Rule Stack)	
Annex B - Screen 70 (ALT3, Trigger Level 3 Rule Stack)	
Annex B - Screen 71 (ALT3, Thurmond Inactive Pool Definition)	
Annex B - Screen 72 (ALT3, Wet Condition, Shoals Minimum Rule)	
Annex B - Screen 73 (ALT3, Wet Condition, Shoals, Rate of Fall Rule)	
Annex B - Screen 74(ALT3, Wet Condition, Millhaven, Minimum Rule)	
Annex B - Screen 75 (ALT3, Wet Condition, Millhaven, Max Rule)	
Annex B - Screen 76 (ALT3, Wet Condition, Millhaven, Pulse Rule)	
Annex B - Screen 77 (ALT3, Wet Condition, Minnaven, Pulse Rule)	
Annex B - Screen 78 (ALT3, Wet Condition, Clyo Max Rule)	
Annex B - Screen 79 (ALT3, Wet Condition, Clyo, Pulse Rule)	
Annex B - Screen 80 (ALT3, Average Condition, Shoals, Max Rule)	
Annex B - Screen 81 (ALT3, Average Condition, Shoals, Min Rule)	
Annex B - Screen 82 (ALT3, Average Condition, Shoals, Max Rule)	
Annex B - Screen 83 (ALT3, Average Condition, Millhaven, Mix Rule)	
Annex B - Screen 84 (ALT3, Average Condition, Millhaven, Max Rule)	
Annex B - Screen 85 (ALT3, Average Condition, Millhaven, Pulse Rule)	
Annex B - Screen 86 (ALT3, Average Condition, Clyo, Min Rule)	
Annex B - Screen 87 (ALT3, Average Condition, Clyo, Man Rule)	
Annex B - Screen 88 (ALT3, Average Condition, Clyo, Pulse Rule)	
Annex B - Screen 89 (ALT3, Dry Condition, Shoals, Min Rule)	
Annex B - Screen 90 (ALT3, Dry Condition, Shoals, Max Rule)	
Annex B - Screen 91 (ALT3, Dry Condition, Millhaven, Max Rule)	
Annex B - Screen 92 (ALT3, Dry Condition, Millhaven, Min Rule)	
Annex B - Screen 93 (ALT3, Dry Condition, Thurmond, Rate of Rise Critical Rule)	. 95
Annex B - Screen 94 (ALT3, Dry Condition, Thurmond, Rate of Fall Critical Rule)	. 96
Annex B - Screen 95 (ALT3, Dry Condition, Millhaven, Min Pulse Rule)	. 97
Annex B - Screen 96 (ALT3, Dry Condition, Clyo, Min Rule)	. 98
Annex B - Screen 97 (ALT3, Dry Condition, Clyo, Max Rule)	. 99
Annex B - Screen 98 (ALT3, Dry Condition, Clyo, Pulse Rule)	
Annex B - Screen 99 (ALT3, Drought Condition, Shoals, Min Rule)	101
Annex B - Screen 100 (ALT3, Drought Condition, Shoals, Max Rule)	
Annex B - Screen 101 (ALT3, Drought Condition, Shoals, Rate of Fall Rule)	
Annex B - Screen 102 (ALT3, Drought Condition, Millhaven, Min Rule)	
Annex B - Screen 103 (ALT3, Drought Condition, Millhaven, Max Rule)	
,,,	

Annex B - Screen 104 (ALT3, Drought Condition, Thurmond, Rate of Rise Critical Rule) Annex B - Screen 105 (ALT3, Drought Condition, Thurmond, Rate of Fall Critical Rule) Annex B - Screen 106 (ALT3, Drought Condition, Millhaven, Min-Pulse Rule) 108 Annex B - Screen 110 (ALT3, Normal\Flood Control, Weekly System Power Rule) ... 112 Annex B - Screen 111 (ALT3, Drought Level 1, SpecRel Bell Rule) 113 Annex B - Screen 112 (ALT3, Drought Level 2, SpecRel Bell Rule) 114 Annex B - Screen 113 (ALT3, Drought Level 3, SpecRel Bell Rule) 115 Annex B - Screen 114 (ALT4, Thurmond, Induced Surcharge Pool Rule Stack) 116 Annex B - Screen 115 (ALT4, Thurmond, Flood Control Rule Stack) 117 Annex B - Screen 121 (ALT4, Conservation Pool, Thurmond Min 3800 cfs Rule) 123 Annex B - Screen 122 (ALT4, Conservation Pool, Weekly System Power Rule) 124 Annex B - Screen 123 (ALT4, Conservation Pool, Drought Level, 1 SpecRel 3600-Annex B - Screen 124 (ALT4, Conservation Pool, Drought Level 2, SpecRel 3600-Annex B - Screen 125 (ALT4, Conservation Pool, Drought Level 3, SpecRel 3600- 3100 Annex B - Screen 139 (ALT5, Conservation Seasonal Rate of Change, Thurmond, Rate Annex B - Screen 140 (ALT5, Conservation Seasonal Rate of Change, Thurmond, Rate Annex B - Screen 141 (ALT5, Conservation Seasonal Rate of Change, Thurmond, Rate of Fall Non-Critical Rule)......143

Annex B - Screen 142 (ALT5, Conservation Seasonal Rate of Change, Thurmond, Rate
of Rise Non-Critical Rule)
Annex B - Screen 143 (ALT5, Dry Conditions, Shoals, Min Rule)
Annex B - Screen 144 (ALT5, Dry Conditions, Millhaven, Min-Pulse Rule)
Annex B - Screen 145 (ALT5, Dry Conditions, Thurmond, 4000-2800 cfs Rule) 147
Annex B - Screen 146 (ALT5, Dry Conditionsk, Clyo, Min Rule)
Annex B - Screen 147 (ALT5, Dry Conditions, Shoals, Max Rule)
Annex B - Screen 148 (ALT5, Dry Conditions, Millhaven, Max Rule)
Annex B - Screen 149 (ALT5, Drought Conditions, Millhaven, Min Rule)
Annex B - Screen 150 (ALT5, Drought Conditions, Thurmond, 3800-2800 cfs Rule) . 152
Annex B - Screen 151 (ALT5, Drought Conditions, Shoals, Max Rule)
Annex B - Screen 152 (ALT5, Drought Conditions, Millhaven, Max Rule)
Annex B - Screen 153 (ALT5, Drought Conditions, Thurmond, 3600-2800 Rule) 155
Annex B - Screen 154 (ALT6, Induced Surcharge Pool Rule Stack)
Annex B - Screen 155 (ALT6, Flood Control Pool Rule Stack)
Annex B - Screen 157 (ALT6, Conservation Pool Rule Stack)
Annex B - Screen 159 (ALT6, Thurmond, Trigger Level 1 Rule Stack)
Annex B - Screen 169 (ALT6, Thurmond, Trigger Level 2 Rule Stack)
Annex B - Screen 161 (ALT6, Drought Level 1, Thurmond, 6875-2800 cfs Rule) 162
Annex B - Screen 162 (ALT6, Drought Level 2, Thurmond, 5875-2800 cfs Rule) 163
Annex B - Screen 163 (ALT6, Drought Level 3, Thurmond, 6875-2800 cfs Rule) 164
Annex C- Screen 1 (NAA vs ALT1, Hartwell)
Annex C- Screen 2 (NAA vs ALT1, Thurmond)2
Annex C- Screen 3 (NAA vs ALT2, Hartwell)
Annex C- Screen 4 (NAA vs ALT2, Thurmond)
Annex C- Screen 5 (NAA vs ALT3, Hartwell)4
Annex C- Screen 6 (NAA vs ALT3, Thurmond)4
Annex C- Screen 7 (NAA vs ALT1, Hartwell)5
Annex C- Screen 8 (NAA vs ALT1, Thurmond)5
Annex C- Screen 9 (NAA vs ALT5, Hartwell)
Annex C- Screen 10 (NAA vs ALT5, Thurmond)
Annex C- Screen 11 (NAA vs ALT6, Hartwell)
Annex C- Screen 12 (NAA vs ALT6, Thurmond)
Annex D- Screen 1 (Highway 28 Dissolved Oxygen Exceedance)
Annex D- Screen 2 (Highway 28 Water Temperature Exceedance)
Annex D- Screen 4 (Augusta Node Dissolved Oxygen Exceedance)
Annex D- Screen 5 (Waynesboro Node Dissolved Oxygen Exceedance)
Annex D- Screen 6 (Waynesboro Water Temperature Exceedance)
Annex D- Screen 7 (Millhaven Node Oxygen Exceedance)
Annex D- Screen 8 (Millhaven Node Water Temperature Exceedance)
Annex D- Screen 9 (River Mile 87 Water Temperature Exceedance)
Annex D- Screen 10 (Clyo Node Dissolved Oxygen Exceedance)
Annex D- Screen 11 (Clyo Node Water Temperature Exceedance)

Annex D- Sc	creen 12	(Savannah	River B	asin, Ph	nase 2	Compa	rison of	7Q10 St	ream	
Flows)										. 13
Annex D- Sc	creen 13	(Savannah	River B	asin, Ph	nase 2	Water (Quality N	/lodeling)	. 14
Annex D- Sc	creen 14	(Savannah	River B	asin, Ph	nase 2	Hydrod	ynamic	Modeling	g)	. 15
Annex D- Sc	creen 15	(Savannah	River B	asin, Ph	nase 2	Hydrod	ynamic	Modeling	g Cont.))16
Annex D- Sc	creen 16	(Savannah	River B	asin, Ph	nase 2	Hydrod	ynamic	Modeling	g Cont.)
										.19
Annex D- Sc	reen 17	(Savannah	River B	asin Ma	ıp)					.21
Annex D- Sc	creen 18	(Savannah	River B	asin, Ph	nase 2	Hydrod	ynamic	Modeling	g Cont.))22
Annex D- Sc	creen 19	(Savannah	River B	asin, Ph	nase 2	Hydrod	ynamic	Modeling	g Cont.)
		` 				- 	- 		-	.22

ENGINEERING APPENDIX

1 Purpose

The Savannah River Basin Comprehensive Study (SRBCS) Interim Study purpose is to address the current and future needs of the basin for flood risk management (FRM), hydropower, water supply, fish and wildlife management, recreation, and other water resource related issues. This is the second interim study under the SRBCS and the intent of the effort is to reevaluate the Drought Contingency Plan (DCP) that was developed in 2006 in order to determine if modifications are warranted to better preserve conservation storage.

The following outlines the models, alternatives, data sets, outputs, assumptions, and other key information utilized to support the plan formulation for the study that results in a selected alternative for the study. The results of this study may require updates to the current drought control pan and the Savannah River Basin Water Control Manual.

2 Data Used in the Study

Two drought periods affected the basin following the initial DCP development in 2006. Based on the severity of the droughts, the inflow data sets required updating to ensure adequate data to model the impacts of the drought of record for the study. Based on these needs, the following data sets were developed for the interim study.

2.1 Unimpaired Inflow Data Set

The Unimpaired Inflow Data Sets are developed by DNR-GA, specifically Georgia Environmental Protection Division (EPD) and are provided to USACE for modeling of alternatives associated with the Comprehensive Study. Updates for the interim study include the following:

a. Daily values of local inflow

Savannah River Basin Comprehensive Study II: 2009 – 2013 Unimpaired Flow Data Extension

b. Covered sub-basin inflow from the top of the Savannah basin to Clyo

2.2 Water Use Data

Water use Data Sets for the Savannah River Basin are developed by GADNR-EPD and are provided to USACE for modeling of alternatives associated with the Comprehensive Study. Data provided for the interim study include the following:

- a. States provided water use data
- b. 35 year horizon (2050)
- c. Contained both withdrawals and returns to each reach of the river

3 Models used in this study

The Savannah River Basin includes mountainous areas into North Carolina down to the harbor and tidal estuary at the city of Savannah. Due to the changes in flow regime and data needed for the formulation of a comprehensive basin study, a series of computer models was utilized to evaluate alternatives. The following are the models utilized in this interim of the Comprehensive Study.

- a. HEC-HEC-ResSim (Savannah District, USACE-SAS)
- b. EPD-Riv1 (Department of Natural Resources, GADNR-EPD)
- c. Harbor Model, EFDC (Department of Natural Resources, DNR-SC)
- d. HEC-EFM (The Nature Conservancy, TNC)

These models were used in a sequential manner. HEC-ResSim was used by USACE to model the reservoir operations. The output of HEC-ResSim was passed to Georgia DNR who used the RIV-1 model to capture impacts to the riverine stretch between Thurmond Dam and Clyo. The output of RIV-1 was again passed on to South Carolina DNR who used EFDC to evaluate impacts to water quality in the Savannah Harbor. Ultimately all of the results were run by TNC who used HEC-EFM to evaluate the ecosystem responses to the alternatives.

4 Model Certification

Models utilized in studies and design require USACE certification or approval of use by the Community of Practice associated with the model. The following shows the status of the models listed above for use in the Comprehensive Study. All models used in this study were either Community of Practice preferred or allowed for use.

HH&C Software Lists -	HEC-ResSim	×□
View		
Edit Item X Delete Item	W Alert Me	
Manage	Actions	
Title	HEC-ResSim	_
Discipline	ResSim	
Enterprise		
CoP Preferred	Yes	
Use?		
Retired	No	
Comments		
Created at 9/9/2013 1:06 PM by k Last modified at 9/9/2013 1:06 PM	Kellett, Jeremy D ERDC-CRREL-NH Close Close	
<		>

Plate 4-1 (Status of HH&C Software, HEC ResSim)

Software Lists - C	CEQUAL-RIV1	□ ×
 Version History Manage Permissions Delete Item 	🖗 Alert Me	
Manage	Actions	
	CEQUAL-RIV1	
line	ENV ENG and WQ	
orise		
referred	No	
	Allowed	
d	No	
nents		
		>
	Version History Manage Permissions Delete Item Manage line referred d hents	Manage Permissions Delete Item Manage Actions CEQUAL-RIV1 CEQUAL-RIV1 CEQUAL-RIV1 CEQUAL-RIV1 CEQUAL-RIV1 Allowed Allowed

Plate 4-2 (Status of HH&C Software, CEQUAL - RIV1)

Annex A – 2009-2013 Unimpaired Flow Data Extension

HH&	C Software Lists -	EFDC.	□ ×
View	1		
Edit	Version History Manage Permissions Delete Item	🖗 Alert Me	
	Manage	Actions	
Title		EFDC	
Discip	oline	Coastal SET	
Enter	prise		
CoP P	Preferred	No	
Use?		Allowed	
Retire	ed	No	
Comr	ments		
		Kellett, Jeremy D ERDC-CRREL-NH 4 by Kellett, Jeremy D ERDC-CRREL-NH	Close
<			>

HH&	C Software Lists -	WASP	□ ×
View			
Edit Item	Version History Manage Permissions	🦃 Alert Me	
	Manage	Actions	
Title		WASP	
Discip	oline	ENV ENG and WQ	
Enter	prise		
CoP F	Preferred	Yes	
Use?			
Retire	ed	No	
Comr	ments		
		Kellett, Jeremy D ERDC-CRREL-NH M by Kellett, Jeremy D ERDC-CRREL-NH	Close
<			>

Plate 4-4 (Status of HH&C Software, WASP)

HH&(C Software Lists - H	IEC-EFM		⊐ ×
View				
Edit Item	 Version History Manage Permissions Delete Item 	🙊 Alert Me		
	Manage	Actions		
Title		HEC-EFM		
Discip	oline	ENV ENG and WQ		
Enter	prise			
CoP P	Preferred	No		
Use?		Allowed		
Retire	ed	No		
Com	ments			
Create Last m	ed at 9/9/2013 9:18 AM by K odified at 9/9/2013 9:34 AM	ellett, Jeremy D ERDC-CRREL-NH by Kellett, Jeremy D ERDC-CRREL-NH	Clos	
<				>

Plate 4-5 (Status of HH&C Software, HEC-EFM)

5 Description of Models

5.1.1 HEC-ResSim (Version 3.3.0.333 used for study)

The HEC-ResSim software was developed by the U.S. Army Corps of Engineers to model reservoir operations at one or more reservoirs for a variety of operational goals and constraints. The software simulates reservoir operations for flood management, low flow augmentation and water supply for planning studies, detailed reservoir regulation plan investigations, and real-time decision support. The following describes the major features of HEC-ResSim:

- Graphical User Interface
- Map-Based Schematic
- Rule-Based Operations

5.1.2 Graphical User Interface

Designed to follow Windows® software development standards, HEC-ResSim's interface does not require extensive tutorials to learn to use. Familiar data entry features make model development easy, and localized "mini plots" graph the data entered in most tables so that errors can be seen and corrected quickly. A variety of default plots and reports, along with tools to create customized plots and reports, facilitate output analysis.

5.1.3 Map-Based Schematic

HEC-ResSim provides a realistic view of the physical river/reservoir system using a map-based schematic with a set of element drawing tools. Also, with the hierarchical outlet structure, the modeler can represent each outlet of the reservoir rather the being limited to a single composite outlet definition.

Schematic - The program's user interface allows the user to draw the network schematic either as a stick figure or an overlay on one or more geo-referenced maps of the watershed.

Drawing Tools - HEC-ResSim represents a system of reservoirs as a network composed of four types of physical elements: junctions, routing reaches, diversions, and reservoirs. By combining these elements, the HEC-ResSim modeler is able to build a network capable of representing anything from a single reservoir on a single stream to a highly developed and interconnected system like that of California's central valley.

A reservoir is the most complex element of the reservoir network and is composed of a pool and a dam. HEC-ResSim assumes that the pool is level (i.e., it has no routing behavior) and its hydraulic behavior is completely defined by an elevation-storage-area table. The real complexity of HEC-ResSim's reservoir network begins with the dam.

Hierarchical Outlet Structure - The dam is the root of an outlet hierarchy or "tree" which allows the user to describe the different outlets of the reservoir in as much detail as is

deemed necessary. There are two basic and two advanced outlet types. The basic outlet types are controlled and uncontrolled. An uncontrolled outlet can be used to represent an outlet of the reservoir, such as an overflow spillway, that has no control structure to regulate flow. Controlled outlets can be used to represent any outlet capable of regulating flow, such as a gate or valve. The advanced outlet types are power plant and pump, both of which are controlled outlets with additional features to represent their special purposes. The power plant has the ability to compute energy production. The pump is even more specialized because its flow direction is opposite that of the other outlet types, and it can draw water up into the reservoir from the pool of another reservoir. The pump outlet type was added to enable the user to model pumpback operation in hydropower systems, although hydropower is not required for its operation.

5.1.4 Rule-Based Operations

Most reservoirs are constructed for one or more of the following purposes: flood control, power generation, navigation, water supply, recreation, and environmental quality. These purposes typically define the goals and constraints that describe the reservoir's release objectives. Other factors that may influence these objectives include: time of year, hydrologic conditions, water temperature, current pool elevation (or zone), and simultaneous operations by other reservoirs in a system. HEC-ResSim is unique among reservoir simulation models because it attempts to reproduce the decision making process that human reservoir operators must use to set releases. It uses an original rule-based description of the operational goals and constraints that reservoir operators must consider when making release decisions. As HEC-ResSim has developed advanced features such as outlet prioritization, scripted state variables, and conditional logic have made it possible to model more complex systems and operational requirements.

USACE, Savannah District used HEC-ResSim to mimic the operations of the USACE and Duke Energy Savannah River Projects. HEC-ResSim was set to operate on a daily time-step using an unimpaired inflow dataset (UIF) developed by GADNR-EPD. These inflows extended from January 1939 to December 2013. Different alternatives were developed within in HEC-ResSim to mimic the set of study Alternatives that the Comprehensive Study partners came up with. Each HEC-ResSim Alternative has its own rule set which defined the behavior/operation of each project in the system. Initially the team came up with four alternatives focused on different goals. These would be evaluated prior to defining the final two alternatives which were based on features of the first four. HEC-ResSim operates on a user prioritized set of rules. Each rule has its own objective. Some rules can coincide with other rules without violating each other. However, many rules will often conflict with each other and the rule highest in the priority stack will be met. Rules lower in the priority stack will only be met if conditions of the higher priority rules have already been met and the lower rule does not cause the higher priority rules to be violated.

5.2 RIV-1

RIV-1 is a dynamic, one-dimensional (longitudinal), water quality model for unsteady flows in rivers and streams. The model has both hydrodynamic and water quality components. Output from the hydrodynamic solution is used to drive the water quality model. The hydrodynamic code uses a four-point implicit Newton-Raphson procedure to solve the nonlinear St. Venant equation. Numerical accuracy for the advection of sharp gradients is preserved in the water quality code through the use of the explicit two-point, fourth-order accurate, Holly-Preissmann scheme. Water quality constituents include temperature, dissolved oxygen, carbonaceous biochemical oxygen demand, organic nitrogen, ammonia nitrogen, nitrate nitrogen, orthophosphate phosphorus, coliform bacteria, dissolved iron, and dissolved manganese. The effects of algae and macrophytes are also included. The model allows simulation of branched river systems with multiple hydraulic control structures, such as run-of-the-river dams, waterway locks and dams, and reregulation dams. The model was developed to simulate the transient water quality conditions associated with highly unsteady flows that can occur on regulated streams.

Hydrodynamics

RIV1H solves the fully dynamic equations for continuity and momentum; thus it has wide-ranging capabilities with good resolution (Environmental Laboratory 1990). Because the hydrodynamic solution of RIV1H can be executed independently of the water quality solution, the complete time series of flow and elevation can be stored and used as input information for the water quality transport calculations. Therefore, RIV1H was capable of simulating the flood and peaking hydropower releases from Thurmond Dam that create rapidly varying flows, elevations, and water quality.

Water Quality

CE-QUAL-RIV1 was developed for the water quality simulation of riverine systems with highly unsteady flow. The River Model's water quality simulations focused on DO and the parameters and kinetics of classical Streeter-Phelps theory that affect DO. The following parameters were included in the River Model's water quality simulations:

- Water Temperature
- Carbonaceous Biochemical Oxygen Demand (CBOD)
- Organic Nitrogen
- Ammonia
- Nitrate
- Organic Phosphorus
- Ortho Phosphorus
- Dissolved Oxygen

RIV-1 addressed concerns that changes in operation will have impacts on permitted municipal and industrial water users.

5.3 EFDC Hydrodynamic Model

The three-dimensional hydrodynamics of Savannah Harbor was modeled using EFDC. EFDC is a hydrodynamic and water quality modeling package for simulating onedimensional, two-dimensional, and three-dimensional flow and transport in surface water systems including: rivers, lakes, estuaries, reservoirs, wetlands, and near shore to shelf scale coastal regions. The EFDC model was originally developed at the Virginia Institute of Marine Science for estuarine and coastal applications and is considered public domain software (Hamrick 1992).

The physics of the EFDC model, and many aspects of the computational scheme, are equivalent to the widely used Blumberg-Mellor model (Blumberg & Mellor 1987) and the USACE CH3D or Chesapeake Bay model (Johnson et al. 1993). The EFDC model solves the three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motion for a variable density fluid. Dynamically coupled transport equations for turbulent kinetic energy, turbulent length scale, salinity, and temperature are also solved. The two turbulence parameter transport equations implement the Mellor-Yamada level 2.5 turbulence closure scheme (Mellor & Yamada 1982; Galperin et al. 1988).

The EFDC model uses Cartesian or curvilinear, orthogonal horizontal coordinates. The numerical scheme employed in EFDC to solve the equations of motion uses second order accurate spatial finite differencing on a staggered grid. The model's time integration employs a second order accurate three-time level, finite difference scheme with an internal-external mode splitting procedure to separate the internal shear, or baroclinic mode, from the external free surface gravity wave, or barotropic mode.

The EFDC model uses a Z-grid, where the external mode solution is semi-implicit, and simultaneously computes the two-dimensional surface elevation field by a preconditioned conjugate gradient procedure. The external solution is completed by the calculation of the depth average barotropic velocities using the new surface elevation field. The model's semi-implicit external solution allows large time steps that are constrained only by the stability criteria of the explicit central difference or high order upwind advection scheme (Smolarkiewicz and Margolin 1993) used for the nonlinear accelerations. Horizontal boundary conditions for the external mode solution include options for simultaneously specifying the surface elevation only, the characteristic of an incoming wave (Bennett & McIntosh 1982), free radiation of an outgoing wave (Bennett 1976; Blumberg & Kantha 1985), or the normal volumetric flux on arbitrary portions of the boundary.

5.3.1 Savannah Hydrodynamic Model History

Tetra Tech was contracted by the USACE Savannah District in 2004 to enhance the existing three-dimensional hydrodynamic model (EFDC) and the water quality model

(WASP) application for the Savannah River and Harbor. Tetra Tech had originally developed the EFDC hydrodynamic model and supported the USEPA Region 4 on the WASP model for developing the TMDL for DO in the harbor. Hydrodynamic and water quality models of the Savannah Harbor was originally completed in 2004 for the development of a DO TMDL.

The enhanced hydrodynamic and water quality models were used to assess the environmental impacts of SHEP, being led by the USACE Savannah District and the Georgia Ports Authority (GPA). The models were developed in consideration of the following efforts: (1) USACE Savannah Harbor Ecosystem Restoration Project, (2) finalization of the USEPA Region 4 DO TMDL, and (3) the states of Georgia and South Carolina issuing NPDES permits. Therefore, federal and state agency review of model development and performance was critical to the success of using one model in Savannah Harbor for environmental decision making.

The effort to develop an enhanced grid was initiated on September 29, 2004 to improve the representation of the estuary system and navigation channel from the original TMDL model grid. The enhanced grid is designed to allow evaluation of various scenarios such as deepening of the navigation channel and physical modifications to certain cuts and channels in the river and estuary. The major enhancements included developing a finer model grid, updating the bathymetric data used by the model, and an alternate approach for the model calculation of the river-marsh interactions. The same models, EFDC and WASP, were used on the TMDL grid and the enhanced grid.

The setup, calibration, and confirmation of the original EFDC and WASP Savannah Harbor models are well documented in the Tetra Tech January 30, 2006, modeling report (Tetra Tech 2006). After two years of intense efforts by several modelers and many agency meetings, final acceptance letters approving the use of the model were received from the EPA Region 4, Georgia Environmental Protection Division (GADNR-EPD), South Carolina Department of Health and Environmental Control (SCDNR-DHEC), National Marine Fisheries, and the United States Fish and Wildlife Service (USFW) in March 2006. Other reviewers of the enhanced models included the Harbor Committee (MACTEC as their consultant), the USACE Engineer Research and Development Center (ERDC), and the USGS.

In 2009, the DO water quality criteria for the State of Georgia changed, and the EPA Region 4 began development of a new DO TMDL for the Savannah Harbor. EPA Region 4 determined a need for converting the Savannah Harbor sigma grid of the enhanced model to a Z-grid. The compressed vertical layers in the Little Back River portion of the model caused unrealistic DO concentrations in the surface and bottom layers. The Z-grid allowed a different number of vertical layers throughout the model domain based on river and estuary depth. The sigma enhanced grid was six vertical layers and was converted to a Z-grid with a maximum of five vertical layers in the navigation channel and a minimum of one vertical layer in the Middle, Little Back, and

Upper Savannah Rivers. The 2010 Savannah Harbor Z-grid model contained 608 horizontal cells and 1,778 total cells when including the vertical cells.

The marsh areas were revised from the sigma grid model (Tetra Tech 2006) to include the areas downstream of Fort Jackson, along with one area upstream near the I-95 Bridge. To address seasonality of the marsh loads, a reference paper was used that measured dissolved inorganic carbon (DIC) in tidal freshwater marshes in Virginia and the adjacent estuary. The paper is titled "Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River Estuary" by Scott C. Neubauer and Iris C. Anderson from the Virginia Institute of Marine Science, School of Marine Science, College of William and Mary.

The original flow, velocity, elevation and temperature predictions were calculated using the EFDC hydrodynamic model and calibrated to the extensive 1997 and 1999 data sets (Tetra Tech 2006). The EFDC model inputs were updated to reflect more recent information. This information includes new flow gages by USGS in the harbor, longterm DO data at the USACE Dock, updates to the boundary conditions, connection to EPD's river model, and updates to water quality kinetics.

The USGS collected detailed (15 minute) water surface elevation, velocity and flow data during the fall and winter of 2008 – 2009 at the Middle and Back Rivers near the Houlihan Bridge crossings at Stations MR-10 and LBR-15 respectively. These data were used to improve the hydrodynamic predictive ability of the model in the Middle and Back Rivers.

GADNR- EPD had developed a hydrodynamic and water quality model (GADNR-EPD RIV1 Model) for the Savannah River from Thurmond Dam to Clyo. This model was used to transport the oxygen demanding substances from the upper watershed to the Harbor Model. The River Model provided the flow, DO, temperature, carbonaceous biochemical oxygen demand (CBOD, fast and slow) and NH3 boundary conditions for the calibrated and TMDL Harbor Model. (USEPA 2010)

The main changes to the water quality portion of the 2006 Savannah Harbor model (Tetra Tech 2006) were an update of the reaeration approach and a fine tuning of the CBOD decay rates. The main modeling parameters impacting the DO balance of the Harbor are the reaeration rate, the SOD rate and the oxygen demanding substances (BOD and NH3) decay rates.

In conjunction with 2010 Savannah Harbor model, a watershed model was constructed to simulate hydrologic runoff and water quality response to recorded precipitation events. This type of dynamic watershed representation illuminates the relationship between instream flows and the hydrologic processes that influence the quantity and timing of water movement throughout the watershed. Results from the watershed model were then loaded into the EFDC and WASP models. Several scenarios were run with the LSPC watershed model, including existing conditions, removal of point sources, all forested land uses, and conversion of urban and agricultural land uses to wetlands.

The development of 2010 Savannah Harbor TDML model underwent an extensive review process. The formation of a modeling group of technical experts from the USEPA, GADNR-EPD, SCDNR-DHEC, Savannah Harbor Committee, and Central Savannah River Association, along with input from the Savannah District, was organized to lend their expertise in modeling and specific knowledge of the Savannah River and Harbor ecosystem to the 2010 Savannah Harbor model. The modeling subgroup expertise was used over the 2007 to 2010 period to update and improve the 2010 Savannah Harbor TMDL.

5.3.2 WASP Water Quality Model

The Water Quality Analysis Simulation Program Version 7.0 (WASP7) was used for the water quality model based on its comparative advantages explained below. WASP7 is an enhanced Windows version of the USEPA WASP (Di Toro et al. 1983; Connolly and Winfield 1984; Ambrose et al. 1993), with many upgrades to the user's interface and the model's capabilities. The major upgrades to WASP have been the addition of multiple BOD components, addition of sediment diagenesis routines, and addition of periphyton routines. WASP7 has features including a pre-processor, a rapid data processor, and a graphical post-processor that enables the modeler to run WASP more quickly and easily and evaluate model results both numerically and graphically. With WASP7, model execution can be performed up to ten times faster than the previous USEPA DOS version of WASP. Nonetheless, WASP7 uses the same algorithms to solve water quality problems as those used in the DOS version of WASP. The hydrodynamic file generated by EFDC is compatible with WASP7 and it transfers segment volumes, velocities, temperature and salinity, as well as flows between segments. The time step is also set in WASP7 based on the hydrodynamic simulation.

WASP7 helps users interpret and predict water quality responses to natural phenomena and man-made pollution for various pollution management decisions. WASP7 is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying benthos. The time-varying processes of advection, dispersion, point and diffuse mass loading, and boundary exchange are represented in the basic program. Water quality processes are represented in special kinetic subroutines that are either chosen from a library or written by the user. WASP is structured to permit easy substitution of kinetic subroutines into the overall package to form problem-specific models. WASP7 comes with two such models, TOXI for toxicants and EUTRO for conventional water quality.

WASP has a long history of application to various problems. Some applications have been validated with field data, or verified by model experiments and reviewed by independent experts. Earlier versions of WASP have been used to examine eutrophication of Tampa Bay; phosphorus loading to Lake Okeechobee; eutrophication of the Neuse River and Estuary (Wool et al. 2003); eutrophication and polychlorinated biphenyl pollution of the Great Lakes (Thomann 1975; Thomann et al. 1976; Di Toro and Connolly 1980), eutrophication of the Potomac Estuary (Thomann and Fitzpatrick 1982), Kepone pollution of the James River Estuary (O'Connor et al. 1983), and volatile organic pollution of the Delaware Estuary (Ambrose 1987). In addition to these, numerous applications are listed in Di Toro et al. 1983.

5.3.3 Model Linkage

EFDC and WASP7 were used to simulate the hydrodynamics and water quality of the Savannah Harbor. Savannah River and open ocean measured hydrodynamic boundary conditions provided stream flows, temperature, water surface elevation, and salinity to the EFDC model. DO and ammonia (NH3) water quality concentrations were provided to the WASP estuary model. EFDC and WASP were linked through the hydrodynamic linkage file. The EFDC hydrodynamic linkage file provides the inter-cell flow and velocities, as well as cell volume, temperature and salinity at each simulation time step, representing the circulation and transport patterns in the estuary. This file was used subsequently by the water quality model WASP7 to evaluate the fate and transport of the different variables under analysis. Figure 5-1 illustrates the interaction among the two models.

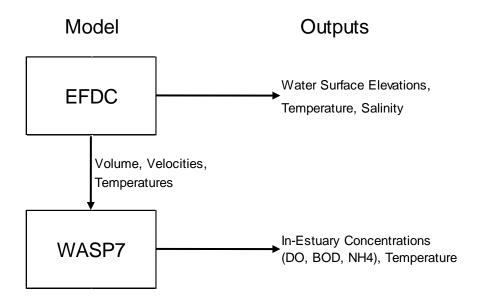


Figure 5-1(Model linkage between EFDC and WASP)

5.4 HEC-EFM

HEC-EFM, Ecosystem Functions Model, is a statistical analysis tool used for the postprocessing of data to determine ecosystem responses to changes in the flow regime of a river or connected wetland.

- a. Statistical analyses of relationships between hydrology and ecology
- b. Hydraulic modeling
- c. Geographic Information Systems (GIS) modules to display results and other relevant spatial data. Was to visualize and define existing ecologic conditions, highlight critical habitat, and assess and rank alternatives according to predicted changes in different aspects of the ecosystem.

6 Metrics/Objectives

A series of metrics were developed by the study team that focused on different aspects of the projects. The metrics can be grouped into the following categories. Each Project purpose was weighted equally. All seven alternatives, including the NAA, were ranked from 1 to 7, with 1 being the highest positive impact and 7 being the highest negative impact. The team then combined the purpose impact rankings and averaged them by alternative to determine the final impact ranking of each alternative. See main report, Section 5 Table 30, for details.

- 1. Hydropower
 - a. USACE System Hydropower
 - b. Augusta Canal Hydropower
- 2. Environmental Pool Management
 - a. In-Lake Fish Spawn
 - b. Downstream Environment
- 3. Water Supply
 - a. In-Lake
 - b. Downstream
- 4. Water Quality
 - a. Downstream
- 5. Recreation
 - a. Balancing of Pools
 - b. Impacts to Boat Ramps
 - c. Impacts to Beaches
- 6. Navigation
 - a. N/A
- 7. Flood Reduction
 - a. In-Lake, Time in Flood Pools

Below is the initial list of the metrics proposed by study sponsors; refined and later used to develop a method of comparison of the alternatives.

Requested Metric (Green EPD, Blue SCDNR, Black SAS)
Exceedance curve of reservoir elevation (Jocassee, Keowee, Hartwell,
Russell, Thurmond)
Exceedance curve of reservoir release (Thurmond)
Minimum lake elevation (Jocassee, Keowee, Hartwell, Russell, Thurmond)
Power generation (Bad Creek, Jocassee, Keowee, Hartwell, Russell, Thurmond)
Pumping (Bad Creek, Jocassee, Russell) Power generation (Bad Creek, Jocassee, Keowee, Hartwell, Russell,
Thurmond)
Lake recreational impact (Jocassee, Keowee, Hartwell, Russell, Thurmond)
Lake recreational impact (Jocassee, Keowee, Hartwell, Russell, Thurmond)
Numbers of days in different drought trigger levels (Hartwell, Thurmond)
Lake levels or flows are lower than the lowest level or flow at which water
supply intake becomes inoperable
Identify lake elevations level at intakes (some highest intakes may not be
critical)
Identify critical elevation/flow for intakes
Number of days that critical water supply intake becomes inoperable (Hartwell,
Russell, Thurmond)
Number of days when power contracts are not met by the Corps projects
Power shortages (total Megawatts) for the Corps projects
Cost of replacement power purchased by SEPA
Total power generation by the Duke projects
Inability to maintain stable lake levels during lake spawning periods (defer to
biologists)
Number of days boat ramps and docks are unusable (# ramps x days) in
Hartwell and Thurmond
Number of days some percentage of ramps and docks are unusable in
Hartwell and Thurmond
Are there critical lake elevations for safe boating?
Are there critical lake elevations for fishing?
Number of days lake levels are below any intakes and critical intakes
Number of days swimming areas are closed due to low water in Hartwell and
Thurmond
Stream flow exceedance at Augusta diversion dam
Flow exceedance through the Augusta Canal
Stream flow exceedance at Augusta gage (downstream of the shoals)
Frequency analysis for Augusta Canal and Shoals
Number of days when flows in the shoals are less than recommended; (FERC
Agreement)
Stream flow exceedance at Burtons Ferry and Clyo
Effect on the DO in the River

Effect on water temperature in the River
Number of days Augusta Canal would have to cut back on hydropower to meet
shoals minimum
Number of days Augusta would need to run diesel pumps to pull raw water due
to implementation FERC Agreement
Number of days river levels are below any intakes and critical intakes
Number of days boat access ramps in river are unusable (# ramps x days)
Number of days DO standards are not met in river
Impacts to fish spawning/habitat in shoals
Number of days DO standards are not met in river (per node)
Number of days when flow of river is less than 7Q10
Effect on the downstream fish spawning downstream of the New Savannah
Bluff Lock and Dam
Effect on the DO in the Harbor
Effect on temperature in the Harbor
Effect on salinity in the Harbor
Effect on the downstream fish spawning in the Harbor
Effect on the downstream fish populations in the Harbor
Number of days City of Savannah would be impacted by high salinity levels in
Abercorn Creek
Number of days DO standards are not met in estuary
Salinity levels in river near Savannah National Wildlife Refuge freshwater
intakes
Number of days DO standards are not met in estuary (per node)
Location of fresh/saline water interface near coast for wetland analysis
Number of days Savannah intake (Abercorn Creek) exceeds desirable salinity
levels

Figure 6-1 (Summary list of the metrics)

6.1 Flood Management

The system has specific flood management rules for each project. These rules can be broken into two categories. The first set of rules are focused on managing releases to preserve the integrity of the dam. The second set of rules focuses on minimizing downstream damages. The impact of these rules are not obvious during drought periods, however become evident during wet periods. The same Flood Management rules are present in all of the alternatives. The different alternatives impact the timing and magnitude of releases from the projects. The conservation of water in the reservoirs sometimes caused potential increase in flood impacts. The metric chosen to compare alternatives was the number of days that the pools rose into their flood control zones. Since the time window selected for the study was a drought period, 1999-2013, estimated damages were not computed or used as a basis of comparison for each alternative.

6.2 Hydropower Objectives

6.2.1 Energy

All of the alternatives include Hydropower Energy objectives for the USACE projects. The Savannah River system has a monthly varying weekly generation target. The table below describes the target.

Southeastern Power Administration								
Weekly Minimum E	inergy Requiren	nents (MWH)						
RBR Savanna								
	Savannah	Pumps	Total					
January	22,033	5,200	27,233					
February	21,514	5,200	26,714					
March	18,069	2,600	20,669					
April	18,504	0	18,504					
Мау	19,348	2,600	21,948					
June	20,735	5,200	25,935					
July	25,995	5,200	31,195					
August	26,835	5,200	32,035					
September	25,485	5,200	30,685					
October	22,104	5,200	27,304					
November	21,084	5,200	26,284					
December	21,904	5,200	27,104					

Table 5-1 (SEPA Weekly Minimum Energy Requirements)

Energy production from the Duke Energy projects was not considered as a metric as most of the Duke hydropower comes from pump energy which varies with market conditions rather than pool elevation.

6.2.2 Capacity

The system also has Hydropower Capacity objectives. Typically, each plant has to meet the ability to generate at full capacity for four hours per day five days per week. We chose not to write specific capacity rules in HEC-ResSim. Rather the HEC-ResSim output for each alternative was evaluated to determine if each project was able to meet capacity objective.

6.2.3 Augusta Canal Generation requirements

Canal User	Rated HP	10	0%	90	%	8	0%	70)%
		cfs	kw	cfs	kw	cfs	kw	cfs	kw
Waterworks		900	N/A	900	N/A	900	N/A	900	N/A
Sibley (3 units)	3832	1024	1900	920	1700	819.2	1520	716.8	1275
King (2 units)	3300	881	1950	790	1750	704.8	1560	616.7	1355
Enterprise (2 units)	1906	560	1000	500	890	448	800	392	675
Total	9038	3365	4850	3110	4340	2872	3880	2625.5	3305
Loss in kw production/hour	N/A	0	0	0	510	493	970	739.5	1545
Daily replacement cost/kw	N/A	N/A	0		\$979	N/A	\$1,862	N/A	\$2,966

Water Demand for Canal Hydropower Users

Table provided by Augusta Canal Authority

6.3 Environmental Pool Management

6.3.1 Pool Balancing

HEC-ResSim allows the ability to balance project pools by zone.

In the conservation pool, the rules set up in the alternatives attempt to maintain a foot for foot balance between the Hartwell and Thurmond projects balance their pools foot for foot in the top 15 feet, and then by the amount of depth left in the conservation pools. The Russell pool is set up to make full use of its conservation pool and not to balance until the Hartwell and Thurmond pools are essentially empty.

The balancing strategy in the Flood Pools, the zone above the conservation pools, changes by storing flood water in the upstream projects in an attempt to prevent the Thurmond project from exceeding the top of its flood pool and to minimize damaging flows downstream of Thurmond. This strategy also allows the Thurmond project to empty first. HEC-ResSim Model attempts to cap Thurmond releases in order to keep streamflow at Augusta below 20,000 cfs when the Thurmond pool is above guide curve and below summer full pool. The target transitions to 30,000 cfs when the Thurmond pool rises above the summer full pool elevation, 330 ft-msl.

6.3.2 Pool balancing across systems of Projects.

Duke Energy has a system of three projects upstream of the Hartwell project. The Duke projects are required to balance their conservation storage with the three downstream USACE projects through the implementation of a storage balance agreement between USACE, Duke Energy, and SEPA. In HEC-ResSim, system storage rules are configured by finding a corresponding set of storages at the upstream projects that provide the desired storage balance with the downstream projects to meet the storage balance agreement. Additional rules within HEC-ResSim were developed to define the rate at which the Duke Projects release storage to come back into balance with the USACE projects. Typically the Duke projects do not release storage to the USACE system unless they are required to per the storage balance agreement. The same system balancing rules exist in all the alternatives. Since pool balancing was a forced function in the HEC-ResSim model, it was not chosen as a metric of comparison.

6.3.3 Fish Spawn

In-Lake fish spawn objectives were built into the HEC-ResSim model. The in-lake fish spawn guidance is to attempt to not allow the pool to fall more than ½ foot during the spawning period. The spawning period for the Savannah River Projects is typically the the April-May timeframe. The metric used for evaluation was a simple count of the number of times that the spawning rules were violated.

Downstream fish spawn objectives were not built into the HEC-ResSim model except for ALT-3. In that alternative, the downstream set of rules was configured defining a

spawning season maximum and minimum flow for different reaches of the river. Rules defining the seasonal timing, maximum and minimum flow targets a maximum rate of rise and fall was developed.

6.3.4 Augusta Shoals

The Augusta Shoals is an environmentally sensitive area of the river. A FERC agreement was developed between the States and the City of Augusta setting minimum flow requirements for the Augusta Shoals. The minimum flow target varies based on Tiers, seasonal levels of minimum flow requirement based on the magnitude of the Thurmond release. HEC Res-Sim was coded to set a varying minimum flow target at the Augusta Shoals, as seen in the table below.

	Thurr	mond								
	Out	flow	1-Feb	1-Apr	1-May	16-May	1-Jun	1-Jan		
	(CF	-S)	31-Mar	30-Apr	15-May	31-May	31-Dec	31-Jan		
	Min Max			Mini	imum Sho	als Flow (C	CFS)			
Tier 4	0	3600	1800	1800	1500	1500	1500	1500		
Tier 3	3600	4499	2000	2000	1500	1500	1500	1500		
Tier 2	4500	5377	2300	2200	1800	1800	1500	1500		
Tier 1	5400	1000000	3300	3300	2500	1900	1900	1900		

FERC AGREEMENT (AUGUSTA CANAL)

Figure 6-2 (FERC Agreement, Augusta Canal)

This flow target was always met by the model by adjusting the inflows into the Augusta Canal. When drought flows were encountered, flows into the canal were reduced potentially impacting the hydropower facilities on the canal.

6.4 Water Supply

The States of Georgia and South Carolina conducted population and water use projections. Based on these projections, inputs into HEC-ResSim were coded to reflect the projected water supply demands at 2050. Both seasonally varying withdrawals and returns were modeled in HEC-ResSim by applying the projected withdrawals and returns to the different stream reaches through the Savannah basin. Typically water supply intakes are placed at levels that would not be impacted even at the lowest ranges of the conservation pool. A 3600 cfs minimum flow requirement was placed on the Augusta Gage at the New Savannah Bluff Lock and Dam NSBLD, to ensure that the downstream water supply intakes were always met.

In-Lake water supply metrics were determined to compare how often pool elevations had dropped to levels that impact water supply intakes.

Downstream water supply metrics were determined to compare how often river elevations had dropped to levels that impact downstream water supply intakes. A comparison between current and 2050 water supply demands is shown below in table 6.4-1.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Sum
Bad Creek	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jocassee	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KEOWEE_R	84.88	83.61	81.97	85.72	87.96	103.88	102.65	95.33	93.22	84.36	76.46	80.52	1060.57
HARTWL_R	20.94	25.80	24.77	28.24	33.71	42.75	43.76	42.96	39.92	35.01	33.41	23.62	394.88
RBR_R	-6.29	-5.82	-6.26	-4.51	-2.64	-2.04	-2.35	-1.68	-1.62	-2.51	-3.68	-6.65	-46.05
THRMND_R	3.14	4.28	3.48	4.97	8.10	10.53	9.38	9.87	8.63	5.18	4.86	3.48	75.89
BELL	1.53	1.51	1.37	2.18	2.92	3.57	3.63	3.46	2.77	2.47	2.67	1.58	29.65
AUGUSTA	-1.57	-8.28	-4.51	16.86	36.47	39.34	34.30	29.82	37.46	31.04	16.93	-3.79	224.06
MILLHAVN	3.99	3.65	3.21	8.45	10.90	7.76	9.08	9.08	7.60	6.56	5.08	2.51	77.86
BURTONS	76.38	62.71	65.52	66.41	70.99	72.96	75.64	66.50	62.14	74.45	81.13	74.79	849.62
CLYO	-2.47	-3.62	-2.86	-0.97	1.12	1.06	0.53	-0.35	0.50	-0.43	-0.83	-1.83	-10.15
SAVANNAH	32.35	35.38	30.55	40.84	51.26	64.66	65.60	51.41	58.49	52.27	44.94	33.35	561.10
													3217.44

EPD's Current Day (2008-2013) average net consumptive water use in cfs (GA+SC) per State Water Plan.

EPD's 2050 projected net consumptive water use in cfs (GA+SC) per State Water Plan.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Sum
Bad Creek	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jocassee	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KEOWEE_R	85.96	85.51	80.87	64.59	85.18	125.39	124.31	119.25	100.36	75.19	69.91	72.40	1088.92
HARTWL_R	51.23	48.71	48.36	56.51	81.18	79.49	81.54	85.86	78.51	72.88	72.63	49.07	805.97
RBR_R	-6.79	-8.49	-5.10	-2.51	2.71	3.78	2.44	0.37	-0.44	-0.71	-1.77	-7.28	-23.78
THRMND_R	8.61	9.77	11.86	14.14	22.32	20.05	21.40	24.38	19.68	13.10	12.94	11.20	189.44
BELL	-18.35	-16.25	-19.58	-10.77	-5.46	-2.32	-3.22	-4.58	-5.92	-7.08	-5.50	-7.62	-106.65
AUGUSTA	-16.56	-27.25	-17.49	16.64	65.85	38.01	58.78	59.14	47.09	21.77	10.70	-12.87	243.82
MILLHAVN	5.62	10.08	8.32	15.09	21.99	22.27	21.79	16.48	11.34	7.82	8.45	5.25	154.49
BURTONS	79.40	89.01	94.05	123.14	111.61	128.39	108.39	132.32	114.66	136.81	97.75	105.89	1321.41
CLYO	-0.60	0.34	0.53	3.67	7.76	4.91	4.66	2.37	1.44	0.02	0.34	-0.84	24.60
SAVANNAH	46.81	40.48	46.73	57.04	72.71	57.23	74.80	81.95	70.51	72.79	58.56	47.09	726.72
													4424.94

EPD Delta (2050 - Current Day) average net consumptive water use in cfs (GA+SC) per State Water Plan.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Sum
Bad Creek	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jocassee	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KEOWEE_R	1.08	1.90	-1.10	-21.13	-2.78	21.51	21.66	23.93	7.14	-9.17	-6.55	-8.13	28.35
HARTWL_R	30.29	22.91	23.60	28.28	47.47	36.74	37.78	42.90	38.59	37.87	39.22	25.44	411.09
RBR_R	-0.50	-2.67	1.16	2.00	5.35	5.82	4.80	2.05	1.19	1.79	1.91	-0.63	22.26
THRMND_R	5.47	5.49	8.37	9.17	14.22	9.51	12.02	14.51	11.05	7.93	8.09	7.72	113.55
BELL	-19.88	-17.77	-20.94	-12.95	-8.38	-5.90	-6.85	-8.03	-8.69	-9.54	-8.17	-9.20	-136.30
AUGUSTA	-14.99	-18.98	-12.98	-0.22	29.38	-1.33	24.48	29.33	9.63	-9.27	-6.23	-9.08	19.76
MILLHAVN	1.63	6.43	5.11	6.64	11.08	14.52	12.71	7.41	3.74	1.26	3.36	2.74	76.63
BURTONS	3.02	26.30	28.53	56.73	40.62	55.43	32.74	65.82	52.52	62.35	16.62	31.11	471.79
CLYO	1.87	3.96	3.39	4.64	6.64	3.85	4.13	2.72	0.94	0.45	1.17	1.00	34.75
SAVANNAH	14.45	5.10	16.18	16.21	21.46	-7.43	9.21	30.54	12.03	20.52	13.62	13.74	165.62

Figure 6-3 (Comparison of Current and 2050 Water Supply Demands)

6.5 Water Quality

Water quality metrics focused on water temperature, dissolved oxygen in the riverine reach between Thurmond Dam and Clyo. The States currently permit downstream municipal and industrial water withdrawal users based on a minimum release of 3600 cfs at Thurmond plus some intervening local inflow between Thurmond Dam and the downstream location of that user. After using the withdrawn water, these users often return a portion of the water to the river. The States focus is to limit the quantity of the return to a level that does not cause water quality problems. These water quality metrics attempted to capture impacts to the states permitted water users along the river. A metric capturing changes in salinity and dissolved oxygen was also added through the Harbor reach.

6.6 Recreation

A series of metrics were developed to estimate impacts to the recreational interests on the projects. The availability of the USACE facilities were weighted based on a day use economic factor, and estimated annual visitation. The total recreational benefit was based on a combination of the following two features.

- 1. Impacts on boat usage was estimated based on availability of usable boat ramps.
 - a. Elevation for each USACE boat ramp was collected.
 - b. Elevation for downstream boat ramps was collected
- Impacts on beach usage was estimated based on availability of usable beaches in the 3 USACE projects. Typically beach closures occur at six feet below summer full pool.

The HEC-ResSim model outputs the daily pool elevations and the ability to access these facilities on a daily basis was counted. The difference between alternatives was then compared.

6.7 Navigation

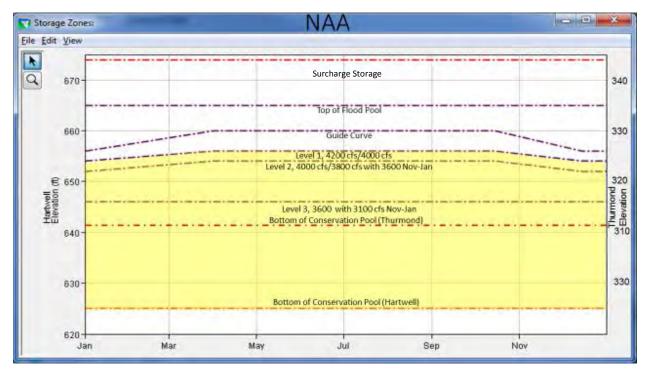
The Savannah River below Augusta remains a congressionally authorized navigation project. However, due to the lack of commercial use, it has fallen into inactive status and is no longer maintained. Any navigation is now considered incidental to flood management. The flow window for navigation occurs when releases from Thurmond are between 10,000 cfs and 20,000 cfs. Flows greater than 20,000 cfs can cause river stages that prevent barge traffic from passing under some of the bridges and safely navigating the lower river.

7 Alternatives

7.1 Summary of Alternatives

Four alternatives were initially selected by the sponsors for analysis. The alternatives covered a wide range of objectives, hoping to determine some of the infrastructure and environmental breakpoints in the system. The last 2 alternatives were developed after the initial alternatives had been modelled and output had been analyzed.

Level	NAA	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
1	Thurmond target 4200 cfs if BR>10% Qin Thurmond target 4000 cfs if BR<=10% Qin	Thurmond target 3800 cfs (Feb - Apr) Thurmond target 3500 (May - Jan)	Thurmond target 4000 cfs at 326	Dry Ecosystem Flow Prescription Thurmond target 4200 cfs if BR >10% Qin Thurmond target 4000 cfs if BR<=10% Qin	Thurmond target 3600 cfs	Modified Dry Ecosystem Flow Prescription Thurmond target 4000 cfs	Modified Dry Ecosystem Flow Prescription Thurmond target 6875 cfs
					Thurmond target 3100 cfs (Nov - Jan)	Thurmond Max 2800 (Nov - Jan)	Thurmond Max 2800 (Nov - Jan)
2	Thurmond target 4000 cfs if BR >10% Qin Thurmond target 3800 cfs if BR<=10% Qin	Thurmond target 2800 (Feb - Apr)	Thurmond target 3800 cfs at 324	Drought Ecosystem Flow Prescription Thurmond target 4000 cfs if BR>10% Qin Thurmond target 3800 cfs if BR<=10% Qin	Thurmond target 3600 cfs	Modified Drought Ecosystem Flow Prescription Thurmond target 3800 cfs	Morified Drought Ecosystem Flow Prescription Thurmond target 5875 cfs
	Thurmond target 3600 cfs (Nov - Jan)	Thurmond target 2500 (May - Jan)	Thurmond target 3600 cfs (Nov - Jan)	Thurmond target 3600 cfs (Nov - Jan)	Thurmond target 3100 cfs (Nov - Jan)	Thurmond Max 2800 (Nov - Jan)	Thurmond Max 2800 (Nov - Jan)
3	Thurmond target 3800 cfs Thurmond target	Thurmond target 1800 (Feb - Apr) Thurmond target	Thurmond target 3600 cfs at 322 Thurmond target	Drought Ecosystem Flow Prescription Thurmond target 3800 cfs Thurmond target	Thurmond target 3600 cfs Thurmond target	Modified Drought Ecosystem Flow Prescription Thurmond target 3600 cfs Thurmond Max	Morified Drought Ecosystem Flow Prescription Thurmond target 4875 cfs Thurmond Max
	3100 cfs Nov - Jan	1500 May - Jan	3100 cfs Nov - Jan	3100 cfs Nov - Jan	3100 cfs Nov - Jan	2800 (Nov - Jan)	2800 (Nov - Jan)
4	Thurmond target 3600 cfs Thurmond target 3100 cfs	Thurmond target 3600 cfs Thurmond target 3100 cfs	Thurmond target 3600 cfs Thurmond larget 3100 cfs	Thurmond target 3600 cfs Thurmond target 3100 cfs	Thurmond target 3600 cfs Thurmond larget 3100 cfs	Thurmond target 3600 cfs Thurmond farget 2800 (Nov - Jan)	Thurmond target 3600 cfs Thurmond target 2809 (Nov - Jan)

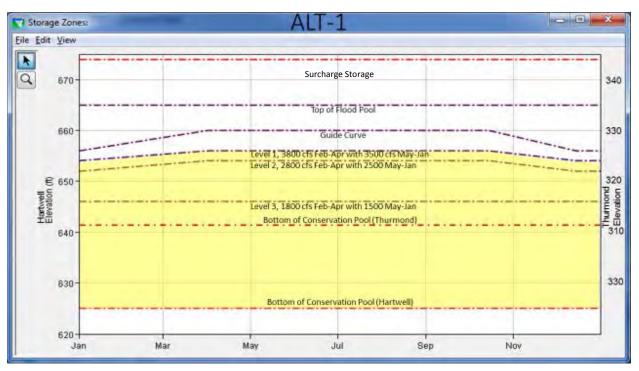

10% Qin is defined as the 10th percentile flow at the Broad River (BR) near Bell piedmont reference streamgage for reservoir inflow

Alt 1 Extreme Flow Reductions (Levels 1,2,3)

Alt 2, NAA with Level 3 raised to 322 Alt 2, NAA with Level 3 raised to 322 Alt 3, NAA Level 3 at 646 Environmental Rules for Levels 0 thru 3 Alt 4, NAA with Level 3 at 646, 3600 cfs Spec flow in Levels 1 and below with 3100 Nov thru Jan in Levels 1 and below Alts 5, Similar to Alt 3 but removed Environmental rules when not in drought. Alts 5, added SRS min 3600 cfs at Waynesboro Alts 5, added SRS min 3600 cfs at Waynesboro

Alts 5, addee of Rise/Rate of Fail 500 cfs/day at flows below 3600 cfs (applies to Thurmonds Outflow) Alts 5, Rate of Rise/Rate of Fail 500 cfs/day at flows below 3600 cfs (applies to Thurmonds Outflow) Alts 5, Millhaven Min 3400 cfs except 2000 cfs 150ct - 31Jan. 5000 cfs pulse on 1st and 15th of each month, with (4 day 12000 cfs pulse 15 May in Level 1 only) Alts 5, Sholas Min 1500 cfs, 2000 cfs in Feb and March Alt 6, Alt 5 with increased Drought Trigger Flow Restrictions targeting a minumum of 10% Conservation Storage Remaining

Figure 7-1 (Summary of Alternatives)



7.2 NAA (No Action Alternative)

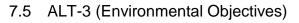
Figure 7-2 (No Action Alternative (NAA))

The No action alternative (NAA) is based on the operating rules currently in practice implemented with the 2012 Savannah River Basin Drought Management Plan. The initial rule of HEC-ResSim is to operate to get the pools to their respective guide curves. Additional rules are then created to target various objectives. These rules are set up in a prioritized stack. In all of the Comp Study alternatives, the highest priority is given to the rules defining operation while in the flood pool. The lower priority over the Drought Rules. The Drought Rules take priority over the System Hydropower rules. A special drought rule existing only in NAA focuses on the flow at the Broad River gage and allows for an additional 200 cfs reduction if the 28 day average flow at that gage falls below the 10th percentile. Initial HEC-RES-Sim runs indicated that the Broad river Gage factor, currently in use, had little impact on the timing of when the pools went into and out of drought and was therefore dropped from the other alternatives.

During drought, the trigger flow restriction will be initiated when either Hartwell or Thurmond decline thru a drought trigger level. As pools recover the Thurmond flow restriction will not reset to the next higher level of restrictions until both the Hartwell and Thurmond pools have risen 2 feet above the trigger level that set the restriction. As an example, once in level 2, level 2 flow restrictions will not be reset to the Level 1 flow restrictions until both Hartwell and Thurmond pools have risen 2 feet above their level 2 triggers. All trigger levels will follow this same transition behavior. It is important to note that the same System Power rules and Russell Pump rules appear in all of the alternatives. All alternatives target a maximum channel capacity of 30,000 cfs at Augusta, a minimum release requirement of 3,600 cfs at Thurmond, as well as a minimum of 3,600 cfs at the Augusta gage. The 3,600 cfs minimum release requirement at Thurmond drops to 3,100 cfs between Nov 1 and 01 Feb if in Drought Level 3.

7.3 ALT-1 (Extreme Low Flow)

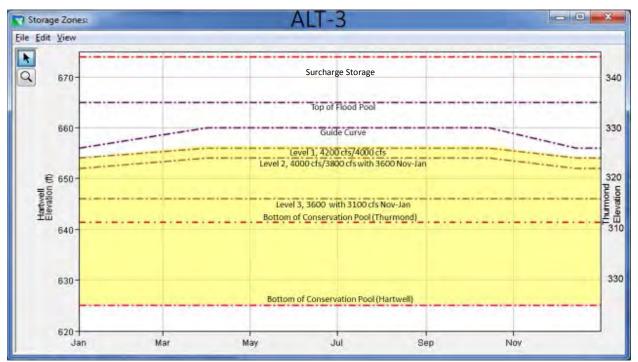
Figure 7-3 (Alternative 01, Extreme Low Flow)

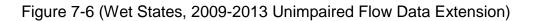

Alternative 1 is the extreme low flow alternative. It is designed to target releases well below currently acceptable levels as an attempt to define the impacts of extreme low flows. It was also intended to help determine the break point between acceptable and unacceptable impacts to the authorized project purposes. The Minimum flow requirement of 3,600 cfs at Augusta was removed from this alternative to allow downstream flow to drop to unacceptable levels. ALT-1 targets flows of 3,800 cfs in Level 1 during the spawning season FEB-APR, and flows of 3,500 cfs the rest of the year. Once in level 2, ALT-1 targets flows of 2,800 cfs during the spawning season and flows of 2,500 cfs the rest of the year. Similarly in level 3 this alternative targets flows of 1,800 cfs during the spawning season and flows of 1,500 cfs the rest of the year. These rules are set at a higher priority than the system power rules which allows them to be implemented fully.

7.4 ALT-2 (Simplify NAA and Raise Level 3)

Figure 7-4 (Alternative 2, Simplify NAA and Raise Level 3)

ALT-2 attempts to simplify the NAA by flattening the trigger levels and to raise Trigger Level 3 to two feet below Trigger Level 2. This alternative also dropped use of the Broad river Gage as an indicator of drought. The ALT-2 flow targets chosen is the low side of the NAA Broad River variable targets with 4,000 cfs in level 1. Level 2 targets 3,800 cfs in level 2 with a wintertime flow reduction to 3,600 cfs Nov thru Jan. The Level 3 target is 3,600 cfs in level 2 with a wintertime flow reduction to 3,100 cfs Nov thru Jan. This alternative will have the same language as the NAA allowing up to 2 weeks to coordinate the transition of flow from one level to the next. This will be especially important as the pool rises from level 1 to the guide curve. As the pool rises above the guide curve drought operation is suspended and a transition to flood management will be implemented.




Figure 7-5 (Alternative 3, Environmental Objectives)

Alternative 3 is the environmental Flow alternative that based its objectives on the desired flow prescriptions that came out of the environmental flow workshop.

The flow prescription was initially derived in 2003 by a group of environmental scientists and biologists in conjunction with the Sustainable Rivers Project between The Nature Conservancy TNC, and USACE. The flow prescription is a set of recommendations that have never been formally implemented. Several attempts to achieve some of the goals of the prescription were tested through deviations from water control plan. Most of the focus was spent on higher flows as an attempt to enhance upstream fish migration over the NSBLD.

With the addition on TNC as a Savannah Comp study partner, the impacts of such a flow prescription could be studied. A workshop was held as part the interim study 2, to update the flow prescription. The flow prescription wad split up into groups representing periods of Wet, Average, Dry, and Drought flow conditions.

		Flow Type	Jan	Feb	I	Mar	A	pr	Ma	y	Ju	ne	Ju	ly	A	ug	Se	ept	0	Oct	N	lov	0	ec
		Min Base Flow; Thurmond >4500-5399	1900		1	3300			250	00							19	00						
	s	Max Base Flow																						
	h	Ramping / Variation Rate (+/- cfs)										(-)100	00 cfs	-						_				
	0	Pulse Flows																						
	a	Flood Flows							00 cfs p															
	1		Base flows ref																					
	s		recommendat	ion of 30,000) cfs car	ried upw	ard fro	m floodj	plain an	d estu	ary gro	ups, pu	irpose i	s to mo	ove sedi	ments	downst	ream to	o maint	ain coa	stal ma	rshes		
w			L																					
e																								
	F	Min Base Flow	See May-Oct	6500-8	200	See M	ay-Oct	6500-	8200	0	eliver (run-of-r	river mi	mickin	g Broad	River	GA) gag	e	6	500-820	00	Ser	May-	Oct
t		Max Base Flow						100	00															
	•	Ramping / Variation Rate (+/- cfs)		(+/-)				(+/-)	500											(+/-) 50	0			
S	d	Pulse Flows			_	7000 cfs;																		
t	P	Flood Flows		Deliver 35,00																				
а			Justifications f																					
+	i.		movement, la based on need					off char	nel rec	harge,	and bi	rd habit	tat. Inte	r-annu	ial varia	bility o	t pulses	impt t	o invert	.s, birds	;, tree s	eeding.	Flood	rec
e	n		based on need	i for sedimer	nt redist	ribution.																		
-																								
		Min Base Flow		5000								60	000									5000		
	Е	Max Base Flow										7500	0 cfs											
	5	Ramping / Variation Rate (+/- cfs)																						
	t	Pulse Flows	7500); 7d		30,00	10 cfs; 1	4d / 750)0; 7d								7500); 7d						
	u	Flood Flows							100 cfs p															
	а		Base flows wil																					
	r		in early growin																	tes. Flo	od flow	/ rec. to	suppo	rt
	y		nearshore ma	rine fish prod	iuctivity	, seaime	nt and	nutrient	t repien	isnmei	nt, spec	cies mix	ing, an	turbi	aity pro	tection	for you	ing tish	-					
blank		No recommendation																						
		Base Flow																						
		Max flow - do not exceed																						
		Pulse / flood (unsustained / periodic)																						
		Variation above min flow with natural rar	mp and frequen	cy																				

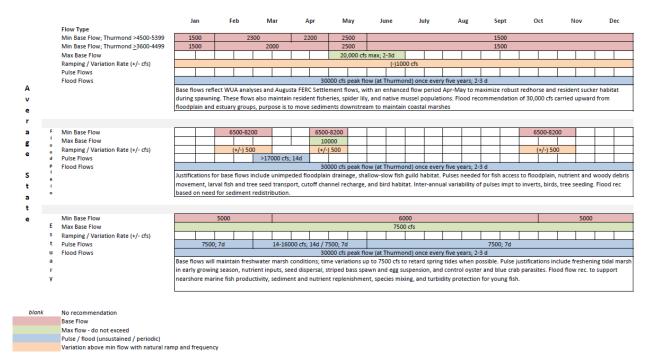
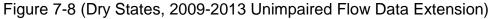



Figure 7-7 (Average States, 2009-2013 Unimpaired Flow Data Extension)

		Flow Type	Jan	Feb	Mar	A	pr	May	Ju	ine	July	y	Au	:	Sept	Oc	t	N	ov	D	lec
	S h	Min Base Flow; Thurmond 23600 Min Base Flow; Thurmond 23600 Max Base Flow Ramping / Variation Rate (+/- cfs)	1500 1500		2000 1800			20,000	cfs max; 2	2-3d (-)1000	0 cfs			1500 1500	1						
D r	a I s	Pulse Flows Flood Flows	Justifications f and alosine an																	1 muss	els,
y S t a t	F I o d P I a i n	Min Base Flow Max Base Flow Ramping / Variation Rate (+/- cfs) Pulse Flows Flood Flows	Justification di floodplain elev vs assimilative	ations, flow t	plain tree esta			600 4000 rement fo		100 5; 1-2d at od for se	t ~ 1 puls eedlings.	se per i	month plain wo	rking grou		vledged		ofkno			00 cfs
	E s t a r y	Min Base Flow Max Base Flow Ramping / Variation Rate (+/- cfs) Pulse Flows Flood Flows	Justfications for harbor deeper	or base flow in	ncluded maitai	ining po:	sition of f	0 cfs peal reshwate		t marshe	nd) once	eir plar	nt divers	rs; 2-3 d ity and fis			mmeno	ded to	5000 offset e	ffects	of
blan	k	No recommendation Base Flow Max flow - do not exceed Pulse / flood (unsustained / periodic) Variation above min flow with natural ra	mp and frequen	cy																	

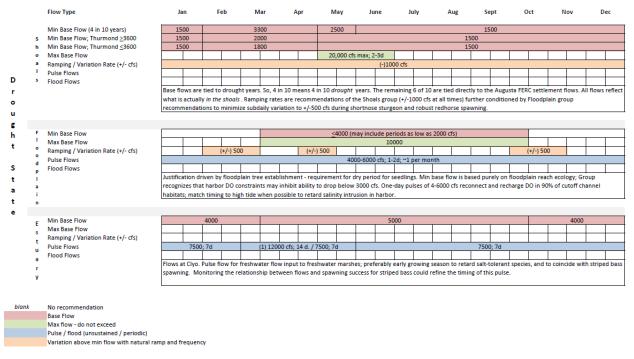


Figure 7-9 (Drought States, 2009-2013 Unimpaired Flow Data Extension)

All of the standard max flow and min flow rules were initially input into the HEC-ResSim model per the NAA configuration. The environmental rules were then added at a higher priority than other project purposes while in the conservation pool. The initial runs fully drafted the pools, indicating that the system had insufficient conservation storage to achieve the environmental objectives as defined in the environmental flows prescription. The environmental rules were then refined with the help of TNC and the following rules made it into the final ALT-3 run.

The "Wet" group occurs when the system was above the guide curve.

The "Average" group occurs when the system was below Guide curve but above Drought Trigger Level 1.

The "Dry" group occurs when the system was in Drought Trigger Level 1.

The "Drought" group occurs when the system was in Drought Trigger Level 2 or Drought Trigger Level 3.

The "Wet" Group (System is in Flood Pools)

Rates of decrease in the Thurmond release targeted 1,000 cfs/day, when Thurmond was releasing between 2,000 cfs and 6,000 cfs, which focused on the shoals.

Seasonal Pulses at Clyo targeted releases of as much as 30,000 cfs for up to 15 days.

Seasonal Pulses at Millhaven targeted 2 week release of 17,000 cfs for up to 2 weeks during spring fish spawn.

Seasonally varying minimum flow limits were set for the Augusta Shoals ranging from 1,900 cfs to 3,300 cfs.

Seasonally varying minimum flow limits of 7,500 cfs were set for the Millhaven.

Seasonally varying minimum flow limits were set for the Clyo ranging from 5,000 cfs to 6,000 cfs.

Seasonally varying maximum flow limits of as low as 10,000 cfs were set for the Millhaven to coincide with spring fish spawn.

A max flow limit of 7,500 cfs was set at Clyo attempting to preserve as much water in the reservoirs when it was not needed to meet the other environmental flow objectives.

The "Average" Group (System is not in Flood Pools but above Drought Level 1 Status)

Rates of decrease in the Thurmond release targeted 1,000 cfs/day, when Thurmond was releasing between 2,000 cfs and 6,000 cfs, which focused on the shoals.

Seasonal Pulses at Clyo targeted releases of as much as 15,000 cfs for up to 15 days.

Seasonal Pulses at Millhaven targeted 2 week release of 17,000 cfs for up to 2 weeks during spring fish spawn.

Seasonally varying minimum flow limits were set for the Augusta Shoals ranging from 1,500 cfs to 2,500 cfs.

Seasonally varying minimum flow limits of 7,500 cfs were set for the Millhaven.

Seasonally varying minimum flow limits were set for the Clyo ranging from 5,000 cfs to 6,000 cfs.

Seasonally varying maximum flow limits of as low as 20,000 cfs were added for the Augusta Shoals to coincide with spring fish spawn.

Seasonally varying maximum flow limits of as low as 10,000 cfs were set for the Millhaven to coincide with spring fish spawn.

A max flow limit of 7,500 cfs was set at Clyo attempting to preserve as much water in the reservoirs when it was not needed to meet the other environmental flow objectives.

The "Dry" Group (System is Drought Level 1 Status)

Rates of decrease in the Thurmond release targeted 1,000 cfs/day, when Thurmond was releasing between 2,000 cfs and 6,000 cfs, which focused on the shoals.

Rates of change rules, focusing on the Millhaven objectives, were placed on the Thurmond release targeting 500 cfs/day, when Thurmond was releasing less than 5,000 cfs and 1,000 cfs/day, when Thurmond was releasing between 5,000 cfs and 10,000 cfs, and 2,500 cfs/day when Thurmond was releasing more than 10,000 cfs.

A single 4 day Pulse at Clyo targeted releases of as much as 12,000 cfs in May.

Monthly 1 day Pulses at Millhaven targeted releases of 5,000 cfs.

Seasonally varying minimum flow limits were set for the Augusta Shoals ranging from 1,500 cfs to 2,000 cfs.

Seasonally varying minimum flow limits were set for the Millhaven ranging from 2,000 cfs to 3,400 cfs.

Seasonally varying minimum flow limits were set for the Clyo ranging from 5,000 cfs to 6,000 cfs.

Seasonally varying maximum flow limits of as low as 20,000 cfs were added for the Augusta Shoals to coincide with spring fish spawn.

Seasonally varying maximum flow limits of 4,000 cfs were set for the Millhaven between 15 March and 01 October.

A max flow limit of 7,500 cfs was set at Clyo attempting to preserve as much water in the reservoirs when it was not needed to meet the other environmental flow objectives.

The "Drought" Group (System is Drought Level 2 or 3 Status)

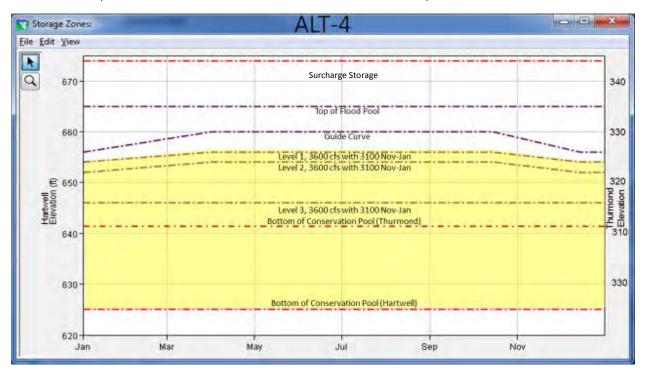
Rates of decrease in the Thurmond release targeted 1,000 cfs/day, when Thurmond was releasing between 2,000 cfs and 6,000 cfs, which focused on the shoals.

Rates of change rules, focusing on the Millhaven objectives, were placed on the Thurmond release targeting 500 cfs/day, when Thurmond was releasing less than 5,000 cfs and 1,000 cfs/day, when Thurmond was releasing between 5,000 cfs and 10,000 cfs, and 2,500 cfs/day when Thurmond was releasing more than 10,000 cfs.

Seasonal Pulses at Clyo targeting releases of as much as 12,000 cfs in May.

Monthly 1 day Pulses at Millhaven targeted releases of 5,000 cfs.

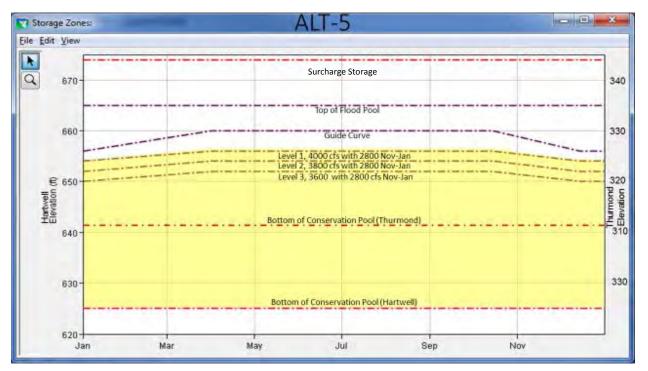
Seasonally varying minimum flow limits were set for the Augusta Shoals ranging from 1,500 cfs to 2,000 cfs.


Seasonally varying minimum flow limits were set for the Millhaven ranging from 2,000 cfs to 3,400 cfs.

Seasonally varying minimum flow limits were set for the Clyo ranging from 4,000 cfs to 5,000 cfs.

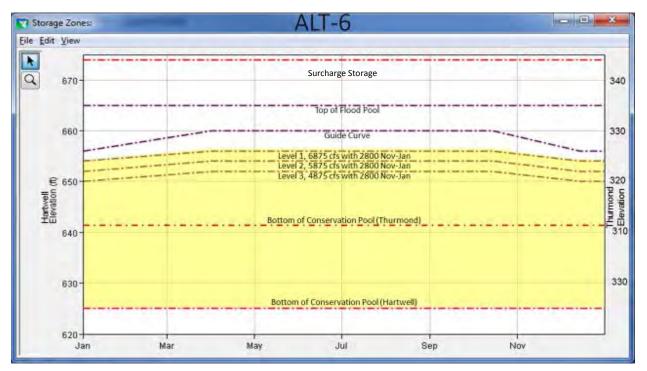
Seasonally varying maximum flow limits of as low as 20,000 cfs were added for the Augusta Shoals to coincide with spring fish spawn.

Seasonally varying maximum flow limits of 3,600 cfs were set for the Millhaven between 15 March and 01 October.


The drought triggers and associated rules matched the NAA, however were applied at a lower priority than the environmental rules. The drought rules were met only when they did not violate the higher priority environmental rules. The Hydropower objectives were placed at the lowest priority and were met only when they did not violate the higher priority environmental or drought rules.

7.6 ALT-4 (3600 cfs at Level 1 with wintertime reductions)

Figure 7-10 (Alternative 04, 3600 cfs at Level 1 with wintertime reductions)


This alternative follows the same trigger level elevations as NAA but goes to and maintains a Thurmond release of 3,600 cfs at and below Trigger Level 1. A wintertime Flow reduction at Thurmond to 3,100 cfs is added between November 1 and January 31.

7.7 ALT-5 (Attempts to combine the best features of Alt-2 and Alt-3)

Figure 7-11 (Alternative 05, Combine features of Alternatives 2 & 3)

ALT-5 has the starts with the same drought trigger levels and rules as ALT-3. However, seasonally varying Drought Trigger Level 3 is raised to two feet below Level 2. The Normal Drought Flow targets were dropped 200 cfs from ALT-3 to 4,000 cfs, 3,800 cfs, and 3,600 cfs for levels 1, 2, and 3. The wintertime flow reduction was also lowered to 2,800 cfs Nov thru Jan. The Augusta minimum flow of 3,600 cfs was retained.

7.8 ALT-6 (Alt 5 with additional drought rules to pull pools to 10% remaining)

Figure 7-12 (Alternative 06, Alternative 5 with additional drought rules to pull pools to 10% remaining)

Alt-6 is based on the same Trigger Level elevations as Alt-5 with higher drought flow requirements in Levels 1, Level 2, and Level 3. The higher drought flow requirements were placed higher in the priority stack than the environmental pulse requirements to ensure that they were met. These targets were determined by iteratively increasing the drought trigger flow requirements as an attempt to force the use of 90 % of the conservation storage.

8 HEC-RESSIM OUTPUT ANALYSIS

Output was analyzed looking at a time window of January 1999 thru December 2013. This time window provided a window that a comparison of River and Harbor impacts could be evaluated. The output from HEC-ResSim was primarily used to evaluate impacts on the pools and reaches in the river above the Augusta node at the New Savannah Bluff Lock and Dam.

									_										_							<i>.</i>																					_	_	_		_
	Days in	Zone 3				734							•							870							2							0							1125							2554			
	Days in	Zone 2				566							788							030							1777							1245							754							473			
	Days in	Zone 1				790							1267			_		_	_	098							1770							1039							772							319			
	Days in					1757							2072							1521							1500							1932							1746							1238			
	Days in	Zone5				815							937							53	3						000	3						860	8						629							573			
	Days in	Zone-1		- 1 - +		ŝ			_	-	-		410			-			1.0	303			-		1-	1	2			~ 1			1.01	398			1		_	-	418					1.0		317			
	Clyo Flow	(CFS)	TICCC	8404	6376	4681	5252	9858	14529	55313	2983	6507	3987	4890	0806	15234	55315	3910	8416	6316	4624	5193	8698	14841	3844	8411	6683	447	5061	2188	1409: 55314	3910	8405	6432	4434	1684 8810	14774	55417	4119	8412	6405	502	240	14099	37366	4156	8395	671	5395 5882	8732	1324
	Millhaven	Flow (CFS)	01100	7585	5744	4431	4889	8690	13325	37393	67/7.	6054	3749	4674	8248	14040	38053	3783	7077	5779	4493	4928	7930	13803	3587	7592	6026	4210	4662	276/ 276/	47329	3753	7696	5900	4343	8019	13748	37772	3700	7595	5914	4693	20182	12811	32768	3731	7576	6207	4957 5531	7769	11899
	Waynesboro	Flow (CFS)	TCCOC	5678	4881	3867	4172	7450	11682	37563	2530	4982	3085	3852	7067	12207	38199	3600	9699	4809	3787	4082	6838	11875	3600	6685	5152	3638	4022	11594	47769	3600	6680	4835	3658	1165	11928	37991	3612	6689	5107	3986	6292	11000	29997	3613	6999	5364	4097 4899	6858	10090
	Augusta	Flow (CFS)	07/00	3000 6684	4743	3729	4098	7435	11506	37996	2481	4782	3072	3759	6981	12529	38609	3600	9699	4612	3690	4014	6703	12128	3600	6691	5075	3600	3932	11407	48081	3600	6685	4649	3600	5802 6701	11987	38388	3600	6694	5054	3934	43/U 6248	11157	30000	3600	6675	5340	4004	6749	10109
	e No		1600	3130	2700	2100	2300	4500	4500	2000	1000	2100	1300	2100	4500	4500	7000	1600	3076	2600	2000	2300	4200	4500	1600	3149	2800	2000	2200	4300	7000	1600	3052	2600	1900	4300	4500	7000	96	3238	3100	2200	2400	4500	2000	006	3407	3500	2300	4000	4500
TICS 2013	Shoals Flow	(CFS)	20000	3269	1905	1520	1551	3323	6398	30136	1500	1917	1522	1553	3159	7508	30749	1500	3336	1866	1520	1550	2520	7025	1500	3258	1900	1500	1534	2540	40221	1500	3349	1910	1522	7507	7032	30528	1500	3172	18/1	1500	2337	6609	23978	1500	2983	1900	1500	2600	5063
BASIC STATISTICS 1/1/1999 - 12/26/2013	Stevens Creek Outflow	(CFS) 37060	000/0	5239 6399	4524	3724	4026	7089	10898	37136	2511	4600	2874	3706	6711	12008	37749	3390	6412	4403	3670	3935	6436	11525	3131	6407	4800	3620	3808	10000	47221	3390	6401	4416	3606	5/33	11532	37528	2773	6410	4900	3829	5898	10599	30063	2773	6391	5178	3900 4791	6328	9563
BA 1/1	Thurmond Outflow	(CFS)	6TOOC	5942	4200	3600	3800	6614	10151	35887	0	4752	2500	3500	6309	10989	36500	0	5955	4000	3600	3600	6058	10711	0	5950	4200	3520	3600	6104 10117	45972	0	5944	3905	3485	5000 6111	10699	36279	0	5952	4600	3600	3880 5496	9811	30059	0	5933	4875	3600 4600	5875	8808
	Russell Outflow	(CFS)	CROAC	6929	7361	0	1978	11531	12851	38153	0	7123		2465	11235	14249	38348	0	7045	7388	0	2156	11312	13099	0	7008	7271	0	1384	CU/01	41343	0	7050	7342	0	11743	13293	39997	0	6834	7541	0	1724 10636	12417	21965	0	6401	7056	0 1632	9848	11694
	Hartwell Outflow	(CFS)	5/550	3113	2801	0	0	4753	6636	34972	0	2838	0	0	4300	6753	34974	0	3117	2754	0	0	4294	6747 240.49	0	3114	2605	0	0	20446	34975	0	3114	2836	0	0 4754	6695	34957	0	3118	2838	0	U 4791	6623	29419	0	3113	2921	0	4389	7058
	20		TCCTT		546		0	1267	1822	11351	0	499	0	0	1139	1869	11351	0	742	546	0	0	1108	1826	0	742	541	0	0	101	11351	0	742	524	0	1143	1888	20414	0	742	549		1111	1771	21411	0	740	615	5 0	1102	1689
		(FT_MSL)					796.66	800.00				798.68			800.00		800.00	794.57	798.27		795.87		800.00		794.33						800.00		798.37	798.31	796.11 705.05	00,008					797.87								792.52		
	Jocassee Pool	(FT_MSL)		1107.02			1104.57					1109.75			1110.00		1110.00	1097.58	1107.23				_	1110.00							1110.00			1109.75	_	1110 00							1110.00						1091.40	_	-
	Thurmond Pool	(FT_MSL)	C7.000	326.11	326.38	321.74	323.75	329.25	330.00	335.20	322.27	326.86	323.81	325.05	329.04	330.00	335.22	318.47	326.30	326.67	321.99	324.06	329.03	330.00	317.10	325.69	326.00	321.50	323.57	32/.8/	335.54	318.98	326.51	326.67	322.59	324.03	330.00	335.22	314.95	325.79	326.66	320.36	323.03 379.08	329.95	330.91	312.36	322.65	322.99	314.33 317.23	328.18	329.73
	Russell Pool	(FT_MSL)	471 50	474.43	474.51	473.57	474.08	475.00	475.00	479.98	4/150	474.50	473.47	473.73	474.82	475.00	479.98	471.50	474.44	474.51	473.57	474.09	474.77	475.00	471.50	474.41	474.51	473.48	474.23	19.4/4	479.97	47150	474.35	474.51	473.51	474.70	475.00	479.98	471.50	474.42	474.51	473.56	474.03	475.00	478.23	471.50	474.52	474.51	473.74 474.50	474.78	475.00
	Hartwell Pool	(FT_MSL)	CU.CO0	656.14	656.48	651.40	653.67	659.51	660.00	665.03	651.89 cr7.04	T0:/C0	653.64	-	659.29		665.03	647.50	656.33	656.68	651.75	653.94	659.26	660.00	645.90	655.83	656.11	651.13	653.42	+	665.03	+	656.57	656.73	652.40	659.24	660.00	665.03	643.44	655.60	656.12 cro.co	650.00	652.92	660.000	664.99	627.99	651.64	652.88	641.43 646.88	_	
		MAA M	NAA Max	NAA Average	NAA Median	NAA 10% Percentile	NAA 25% Percentile	NAA 80% Percentile	NAA 90% Percentile	ALT1 Max	ALI1 Min	ALTI Average ALTI Median	ALT1 10% Percentile	ALT1 25% Percentile	ALT1 75% Percentile	ALT1 90% Percentile	ALT2 Max	ALT2 Min	ALT2 Average	ALT2 Median	ALT2 10% Percentile	ALT2 25% Percentile	ALT2 75% Percentile	ALT2 90% Percentile	ALT3 Min	ALT3 Average	ALT3 Median	ALT3 10% Percentile	ALT3 25% Percentile	ALI3 /5% Percentile	ALI3 90% Percentile ALT4 Max	ALT4 Min	ALT4 Average	ALT4 Median	ALT4 10% Percentile	ALI4 25% Percentile ALT4 75% Derrentile	ALT4 90% Percentile	ALT5 Max	ALT5 Min	ALT5 Average	ALIS Median	ALTS 10% Percentile	ALT5 25% Percentile ALT5 75% Percentile	ALTS 90% Percentile	ALT6 Max	ALT6 Min	ALT6 Average	ALT6 Median	ALT6 10% Percentile ALT6 25% Percentile	ALT6 75% Percentile	ALT6 90% Percentile

Basic statistics of HEC-ResSim output for key control points are shown below.

Annex A – 2009-2013 Unimpaired Flow Data Extension

Table 8-1 (Basic Statistics)

									POOL-ELEV	· · ·					
							01/0	1/:	1999 - 12/26	6/2013					
			ALUES								ERCENT OF				
Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
1110	3512	3353	3460	3882	3469	3556	3987		64.16%	61.25%	63.21%	70.92%	63.37%	64.96%	72.84%
1109	2750	2412	2676	3265	2568	2809	3464		50.24%	44.06%	48.89%	59.65%	46.91%	51.32%	63.28%
1108	2533	1983	2435	2930	2289	2578	3332		46.27%	36.23%	44.48%	53.53%	41.82%	47.10%	60.87%
1107	2276	1617	2182	2498	2021	2324	3177		41.58%	29.54%	39.86%	45.63%	36.92%	42.46%	58.04%
1106	2035	1278	1944	2198	1637	2119	3024		37.18%	23.35%	35.51%	40.15%	29.91%	38.71%	55.24%
1105	1600	856	1422	1819	1140	1842	2818		29.23%	15.64%	25.98%	33.23%	20.83%	33.65%	51.48%
1104	1134	468	1002	1314	804	1546	2701		20.72%	8.55%	18.30%	24.00%	14.69%	28.24%	49.34%
1103	777	279	720	898	579	1203	2575		14.19%	5.10%	13.15%	16.40%	10.58%	21.98%	47.04%
1102	601	47	553	587	414	915	2488		10.98%	0.86%	10.10%	10.72%	7.56%	16.72%	45.45%
1101	449	0	349	401	244	760	2413		8.20%	0.00%	6.38%	7.33%	4.46%	13.88%	44.08%
1100	269	0	211	302	126	548	2276		4.91%	0.00%	3.85%	5.52%	2.30%	10.01%	41.58%
1099	192	0	133	201	17	427	2150		3.51%	0.00%	2.43%	3.67%	0.31%	7.80%	39.28%
1098	126	0	36	93	0	310	1998		2.30%	0.00%	0.66%	1.70%	0.00%	5.66%	36.50%
1097	2	0	0	16	0	227	1749		0.04%	0.00%	0.00%	0.29%	0.00%	4.15%	31.95%
1096	0	0	0	0	0	153	1484		0.00%	0.00%	0.00%	0.00%	0.00%	2.80%	27.11%
1095	0	0	0	0	0	68	1228		0.00%	0.00%	0.00%	0.00%	0.00%	1.24%	22.43%
1094	0	0	0	0	0	0	1005		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	18.36%
1093	0	0	0	0	0	0	776		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	14.18%
1092	0	0	0	0	0	0	581		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.61%
1091	0	0	0	0	0	0	522		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	9.54%
1090	0	0	0	0	0	0	446		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	8.15%
1089	0	0	0	0	0	0	387		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.07%
1088	0	0	0	0	0	0	323		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	5.90%
1087	0	0	0	0	0	0	259		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.73%
1086	0	0	0	0	0	0	196		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.58%
1085	0	0	0	0	0	0	133		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.43%
1084	0	0	0	0	0	0	54		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.99%
1083	0	0	0	0	0	0	35		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.64%
1082	0	0	0	0	0	0	16		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.29%
1081	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Tables 8-2 to 8-6 Provide frequency analysis of pool elevations.

Table 8-2 (Jocassee Pool Frequency Analysis)

									POOL-ELEV	• •					
	С	OUNT V	ALUES	LESS TH	IAN		01/0)1/.	1999 - 12/2	·	ERCENT OF	TIME LESS	THAN		
Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
800	3156	3008	3044	3676	3104	3212	3729		57.65%	54.95%	55.61%	67.15%	56.70%	58.68%	68.12%
799	2985	2813	2903	3522	2896	3054	3638		54.53%	51.39%	53.03%	64.34%	52.90%	55.79%	66.46%
798	2761	2410	2676	3265	2571	2826	3474		50.44%	44.03%	48.89%	59.65%	46.97%	51.63%	63.46%
797	1925	1163	1784	2093	1472	2030	2923		35.17%	21.25%	32.59%	38.24%	26.89%	37.08%	53.40%
796	650	153	598	666	494	998	2508		11.87%	2.80%	10.92%	12.17%	9.02%	18.23%	45.82%
795	182	0	121	196	11	420	2146		3.32%	0.00%	2.21%	3.58%	0.20%	7.67%	39.20%
794	0	0	0	0	0	152	1462		0.00%	0.00%	0.00%	0.00%	0.00%	2.78%	26.71%
793	0	0	0	0	0	0	786		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	14.36%
792	0	0	0	0	0	0	343		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.27%
791	0	0	0	0	0	0	74		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.35%
790	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-3 (Keowee Pool Frequency Analysis)

							HARTW	ELI	POOL-ELE	/ (FT-MSL)					
							01/0	1/	1999 - 12/2	6/2013					
	co	DUNT V	ALUES	LESS TH	AN					P	ERCENT OF	TIME LESS	THAN		
Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
666	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
665	5473	5473	5473	5473	5473	5473	5474		99.98%	99.98%	99.98%	99.98%	99.98%	99.98%	100.00%
664	5444	5444	5444	5455	5444	5441	5464		99.45%	99.45%	99.45%	99.65%	99.45%	99.40%	99.82%
663	5424	5424	5425	5433	5424	5422	5458		99.09%	99.09%	99.10%	99.25%	99.09%	99.05%	99.71%
662	5405	5404	5405	5417	5404	5400	5450		98.74%	98.72%	98.74%	98.96%	98.72%	98.65%	99.56%
661	5364	5364	5367	5357	5367	5355	5418		97.99%	97.99%	98.05%	97.86%	98.05%	97.83%	98.98%
660	4769	4683	4717	4752	4732	4802	4957		87.12%	85.55%	86.17%	86.81%	86.45%	87.72%	90.56%
659	3948	3881	3911	4236	3919	4035	4363		72.12%	70.90%	71.45%	77.38%	71.59%	73.71%	79.70%
658	3491	3340	3421	3888	3357	3604	3985		63.77%	61.02%	62.50%	71.03%	61.33%	65.84%	72.80%
657	2981	2743	2891	3418	2869	3255	3671		54.46%	50.11%	52.81%	62.44%	52.41%	59.46%	67.06%
656	2500	2056	2376	2628	2317	2605	3330		45.67%	37.56%	43.41%	48.01%	42.33%	47.59%	60.83%
655	2004	1380	1918	2124	1686	2170	3166		36.61%	25.21%	35.04%	38.80%	30.80%	39.64%	57.84%
654	1546	728	1409	1694	1080	1764	2919		28.24%	13.30%	25.74%	30.95%	19.73%	32.23%	53.32%
653	1072	308	946	1162	729	1396	2757		19.58%	5.63%	17.28%	21.23%	13.32%	25.50%	50.37%
652	728	11	631	819	437	1083	2538		13.30%	0.20%	11.53%	14.96%	7.98%	19.78%	46.36%
651	430	0	363	478	228	780	2367		7.86%	0.00%	6.63%	8.73%	4.17%	14.25%	43.24%
650	231	0	168	227	113	546	2121		4.22%	0.00%	3.07%	4.15%	2.06%	9.97%	38.75%
649	131	0	98	125	35	311	1881		2.39%	0.00%	1.79%	2.28%	0.64%	5.68%	34.36%
648	86	0	23	70	0	216	1639		1.57%	0.00%	0.42%	1.28%	0.00%	3.95%	29.94%
647	22	0	0	35	0	139	1398		0.40%	0.00%	0.00%	0.64%	0.00%	2.54%	25.54%
646	0	0	0	6	0	91	1170		0.00%	0.00%	0.00%	0.11%	0.00%	1.66%	21.37%
645	0	0	0	0	0	55	974		0.00%	0.00%	0.00%	0.00%	0.00%	1.00%	17.79%
644	0	0	0	0	0	18	770		0.00%	0.00%	0.00%	0.00%	0.00%	0.33%	14.07%
643	0	0	0	0	0	0	663		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	12.11%
642	0	0	0	0	0	0	587		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.72%
641	0	0	0	0	0	0	527		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	9.63%
640	0	0	0	0	0	0	487		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	8.90%
639	0	0	0	0	0	0	435		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.95%
638	0	0	0	0	0	0	385		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.03%
637	0	0	0	0	0	0	348		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.36%
636	0	0	0	0	0	0	307		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	5.61%
635	0	0	0	0	0	0	239		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.37%
634	0	0	0	0	0	0	165		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.01%
633	0	0	0	0	0	0	119		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.17%
632	0	0	0	0	0	0	81		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.48%
631	0	0	0	0	0	0	53		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.97%
630	0	0	0	0	0	0	42		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.77%
629	0	0	0	0	0	0	29		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.53%
628	0	0	0	0	0	0	1		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%
627	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-4 (Hartwell Pool Frequency Analysis)

									POOL-ELEV						
							01/0	01/	1999 - 12/2	6/2013					
	CC		ALUES	LESS TH	IAN					P	ERCENT OF	TIME LESS	THAN		
Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
480	5474	5474	5474	5468	5474	5474	5474		100.00%	100.00%	100.00%	99.89%	100.00%	100.00%	100.00%
479	5442	5443	5442	5457	5447	5436	5474		99.42%	99.43%	99.42%	99.69%	99.51%	99.31%	100.00%
478	5435	5434	5434	5455	5438	5428	5470		99.29%	99.27%	99.27%	99.65%	99.34%	99.16%	99.93%
477	5409	5408	5408	5424	5418	5402	5468		98.81%	98.79%	98.79%	99.09%	98.98%	98.68%	99.89%
476	5371	5373	5371	5389	5377	5373	5439		98.12%	98.15%	98.12%	98.45%	98.23%	98.15%	99.36%
475	4363	4230	4276	4189	4318	4373	4344		79.70%	77.27%	78.11%	76.53%	78.88%	79.89%	79.36%
474	1271	1777	1284	1132	1553	1330	732		23.22%	32.46%	23.46%	20.68%	28.37%	24.30%	13.37%
473	156	296	155	351	251	164	29		2.85%	5.41%	2.83%	6.41%	4.59%	3.00%	0.53%
472	36	89	34	100	67	31	9		0.66%	1.63%	0.62%	1.83%	1.22%	0.57%	0.16%
471	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-5 (Russell Pool Frequency Analysis)

						Т	HURM	DNI	D POOL-ELE	V (FT-MSL)					
							01/0	1/:	1999 - 12/2	6/2013					
	C	<mark>OUNT V</mark>	ALUES	LESS TH	IAN					Р	ERCENT OF	TIME LESS	THAN		
Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
336	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
335	5471	5472	5472	5474	5470	5472	5474		99.95%	99.96%	99.96%	100.00%	99.93%	99.96%	100.00%
334	5467	5468	5467	5472	5467	5467	5474		99.87%	99.89%	99.87%	99.96%	99.87%	99.87%	100.00%
333	5463	5463	5463	5467	5465	5463	5474		99.80%	99.80%	99.80%	99.87%	99.84%	99.80%	100.00%
332	5462	5462	5462	5459	5464	5462	5474		99.78%	99.78%	99.78%	99.73%	99.82%	99.78%	100.00%
331	5456	5456	5456	5448	5458	5456	5474		99.67%	99.67%	99.67%	99.53%	99.71%	99.67%	100.00%
330	4913	4819	4873	5021	4880	5014	5144		89.75%	88.03%	89.02%	91.72%	89.15%	91.60%	93.97%
329	4141	4066	4082	4545	4133	4009	4398		75.65%	74.28%	74.57%	83.03%	75.50%	73.24%	80.34%
328	3487	3426	3457	4177	3451	3365	4033		63.70%	62.59%	63.15%	76.31%	63.04%	61.47%	73.68%
327	3039	2824	2948	3592	2918	2868	3630		55.52%	51.59%	53.85%	65.62%	53.31%	52.39%	66.31%
326	2508	2056	2345	2677	2306	2471	3320		45.82%	37.56%	42.84%	48.90%	42.13%	45.14%	60.65%
325	1965	1330	1877	2090	1645	2131	3094		35.90%	24.30%	34.29%	38.18%	30.05%	38.93%	56.52%
324	1502	644	1322	1636	1050	1677	2890		27.44%	11.76%	24.15%	29.89%	19.18%	30.64%	52.80%
323	1023	189	901	1116	660	1360	2739		18.69%	3.45%	16.46%	20.39%	12.06%	24.84%	50.04%
322	665	0	548	739	414	992	2451		12.15%	0.00%	10.01%	13.50%	7.56%	18.12%	44.78%
321	334	0	276	357	174	719	2235		6.10%	0.00%	5.04%	6.52%	3.18%	13.13%	40.83%
320	188	0	126	174	64	437	2008		3.43%	0.00%	2.30%	3.18%	1.17%	7.98%	36.68%
319	116	0	38	96	1	277	1803		2.12%	0.00%	0.69%	1.75%	0.02%	5.06%	32.94%
318	27	0	0	41	0	185	1518		0.49%	0.00%	0.00%	0.75%	0.00%	3.38%	27.73%
317	0	0	0	0	0	112	1303		0.00%	0.00%	0.00%	0.00%	0.00%	2.05%	23.80%
316	0	0	0	0	0	56	1039		0.00%	0.00%	0.00%	0.00%	0.00%	1.02%	18.98%
315	0	0	0	0	0	1	742		0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	13.55%
314	0	0	0	0	0	0	412		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.53%
313	0	0	0	0	0	0	81		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.48%
312	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-6 (Thurmond Pool Frequency Analysis)

							THUR	MO		W (CFS)					
							01/0)1/	<mark>1999 - 12/26</mark>	6/2013					
	co	OUNT V	ALUES	LESS TH	AN					PI	ERCENT OF	TIME LESS	THAN		
Flow	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
20000	5358	5352	5354	5363	5358	5358	5411		97.88%	97.77%	97.81%	97.97%	97.88%	97.88%	98.85%
19500	5349	5340	5343	5342	5346	5349	5398		97.72%	97.55%	97.61%	97.59%	97.66%	97.72%	98.61%
19000	5324	5316	5318	5314	5321	5331	5390		97.26%	97.11%	97.15%	97.08%	97.20%	97.39%	98.47%
18500	5309	5298	5299	5291	5302	5309	5372		96.99%	96.78%	96.80%	96.66%	96.86%	96.99%	98.14%
18000	5283	5273	5273	5260	5273	5284	5348		96.51%	96.33%	96.33%	96.09%	96.33%	96.53%	97.70%
17500	5261	5248	5244	5235	5248	5260	5328		96.11%	95.87%	95.80%	95.63%	95.87%	96.09%	97.33%
17000	5236	5221	5215	5207	5224	5234	5308		95.65%	95.38%	95.27%	95.12%	95.43%	95.62%	96.97%
16500	5217	5201	5196	5195	5203	5217	5291		95.31%	95.01%	94.92%	94.90%	95.05%	95.31%	96.66%
16000	5200	5179	5177	5181	5183	5202	5279		94.99%	94.61%	94.57%	94.65%	94.68%	95.03%	96.44%
15500	5173	5148	5145	5156	5153	5181	5260		94.50%	94.04%	93.99%	94.19%	94.14%	94.65%	96.09%
15000	5151	5124	5123	5141	5133	5161	5242		94.10%	93.61%	93.59%	93.92%	93.77%	94.28%	95.76%
14500	5126	5101	5101	5125	5109	5141	5222		93.64%	93.19%	93.19%	93.62%	93.33%	93.92%	95.40%
14000	5109	5080	5079	5107	5091	5123	5203		93.33%	92.80%	92.78%	93.30%	93.00%	93.59%	95.05%
13500	5090	5060	5062	5087	5069	5107	5187		92.99%	92.44%	92.47%	92.93%	92.60%	93.30%	94.76%
13000	5065	5036	5040	5066	5047	5086	5163		92.53%	92.00%	92.07%	92.55%	92.20%	92.91%	94.32%
12500	5041	5006	5015	5047	5022	5068	5145		92.09%	91.45%	91.61%	92.20%	91.74%	92.58%	93.99%
12000	5017	4977	4989	5032	4997	5039	5117		91.65%	90.92%	91.14%	91.93%	91.29%	92.05%	93.48%
11500	4997	4955	4969	5001	4975	5016	5099		91.29%	90.52%	90.77%	91.36%	90.88%	91.63%	93.15%
11000	4976	4927	4949	4979	4945	4995	5085		90.90%	90.01%	90.41%	90.96%	90.34%	91.25%	92.89%
10500	4947	4894	4917	4948	4911	4970	5062		90.37%	89.40%	89.82%	90.39%	89.72%	90.79%	92.47%
10000	4907	4843	4873	4917	4869	4933	5038		89.64%	88.47%	89.02%	89.82%	88.95%	90.12%	92.04%
9500	4871	4807	4833	4875	4833	4902	5005		88.98%	87.82%	88.29%	89.06%	88.29%	89.55%	91.43%
9000	4815	4731	4774	4827	4781	4846	4945		87.96%	86.43%	87.21%	88.18%	87.34%	88.53%	90.34%
8500	4749	4664	4708	4776	4719	4801	4895		86.76%	85.20%	86.01%	87.25%	86.21%	87.71%	89.42%
8000	4702	4599	4653	4702	4660	4760	4848		85.90%	84.02%	85.00%	85.90%	85.13%	86.96%	88.56%
7500	4628	4517	4581	4608	4571	4717	4815		84.55%	82.52%	83.69%	84.18%	83.50%	86.17%	87.96%
7000	4506	4392	4461	4517	4453	4640	4751		82.32%	80.23%	81.49%	82.52%	81.35%	84.76%	86.79%
6500	4326	4191	4288	4319	4271	4538	4450		79.03%	76.56%	78.33%	78.90%	78.02%	82.90%	81.29%
6000	4092	3949	4075	4022	4043	4405	4347		74.75%	72.14%	74.44%	73.47%	73.86%	80.47%	79.41%
5500	3839	3658	3853	3721	3767	4111	3924		70.13%	66.82%	70.39%	67.98%	68.82%	75.10%	71.68%
5000	3588	3344	3616	3310	3495	3571	3476		65.55%	61.09%	66.06%	60.47%	63.85%	65.24%	63.50%
4500	3274	2907	3308	2928	3132	2306	1167		59.81%	53.11%	60.43%	53.49%	57.22%	42.13%	21.32%
4000	1796	2577	2194	2256	2798	1494	870		32.81%	47.08%	40.08%	41.21%	51.11%	27.29%	15.89%
3500	343	731	424	442	551	115	146		6.27%	13.35%	7.75%	8.07%	10.07%	2.10%	2.67%
3000	4	731	3	79	3	17	16		0.07%	13.35%	0.05%	1.44%	0.05%	0.31%	0.29%
2500	3	3	3	20	3	11	14		0.05%	0.05%	0.05%	0.37%	0.05%	0.20%	0.26%
2000	3	3	3	9	3	9	12		0.05%	0.05%	0.05%	0.16%	0.05%	0.16%	0.22%
1500	3	3	3	6	3	7	8		0.05%	0.05%	0.05%	0.11%	0.05%	0.13%	0.15%
1000	3	3	3	5	3	7	8		0.05%	0.05%	0.05%	0.09%	0.05%	0.13%	0.15%
500	3	3	3	4	3	5	5		0.05%	0.05%	0.05%	0.07%	0.05%	0.09%	0.09%
0	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Tables 8-7 to 8-6 Provide basic frequency analysis of streamflow at key control points.

Table 8-7 (Thurmond Outflow Frequency Analysis)

							SH	10	ALS FLOW (CFS)					
									1999 - 12/20						
	С	OUNT V	ALUES	LESS TH	AN					P	ERCENT OF	TIME LESS	THAN		
Flow	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
20000	5375	5369	5370	5377	5374	5374	5427		98.19%	98.08%	98.10%	98.23%	98.17%	98.17%	99.14%
19500	5372	5366	5367	5374	5371	5370	5425		98.14%	98.03%	98.05%	98.17%	98.12%	98.10%	99.10%
19000	5369	5363	5364	5372	5368	5364	5421		98.08%	97.97%	97.99%	98.14%	98.06%	97.99%	99.03%
18500	5364	5357	5359	5369	5363	5360	5418		97.99%	97.86%	97.90%	98.08%	97.97%	97.92%	98.98%
18000	5362	5355	5357	5366	5361	5358	5417		97.95%	97.83%	97.86%	98.03%	97.94%	97.88%	98.96%
17500	5360	5352	5354	5365	5358	5358	5416		97.92%	97.77%	97.81%	98.01%	97.88%	97.88%	98.94%
17000	5358	5350	5352	5364	5356	5357	5415		97.88%	97.73%	97.77%	97.99%	97.84%	97.86%	98.92%
16500	5353	5346	5348	5361	5352	5354	5414		97.79%	97.66%	97.70%	97.94%	97.77%	97.81%	98.90%
16000	5350	5343	5346	5358	5350	5352	5411		97.73%	97.61%	97.66%	97.88%	97.73%	97.77%	98.85%
15500	5348	5342	5344	5357	5347	5349	5409		97.70%	97.59%	97.63%	97.86%	97.68%	97.72%	98.81%
15000	5308	5301	5304	5310	5308	5314	5385		96.97%	96.84%	96.89%	97.00%	96.97%	97.08%	98.37%
14500	5260	5250	5251	5246	5252	5264	5339		96.09%	95.91%	95.93%	95.83%	95.94%	96.16%	97.53%
14000	5222	5206	5204	5202	5208	5223	5302		95.40%	95.10%	95.07%	95.03%	95.14%	95.41%	96.86%
13500	5188	5169	5168	5174	5172	5200	5283		94.78%	94.43%	94.41%	94.52%	94.48%	94.99%	96.51%
13000	5171	5148	5150	5156	5154	5187	5267		94.46%	94.04%	94.08%	94.19%	94.15%	94.76%	96.22%
12500	5158	5132	5134	5140	5140	5172	5256		94.23%	93.75%	93.79%	93.90%	93.90%	94.48%	96.02%
12000	5145	5120	5121	5130	5128	5159	5247		93.99%	93.53%	93.55%	93.72%	93.68%	94.25%	95.85%
11500	5131	5101	5105	5113	5112	5146	5228		93.73%	93.19%	93.26%	93.41%	93.39%	94.01%	95.51%
11000	5116	5085	5084	5101	5096	5132	5215		93.46%	92.89%	92.88%	93.19%	93.09%	93.75%	95.27%
10500	5097	5070	5068	5085	5077	5113	5198		93.11%	92.62%	92.58%	92.89%	92.75%	93.41%	94.96%
10000	5079	5046	5047	5075	5056	5098	5180		92.78%	92.18%	92.20%	92.71%	92.36%	93.13%	94.63%
9500	5061	5024	5029	5060	5037	5080	5164		92.46%	91.78%	91.87%	92.44%	92.02%	92.80%	94.34%
9000	5041	5006	5012	5039	5019	5063	5145		92.09%	91.45%	91.56%	92.05%	91.69%	92.49%	93.99%
8500	5016	4981	4990	5018	4993	5044	5123		91.63%	90.99%	91.16%	91.67%	91.21%	92.14%	93.59%
8000	4996	4953	4969	5002	4969	5021	5103		91.27%	90.48%	90.77%	91.38%	90.77%	91.72%	93.22%
7500	4975	4925	4946	4980	4947	4999	5078		90.88%	89.97%	90.35%	90.98%	90.37%	91.32%	92.77%
7000	4956	4908	4924	4956	4923	4978	5056		90.54%	89.66%	89.95%	90.54%	89.93%	90.94%	92.36%
6500	4933	4867	4890	4932	4894	4947	5026		90.12%	88.91%	89.33%	90.10%	89.40%	90.37%	91.82%
6000	4891	4822	4852	4902	4850	4919	4997		89.35%	88.09%	88.64%	89.55%	88.60%	89.86%	91.29%
5500	4850	4770	4801	4862	4808	4886	4969		88.60%	87.14%	87.71%	88.82%	87.83%	89.26%	90.77%
5000	4807	4720	4762	4821	4772	4846	4922		87.82%	86.23%	86.99%	88.07%	87.18%	88.53%	89.92%
4500	4744	4657	4696	4767	4711	4799	4866		86.66%	85.07%	85.79%	87.08%	86.06%	87.67%	88.89%
4000	4674	4584	4631	4710	4644	4748	4808		85.39%	83.74%	84.60%	86.04%	84.84%	86.74%	87.83%
3500	4605	4501	4564	4629	4561	4696	4749		84.12%	82.23%	83.38%	84.56%	83.32%	85.79%	86.76%
3000 2500	4246 4108	4066 3920	4228 4091	4206 4011	4189 4051	4366 4269	4192 4046		77.57%	74.28% 71.61%	77.24%	76.84%	76.53% 74.00%	79.76% 77.99%	76.58% 73.91%
2500	3125	3920	3126		3094	3323	3243		75.05% 57.09%	71.61%	74.74% 57.11%	73.27% 57.38%	74.00%	60.71%	73.91%
1500	3125	3088	3126	3141 0	3094	3323	3243		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
1000	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
500	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
500	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
0	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-8 (Augusta Shoals Flow Frequency Analysis)

							AUGU	ST/	CANAL FLO	DW (CFS)					
									1999 - 12/2						
	СС	о ти и	ALUES	LESS TH	AN				,	· · · · · · · · · · · · · · · · · · ·	ERCENT OF		THAN		
Flow	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
20000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
19500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
19000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
18500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
18000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
16500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
16000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
15500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
15000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
13500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
13000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
12500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
12000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
10500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
10000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
9500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
9000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8000	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
7500	5474	5474	5474	5474	5474	5474	5474		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
7000	5458	5459	5458	5470	5458	5459	5467		99.71%	99.73%	99.71%	99.93%	99.71%	99.73%	99.87%
6500	5458	5459	5458	5470	5458	5459	5467		99.71%	99.73%	99.71%	99.93%	99.71%	99.73%	99.87%
6000	5340	5332	5336	5342	5338	5342	5402		97.55%	97.41%	97.48%	97.59%	97.52%	97.59%	98.68%
5500	5340	5332	5336	5342	5338	5342	5402		97.55%	97.41%	97.48%	97.59%	97.52%	97.59%	98.68%
5000	5340	5332	5336	5342	5338	5342	5402		97.55%	97.41%	97.48%	97.59%	97.52%	97.59%	98.68%
4500	4203	4091	4191	4192	4160	4448	4393		76.78%	74.74%	76.56%	76.58%	76.00%	81.26%	80.25%
4000	3998	3875	4009	3930	3958	4247	4055		73.04%	70.79%	73.24%	71.79%	72.31%	77.58%	74.08%
3500	3622	3466	3682	3276	3574	3324	2710		66.17%	63.32%	67.26%	59.85%	65.29%	60.72%	49.51%
3000 2500	3167 1802	3093 2475	3278 2040	2895 2176	3198 2530	2402	1688 926		57.86% 32.92%	56.50% 45.21%	59.88% 37.27%	52.89% 39.75%	58.42% 46.22%	43.88% 25.74%	30.84% 16.92%
2000	367	2475 970	2040 538	321	650	215	926		6.70%	45.21%	9.83%	39.75% 5.86%	46.22%	25.74%	2.19%
1500	367	640	538	321 0	0	4	4		0.00%	11.69%	9.83%	0.00%	0.00%	0.07%	0.07%
1000	0	640	0	0	0	4	4		0.00%	0.00%	0.00%	0.00%	0.00%	0.07%	0.07%
500	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.02%
0	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
0	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-9 (Augusta Canal Flow Frequency Analysis)

							AU	GU	ISTA FLOW	(CFS)					
									1999 - 12/20						
	СС	OUNT V	ALUES	LESS TH	IAN			_,		·	ERCENT OF		THAN		
Flow	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
20000	5182	5157	5164	5162	5166	5183	5265		94.67%	94.21%	94.34%	94.30%	94.37%	94.68%	96.18%
19500	5167	5142	5149	5152	5152	5176	5257		94.39%	93.93%	94.06%	94.12%	94.12%	94.56%	96.04%
19000	5157	5132	5137	5144	5139	5167	5247		94.21%	93.75%	93.84%	93.97%	93.88%	94.39%	95.85%
18500	5144	5117	5120	5136	5124	5161	5242		93.97%	93.48%	93.53%	93.83%	93.61%	94.28%	95.76%
18000	5141	5114	5118	5127	5122	5158	5235		93.92%	93.42%	93.50%	93.66%	93.57%	94.23%	95.63%
17500	5134	5103	5111	5115	5111	5151	5227		93.79%	93.22%	93.37%	93.44%	93.37%	94.10%	95.49%
17000	5123	5091	5098	5107	5101	5143	5221		93.59%	93.00%	93.13%	93.30%	93.19%	93.95%	95.38%
16500	5113	5081	5085	5102	5089	5131	5208		93.41%	92.82%	92.89%	93.20%	92.97%	93.73%	95.14%
16000	5106	5073	5079	5088	5083	5119	5199		93.28%	92.67%	92.78%	92.95%	92.86%	93.51%	94.98%
15500	5090	5061	5063	5075	5070	5109	5187		92.99%	92.46%	92.49%	92.71%	92.62%	93.33%	94.76%
15000	5075	5042	5044	5059	5056	5095	5169		92.71%	92.11%	92.14%	92.42%	92.36%	93.08%	94.43%
14500	5058	5027	5030	5045	5037	5076	5149		92.40%	91.83%	91.89%	92.16%	92.02%	92.73%	94.06%
14000	5041	5005	5014	5030	5021	5061	5131		92.09%	91.43%	91.60%	91.89%	91.72%	92.46%	93.73%
13500	5014	4981	4990	5005	4993	5041	5112		91.60%	90.99%	91.16%	91.43%	91.21%	92.09%	93.39%
13000	4988	4951	4960	4991	4965	5022	5096		91.12%	90.45%	90.61%	91.18%	90.70%	91.74%	93.09%
12500	4971	4925	4941	4978	4949	4998	5069		90.81%	89.97%	90.26%	90.94%	90.41%	91.30%	92.60%
12000	4951	4905	4917	4950	4927	4970	5038		90.45%	89.61%	89.82%	90.43%	90.01%	90.79%	92.04%
11500	4926	4871	4888	4926	4899	4948	5007		89.99%	88.98%	89.29%	89.99%	89.50%	90.39%	91.47%
11000	4896	4834	4854	4900	4869	4918	4981		89.44%	88.31%	88.67%	89.51%	88.95%	89.84%	90.99%
10500	4861	4788	4813	4876	4818	4894	4958	_	88.80%	87.47%	87.92%	89.08%	88.02%	89.40%	90.57%
10000	4809	4731	4766	4830	4774	4851	4917		87.85%	86.43%	87.07%	88.24%	87.21%	88.62%	89.82%
9500	4753	4673	4717	4779	4723	4803	4870	_	86.83%	85.37%	86.17%	87.30%	86.28%	87.74%	88.97%
9000	4691	4594	4654	4729	4660	4755	4809		85.70%	83.92%	85.02%	86.39%	85.13%	86.87%	87.85%
8500	4605	4511	4579	4648	4570	4689	4733	_	84.12%	82.41%	83.65%	84.91%	83.49%	85.66%	86.46%
8000	4523	4421	4499	4555	4478	4616	4640		82.63%	80.76%	82.19%	83.21%	81.80%	84.33%	84.76%
7500	4407	4293	4383	4421	4356	4518	4504		80.51%	78.43%	80.07%	80.76%	79.58%	82.54%	82.28%
7000	4231	4113	4220	4218	4182	4408	4260		77.29%	75.14%	77.09%	77.06%	76.40%	80.53%	77.82%
6500	4015 3744	3882 3598	4015 3759	3957 3643	3964 3698	4236 3938	3975 3634		73.35%	70.92%	73.35%	72.29%	72.42%	77.38%	72.62%
6000	3/44	3598		3643	3698		3634 3061		68.40%	65.73%	68.67%		67.56%	71.94%	66.39%
5500 5000	3422	2926	3478 3146	2667	3393	3446 2647	1776		62.51% 55.61%	59.63% 53.45%	63.54% 57.47%	59.06% 48.72%	61.98% 56.07%	62.95% 48.36%	55.92% 32.44%
4500	2354	2926	2590	2667	2561	1592	947		43.00%	53.45% 44.90%	47.31%	48.72%	46.78%	48.36%	32.44%
4500	1085	1833	1301	1493	1781	691	947 542		43.00%	44.90% 33.49%	23.77%	27.27%	46.78%	29.08%	9.90%
3500	1085	775	1301	1493	1/81	0	542		0.00%	33.49% 14.16%	0.00%	0.00%	0.00%	0.00%	0.00%
3000	0	493	0	0	0	0	0		0.00%	9.01%	0.00%	0.00%	0.00%	0.00%	0.00%
2500	0	495	0	0	0	0	0		0.00%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%
2000	0	0	0	0	0	0	0		0.00%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%
1500	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
1000	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
500	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
0	0	0	0	0	0	0	0		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
U	5	5	5	5	5	5	5		0.0070	0.0070	010070	010070	010070	0.0070	010070

Table 8-10 (Augusta Flow Frequency Analysis)

01/01/1999 to 12/26/2013	12/26/201	3					
Savannah River at Augusta	NAA	ALT1	ALT2	ΑLT3	ALT4	ALT5	ALT6
Days Over 10000 cfs	665	743	708	644	700	623	557
Days Over 20000 cfs	137	144	141	129	138	140	77
Days Over 30000 cfs	6	8	6	0	6	6	0
Flood Damage Reduction	e Reductio	L					
Average of Days Over 30000 cfs	37646	37326	37385	0	46593	37289	0
Rank Based on Average of Flows over 30000 cfs	9	4	5	1	7	3	1
Percent Difference in (Average of Days Over 30000 cfs) from NAA	0.00%	-0.90%	-0.70%	-100.00%	23.80%	-0.90%	-100.00%
Navigation	ition						
Days between 10000 cfs and 20000 cfs	528	599	567	515	562	483	480
Rank Based on number of days Flows between 10000 cfs and 20000 cfs	4	1	2	5	3	6	7
Percent Difference in (Days between 10000 cfs and 20000 cfs) from NAA	%0	13%	7%	-2%	6%	-9%	-9%

Table 8-11 (FDR and Navigation Metrics)

Tables 8-12 thru 8-21 summarize how often fish spawn objectives were met.

						IVE NAA 999 - 12/26			Contraction of the	K					te in FC	/s> x while pawn	while while ove	mein while we
Start	Apr 01			Spawn (Da	ys)			Sequer	tial Count (periodsAbo	ve Min)		Vie	lations	E.	Ma	AP 28	FR Y AL
End	May 15	Total	>Min	-Min	<max< td=""><td>>Min,<max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td>-Min</td><td><min,>Max</min,></td><td>44%</td><td>0%</td><td>44%</td><td>44%</td></max<></td></max<>	>Min, <max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td>-Min</td><td><min,>Max</min,></td><td>44%</td><td>0%</td><td>44%</td><td>44%</td></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	-Min	<min,>Max</min,>	44%	0%	44%	44%
Max Delta Down	0.50	675	630	45	675	630	14	14	14	14	13	13	45	45	298	0	298	298
Max Delta Up	1.00	-	93%	7%	100%	93%	7				100 Mar 100				-	-		-
Guide Curve	1110.00		-					Sequential C	ount (perio	ds between	Max & Min	1						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							14	14	14	14	13	13						

						IVE ALT1 999 - 12/26)					e in FC	As > ox while spawn	while while	me in	white we
Start	Apr 01	1	A	Spawn (Day	ys)			Sequer	tial Count (periodsAbo	ve Min)		Vie	plations	E.	Ma	5 H H	C.	出意
End	May 15	Total	>Min	<min< th=""><th><max.< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>53%</th><th>0%</th><th>53%</th><th></th><th>53%</th></min<></th></max<></th></max.<></th></min<>	<max.< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>53%</th><th>0%</th><th>53%</th><th></th><th>53%</th></min<></th></max<></th></max.<>	>Min, <max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>53%</th><th>0%</th><th>53%</th><th></th><th>53%</th></min<></th></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< th=""><th><min,>Max</min,></th><th>53%</th><th>0%</th><th>53%</th><th></th><th>53%</th></min<>	<min,>Max</min,>	53%	0%	53%		53%
Max Delta Down	0.50	675	623	52	675	623	16	14	13	13	12	12	52	52	359	0	359		359
Max Delta Up	1.00	1.000	92%	8%	100%	92%	-							-					
Guide Curve	1110.00		1.000					Sequential C	ount (perio	ds between	Max & Min)							
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days							
							16	14	13	13	12	12							

						IVE ALT2 999 - 12/20	and the second second)					e In FC	rs > ox while spawn	while while ove	while while
Start	Apr 01			Spawn (Day	(5)		1000	Sequer	tial Count (periodsAbo	ve Min)		Vic	alations	E .	Ma Na	A R R	定比 着了
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>47%</th><th>0%</th><th>47%</th><th>47%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>47%</th><th>0%</th><th>47%</th><th>47%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>47%</th><th>0%</th><th>47%</th><th>47%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< th=""><th><min,>Max</min,></th><th>47%</th><th>0%</th><th>47%</th><th>47%</th></min<>	<min,>Max</min,>	47%	0%	47%	47%
Max Delta Down	0.50	675	641	34.	675	641	16	14	14	14	13	13	34	34	317	0	317	317
Max Delta Up	1.00		95%	5%	100%	95%				-						-	-	
Guide Curve	1110.00	1.						Sequential C	Count (perio	ds between	Max & Min	1						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							16	14	14	14	13	13						

						IVE ALT: 999 - 12/20	and the second second)					ie in PC	ys> x while pawn	while ove	while
Start	Apr 01			Spawn (Day	ys)			Sequer	tial Count (periodsAbo	ve Min)		Vic	plations	£	Ma Ma	AB FC	A LA
End	May 15	Total	>Min	<min< td=""><td><max.< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>27%</td><td>0%</td><td>27%</td><td>27%</td></min<></td></max<></td></max.<></td></min<>	<max.< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>27%</td><td>0%</td><td>27%</td><td>27%</td></min<></td></max<></td></max.<>	>Min, <max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>27%</td><td>0%</td><td>27%</td><td>27%</td></min<></td></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< td=""><td><min,>Max</min,></td><td>27%</td><td>0%</td><td>27%</td><td>27%</td></min<>	<min,>Max</min,>	27%	0%	27%	27%
Max Delta Down	0.50	675	565	110	675	565	14	14	13	13	10	9	110	110	183	0	183	183
Max Deita Up	1.00		84%	16%	100%	84%					-	-						
Guide Curve	1110.00		-	-				Sequential (ount (perio	ds between	Max & Min	1						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							14	14	13	13	10	9						

						IVE ALT4 999 - 12/20)					ie in FC	ys > x while spawn	while ove	while
Start	Apr 01			Spawn (Day	ys)			Sequen	tial Count (periodsAbo	we Min)		Vic	plations	Ę.	Ma Na	2 2 A 1	A LA
End	May 15	Total	>Min	<min< td=""><td><max .<="" td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>46%</td><td>0%</td><td>46%</td><td>46%</td></min<></td></max<></td></max></td></min<>	<max .<="" td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>46%</td><td>0%</td><td>46%</td><td>46%</td></min<></td></max<></td></max>	>Min, <max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>46%</td><td>0%</td><td>46%</td><td>46%</td></min<></td></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< td=""><td><min,>Max</min,></td><td>46%</td><td>0%</td><td>46%</td><td>46%</td></min<>	<min,>Max</min,>	46%	0%	46%	46%
Max Delta Down	0.50	675	645	30	675	645	16	14	14	13	13	13	30	30	312	0	312	312
Max Delta Up	1.00		96%	4%	100%	96%												
Guide Curve	1110.00		1.00		-		1	Sequential C	ount (perio	ds between	Max & Min	1						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							16	14	14	13	13	13						

						1VE ALT5 999 - 12/26			The second second)			_		ie în	45 > × ile in	me in while ove	while while
Start	Apr 01	15		Spawn (Day			1.000		tial Count (periodsAbo	ve Min)		Vie	lations	들문	eMa wha	Ab	A LA
End	May 15	Total	>Min	Min	<max< td=""><td>>Min,<max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td>.<min< td=""><td><min,>Max</min,></td><td>42%</td><td>0%</td><td>42%</td><td>42%</td></min<></td></max<></td></max<>	>Min, <max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td>.<min< td=""><td><min,>Max</min,></td><td>42%</td><td>0%</td><td>42%</td><td>42%</td></min<></td></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	. <min< td=""><td><min,>Max</min,></td><td>42%</td><td>0%</td><td>42%</td><td>42%</td></min<>	<min,>Max</min,>	42%	0%	42%	42%
Max Delta Down	0.50	675	643	32	675	643	15	15	15	14	13	13	32	32	281	0	281	281
Max Delta Up	1.00	1000	95%	5%	100%	95%			1000		100 P		-					
Guide Curve	1110.00							Sequential C	ount (perio	ds between	Max & Min)						
							>7Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							15	15	15	14	13	13						

						IVE ALT(999 - 12/26	Contraction of the second)					ie in FC	ys > x while spawn	while while ove	while
Start	Apr 01		1	Spawn (Da	ys)	-		Sequer	tial Count (periodsAbo	ve Min)		Vic	alations	ê	Ma	2222	~ 보 점
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>29%</th><th>0%</th><th>29%</th><th>29%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>29%</th><th>0%</th><th>29%</th><th>29%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>29%</th><th>0%</th><th>29%</th><th>29%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< th=""><th><min,>Max</min,></th><th>29%</th><th>0%</th><th>29%</th><th>29%</th></min<>	<min,>Max</min,>	29%	0%	29%	29%
Max Delta Down	0.50	675	559	116	675	559	15	14	- 11	11	10	10	116	116	197	0	197	197
Max Delta Up	1.00	-	83%	17%	100%	83%	34 mar			-		-	-			· · · · · ·		
Guide Curve	1110.00	1.000						Sequential C	ount (perio	ds between	Max & Min	1						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							15	14	11	11	10	10						

Table 8-12 (Fish Spawn Metrics Evaluation, Jocassee)

						IVE NAA	1		and the second sec						te in RC	ys > ox while Spawn	while ove	while
Start	Apr 01	1		Spawn (Da	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	4	Ma	222	828
End	May 15	Total	>Min	<min< td=""><td><max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>≪Min</td><td><min,>Max</min,></td><td>60%</td><td>0%</td><td>60%</td><td>60%</td></max<></td></max<></td></min<>	<max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>≪Min</td><td><min,>Max</min,></td><td>60%</td><td>0%</td><td>60%</td><td>60%</td></max<></td></max<>	>Min, <max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>≪Min</td><td><min,>Max</min,></td><td>60%</td><td>0%</td><td>60%</td><td>60%</td></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	≪Min	<min,>Max</min,>	60%	0%	60%	60%
Max Delta Down	0.50	675	675	0	675	675	15	15	15	15	15	15	0	0	408	0	408	408
Max Delta Up	1.00		100%	096	100%	100%	1.000	1.00.7		911-11	1.01		-		-			
Guide Curve	800.00					-	9	Sequential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	15	15	15	15						

						IVE ALT1 999 - 12/26	C. 7799-21		A STOLEN AND						te in FC	ys > bx while Spawn	while while ove	while work
Start	Apr 01			Spawn (Da	ys)			Sequen	tial Count (periodsAbo	we Min)		Vio	lations	Ē	NDa	AP PC	R L R
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>68%</th><th>0%</th><th>68%</th><th>68%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>68%</th><th>0%</th><th>68%</th><th>68%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>68%</th><th>0%</th><th>68%</th><th>68%</th></min<></th></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>68%</th><th>0%</th><th>68%</th><th>68%</th></min<>	<min,>Max</min,>	68%	0%	68%	68%
Max Deita Down	0.50	675	674	1	675	674	15	15	15	15	15	15	1	1	460	0	460	460
Max Delta Up	1.00		100%	0%	100%	100%												-
Guide Curve	800.008							Sequential O	ount (perio	ds between	Max & Mil	n)						
							>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	15	15	15	15						

						IVE ALT2 999 - 12/26)				-	te in RC	ys > ox while Spawn	while while ove	while ove
Start	Apr 01			Spawn (Da	ys)		1.000	Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	É	Ma	8889	R 2 4 7
End	May 15	Total	>Min	<min< th=""><th><max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>66%</th><th>0%</th><th>66%</th><th>66%</th></min<></th></max<></th></max.<></th></min<>	<max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>66%</th><th>0%</th><th>66%</th><th>66%</th></min<></th></max<></th></max.<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>66%</th><th>0%</th><th>66%</th><th>66%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>66%</th><th>0%</th><th>66%</th><th>66%</th></min<>	<min,>Max</min,>	66%	0%	66%	66%
Max Delta Down	0.50	675	675	0	675	675	15	15	15	15	15	15	0	0	444	0	444	444
Max Delta Up	1.00		100%	0%	100%	100%												
Guide Curve	800.00		-				1	equential C	ount (perio	ds betweer	Max & Mir	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	15	15	15	15						

		_				IVE ALTS 999 - 12/26	10000)			_		te in FC	ys > or while spawn	while ove	while while ove
Start	Apr 01			Spawn (Day	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	olations	Ē	N Da	AD FC	18 Y 4
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>33%</th><th>0%</th><th>33%</th><th>33%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>33%</th><th>0%</th><th>33%</th><th>33%</th></max<></th></max<>	>Min, <max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>33%</th><th>0%</th><th>33%</th><th>33%</th></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	⊲Min	<min,>Max</min,>	33%	0%	33%	33%
Max Delta Down	0.50	675	652	23	675	652	17	15	14	14	12	12	23	23	220	0	220	220
Max Delta Up	1.00		97%	3%	100%	97%				S			-	0			12 C	-
Guide Curve	800.008						5	equential C	ount (perio	ds between	Max & Mil	n)						
							> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
						1	17	15	14	14	12	12						

						IVE ALT4	ALC: NOT THE OWNER		A ALL ALL ALL ALL ALL ALL ALL ALL ALL A)					te in RC	ys > alidw x spawn	while while ove	while while ove
Start	Apr 01	2		Spawn (Da	ys)	1		Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	Ē	E Ma	2888	* 2 # F
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>65%</th><th>0%</th><th>65%</th><th>65%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>65%</th><th>0%</th><th>65%</th><th>65%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>65%</th><th>0%</th><th>65%</th><th>65%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	Min	<min,>Max</min,>	65%	0%	65%	65%
Max Delta Down	0.50	675	675	0	675	675	15	15	15	15	15	15	0	0	442	0	442	442
Max Delta Up	1.00		100%	096	100%	100%				1								
Guide Curve	800.00						3	Sequential C	ount (perio	ds between	Max & Mir	1)						
A COMPANY							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	15	15	15	15						

						IVE ALT: 999 - 12/26)					ie in FC	ys > or while Spawri	while while ove	while while ove
Start	Apr 01	ST. Day of	(Spawn (Day	(5)			Sequen	tial Count (periodsAbo	we Min)		Vic	lations	Æ	Ma	A P P P	R U de F
End	May 15	Total	>Min	<min< th=""><th><max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>55%</th><th>0%</th><th>55%</th><th>55%</th></min<></th></max<></th></max.<></th></min<>	<max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>55%</th><th>0%</th><th>55%</th><th>55%</th></min<></th></max<></th></max.<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>55%</th><th>0%</th><th>55%</th><th>55%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>55%</th><th>0%</th><th>55%</th><th>55%</th></min<>	<min,>Max</min,>	55%	0%	55%	55%
Max Delta Down	0.50	675	675	0	675	675	15	15	15	15	15	15	0	0	374	0	374	374
Max Delta Up	1.00	1000	100%	0%	100%	100%		1. Mar 1		1000	1000							
Guide Curve	800.00		-				S	equential C	ount (perio	ds betweer	n Max & Mil	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
	-						15	15	15	15	15	15						

						IVE ALTE)					te in FC	ys > x while spawn	while while ove	while we
Start	Apr 01	-		Spawn (Da	ys)			Sequen	tial Count (periodsAbo	we Min)		Vic	ations	Ē	E Ma	8424	2284
End	May 15	Total	>Min	<min< td=""><td><max< td=""><td>>Min,<max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>40%</td><td>0%</td><td>40%</td><td>40%</td></min<></td></max<></td></max<></td></min<>	<max< td=""><td>>Min,<max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>40%</td><td>0%</td><td>40%</td><td>40%</td></min<></td></max<></td></max<>	>Min, <max< td=""><td>> 7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>> 42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>40%</td><td>0%</td><td>40%</td><td>40%</td></min<></td></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< td=""><td><min,>Max</min,></td><td>40%</td><td>0%</td><td>40%</td><td>40%</td></min<>	<min,>Max</min,>	40%	0%	40%	40%
Max Delta Down	0.50	675	611	64	675	611	15	14	14	12	12	11	64	64	270	0	270	270
Max Delta Up	1.00	1	91%	996	100%	91%	-		-									
Guide Curve	800.00						5	equential C	ount (perio	ds betweer	Max & Mir	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
	_						15	14	14	12	12	11						

Table 8-13 (Fish Spawn Metrics Evaluation, Keowee)

						IVE NAA)					te in FC	ys > x while spawn	while ove	while while
Start	Apr 01			Spawn (Day	5			Sequen	tial Count (periodsAbo	we Min)		Vic	olations	Æ	Ma	888	* 2 ª .
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>1%</th><th>32%</th><th>31%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>1%</th><th>32%</th><th>31%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>1%</th><th>32%</th><th>31%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>32%</th><th>1%</th><th>32%</th><th>31%</th></min<>	<min,>Max</min,>	32%	1%	32%	31%
Max Delta Down	0.50	675	625	50	669	619	15	15	14	14	12	11	50	56	213	6	213	207
Max Delta Up	1.00		93%	7%	99%	92%				1						-	-	-
Guide Curve	660.00						5	Sequential C	ount (perio	ds betweer	1 Max & Mir	n)						
	-						> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	14	14	12	9						

						IVE ALT1 999 - 12/26	1000)					ie in FC	ys> x while spawn	while while ove	while while
Start	Apr 01	1	1 m - 1	Spawn (Day	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	ations	- In	N Da	AP 29	2 Y 4
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>41%</th><th>1%</th><th>41%</th><th>41%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>41%</th><th>1%</th><th>41%</th><th>41%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>41%</th><th>1%</th><th>41%</th><th>41%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>41%</th><th>1%</th><th>41%</th><th>41%</th></min<>	<min,>Max</min,>	41%	1%	41%	41%
Max Delta Down	0.50	675	623	52	669	617	15	15	15	15	11	9	52	58	280	6	280	274
Max Delta Up	1.00	and the second second	92%	8%	99%	91%	1		-		_			8		-	-	-
Guide Curve	660.00		-				2	Sequential O	ount (perio	ds between	Max & Mi	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							15	15	15	15	11	7						

						IVE ALT2 999 - 12/26)					ne im AC	ys > ox while Spawn	while while ove	while while ove
Start	Apr 01	2		Spawn (Day	/s)			Sequer	tial Count (periodsAbo	ve Min)		Vic	olations	Ě	Na Na	18 H 2 A	x 2 4 7
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>1%</th><th>37%</th><th>36%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>1%</th><th>37%</th><th>36%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>1%</th><th>37%</th><th>36%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	≪Min	<min,>Max</min,>	37%	1%	37%	36%
Max Delta Down	0.50	675	627	48	669	621	15	15	14	14	12	11	48	54	250	6	250	244
Max Delta Up	1.00		93%	7%	99%	92%								0 0 0				
Guide Curve	660.00						5	equential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
	_						15	15	14	14	12	9						

						IVE ALT3 999 - 12/26)				1	ie in FC	ys > or while spawn	while ove	while while
Start	Apr 01			Spawn (Day	5			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	Æ	Ma	F 7 4	a S de
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min.< th=""><th><min,>Max</min,></th><th>28%</th><th>1%</th><th>28%</th><th>27%</th></min.<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min.< th=""><th><min,>Max</min,></th><th>28%</th><th>1%</th><th>28%</th><th>27%</th></min.<></th></max<></th></max<>	>Min, <max< th=""><th>> 7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min.< th=""><th><min,>Max</min,></th><th>28%</th><th>1%</th><th>28%</th><th>27%</th></min.<></th></max<>	> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min.< th=""><th><min,>Max</min,></th><th>28%</th><th>1%</th><th>28%</th><th>27%</th></min.<>	<min,>Max</min,>	28%	1%	28%	27%
Max Delta Down	0.50	675	627	48	668	620	15	14	13	13	13	13	48	55	186	7	186	179
Max Delta Up	1.00		93%	7%	99%	92%							-					
Guide Curve	660.00		-		-	A	1	Sequential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	14	13	13	13	11						

						IVE ALT4 999 - 12/26)					le in RC	ys > x while spawn	while while ove	while we
Start	Apr 01	N		Spawn (Day	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	É	Na Na	2883	2 2 8 4
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>36%</th><th>1%</th><th>36%</th><th>35%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>36%</th><th>1%</th><th>36%</th><th>35%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>36%</th><th>1%</th><th>36%</th><th>35%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>36%</th><th>1%</th><th>36%</th><th>35%</th></min<>	<min,>Max</min,>	36%	1%	36%	35%
Max Delta Down	0.50	675	628	47	669	622	15	15	15	14	12	10	47	53	243	6	243	237
Max Delta Up	1.00		93%	796	99%	92%							_					
Guide Curve	660.00		-	1.1.1		-	3	Sequential C	ount (perio	ds between	Max & Mil	n)						
	1						> 7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	15	15	14	12	8						

						IVE ALT5 999 - 12/26)					ie in FC	vs> ox while spawn	while ove	while while
Start	Apr 01			Spawn (Day	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	plations	Ē.	Ma	AP LON	ap 12 %
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>30%</th><th>1%</th><th>30%</th><th>29%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>30%</th><th>1%</th><th>30%</th><th>29%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>30%</th><th>1%</th><th>30%</th><th>29%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>30%</th><th>1%</th><th>30%</th><th>29%</th></min<>	<min,>Max</min,>	30%	1%	30%	29%
Max Delta Down	0.50	675	605	70	667	597	15	14	13	13	12	9	70	78	203	8	203	195
Max Delta Up	1.00		90%	10%	99%	88%			-	1								-
Guide Curve	660.00						5	equential C	ount (perio	ds between	Max & Mi	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	14	13	13	12	7						

						IVE ALTE 999 - 12/26)					te in RC	ys > x while spawn	while ove	while while ove
Start	Apr 01		-	Spawn (Da	(5)			Sequen	tial Count (periodsAbo	ve Min)		Vic	plations	É	Ma	* Y 4	2 2 8 4
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>24%</th><th>1%</th><th>24%</th><th>23%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>24%</th><th>1%</th><th>24%</th><th>23%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>24%</th><th>1%</th><th>24%</th><th>23%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	⊲Min	<min,>Max</min,>	24%	1%	24%	23%
Max Delta Down	0.50	675	569	106	666	560	16	14	13	11	10	8	106	115	164	9	164	155
Max Delta Up	1.00		84%	16%	99%	83%	1.000			2								
Guide Curve	660.00				-		5	equential C	ount (perio	ds betweer	Max & Min	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							16	14	13	11	10	6						

Table 8-14 (Fish Spawn Metrics Evaluation, Hartwell)

						TIVE NA/ 999 - 12/26								_	le in FC	ys > ox while Spawn	ime in while ove	while ove
Start	Apr 01		A	Spawn (Da	ys)			Sequer	tial Count	periodsAbo	ve Min)		Vic	ations	E.	N N S	828	THE Y B
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	<min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<>	<min,>Max</min,>	32%	0%	32%	32%
Max Delta Down	0.50	675	602	73	672	599	16	16	12	11	10	8	73	76	218	3	218	215
Max Delta Up	1.00	1	89%	11%	100%	89%											-	-
Guide Curve	475.00						5	Sequential C	ount (perio	ds between	Max & Min	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	> 42 Days						
							16	16	12	11	10	7						

						TIVE ALT 999 - 12/26	1.000		2						ie in FG	ys > ex while spawn	while ove	while bye
Start	Apr 01	01 Spawn (Days) Sequential Count (periodsAbove Min) Violation														Ma	AP FC	S L L
End	May 15	Total	>Min	<min< td=""><td><max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>>21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>41%</td><td>0%</td><td>41%</td><td>41%</td></min<></td></max<></td></max<></td></min<>	<max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>>21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>41%</td><td>0%</td><td>41%</td><td>41%</td></min<></td></max<></td></max<>	>Min, <max< td=""><td>>7 Days</td><td>> 14 Days</td><td>>21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td><min< td=""><td><min,>Max</min,></td><td>41%</td><td>0%</td><td>41%</td><td>41%</td></min<></td></max<>	>7 Days	> 14 Days	>21 Days	> 28 Days	> 35 Days	>42 Days	<min< td=""><td><min,>Max</min,></td><td>41%</td><td>0%</td><td>41%</td><td>41%</td></min<>	<min,>Max</min,>	41%	0%	41%	41%
Max Delta Down	0.50	675	575	100	672	572	13	12	12	11	10	9	100	103	277	3	277	274
Max Delta Up	1.00		85%	15%	100%	85%												-
Guide Curve	475.00						5	Sequential C	ount (perio	ds between	Max & Mi	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							13	12	12	11	10	8						

						TIVE ALT 999 - 12/26	1								le in FC	ys > x while Spawn	while while ove	while while ove
Start	Apr 01	pr 01 Spawn (Days) Sequential Count (periodsAbove Min) Violatio														N Da	18 2 2 A	R L A
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>0%</th><th>37%</th><th>36%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>0%</th><th>37%</th><th>36%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th>≪Min</th><th><min,>Max</min,></th><th>37%</th><th>0%</th><th>37%</th><th>36%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	>42 Days	≪Min	<min,>Max</min,>	37%	0%	37%	36%
Max Delta Down	0.50	675	611	64	672	608	16	15	13	11	9	9	64	67	249	3	249	246
Max Delta Up	1.00		91%	9%	100%	90%			-	-								
Guide Curve	475.00						-	Sequential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							16	15	13	11	9	8						

						FIVE ALT			A DECEMBER OF						te in FC	ys > ix while Spawn	While While ove	while while ove
Start	Apr 01	pr 01 Spawn (Days) Sequential Count (periodsAbove Min) Violation														N N S	18 2 4 F	La P C La
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>31%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>31%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>31%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	> 42 Days	Min	<min,>Max</min,>	32%	0%	32%	31%
Max Delta Down	0.50	675	568	107	673	566	16	11	11	11	9	7	107	109	213	2	213	211
Max Delta Up	1.00		84%	16%	100%	84%				1000		-	-				-	-
Guide Curve	475.00						5	Sequential C	ount (perio	ds between	n Max & Mil	n)						
							>7 Days	>14 Days	>21 Days	> 28 Days	> 35 Days	>42 Days						
							17	11	11	11	9	5						

						FIVE ALT 999 - 12/26									te in FC	ys > x while spawn	while ove	while while
Start	Apr 01	2 0	-	Spawn (Da	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	É	Na Na	888	ARY RI
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>>14 Days</th><th>>21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>35%</th><th>0%</th><th>35%</th><th>34%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>>14 Days</th><th>>21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>35%</th><th>0%</th><th>35%</th><th>34%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>>14 Days</th><th>>21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>35%</th><th>0%</th><th>35%</th><th>34%</th></min<></th></max<>	>7 Days	>14 Days	>21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>35%</th><th>0%</th><th>35%</th><th>34%</th></min<>	<min,>Max</min,>	35%	0%	35%	34%
Max Delta Down	0.50	675	641	34	672	638	16	15	14	13	11	9	34	37	235	3	235	232
Max Delta Up	1.00		95%	5%	100%	95%			-									
Guide Curve	475.00						5	equential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	>42 Days						
				_			16	15	14	13	11	8						

						TIVE ALT 999 - 12/26									ie in FC	ys > ex while Spawn	while ove	while while ove
Start	Apr 01			Spawn (Da	ys)			Sequen	tial Count (periodsAbo	we Min)		Vic	lations	臣	NO	Ab FC	A D de L
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>37%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>37%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>>35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>37%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>37%</th></min<>	<min,>Max</min,>	38%	0%	38%	37%
Max Delta Down	0.50	675	592	83	672	589	19	14	11	10	10	7	83	86	255	3	255	252
Max Delta Up	1.00		88%	12%	100%	87%							-		-	-	-	
Guide Curve	475.00		_					Sequential C	ount (perio	ds betweer	Max & Mir)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	>35 Days	> 42 Days						
							19	14	11	10	10	6						

						TIVE ALT 999 - 12/26			Contraction of the second						te in RC	ys > ox while Spawn	while while ove	while while ove
Start	Apr 01	12		Spawn (Da	ys)	-		Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	E .	Ma	S S A A	R 2 8 4
End	May 15	Total	>Min	<min< th=""><th><max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>38%</th></max<></th></max.<></th></min<>	<max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>38%</th></max<></th></max.<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>> 42 Days</th><th>Min</th><th><min,>Max</min,></th><th>38%</th><th>0%</th><th>38%</th><th>38%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days	Min	<min,>Max</min,>	38%	0%	38%	38%
Max Delta Down	0.50	675	650	25	672	647	17	16	15	12	10	7	25	28	259	3	259	256
Max Delta Up	1.00	1	96%	496	100%	96%												
Guide Curve	475.00		-					equential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							17	16	15	12	9	7						

Table 8-15 (Fish Spawn Metrics Evaluation, Russell)

						VE NAA	A share a set of the			n)					ne in RC	ys > ux while Spawn	while ove	while ove
Start	Apr 01			Spawn (Da	(5)			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	Ē	E Ma	828	* 2 4
End	May 15	Total	>Min	<min< th=""><th><max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>28%</th><th>0%</th><th>28%</th><th>28%</th></min<></th></max<></th></max.<></th></min<>	<max.< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>28%</th><th>0%</th><th>28%</th><th>28%</th></min<></th></max<></th></max.<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>28%</th><th>0%</th><th>28%</th><th>28%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>28%</th><th>0%</th><th>28%</th><th>28%</th></min<>	<min,>Max</min,>	28%	0%	28%	28%
Max Delta Down	0.50	675	603	72	675	603	14	14	14	13	12	11	72	72	189	0	189	189
Max Delta Up	1.00		89%	11%	100%	89%				-						-		-
Guide Curve	330.00						3	Sequential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							14	14	14	13	12	11						

						VE ALT1 999 - 12/26	1			n)					ne in FC	vs > ox while spawn	while while ove	while while ove
Start	Apr 01			Spawn (Da	ys)		1	Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	E	Ma	Ab Ab	R L R
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>39%</th><th>0%</th><th>39%</th><th>39%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>39%</th><th>0%</th><th>39%</th><th>39%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>39%</th><th>0%</th><th>39%</th><th>39%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>39%</th><th>0%</th><th>39%</th><th>39%</th></min<>	<min,>Max</min,>	39%	0%	39%	39%
Max Delta Down	0.50	675	588	87	675	588	14	14	14	12	11	10	87	87	260	0	260	260
Max Delta Up	1.00	1200	87%	13%	100%	87%					1.00				-	S	-	
Guide Curve	330.00		-				9	Sequential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
	1						14	14	14	12	11	10						

						VE ALT2 999 - 12/26				n)					te in FC	rs > spawn	while ove	while while we
Start	Apr 01			Spawn (Da	(S)			Sequen	tial Count (periodsAbo	ve Min)		Vic	ations	Ę.	Poa Li	2224	* 2 4 4
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>32%</th><th>0%</th><th>32%</th><th>32%</th></min<>	<min,>Max</min,>	32%	0%	32%	32%
Max Delta Down	0.50	675	599	76	675	599	15	14	14	14	11	9	76	76	213	0	213	213
Max Delta Up	1.00	1.1.1.1	89%	11%	100%	89%										0		
Guide Curve	330.00		-				2	equential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							15	14	14	14	11	9						

1						VE ALT3 999 - 12/26	2.777 DEC.			n)					ie in FC	ys > ex while spawn	while while ove	while while ove
Start	Apr 01	Apr 01 Spawn (Days) Sequential Count (periodsAbove Min) Violation														NDa	Ab Ab	R L L R
End	May 15	Total	>Min	<min< td=""><td><max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>Min</td><td><min,>Max</min,></td><td>16%</td><td>0%</td><td>16%</td><td>16%</td></max<></td></max<></td></min<>	<max< td=""><td>>Min,<max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>Min</td><td><min,>Max</min,></td><td>16%</td><td>0%</td><td>16%</td><td>16%</td></max<></td></max<>	>Min, <max< td=""><td>>7 Days</td><td>> 14 Days</td><td>> 21 Days</td><td>> 28 Days</td><td>> 35 Days</td><td>>42 Days</td><td>Min</td><td><min,>Max</min,></td><td>16%</td><td>0%</td><td>16%</td><td>16%</td></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	Min	<min,>Max</min,>	16%	0%	16%	16%
Max Delta Down	0.50	675	435	240	675	435	16	11	9	7	5	5	240	240	107	0	107	107
Max Delta Up	1.00		64%	36%	100%	64%										-		-
Guide Curve	330.00			1.1.1			*	Sequential C	ount (perio	ds between	Max & Mir	n)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							16	11	9	7	5	5						

						VE ALT4	The state of the			n)					te in RC	ys > x while Spawn	while ove	while
Start	Apr 01			Spawn (Day	(5)			Sequen	tial Count (periodsAbo	ve Min)		Vic	lations	Ē	Ma Na	828	2281
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>31%</th><th>0%</th><th>31%</th><th>31%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>31%</th><th>0%</th><th>31%</th><th>31%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>⊲Min</th><th><min,>Max</min,></th><th>31%</th><th>0%</th><th>31%</th><th>31%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	⊲Min	<min,>Max</min,>	31%	0%	31%	31%
Max Delta Down	0.50	675	587	88	675	587	15	13	13	12	11	11	88	88	208	0	208	208
Max Delta Up	1.00		87%	13%	100%	87%												
Guide Curve	330.00			-	-		5	equential C	ount (perio	ds between	Max & Mir	1)						
	1						>7 Days	>14 Days	> 21 Days	> 28 Days	> 35 Days	> 42 Days						
							15	13	13	12	11	11						

						VE ALT5 999 - 12/26				n)					ie in FC	ys > ox while spawn	while ove	while while
Start	Apr 01			Spawn (Da	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	plations	₽.	Pa U	Ab PC	THE YEAR
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>23%</th><th>0%</th><th>23%</th><th>23%</th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>23%</th><th>0%</th><th>23%</th><th>23%</th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th>Min</th><th><min,>Max</min,></th><th>23%</th><th>0%</th><th>23%</th><th>23%</th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	Min	<min,>Max</min,>	23%	0%	23%	23%
Max Delta Down	0.50	675	623	52	675	623	16	15	15	13	11	10	52	52	153	0	153	153
Max Delta Up	1.00	1000	92%	8%	100%	92%										-		-
Guide Curve	330.00			1000			5	equential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							16	15	15	13	11	10						

	ind May 15 Total >Min <min <max="">Min, >7 Days > 14 Days > 21 Days > 28 Days > 35 Days > 42 Days <min <="" td=""></min></min>															ys > x while spawn	while ove	while
Start	Apr 01			Spawn (Da	ys)			Sequen	tial Count (periodsAbo	ve Min)		Vic	olations	Ę.	Ma Na	222	え 2 日、
End	May 15	Total	>Min	<min< th=""><th><max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>15%</th><th>0%</th><th>15%</th><th>15%</th></min<></th></max<></th></max<></th></min<>	<max< th=""><th>>Min,<max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>15%</th><th>0%</th><th>15%</th><th>15%</th></min<></th></max<></th></max<>	>Min, <max< th=""><th>>7 Days</th><th>> 14 Days</th><th>> 21 Days</th><th>> 28 Days</th><th>> 35 Days</th><th>>42 Days</th><th><min< th=""><th><min,>Max</min,></th><th>15%</th><th>0%</th><th>15%</th><th>15%</th></min<></th></max<>	>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days	<min< th=""><th><min,>Max</min,></th><th>15%</th><th>0%</th><th>15%</th><th>15%</th></min<>	<min,>Max</min,>	15%	0%	15%	15%
Max Delta Down	0.50	675	551	124	675	551	16	15	12	10	8	8	124	124	100	0	100	100
Max Delta Up	1.00		82%	18%	100%	82%		-	2-22-		-		_					
Guide Curve	330.00		-		-	-	3	sequential C	ount (perio	ds between	Max & Mir	1)						
							>7 Days	> 14 Days	> 21 Days	> 28 Days	> 35 Days	>42 Days						
							16	15	12	10	8	8						

Table 8-16 (Fish Spawn Metrics Evaluation, Thurmond)

-				ALT	TERNA'	TIVE NA	AA (She	oals Flo	w)			ys nan	ys	ys	vs ner	54 -
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	(4.99) Ye	ars			er TI	han ba	han ba	erTl	en Da
End	May 15									eat	T SS T	T SS T	a wi	twe avr		
Max Limit	10000				Sequ	ential Coun	t Periods (I	Days)		Sp	MILE	Sp.	N G Sp	Na Sp		
Min Limit	1500	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	8%	0%	92%	100%	92%
-	Periods	13	13	12	12	12	12	11	8	8	8	52	0	623	675	623

				ALT	ERNAT	TIVE AL	.T1 (Sh	oals Flo	ow)			ys nan	54	sk	vs nan	¥ =
Start End	Apr 01 May 15			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			wn Da ater TI k	wn Dar s Than	wn Da s Than k	wn Da ater T1	wn Da ween x & Mi
Max Limit	10000				Sequ	ential Cour	t Periods (I	Days)				Spa Gre Man	Spa Less Min	Spar Less	Gre Min	Spar Bet Man
Min Limit	1500	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	9%	0%	91%	100%	91%
	Periods	12	12	11	11	11	11	9	9	8	8	60	0	615	675	615

		-		ALT	TERNAT	TIVE AL	T2 (Sh	oals Flo	ow)			ys Jan	ys	ys	ys Jan	ys n
Start	Apr 01			01/	01/1999	- 12/26/		er Th	han han	han han	er T	n Da				
End	May 15											awr eat	T SS T	T SS T	eat	awr twe sx 8
Max Limit	10000	1			Sequ	ential Coun	t Periods (I	Days)				NG Sp	Sp	Sp. Le: Ma	Sp Riv	Sp Ma
Min Limit	1500	>1 Days	>5 Days	> 10 Days	>15 Days	>20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	9%	0%	91%	100%	91%
	Periods	13	13	12	12	12	12	11	9	8	8	60	0	615	675	615

				ALT	ERNAT	TIVE AL	.T3 (Sh	oals Flo	w)			ys han	45	ys	ys han	ys n
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	(4.99) Ye	ars			er TI	han Da	han ba	n Da	n Da
End	May 15								a wi	T SI	T ST XE	eat n	twe avr			
Max Limit	10000	1			Sequ	ential Cour	nt Periods (I		No Sp	Mi	M Le Sp	Mi Gr	Sp. Ma			
Min Limit	1500	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	6%	0%	94%	99%	94%
	Periods	14	13	12	12	12	- 11 -	10	10	9	8	41	0	634	666	634

				ALT	TERNAT	TIVE AL	.T4 (Sh	oals Flo	ow)			ys nan	Y5	ks	vs. nan	ys n
Start	Apr 01			01/		er Th	n Da	n Da	n Da	n Da een & Mi						
End	May 15										-	eat	IND L	XI	awi n	awi X
Max Limit	10000		-		Sequ	ential Cour	nt Periods (I	Days)	-			Sp	Spi	Spi	Mi Gr	Sp. Ma
Min Limit	1500	>1 Days	>5 Days	>10 Days	>15 Days	>20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	9%	0%	91%	100%	91%
	Periods	14	14	12	12	12	12	11	10	7	7	59	0	616	674	616

		/		ALT	TERNAT	TIVE AL	.T5 (Sh	oals Flo	ow)			ys han	Y5	ys	vs han	5 c
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ears			In Dater T	m Da Than	In Da	In Da	een 8. Mi
End	May 15	6 C										av ax	Ne SS	av av	ea e	ax av
Max Limit	10000				Sequ	ential Cour	nt Periods (I	Days)				N Gr	Mi Pa	Z LE S	3 5 Z	N B S
Min Limit	1500	>1 Days	> 5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	7%	0%	93%	100%	93%
-	Periods	14	14	14	13	13	13	12	12	11	11	46	0	629	675	629

1				ALT	FERNAT	TIVE AL	T6 (Sh	oals Flo	ow)			ys nan	45	As	ys	SÅ E
Start	Apr 01			01/	01/1999		er T	han han	han han	er T	en Da					
End	May 15											eat	T S T	IX I	e at	awr twe
Max Limit	10000	L	_		Sequ	ential Coun	nt Periods (I	Days)	_			Spie	Spi	Spic	Spi	Spi
Min Limit	1500	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	4%	0%	96%	100%	96%
	Periods	14	14	14	13	13	13	12	12	12	12	28	0	647	675	647

Table 8-17 (Fish Spawn Metrics Evaluation, Shoals)

				ALT	ERNAT	IVE NA	A (Aug	usta Fl	ow)			ys Nan	\$	5	ys nan	54 0
Start End Max Limit	Apr 01 May 15 10000			01/		Spawn Da Greater Th Max	Spawn Da Less Than Min	Spawn Da Less Than Max	Spawn Da Greater Th Min	Spawn Da Between Max & Mi						
Min Limit	3600	>1 Days	> 5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	15%	0%	85%	96%	85%
	Periods	19	13	9	9	8	7	6	6	6	6	101	0	574	649	574

								usta Fl				avs Than	she	ske	ays Than	ays
Start End	Apr 01 May 15			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ears			eater T	s Than	s Thar x	eater 1	wwn D. ween ox & M
Max Limit	10000				Sequ	ential Cour	t Periods (I	Days)				Spa Gre	Spa	Spa Les Ma	Spe Spe	Spa Bel Ma
Min Limit	3600	>1 Days	> 5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	18%	1%	82%	96%	82%
1	Periods	19	9	5	5	5	5	4	4	4	4	123	6	552	645	552

Start	Apr 01				ERNAT		Days er Than	Days nan	Days	Days er Than	Days en Min					
End Max Limit	May 15 10000					ential Coun			Spawn Greate Max	Spawn Less Th Min	Spawn Less Th Max	Spawn Greate Min	Spawn Betwe Max &			
Min Limit	3600	>1 Days	>5 Days	>10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	16%	0%	84%	95%	84%
	Periods	17	12	9	9	8	8	6	6	6	6	111	0	564	640	564

				ALT	ERNAT	IVE ALT	T3 (Aug	usta Fl	low)			ys han	ys	ys	ys han	sh u
Start End				01/	01/1999	- 12/26/	2013 , (1	4.99) Ye	ears			aven Da eater T	s Than	s Than s	aven Da Bater T	twn Da tween ox & Mi
Max Limit	10000				Sequ	ential Cour	t Periods (I	Days)				Spa Gre	Spa Miles	Spa Ma	Spa Gre	Spa Bet Ma
Min Limit	3600	>1 Days	> 5 Days	> 10 Days	> 15 Days	>20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	11%	0%	89%	94%	89%
	Periods	20	14	11	10	9	8	6	5	3	3	77	0	598	632	598

				ALT	ERNAT	IVE AL	T4 (Aug	gusta Fl	low)			rs Ian	42	2	ys Ian	5 0
Start	Apr 01			01/		er T	han	han	er The	n Da						
End	May 15											awr eat	T SS T	T SE T	awr eat	awr twe
Max Limit	10000				Sequ	ential Cour	nt Periods (I	Days)				Na Sp	Sp	Sp.	d S E	Sp Be Ma
Min Limit	3600	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	17%	0%	83%	94%	83%
-	Periods	19	11	7	6	5	5	4	4	4	4	112	0	563	632	563

				ALT	ERNAT	IVE ALT	rs (Aug	usta Fl	ow)		-	ys han	4s	4s	ys han	54 5
Start	Apr 01			01/		er Th	han han	han	er TI	n Dar						
End	May 15											a wr eate	S T	T ST	awr	awr twe twe
Max Limit	10000				Sequ	ential Coun	t Periods (I	Days)		-		Spa Gre	Spe	Spi Les	Min Spi	Spe Bel
Min Limit	3600	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	12%	0%	88%	99%	88%
	Periods	17	12	11	10	8	8	8	8	6	6	83	0	592	667	592

Start End	Apr 01 May 15				/01/1999		2013 , (1	gusta Fl 14.99) Ye				pawn Days ireater Than Aax	pawn Days ess Than Ain	pawn Days ess Than Aax	pawn Days ireater Than Ain	pawn Days etween Aax & Min
IVIAX LIMIL	10000			And a state of the	Sequ	iential cour	it Perious (I	Days)		A.A. 1773 117		N 0 2	2 2 2	N J Z	N 0 2	S B S
Min Limit	3600	>1 Days	> 5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	> 40 Days	>44 Days	10%	0%	90%	98%	90%
	Periods	25	18	11	10	9	9	8	6	6	6	66	0	609	659	609

Table 8-18 (Fish Spawn Metrics Evaluation, Augusta)

								esboro				han	ski	ys	lys han	sk
Start End	Apr 01 May 15			01/		wn Da ater T x	wn Da s Than	wn Da s Than x	wn Da ater T	wn Da ween x & M						
Max Limit	12000			_	Sequ	uential Cour	t Periods (Days)		Spa Gre Ma	Spa Les	Spa Les Ma	Spa Gre Mir	Spa Bet Ma		
Min Limit	4000	>1 Days	> 5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 44 Days	11%	10%	89%	90%	89%			
	Periods	25	18	14	12	11	8	7	6	6	4	75	70	600	605	600

Start End					NATIVE 01/1999							wn Days eater Than x	wn Days s Than	wn Days s Than x	wn Days eater Than	wn Days ween x & Min
Max Limit	12000				Sequ	ential Cour	nt Periods (I		Spa Gre	Spa Spa	Spa Les Ma	Spe Spe	Spe Spe			
Min Limit	4000	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	13%	12%	87%	88%	87%
1	Periods	23	15	12	11	10	8	7	6	5	3	86	79	589	596	589

				ALTER	NATIVI	E ALT2	(Wayn	esboro	Flow)			ys han	sk	ski	han	ys n
Start	Apr 01			01/	01/1999		er T	han ba	han han	erTe	en Da					
End	May 15											awr eat	T SS T	T SS T	eat	awr twe ax 8
Max Limit	12000			_	Sequ	ential Coun	t Periods (I	Days)	_			A S N	Mi Sp	N. Sp	d 5 Z	N: Be
Min Limit	4000	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	12%	13%	88%	87%	88%
	Periods	22	17	15	13	11	8	6	5	5	3	81	89	594	586	594

	_					E ALT3						ays Than	ske	ske	ays Than	ays in
Start				01/		n D ter	Thar D	Thar	n D	n D & M						
End	May 15										_	av av	No S C	A SS XE	ea c	aw two
Max Limit	12000				Sequ	ential Coun	t Periods (I	Days)				Spi Co	Mi Pape	Na Spi	Spi Gr	Na Sp
Min Limit	4000	>1 Days	> 5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	8%	12%	92%	88%	92%
	Periods	17	13	13	13	12	10	10	10	9	9	55	81	620	594	620

				ALTER	NATIVI	EALT4	(Wayn	esboro	Flow)		-	ys Jan	4s	¥5	ys nan	ys n
Start	Apr 01			er T	han	han han	er The	n Da								
End	May 15											awr eat	T SS T	T SS T	awr eat	awr twe
Max Limit	12000				Sequ	ential Cour	nt Periods (I	Days)				Na Sp	Sp	Sp.	3 5 X	Sp Be Ma
Min Limit	4000	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	12%	15%	88%	85%	88%
-	Periods	21	15	15	12	11	7	5	4	4	3	79	101	596	574	596

				ALTER	NATIVI	E ALT5	(Wayn	esboro	Flow)	-	-	ys han	4s	ys	ys han	sk u
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			er TI	han Da	han	er T	en Da
End	May 15											a wr eate	T ST	T ST	awr	awr twe twe
Max Limit	12000				Sequ	ential Cour	t Periods (I	Days)			-	Spa Gre Ma	Mil	Spi Les	N Gr	Spe Bel
Min Limit	4000	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	9%	12%	91%	88%	91%
	Periods	17	15	13	12	12	10	7	7	7	5	60	83	615	592	615

Start End	Apr 01 May 15	1					-	esboro 14.99) Ye				wn Days ater Than k	wn Days . Than	wn Days Than	wn Days ater Than	wn Days ween «& Min
Max Limit	12000	-			Sequ	ential Cour	t Periods (I	Days)				Spa Gre Ma	Spa Les	Spa Les	Spa Gre Mir	Spa Bet Ma
Min Limit	4000	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	7%	12%	93%	88%	93%
	Periods	20	15	13	12	11	8	8	7	7	5	45	82	630	593	630

Table 8-19 (Fish Spawn Metrics Evaluation, Waynesboro)

				ALTE	RNATI	VE NAA	(Mill	naven F	low)			ys han	y5	45	ys han	ys n
Start End	Apr 01 May 15			01/	01/1999		iwn Da aater Tl x	s Than	s Than x	wn Da ater Tl	ween x & Mi					
Max Limit	15000				Sequ	ential Cour	t Periods (I	Days)			_	Spa Gre Ma	Spa	Spa Les Ma	Spa Gre	Spa Bet Ma
Min Limit	4500	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	8%	4%	92%	96%	92%
	Periods	16	15	13	12	12	11	11	9	8	8	55	24	620	651	620

-				ALTE	RNATI	VE ALT:	1 (Mill	naven l	low)			ys han	45	vs	ys hăn	ys n
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	(4.99) Ye	ars			er T	han ba	han Da	erT	n Da
End	May 15											awr awr	T ss T	T SS T	awi n	awi twe
Max Limit	15000				Sequ	iential Cour	t Periods (I	Days)				N Gr	Mi Spi	No Spi	N G S	Sp. Sp.
Min Limit	4500	>1 Days	> 5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	11%	4%	89%	96%	89%
	Periods	16	14	13	12	12	10	10	9	8	7	72	26	603	649	603

- L				ALTE	RNATI	VE ALT	2 (Milli	naven F	low)			ys nan	ys	sA	ys Năn	ys n
Start End	Apr 01 May 15			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			awn Da eater Th sx	awn Da ss Than n	awn Da ss Than	awn Da eater Th	awn Da tween ax & Mi
Max Limit	15000				Sequ	iential Cour	t Periods (I	Days)				No Sp	Sp	Sp	d'S N	Sp Be Ma
Min Limit	4500	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	10%	0%	90%	100%	90%
	Periods	14	14	14	13	13	12	11	8	8	8	70	2	605	673	605

				ALTE	RNATI	VE ALT	3 (Milli	naven F	low)			ys han	ys .	sy	ys han	sy e
Start End	Apr 01 May 15			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ears			wn Da ater Tl	wn Da	wn Da Than	wn Da ater TI	wn Da ween < & Mi
Max Limit	15000				Sequ	ential Coun	t Periods (I	Days)				Spa Gre Max	Spa Less Min	Spa Less Max	Spa Gre Min	Spa Beth Max
Min Limit	4500	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	7%	2%	93%	98%	93%
	Periods	21	18	15	13	13	12	11	10	10	10	49	13	626	662	626

				ALTE	RNATI	VE ALT	4 (Milli	naven f	Flow)		1	rs Ian	12	\$	ran ian	2 2
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ears			er Th	han han	han	er The	n Da
End	May 15											awr	avvi ss T	T SS T	awr	awi twe
Max Limit	15000				Sequ	ential Cour	nt Periods (I	Days)	-			ds S N	Mi Sp	Sp Le	S S N	Na Sp
Min Limit	4500	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	10%	3%	90%	97%	90%
	Periods	14	14	13	13	12	11	11	9	9	9	68	20	607	655	607

				ALTE	RNATI	VE ALT	5 (Milli	haven l	low)	_		ys han	45	4s	ys hăn	54 1
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			er Ti	han	han	er T	en Da
End	May 15											awr	I S T	S T	awr	twe by 8
Max Limit	15000				Sequ	ential Coun	t Periods (I	Days)				Spa Spa	Spi Mi	Ma Na	M Gre	Bel
Min Limit	4500	>1 Days	> 5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	8%	3%	92%	97%	92%
	Periods	15	15	14	14	14	13	12	10	10	10	55	19	620	656	620

								and an other					-			-
1				ALTE	RNATI	VE ALT	6 (Milli	haven F	low)			ys Tan	22	s	As used	5× c
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			er T	han	han	er T	n Da
End	May 15											awr eat	T T S	TX T	eat	awr twe ax 8
Max Limit	15000				Sequ	iential Cour	nt Periods (I	Days)				Sp	Spi	Spic	Spi	S po Bel
Min Limit	4500	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	5%	1%	95%	99%	95%
	Periods	16	15	14	14	14	12	12	12	12	12	34	7	641	668	641

Table 8-20 (Fish Spawn Metrics Evaluation, Millhaven)

				A	LTERN/	ATIVE N	IAA (Cl	yo Flov	v)			ys han	45	ys	ys	s i
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	(4.99) Ye	ars			er TI	han	han	er TI	en Da
End	May 15											eatur	awr ss T	T SS T	eat	awr twe
Max Limit	35000			-	Sequ	ential Coun	t Periods (I	Days)			-	Spa Spa	Spa	Spa	N Gr	Spie
Min Limit	5000	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	2%	5%	98%	95%	98%
	Periods	17	16	15	15	15	12	11	11	11	10	13	36	662	639	662

				AL	TERNA	TIVE A	LT1 (C	yo Flor	w)			ys han	45	45	ys hān	ys n
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	4.99) Ye	ars			erT	han ba	han	er T	Ni Da
End	May 15											awr eat	T SS T	awr ss T	eatur	awr twe ax 8
Max Limit	35000				Sequ	ential Coun	t Periods (I	Days)				S G Z	Z L S	Z L S	4 5 X	A Be
Min Limit	5000	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	2%	5%	98%	95%	98%
	Periods	18	17	15	15	15	12	11	11	11	10	13	32	662	643	662

				AL	TERNA	TIVE A	LT2 (C	lyo Flov	N)			ys Jan	ys	vs.	ys nan	4s
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			er T	han	han han	erT	n Da
End	May 15											eat	T ST L	T SI	eat	awr twe twe
Max Limit	35000	1		-	Sequ	iential Cour	nt Periods (I	Days)				Sp Gr Ma	Spi	Sp: Les Ma	Gr	Sp Bel Ma
Min Limit	5000	>1 Days	>5 Days	> 10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	2%	4%	98%	96%	98%
	Periods	15	15	15	15	14	13	12	12	12	11	13	28	662	647	662
	Periods	15	Б	15	15	14	13	12	12	12	п	13	28	662	647	

				AL	TERNA	TIVE A	LT3 (C	yo Flor	w)			ys han	4s	sy	ys han	ys n
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ears			n Da er Tl	n Da Than	n Da	n Da	n Da een & Mi
End	May 15											eat	Me u	We St	awin a	two ax 8
Max Limit	35000				Sequ	ential Cour	t Periods (I	Days)				Ma Sp	Mi Co	Ma	N G S	Sp.
Min Limit	5000	>1 Days	>5 Days	> 10 Days	> 15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	1%	7%	99%	93%	99%
	Periods	16	15	14	14	14	13	12	11	11	11	9	46	666	629	666

				A	TERNA	TIVE A	LT4 (C	yo Flo	w)		1	ys nan	Y5	\$Å	vs	sy c
Start	Apr 01			erThe	han han	han	er T	n Da								
End	May 15											awr	awr	T SE	eat	awir twee
Max Limit	35000	· · · · · · · · · · · · · · · · · · ·	_		Sequ	ential Cour	nt Periods (I	Days)	_			d'S N	Sp	Ma	d'S N	Na Be
Min Limit	5000	>1 Days	> 5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	2%	9%	98%	91%	98%
	Periods	16	15	14	14	14	13	11	10	10	10	13	58	662	617	662

				A	TERNA	ATIVE A	LT5 (C	lyo Flo	N)		6	ys han	Y5	4s	ys han	ys n
Start	Apr 01			01/	01/1999	- 12/26/	2013 , (1	14.99) Ye	ars			er Tl	han ba	han han	er TI	n Da
End	May 15											e ati	T SI L	awr ss T sx	awr	twe twe ax 8
Max Limit	35000				Sequ	iential Coun	t Periods (I	Days)		-		Sp. Gr	Mi Spi	N Les	N G S	Sp.
Min Limit	5000	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	> 44 Days	2%	3%	98%	97%	98%
	Periods	17	16	16	15	15	13	12	11	11	11	12	21	663	654	663

Start End	Apr 01 May 15							lyo Flor 14.99) Ye				wn Days ater Than x	wn Days 5 Than	wn Days s Than x	wn Days ater Than	wn Days ween x & Min
Max Limit	35000				Sequ	iential Cour	t Periods (I	Days)	_			Spa Gre Ma	Spa Les	Spa Les Ma	Spa Gre Mir	Spa Bet Ma
Min Limit	5000	>1 Days	>5 Days	>10 Days	>15 Days	> 20 Days	> 25 Days	> 30 Days	> 35 Days	>40 Days	>44 Days	1%	0%	99%	100%	99%
	Periods	16	16	15	15	15	15	14	14	13	13	5	3	670	672	670

Table 8-21 (Fish Spawn Metrics Evaluation, Clyo)

Tables 8-22 and 8-23 summarize pool elevation metric covering Beach and Ramp availability.

										ALL F	RAM	IPS									
									Num	per of lane-day	s wł	hen lane is not u	isea	ble							
			Available						01/01/1999 - 12/26/2013 (5473 Days)												
	Lanes	days	Lane Day	ys						NAA		ALT1		ALT2		ALT3		ALT4	ALT5		ALT6
Hartwell	111	5473	607503	3	Num	nber of days ran	ip is not	t unuseable		69255		49642		64925		77684		59683	81807		171852
						% tin	ne ramp	s unusable		11.40%		8.17%		10.69%		12.79%		9.82%	13.47%		28.29%
						Delta % tin	ne ramp	s unusable				3.23%		0.71%		-1.39%		1.58%	-2.07%		-16.89%
									Numb	per of lane-day	s wł	hen lane is not u	isea								
		Available								01/01/1999 - 12/26/2013 (5473 Days)											
	Lanes	days	Lane Day							NAA		ALT1		ALT2		ALT3		ALT4	ALT5		ALT6
Thurmond	99	5473	541827	7	N	umber of days				28722		13205		25546		31514		20809	38268		111174
	% time ram							5.30%		2.44%		4.71%		5.82%		3.84%	7.06%		20.52%		
						Delta % tin	ne ramp	s unusable				2.86%		0.59%		-0.52%		1.46%	-1.76%		-15.22%
BoatRamp					Value																
Average V	sitation	Annual	Daily		ay)		Years		Num		en la	ane is not useak	le								
Hartwell		2318568	6352		8.89		15	5400		NAA		ALT1		ALT2		ALT3		ALT4	ALT5		ALT6
Thurmond		1950967	5345	\$	8.89			Hartwell		616		441		577		691		531	727		1528
								Thurmond		286		132		255		314		207	381		1108
												004045000		004045000		004045000					
						Potential Re	venue	Hartwell	\$	304,945,686	\$	304,945,686	\$	304,945,686	\$	304,945,686		304,945,686	\$ 304,945,6		304,945,68
								Thurmond	\$	256,597,594	\$	256,597,594	\$	256,597,594	\$	256,597,594	\$ 2	256,597,594	\$ 256,597,5	94 \$	256,597,594
								1 In the set		37.134.114		27.053.080		34,889,191		41.666.711		32,183,679	\$ 43.624.0		04.445.50
				Pot	tential	Missed oppo	rtunity	Hartwell	2	37,134,114			s	34,889,191	\$ \$	21,049,076	\$	32,183,679	\$ 43,624,0 \$ 24,773,1		94,445,563
								Thurmond	2	19,275,300	2	0,994,701	2	17,255,044	\$	21,049,076	\$	13,962,454	\$ 24,775,1	00 3	60,502,743
								Hartwell		267.811.572		277.892.606		270,056,495	\$	263.278.975		272.762.007	\$ 261,321,6	04 6	210,500,123
			E	Estima	ated R	ecreational E	enefit	Thurmond		267,811,572		247.602.833	\$	239.341.750		263,278,975			\$ 261,321,6		
								Inurmona	2	237,322,214	2	247,602,833	2	239,341,750	\$	235,548,518	<u>ک</u>	242,635,140	\$ 231,824,4	29 3	190,014,85
								Hartwell				\$10,081,034		\$2.244.923		(\$4,532,597)		\$4.950.435	(\$6,489.9	741	(\$57,311,44
					Di	ifference from	1 NAA	Thurmond				\$10,081,034		\$2,019,536		(\$1,773,696)		\$5,312,925	(\$5,497,7		(\$47,307,36)
								mannona				\$10,200,019		92,019,000		(#1,773,090)		\$3,312,823	(\$3,487,7	00)	1. 1. 1.
						0.00	bined					\$20.361.652		\$4,264,459		(\$6.306.293)		610.263.360	(\$11,987.7		(\$104,618,812

								MARIN	AS O	NLY									
							Numb	ber of lane-day	rs wh	en lane is not ι	iseal								
	Available								01/01/1999 - 12/26/2013 (5473 Days)										
	Lanes	days	Lane Day	8				NAA		ALT1		ALT2	ALT3			.T4	ALT5		ALT6
Hartwell	6	5473	32838	Nur	Number of days ramp is not unuseable		e 0			0		0	0		0		65		3590
					% time ramp	s unusable		0.00%		0.00%		0.00%	0.00%		0.0	0%	0.20%		10.93%
					Delta % time ramp	s unusable				0.00%		0.00%	0.00%		0.0	0%	-0.20%		-10.93%
							Manager			en lane is not u									
			Available				Nume	per of lane-day	swn	en lane is not t	iseai		12/26/2013	(2472)	Darra)				
	Lanes	davs		Lane Days		ŀ		NAA	<u> </u>	ALT1	ALT2		9 - 12/26/2013 (5473) ALT3			.T4	ALT5		ALT6
Thurmond	Lanes	5473	21892		Number of days ramp is	unungehig	<u> </u>	28		0		0	68			0	340	_	4293
murmond	4	5475	21092	IN IN	% time ramp			0.13%		0.00%		0.00%	0.31%			0%	1.55%	_	4293
					Delta % time ramp			0.13%		0.13%		0.13%	-0.18%			3%	-1.43%	-	-19.48%
					Delta % time ramp	is unusable				0.13%		0.13%	-0.10%)	0.1	3%	-1.43%		-19.40%
Hartwell Thurmond		2318568 1950967	343 216	\$ 8.89 \$ 8.89	15	5400 Hartwell		NAA 0		ALT1 0		ALT2 0	ALT3			.T4 0	ALT5 65	_	ALT6 3591
Hartwell		2318568	343	\$ 8.89	15	5400		NAA		ALT1		ALT2	ALT3		AI	.T4	ALT5		ALT6
Ihurmond		1950967	216	\$ 8.89				28		0			68			0	65 340		4295
						Thurmond		28		U		0	68			U	340		4295
				-		Hartwell	\$	16,483,551	\$	16,483,551	\$	16,483,551	\$ 16,48	3 551	\$ 16	483,551	\$ 16,483.	551 \$	16,483,55
					Potential Revenue	Thurmond		10.367.580		10.367.580		10,367,580					\$ 10.367.		
-							•	10,001,000	~	10,001,000	*	10,007,000	• 10,00	,000	• 10	,001,000	•		10,001,00
				Detential	Missed experturity	Hartwell	\$		\$	-	\$	-	\$	-	\$	-	\$ 33,	081 \$	2,180,28
				Potential	Missed opportunity	Thurmond	\$	13,444	\$	-	\$	-	\$ 33	2,651	\$	-	\$ 163,	253 \$	2,061,30
								16,483,551	S	16,483,551	\$	16,483,551	\$ 16,483	3,551	\$ 16	483,551	\$ 16,450,4	\$70 \$	14,303,26
				ctimated E	Decreational Repetit	Hartwell	2												8.306.27
			E	stimated F	Recreational Benefit	Hartwell Thurmond		10,354,135	\$	10,367,580	\$	10,367,580	\$ 10,334	4,929	\$ 10	,367,580	\$ 10,204,3	327 \$	0,300,27
			E	stimated F	Recreational Benefit			10,354,135		26,851,130	\$ \$	10,367,580 26,851,130					\$ 10,204, \$ 26,654,		
			E			Thurmond	s s	10,354,135					\$ 26,81	3,480 \$0	\$ 26	851,130 \$0	\$ 26,654, (\$33,	796 \$ 081)	
			E		Recreational Benefit	Thurmond	S S	10,354,135		26,851,130		26,851,130	\$ 26,81	3,480	\$ 26	851,130	\$ 26,654,	796 \$ 081)	22,609,53
			E			Thurmond Hartwell	S S	10,354,135		26,851,130 \$0		26,851,130 \$0	\$ 26,81	3,480 \$0	\$ 26	851,130 \$0	\$ 26,654, (\$33,	796 \$ 081) 309)	22,609,53 (\$2,180,28

Table 8-22 (Boat Ramp Access Metrics Evaluation)

			Be	ach Impacts - Davs clo	sed due to elevation									
	(01/01/1999 - 12/26/2013)													
	Beach													
	Closure		Alternative											
	Elevation	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6						
HARTWELL														
	654	1546 Days	728 Days	1409 Days	1694 Days	1080 Days	1764 Days	2919 Days						
23 Beaches		35558 Beach*Days	16744 Beach*Days	32407 Beach*Days	38962 Beach*Days	24840 Beach*Days	40572 Beach*Days	67137 Beach*Days						
RUSSELL														
	469	0 Days	0 Days	0 Days	0 Days	0 Days	0 Days	0 Days						
2 Beaches		0 Beach*Days	0 Beach*Days	0 Beach*Days	0 Beach*Days	0 Beach*Days	0 Beach*Days	0 Beach*Days						
THURMOND														
	324	1502 Days	644 Days	1322 Days	1636 Days	1050 Days	1677 Days	2890 Days						
64 Beaches		96128 Beach*Days	41216 Beach*Days	84608 Beach*Days	104704 Beach*Days	67200 Beach*Days	107328 Beach*Days	184960 Beach*Days						

Table 8-23 (Beach Access Metrics Evaluation)

Table 8-23 summarizes upstream critical criteria and how often pools fell below these	
criteria	

01/01/1999 - 12/26/2013	Lowest Intake Elevation	А	Average Annual Days below Critical Elevation								
Ir	noperable a	t:									
HARTWELL		NAA	ALT 1	ALT2	ALT3	ALT4	ALT5	ALT6			
Clemson University Agriculture	653	71	21	63	77	49	93	184			
Clemson University	623.5	0	0	0	0	0	0	0			
City of Lavonia 636 with extension to 634	634	0	0	0	0	0	0	11			
Clemson Golf Course	633	0	0	0	0	0	0	8			
City of Hartwell	620	0	0	0	0	0	0	0			
Anderson County Joint Municipal Water Supply	615.3	0	0	0	0	0	0	0			
Milliken Company	611	0	0	0	0	0	0	0			
J.P. Stevens Company	600	0	0	0	0	0	0	0			
RUSSELL	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6				
RBR State Park Golf Course	468.8	0	0	0	0	0	0	0			
City of Elberton	465	0	0	0	0	0	0	0			
Santee Cooper(Rainey Facility)	462	0	0	0	0	0	0	0			
City of Abbeville	457.5	0	0	0	0	0	0	0			
Calhoun Falls	457	0	0	0	0	0	0	0			
Mohawk Industries	454.75	0	0	0	0	0	0	0			
THURMOND		NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6			
Savannah Lakes (Monticello Golf Course)	324	100	43	88	109	70	112	193			
Savannah Lakes Tara Golf Course)	324	100	43	88	109	70	112	193			
Hickory Knobb State Park Golf Course	324	100	43	88	109	70	112	193			
City of Lincolnton	307	0	0	0	0	0	0	0			
City of Thompson/McDuffee County	304	0	0	0	0	0	0	0			
Columbia County	304	0	0	0	0	0	0	0			
City of Washington	307	0	0	0	0	0	0	0			
City of McCormick	300	0	0	0	0	0	0	0			

Table 8-24 (In-Lake Water Supply Intake Metrics Evaluation)

Table 8-24 summarizes upstream critical criteria and the percent of time that pools fell below these criteria

01/01/1999 - 12/26/2013	% of Time Below Critical Elevation									
I	noperable at	t								
HARTWELL	·	NAA	ALT 1	ALT2	ALT3	ALT4	ALT5	ALT6		
Clemson University Agriculture	653	1%	0%	1%	1%	1%	2%	3%		
Clemson University	623.5	0%	0%	0%	0%	0%	0%	0%		
City of Lavonia 636 with extension to 634	634	0%	0%	0%	0%	0%	0%	0%		
Clemson Golf Course	633	0%	0%	0%	0%	0%	0%	0%		
City of Hartwell	620	0%	0%	0%	0%	0%	0%	0%		
Anderson County Joint Municipal Water Supply	615.3	0%	0%	0%	0%	0%	0%	0%		
Milliken Company	611	0%	0%	0%	0%	0%	0%	0%		
J.P. Stevens Company	600	0%	0%	0%	0%	0%	0%	0%		
RUSSELL		NAA	ALT 1	ALT2	ALT3	ALT4	ALT5	ALT6		
RBR State Park Golf Course	468.8	0%	0%	0%	0%	0%	0%	0%		
City of Elberton	465	0%	0%	0%	0%	0%	0%	0%		
Santee Cooper(Rainey Facility)	462	0%	0%	0%	0%	0%	0%	0%		
City of Abbeville	457.5	0%	0%	0%	0%	0%	0%	0%		
Calhoun Falls	457	0%	0%	0%	0%	0%	0%	0%		
Mohawk Industries	454.75	0%	0%	0%	0%	0%	0%	0%		
THURMOND		NAA	ALT 1	ALT2	ALT3	ALT4	ALT5	ALT6		
Savannah Lakes (Monticello Golf Course)	324	2%	1%	2%	2%	1%	2%	4%		
Savannah Lakes Tara Golf Course)	324	2%	1%	2%	2%	1%	2%	4%		
Hickory Knobb State Park Golf Course	324	2%	1%	2%	2%	1%	2%	4%		
City of Lincolnton	307	0%	0%	0%	0%	0%	0%	0%		
City of Thompson/McDuffee County	304	0%	0%	0%	0%	0%	0%	0%		
	304 304	0% 0%								
City of Thompson/McDuffee County										

Table 8-25 (In-Lake Water Supply Intake Metrics Evaluation, Percentiles)

01/01/1999 - 12/26/2013	Requi	rement	Flow Index		Avera	ige Annua	l Days bel	ow Critical	Flow	
Downstream	Elev	Flow	Location	NAA	ALT 1	ALT2	AL T 3	AL T 4	AL T 5	AL T 6
Augusta-Richmond County (Diesel Pumps)	119.5	1500	Augusta Shoals	0	0	0	0	0	0	0
Augusta-Richmond County (Hydromechanical Pumps)		900	Augusta Canal	0	0	0	0	0	0	0
City of North Augusta	108	3100	Augusta	0	38	0	0	0	0	0
Kimberly Clark Corporation Beech Island	109	3100	Augusta	0	38	0	0	0	0	0
SCE&G Urguhart Station	111	3100	Augusta	0	38	0	0	0	0	0
DSM Chemicals Augusta, Inc.	103.9	3100	Augusta	0	38	0	0	0	0	0
PCS Nitrogen Fertilizer, L.P.	103.9	3100	Augusta	0	38	0	0	0	0	0
General Chemical Corp., Augusta Plant	111	3100	Augusta	0	38	0	0	0	0	0
D/S of NSBL&D (Cretaceous Sand)		3600	Augusta	0	61	0	0	0	0	0
International Paper Corporation - Augusta Mill	94	3600	Augusta	0	61	0	0	0	0	0
DOE Savannah River Operation (Westinghouse SRS G Area Misc Ind)	79	3600	Waynesboro	0	57	0	0	0	0	0
Southern Nuclear Operating Co., Inc. (Vogtle)	70	2600	Waynesboro	0	2	0	0	0	0	0
Georgia Power Co - Plant McIntosh	7.5	4000	Clyo	1	37	1	2	1	0	0
GA Pacific (Fort James Operating Company)	5.16	4000	Clyo	1	37	1	2	1	0	0
Beaufort Jasper W&SA Main Plant	3	4000	Clyo	1	37	1	2	1	0	0
Savannah City Water Supply	-10.22	4000	Clyo	1	37	1	2	1	0	0
Tronox Pigments (Savannah), Inc.	-4.1	4000	Clyo	1	37	1	2	1	0	0
Weyerhaeuser Company	-10.5	4000	Clyo	1	37	1	2	1	0	0
International Paper Corporation	-5	4000	Clyo	1	37	1	2	1	0	0

Table 8-25 summarizes downstream critical criteria and how often streamflow or river stages fell below these criteria

Table 8-26 (Downstream Water Supply Intake Metrics Evaluation)

Table 8-26 summarizes critical downstream criteria and the percent of time streamflow or river stages fell below these criteria

01/01/1999 - 12/26/2013	Req	uirement	Flow Index		%	of Time	Below C	ritical Flo	w	
Downstream	Elev	Flow (CFS)	Location	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
Augusta-Richmond County (Diesel Pumps)	119.5	1500	Augusta Shoals	0	0	0	0	0	0	0
Augusta-Richmond County (Hydromechanical Pumps)		900	Augusta Canal	0	0	0	0	0	0	0
City of North Augusta	108	3100	Augusta	0	10.5	0	0	0	0	0
Kimberly Clark Corporation Beech Island	109	3100	Augusta	0	10.5	0	0	0	0	0
SCE&G Urguhart Station	111	3100	Augusta	0	10.5	0	0	0	0	0
DSM Chemicals Augusta, Inc.	103.9	3100	Augusta	0	10.5	0	0	0	0	0
PCS Nitrogen Fertilizer, L.P.	103.9	3100	Augusta	0	10.5	0	0	0	0	0
General Chemical Corp., Augusta Plant	111	3100	Augusta	0	10.5	0	0	0	0	0
D/S of NSBL&D (Cretaceous Sand)		3600	Augusta	0	16.6	0	0	0	0	0
International Paper Corporation - Augusta Mill	94	3600	Augusta	0	16.6	0	0	0	0	0
DOE Savannah River Operation (Westinghouse SRS G Area Misc Ind)	79	3600	Waynesboro	0	15.6	0	0	0	0	0
Southern Nuclear Operating Co., Inc. (Vogtle)	70	2600	Waynesboro	0	0.6	0	0	0	0	0
Georgia Power Co - Plant McIntosh	7.5	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
GA Pacific (Fort James Operating Company)	5.16	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
Beaufort Jasper W&SA Main Plant	3	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
Savannah City Water Supply	-10.22	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
Tronox Pigments (Savannah), Inc.	-4.1	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
Weyerhaeuser Company	-10.5	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0
International Paper Corporation	-5	4000	Clyo	0.2	10.2	0.2	0.5	0.2	0	0

Annex A – 2009-2013 Unimpaired Flow Data Extension

Table 8-27 (Downstream Water Supply Intake Metrics Evaluation, Percentiles)

Market Mark Mark Mark										USACE Hydropower Value (01/01/1999 - 12/26/2013)	opower Val	lue (01/01/	1999 - 12/	/26/2013)								
Name Usad (C) Name Name <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>LISACE</th> <th>USACE</th> <th></th> <th>USACF</th> <th></th> <th>USACF</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>LISACE</th>								LISACE	USACE		USACF		USACF									LISACE
Hethrel System Swstem					USACE		USACE SYS	System	System	USACE		USACE System	System	USACE		SACE System	USACE					System
Hurtuell Tummond Energy Ener						USACE System	Contract	Surplus	SHORT	System	Contract	Surplus	SHORT	System		ENERGY	Marketed	ISACE System	USACE System	USACE System	USACE System	Hydropower
Generation Generation Generated Generated Murth-toury Murth-toury <th< th=""><th></th><th>Hartwell</th><th></th><th>Thurmond</th><th>Energy</th><th>Energy</th><th>Energy</th><th>Energy</th><th>Energy</th><th>Pumping Total</th><th>Energy</th><th>Energy</th><th>Energy</th><th>_</th><th>ISACE System</th><th>Value</th><th>Capacity</th><th>Capacity</th><th></th><th>Capacity Value</th><th>Hydropower</th><th>Value</th></th<>		Hartwell		Thurmond	Energy	Energy	Energy	Energy	Energy	Pumping Total	Energy	Energy	Energy	_	ISACE System	Value	Capacity	Capacity		Capacity Value	Hydropower	Value
(MW+Hours) (MM+Hours) (MM+Hou		Generation		Generation	Contracted	Generated	Generated	Generated	Purchased	(Unit-Hours)	Generated	Generated	Purchased	_	SNERGY Value	Delta NAA	Value	Shortage	Value	Delta NAA	Value	Delta NAA
5756569 0.0311374 0.00002 20571477 24,117115 0.3865494 56.0564 2.161,156 260.066 4,751657 6.20641 2.161,196 67.94,170 1.056772,186 57.94,170 1.056777,136 57.94,170 1.056772,186 57.94,170 1.056772,186 57.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.056772,186 7.94,170 1.05772,186 7.94,170 1.05772,186 7.94,170 1.05772,186 7.94,170 1.05772,186 7.94,170 1.05772,186 7.94,170 1.05772,186 7.94,170 1.05736,186 1.044,116,166 <t< th=""><th></th><th>(MW-Hours)</th><th>(MW-Hours)</th><th>(MW-Hours)</th><th>(MW-Hours)</th><th>(MW-Hours)</th><th>(MW-Hours)</th><th></th><th>(MW-Hours)</th><th>(MW-HR)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th><th>(Dollars)</th></t<>		(MW-Hours)	(MW-Hours)	(MW-Hours)	(MW-Hours)	(MW-Hours)	(MW-Hours)		(MW-Hours)	(MW-HR)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)	(Dollars)
5780.061 0.0560.79 0.07.47 24.42.163 0.380.126 3.86.10 3.36.56.10 65.566 49.56.52 49.56.567 2.045.561 2.045.566 2.047.516 2.045.7566 2.144.715.666 2.144.715.666 2.166.75186 2.134.448.446.10 2.144.421.66 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.134.448.446.10 2.144.421.66 2.144.421.66 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666 2.144.715.666	NAA		10,311,374	8,040,082	20,571,477	24,117,115	20,388,537	3,629,494	580'66	63,163	251,390,655	44,751,657	6,928,641	2,161,189	287,052,482	\$0	1,114,713,606	57,941,470	1,056,772,136	\$0	\$ 1,343,824,619	\$0
5.778.561 10.471.559 0.055.75 24.30.055 20.71.477 24.30.055 20.71.477 24.30.055 24.57.351 24.75.756 24.65.076 22.34.237 280.765.792 25.71.3310 11.44.71.5.66 60.00968 10.54.71.668 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.64.64.618 51.50.44.54.618 51.50.45.24.618 51.50.45.24.618 51.50.45.24.618 51.50.45.24.618 51.50.45.24.618 51.50.45.24.618 51.50.44.54.618 51.50.45.24.618 51.50.44.25.048 51.50.45.24.618 51.50.41	ALT1	5,789,061	10,560,879	8,072,243	20,571,477	24,422,183	20,321,397	3,968,120	132,666	66,568	250,562,828	48,926,922			286,724,536	\$ (327,946)	1,114,713,606	62,831,843	1,051,881,763	\$ (4,890,374)	\$ 1,338,606,299	\$ (5,218,320)
5751,862 10,444,666 8,000,309 20,571,360 24,2057,366 16,257,366 16,257,366 16,257,366 16,271,366 6,617,1366 6,617,1366 6,6167,318 1,0567,066,299 5,1367,907 5,114,713,666 6,6167,318 1,0567,066,299 5,1367,907 5,114,713,666 6,6167,318 1,0567,066,299 5,1367,906 5,1367,907 5,1367,917,906 5,1367,907	ALT2		10,471,359	8,065,553	20,571,477	24,315,475	20,400,256	3,822,138	93,081	65,111	251,535,163	47,126,961		2,234,233	289,765,792	\$ 2,713,310	1,114,713,606	60,030,988	1,054,682,618	\$ (2,089,518)	\$ 1,344,448,410	\$ 623,792
5/76,481 10,451/27 8(08329) 20,557/477 24,862 9475/10 214,751 289,907,20 51,657.86 114,773.66 5997,322 1064716.775 5(1055.661 51,055.691 51,4477 23,944,80 20,341,864 51,712,944 50,371,42 214,751 282,946,916 51,44773.666 5997,322 1064716.775 5(1055.661 51,44773.666 52,752,994 51,342,712,946 51,44773.666 52,752,994 51,342,712,946 51,44773.666 52,752,994 51,342,712,946 51,44773.666 52,752,994 51,342,712,047 51,753,964 51,44773.666 54,4453,666 <td< th=""><th>ALT3</th><th></th><th>10,444,666</th><th>8,030,830</th><th>20,571,477</th><th>24,227,358</th><th>20,191,180</th><th>3,840,687</th><th>195,492</th><th>64,471</th><th>248,957,248</th><th>47,355,667</th><th>-</th><th>2,187,507</th><th>277,844,235</th><th>\$ (9,208,247)</th><th>1,114,713,606</th><th>61,617,318</th><th>1,053,096,289</th><th>\$ (3,675,848)</th><th>\$ 1,330,940,523</th><th>\$ (12,884,095)</th></td<>	ALT3		10,444,666	8,030,830	20,571,477	24,227,358	20,191,180	3,840,687	195,492	64,471	248,957,248	47,355,667	-	2,187,507	277,844,235	\$ (9,208,247)	1,114,713,606	61,617,318	1,053,096,289	\$ (3,675,848)	\$ 1,330,940,523	\$ (12,884,095)
5/5/5/34 3/05/1/16 3/05/1/47 23/044,800 3/044,804 3/201/5 3/244,807 3/40,804 3/24,804 3/201/5 3/24,804	ALT4		10,451,272	8,038,329	20,571,477	24,268,033	20,403,238	3,773,049	91,746	64,791	251,571,924	46,521,689		2,214,751	288,507,720		1,114,713,606	59,997,332	1,054,716,275	\$ (2,055,862)	\$ 1,343,223,995	\$ (600,624)
2506/245 3/98/302 1/98/302 3/98/302 3/92/342 3/92/362 3/948/200 3/1/38/10 3/1/38/ 3/38/ 3/200/325 3/38/403 2/80/400 1/98/302 8/8/203 8/8/203 8/203/201 3/20/203 3/200 3/200 3/203 3/200 3/2	ALTS		10,190,176	8,037,956	20,571,477	23,984,480	20,341,864	3,520,245	122,371	61,378	250,815,183			2,097,394	282,646,916		1,114,713,606	55,188,475	1,059,525,131	\$ 2,752,994	\$ 1,342,172,047	\$ (1,652,572)
	ALT6		9,783,182	7,857,172	20,571,477	23,266,595	20,438,501	2,753,810	74,284	54,934						\$ (8,585,443)	1,114,713,606		1,061,201,183	\$ 4,429,046	\$ 1,339,668,222	\$ (4,156,397)

Table 8-28 (USACE Hydropower Metrics Evaluation)

	AU	AUGUSTA CANAL HYDROPOWER IMPACTS	HYDROPOWE	R IMPACTS			
		1/1/199	1/1/1999 - 12/26/2013	3			
	NAA	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
				Count		•	
FLow> 3365	1,910	2,057	1,844	2,250	1,953	2,296	3,122
3368>Flow>3110	146	132	135	109	135	317	268
3110>Flow>2872	460	322	370	345	308	660	549
2872>Flow>2625.5	488	231	330	259	234	399	334
2625.5>Flow	2,194	2,616	2,503	2,355	2,698	1,607	1,044
			Estime	Estimated Impaact (Dollars)	Jollars)		
FLow> 3365	0\$	0\$	0\$	0\$	0\$	0\$	0\$
3368>Flow>3110	0\$	0\$	0\$	0\$	0\$	0\$	0\$
3110>Flow>2872	\$450,340	\$315,238	\$362,230	\$337,755	\$301,532	\$646,140	\$537,471
2872>Flow>2625.5	\$908,656	\$430,122	\$614,460	\$482,258	\$435,708	\$742,938	\$621,908
2625.5>Flow	\$6,507,404	\$7,759,056	\$7,423,898	\$6,984,930	\$8,002,268	\$4,766,362	\$3,096,504
Total Impacts	\$7,866,400	\$8,504,416	\$8,400,588	\$7,804,943	\$8,739,508	\$6,155,440	\$ 4,255,883
Total Impacts/Year	\$104,928	\$113,438	\$112,053	\$104,108	\$116,574	\$82,106	\$56,768
Delta NAA	0\$	\$8,510	\$7,125	(\$820)	\$11,646	(\$22,822)	(\$48,160)

Table 8-29 (Augusta Canal Hydropower Metrics Evaluation)

Tables 8-27 and 8-28 illustrate hydropower impacts.

SEPA Capacity Pricing

\$ 4.81 per KW-MONTH

	Marketed				
	Installed	Installed	Monthly		
	Capacity	Capacity	Capacity	Annua	al Capacity
	(MW)	(KW)	Value	Value	
Hartwell	396 MW	396000 KW	\$ 1,904,760	\$	22,857,120
Russell	605 MW	605000 KW	\$ 2,910,050	\$	34,920,600
Thurmond	288 MW	288000 KW	\$ 1,385,280	\$	16,623,360
			\$ 6,200,090	\$	74,401,080

SEPA Energy Pricing

SEL A Ellergy		· · · · · · · · · · · · · · · · · · ·						
	SEPA	ENERGY	1	SEPA		SEPA	Sava	annah System
	р	rice to	Of	ff-Peak	0	n-Peak	Wee	ekly Minimum
	cu	stomer	Ene	rgy Costs	Ene	rgy Costs		Energy
	(\$/I	VW-HR)	(\$/I	MW-HR)	(\$/	MW-HR)		(MW-HR)
Jan	\$	12.33	\$	38.39	\$	80.54	\$	27,233
Feb	\$	12.33	\$	39.72	\$	70.87	\$	26,714
Mar	\$	12.33	\$	32.85	\$	69.02	\$	20,669
Apr	\$	12.33	\$	35.44	\$	62.54	\$	18,504
May	\$	12.33	\$	24.87	\$	61.67	\$	21,948
Jun	\$	12.33	\$	30.85	\$	104.11	\$	25,935
Jul	\$	12.33	\$	33.13	\$	99.58	\$	31,195
Aug	\$	12.33	\$	36.98	\$	84.06	\$	32,035
Sep	\$	12.33	\$	29.92	\$	64.34	\$	30,685
Oct	\$	12.33	\$	31.86	\$	56.46	\$	27,304
Nov	\$	12.33	\$	34.61	\$	68.78	\$	26,284
Dec	\$	12.33	\$	36.23	\$	73.58	\$	27,104

Table 8-30 (SEPA Capacity and Energy Pricing)

9 Savannah River Basin Comprehensive Study II: 2009 – 2013 Unimpaired Flow Data Extension

(Draft Report)

March 2015

Georgia Environmental Protection Division

Introduction

The unimpaired flow (UIF) data time series in Savannah River basin were initially developed for the period from 1939 through 2007 during the first round of Georgia State Water Plan (Georgia DNR, 2010), and subsequently extended through 2008 with additional two new nodes at Jocassee and Keowee. As a big portion of Georgia's contribution to the Savannah River Basin Comprehensive Study Phase II, Georgia Environmental Protection Division (GADNR-EPD) is responsible for extending the Savannah River Basin UIF through 2013. Duke Energy has made an effort of extending UIF through 2011 but it is not officially available to GADNR-EPD. GADNR-EPD's effort of extending UIF in the Savannah River Basin is for the period of 2009-2013.

This report briefly describes data, methods, and procedures applied to the UIF extension to the period of 2009-2013 in the Savannah River basin. The UIF extension is essentially based on the methods, assumptions, and procedures used in the development of 1939-2008 UIF data in the Savannah River basin (GADNR, 2010). Due to the availability and quality of new data and tools, some adjustments however have been made during the UIF extension.

The UIFs have been extended for the period of 2009-2013 at following nodes: Jocassee (combining Bad Creek), Keowee, Hartwell, Russell, Thurmond (including Bell flow), Augusta, Burtons Ferry, Millhaven, Clyo, and Savannah.

Data, Methods, and Procedures

UIF data were developed from stream flow data, reservoir physical, operational, meteorological data, and water use data. Stream flow data were downloaded from U.S. Geological Survey (USGS) website. Federal reservoir physical data (e.g. stage-storagearea curves) and operational data (including pool elevation, release, and pumping data) were downloaded from US Army Corps of Engineers (Corps) website. Private reservoir physical data (e.g. stage-storage-area curves) and operational data (including pool elevation, release, and pumping data) were obtained from Duke Energy and Georgia Power in electronic format. Reservoir meteorological data (including precipitation and evaporation data) were developed by GADNR-EPD. Water use data were obtained from both Georgia and South Carolina (in electronic format).

The general processes of 2009-2013 UIF extension are listed as follows:

1. Compile all necessary input data, such as stream flow data, net consumptive water use data, reservoir holdout data and net reservoir/evaporation effect data.

2. Calculate the impaired local incremental flow (LIF) by subtracting (routed) upstream observed flow from downstream observed flow.

3. Compute the local unimpaired flow (UIF) by adding back net consumptive water use and net reservoir/evaporation effect to LIF.

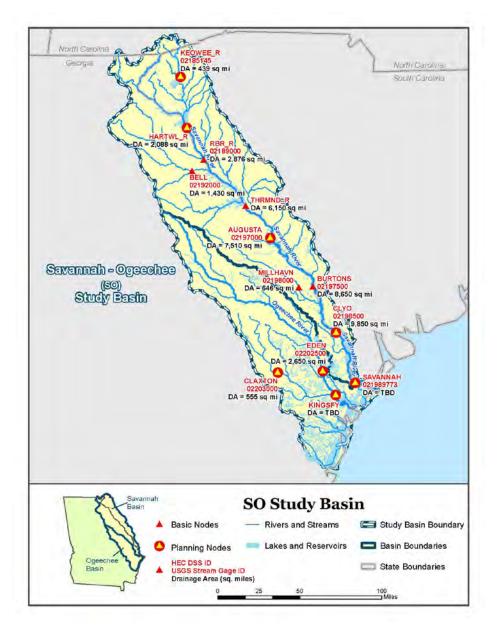
The details of above processes can be found in 1939-2007 UIF report (GADNR, 2010).

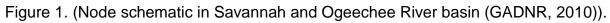
Approach Adjustments

While the 2009-2013 UIF extension follows the major approaches and procedures used in the development of the 1939-2008 UIF data, several approach adjustments have been made during the UIF extension due to the availability and quality of new data and tools. The adjustments include: 1. Reservoir precipitation data development. 2. Flow routing between cascading reservoirs. 3. Reservoir inflow and local incremental flow computation. 4. Negative local UIF adjustment. The following paragraphs describe the details of these adjustments.

1. Reservoir precipitation data development

Reservoir precipitation data are used to compute the net evaporation effect for a reservoir along with the evaporation data. In the development of 1939-2008 UIF, reservoir precipitation data were developed from Mean Area Precipitation (MAP) time series that were developed from National Climatic Data Center's (NCDC's) precipitation data and a long-term average ratio between MAP and PRISM (Georgia DNR, 2010).


Due to the lack of tools of generating MAP time series, such as MAP Generator, GADNR-EPD used a different approach, Inverse Distance Weighting method, to develop the reservoir precipitation data for the 2009-2013 UIF extension. Inverse Distance Weighting is a type of deterministic method for multivariate interpolation with a known scattered set of points. The assigned values to unknown points are calculated with a distance weighted average of the values available at the known points.


Using Inverse Distance Weighting approach, precipitation data at a reservoir centroid was set as the representative value and it was calculated as the weighted average of surrounding weather station precipitation data based on the distance from each surrounding weather station to the reservoir centroid. This Inversion Distance Weighting method is applied to Jocassee, Keowee, Hartwell, Russell, and Thurmond, and four, five, six, four, and four surrounding weather stations were used for each reservoir, respectively.

2. Flow routing between cascading reservoirs

In Savannah River basin, the studied major reservoirs are in a cascading order as shown in Fig. 1. In the development of UIF for 1939-2008, the release from an upstream reservoir was routed down to calculate the local incremental flow at the downstream reservoir node. While stream flow routing is necessary for the pre-reservoir period, there is no such a need for the post-reservoir period since the UIF time series were developed on the daily basis and the flow travel time from an upstream reservoir to the downstream reservoir is less than a day. Therefore, for the 2009-2013 UIF extension, flow routing was not required for reservoir nodes and the release from an upstream

reservoir was directly used to calculate the local incremental flow at the downstream reservoir node. This adjustment was applied at Keowee, Hartwell, Russell, and Thurmond nodes. At all other unregulated nodes, stream flow routing was required and original routing parameters and coefficients were preserved.

3. Reservoir inflow and local incremental flow computation

Reservoir inflow is a key component of UIF data. In the development of UIF for 1939-2008, two different approaches were used to compute reservoir inflows. For Jocassee and Keowee, the reservoir inflows were computed from storage change between two adjacent days and releases. For Hartwell, Russell and Thurmond, the better quality

controlled USACE net inflows data were used. This USACE inflow was then adjusted to remove accumulated bias from the time series by comparing the annual accumulated change in storage computed using the USACE inflow and outflow with the observed change in storage over a year (Georgia DNR, 2010).

During the 2009-2013 UIF extension, the reservoir inflows were computed straightforwardly from storage change and release for all five major reservoirs in the basin given continuous quality-controlled reservoir operational data time series for 2009-2013. After reservoir inflows were computed, the local incremental flow at a downstream node was obtained by subtracting the upstream flow/release from the downstream reservoir inflow.

One special character in Savannah River basin is that Bad Creek-Jocassee-Keowee and Russell-Thurmond are two pump-back systems. During the reservoir local incremental flow (LIF) computation, it was found that reservoir pumping data may introduce much uncertainty and may yield a large numbers of negatives LIFs and consequent negative UIFs. In order to reduce the effect of pumping data, the monthly cumulative LIF was computed first, then was redistributed into daily values according to the flow pattern of a nearby reference gage for each individual reservoir. If a monthly cumulative LIF was negative, then it was evenly redistributed into daily instead of using the flow pattern of the reference gage. This approach was applied to Jocassee, Keowee, Russ, and Thurmond. The comparison in negative UIFs at pump-back system reservoir nodes shows that the redistribution approach reduced negative UIFs in both frequency and degree (Table 1.).

	Count of UIFs	negative	Average UIFs (cfs)	•	Extreme (cfs)	negative UIF
Reservoir / Node	Observ ed daily data	Redistribut ed daily data	Observ ed daily data	Redistribut ed daily data	Observ ed daily data	Redistribut ed daily data
Jocassee	526	299	-311	-146	-1747	-558
Keowee	302	153	-1054	-487	-10748	-2113
Russell	891	861	-459	-289	-4789	-1966
Thurmond	184	51	-1050	-681	-24515	-3042

Table 1. Comparison of raw negative UIFs for 2009-2013 period.

4. Negative local UIF adjustment

Several factors, such as under-estimate of reservoir net evaporation loss, imperfect stream flow routing process, possible pump-back data effect, and possible natural flow loss (e.g. downstream observed flow without significant water use is less than upstream observed flow), may result in some negative local UIFs. The treatment of negative local

UIFs were different between 2009-2013 UIF extension and the original 1939-2008 UIF development.

In 1939-2008 UIF, all negative local UIFs were removed by different adjustments, including local adjustment, annual adjustment, and period of record adjustment. Details of these adjustment approaches can be found in 1939-2007 UIF report (GADNR, 2010). The adjustment of negative UIFs is essentially a temporal redistribution of the UIF while keeping the mass balance.

In 2009-2013 UIF, negative local UIFs were carefully reviewed and adjusted or not adjusted at all depending on the possible major causes of negatives. Several types of treatments are list as follows:

- 1. At Hartwell node, the very few negative local UIFs that occurred in dry seasons are very likely due to an under-estimate of net evaporation loss. Those negatives were removed by local adjustment approach.
- 2. At Jocassee, Keowee, Russell and Thurmond nodes, the negative local UIFs are very likely due to a combination of an under-estimate of net evaporation loss and the imperfect pump-back data. Some of the pump-back data could not be reconciled with project elevation (and thus storage) data. For example, on March 2, 2012, Thurmond has a release of 3896 cfs, a pump-back of 5247 cfs, receives a release of 7522 cfs from Russell, and a change of storage of -30600 acre-feet. Simple mathematic calculation indicates that the reservoir received –13810 cfs during the day with a precipitation event. EPD staff speculated that the pump-back flow values were calculated from recorded energy consumption, instead of physically measured. The imperfect relationship between energy consumption and flow may have led to overestimate of pumped flow, which in turn leads to negative inflow to the reservoirs. Those negatives were not adjusted.
- 3. At unregulated nodes, some negative UIFs were caused by imperfect numerical stream flow routing and others appeared to be natural flow loss, which is indicated by observed data, such as that the downstream observed flow is less than upstream observed flow without significant water use at downstream node. For the negatives due to imperfect stream flow routing, local adjustment approach was applied to remove the negatives. For the negatives appeared to be natural flow loss, negative UIFs were not adjusted. The time series of natural flow loss at associated nodes are included in UIF dss files.

Natural flow loss can be categorized into three cases. The first case is the flow loss due to gage data. For example, the observed data show the persistent differences between Thurmond release and observed Augusta flow, with latter one being lower for several months in 2012 (Fig 2). This type of flow loss may not

be real since there is no evidence showing natural flow loss occurred between Thurmond and Augusta. The reason of such flow difference is not clear and further investigation of observed data is needed. The second case is the real natural flow loss during high flow period. For example, the observed data show Burtons Ferry gage flow has been lower than the upstream Augusta gage flow in several months of high flow period (Fig 3). EPD staff believed it was due to flood plain connection and water lost during the overbank flow period has not come back to the main channel. The third case is the real natural flow loss during low flow period. For example, the observed data show Clyo gage flow has been persistently lower than flow observed at upstream Burton Ferry gage in several months in low flow period (Fig 4). The hydrographs clearly show that flow peaks and valleys at Clyo were delayed compared to that at Burtons Ferry while the flow magnitudes at Clyo were persistently lower than that at Burtons Ferry. Such flow loss could be due to stream flow recharging to a local surficial aquifer.

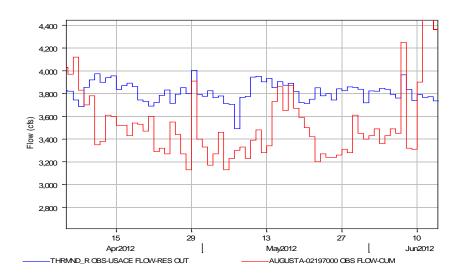


Figure 1. (Flow loss at Augusta node.)

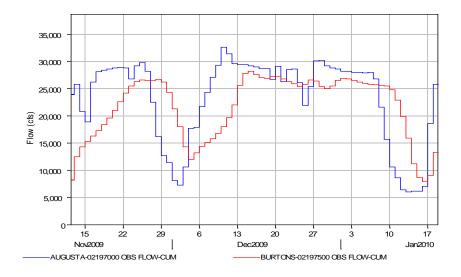


Figure 2. (Natural flow loss at Burtons Ferry node.)

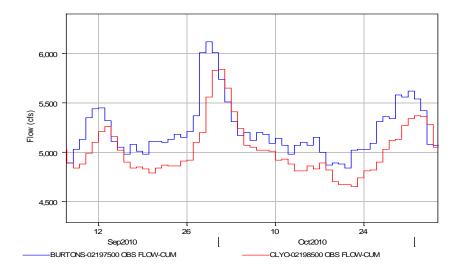


Figure 3. (Natural flow loss at Cylo node.)

Preliminary Product

The preliminary product of 2009-2013 UIF extension includes the time series of local unimpaired flow (UIF) for each node in Savannah River basin (see SO-UIFX4.dss). The 2009-2013 UIF time series were also appended to the original 1939-2008 UIF time series (see SO-UIFX4-Merged.dss). Tables 2 and 3 show the time series of the local UIF for each node. Table 4 shows the descriptions of all the time series in SO-UIFX4.dss and SO-UIFX4-Merged.dss.

There are some differences in node configurations between Georgia EPD and Corps HEC-ResSim model. As shown in Table 5, ResSim configuration include Bad Creek node while Georgia EPD's configuration does not. Georgia EPD's configuration includes Bell node on Broad River and Millhaven node on Brier Creek while ResSim configuration does not. Due to the difference in node configuration and for ResSim modeling purpose, Jocassee and Bad Creek combined UIF is split into Bad Creek UIF and Jocassee UIF by 1% and 99% respectively. The Bell-Thurmond sub-basin UIF and Millhaven (on Brier Creek)-Clyo sub-basin UIF are also developed for the same reason. The suggested local UIFs for the nodes in HEC-ResSim model are listed in Table 6.

During the review of the original 1939-2008 UIF data, EPD staff found that water use in Keowee node was credited back to Hartwell node, resulting in an over-estimate of Hartwell local UIF. This over-estimate of Hartwell local UIF has been corrected for the 1939-2008 period (see SO-UIFX4-Merged.dss).

Reservoir/Node	DSS Part: B	DSS Part: F
Jocassee and Bad	KEOWEE_R-	
Creek Combined	JOCASS_R	UNIMP*
Keowee	KEOWEE_R	UNIMP*
		UNIMP-0ADJ
Hartwell	HARTWL_R	LOC*
Russell	RBR_R	UNIMP*
Thurmond ¹	THRMND_R	UNIMP*
		UNIMP-0ADJ
Augusta	AUGUSTA	LOC*
		UNIMP-0ADJ
Burtons Ferry	BURTONS	LOC*
Millhaven (Brier Crk)	MILLHAVN	UNIMP*
		UNIMP-0ADJ
Clyo	CLYO	LOC*
Savannah	SAVANNAH	UNIMP*

Table 2. Savannah River basin 2009-2013 UIF time series (see SO-UIFX4.dss).

¹ Thurmond UIF includes Bell flow.

Table 3. Savannah River basin 1939-2013 UIF time series (see SO-UIFX4-Merged.dss).

Reservoir/Node	DSS Part: B	DSS Part: F	DSS Part: F	DSS Part: F
		1939-2008	2009-2013	1939-2013
Jocassee and Bad Creek Combined	KEOWEE_R- JOCASS_R	UNIMP-0ADJ ANNUAL*	UNIMP*	UNIMP- MERGED- EPD2014
Keowee	KEOWEE_R	UNIMP-0ADJ ANNUAL*	UNIMP*	UNIMP- MERGED- EPD2014
Hartwell	HARTWL_R	UNIMP-0ADJ LOC*	UNIMP-0ADJ LOC*	UNIMP- MERGED- EPD2014
Russell	RBR_R	RDIST UNIMP- 0ADJ POR*	UNIMP*	UNIMP- MERGED- EPD2014
Thurmond ¹	THRMND_R	RDIST UNIMP- 0ADJ ANNUAL*	UNIMP*	UNIMP- MERGED- EPD2014
Augusta	AUGUSTA	UNIMP-0ADJ ANNUAL*	UNIMP-0ADJ LOC*	UNIMP- MERGED- EPD2014
Burtons Ferry	BURTONS	UNIMP-0ADJ ANNUAL*	UNIMP-0ADJ LOC*	UNIMP- MERGED- EPD2014
Millhaven (Brier Crk)	MILLHAVN	UNIMP*	UNIMP*	UNIMP- MERGED- EPD2014
Clyo	CLYO	UNIMP-0ADJ POR*	UNIMP-0ADJ LOC*	UNIMP- MERGED- EPD2014
Savannah	SAVANNAH	UNIMP*	UNIMP*	UNIMP- MERGED- EPD2014

¹Thurmond and Bell UIFs were separated for 1939-2008 and not separated for 2009-2013.

DSS Part: C	DSS Part: F	Description
		Net consumptive water
FLOW-DIV NET	COMP-REACH TOTAL	use
	COMP-MERGED-	Impaired local incremental
FLOW-LOC INC	EPD2014	flow
	UNIMP-RAW-MERGED-	Raw unimpaired local
FLOW-LOC INC	EPD2014	incremental flow
	UNIMP-MERGED-	Adjusted unimpaired local
FLOW-LOC INC	EPD2014	incremental flow
	UNIMP-MERGED-	Sub-basin unimpaired
FLOW-COMB-INC	EPD2014	local incremental flow
FLOW-LOC INC	NATURAL LOSS	Natural flow loss
		Differential net reservoir
EVAPNET-RATE	POST-PRE RES	evaporation rate
		Differential net reservoir
FLOW-EVAPNET	POST-PRE RES	evaporation effect
FLOW-NET RE	COMP 1DAY	Net reservoir effect
		Reservoir storage change
		between two consecutive
FLOW-HOLDOUT	COMP 1DAY	days
		-
		Net reservoir evaporation
EVAPNET-RATE	POST RES	rate
		Net reservoir evaporation
FLOW-EVAPNET	POST RES	effect
FLOW-EVAFINET	FOSTRES	eneci
FLOW-NET RE	COMP 1DAY	Net reservoir effect
	OBS, or FILLED, or	
FLOW-LOC INC	COMP	Impaired LIF
		Raw Local UIF without
FLOW-LOC INC	UNIMP	
		any adjustment
		Local UIF with the
		removal of negatives
		using local adjustment
FLOW-LOC INC	UNIMP-0ADJ LOC	approach ¹
		Local UIF with the
		removal of negatives
		using annual adjustment
FLOW-LOC INC	UNIMP-0ADJ ANNUAL	approach ¹

Table 4. Descriptions of time series (see SO-UIFX4.dss and SO-UIFX4-Merged.dss).

		Local UIF with the removal of negatives using period of record
FLOW-LOC INC	UNIMP-0ADJ POR	adjustment approach1

¹ Details of adjustment approaches see 1939-2007 UIF report (GADNR, 2010).

DSS Part: B	Georgia EPD Node	HEC-ResSim Node
KEOWEE_R-	Jocassee and Bad	
JOCASS_R	Creek Combined	Bad Creek
KEOWEE_R-	Jocassee and Bad	
JOCASS_R	Creek Combined	Jocassee
KEOWEE_R	Keowee	Keowee
HARTWL_R	Hartwell	Hartwell
RBR_R	Russell	Russell
BELL	Bell	N/A
THRMND_R	Thurmond	Thurmond
AUGUSTA	Augusta	Augusta
		Millhaven on Savannah
BURTONS	Burtons Ferry	River
	Millhaven on Brier	
MILLHAVN	Creek	N/A
CLYO	Clyo	Clyo

Table 5. Node configurations of Gerogia EPD and Corps HEC-ResSim model.

Table 6. Suggested local UIF time series for HEC-ResSim model (see SO-UIFX4-Merged.dss).

HEC-ResSim			
Node	DSS Part: B	DSS Part: C	DSS Part: F
			UNIMP-MERGED-
Bad Creek ¹	BADCREEK	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Jocassee ²	JOCASSEE	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Keowee	KEOWEE_R	FLOW-LOC INC	EPD2014

			UNIMP-MERGED-
Hartwell	HARTWL_R	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Russell	RBR_R	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Thurmond ³	THRMND_R	FLOW-COMB INC	EPD2014
			UNIMP-MERGED-
Augusta	AUGUSTA	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Millhaven	BURTONS	FLOW-LOC INC	EPD2014
			UNIMP-MERGED-
Clyo ⁴	CLYO	FLOW-COMB INC	EPD2014

¹²Bad Creek and Jocassee local UIF in ResSim model are 1% and 99% of Jocassee and Bad Creek combined UIF respectively.

³Thurmond local UIF in ResSim model is Bell-Thurmond sub-basin combined UIF. ⁴Clyo local UIF in ResSim model is Millhaven-Clyo sub-basin combined UIF.

Verification

After the preliminary 2009-2013 UIFs were developed, both Savannah HEC-ResSim model and Excel Spreadsheet model were used to verify the preliminary UIF data at the reservoir nodes. The verification is essentially the mass balance check, using developed UIFs and observed data to back-calculate the reservoir elevation. The verifications using the both models show similar results.

In HEC-ResSim model, release overrides (forced release) option was used and simulated reservoir elevations were compared with observed ones. Verification for 2009-2013 period was divided into two periods, 2009-2012 and 2012-2013, since the current Savannah ResSim version (Version 3.2.1.76 Build 3.2.1.76R, 64-bits) cannot handle the release overrides for more than four years. The comparisons of reservoir elevations between ResSim simulated and observed show very close match of the two (Figs 5-9).

Limitations

Several factors, such as under-estimate of reservoir net evaporation loss, imperfect stream flow routing process, possible pump-back data effect, and possible natural flow loss that of real or perceived loss of flow due to gage data (e.g. downstream observed flow without significant water use is less than upstream observed flow), may result in some negative local UIFs. There are several ways to further improve UIF development, including obtaining a better estimate of precipitation\evaporation data, better stream

flow routing, and better quality-controlled observed data (e.g. pumping data). Field investigation will also be helpful to exclude or confirm the natural flow loss.

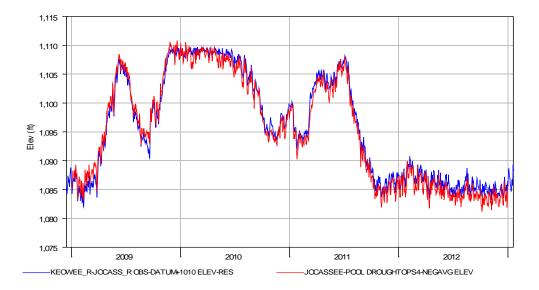


Figure 4a. (Comparison of Jocassee elevation (2009-2012): simulated (red) and observed (blue)).

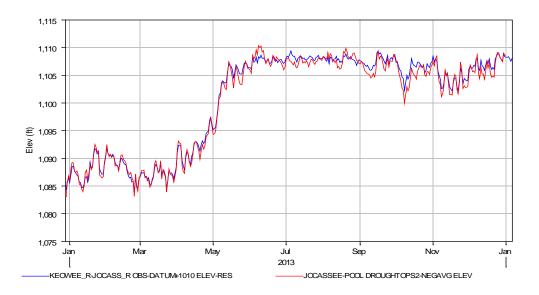


Figure 5b. (Comparison of Jocassee elevation (2013): simulated (red) and observed (blue)).

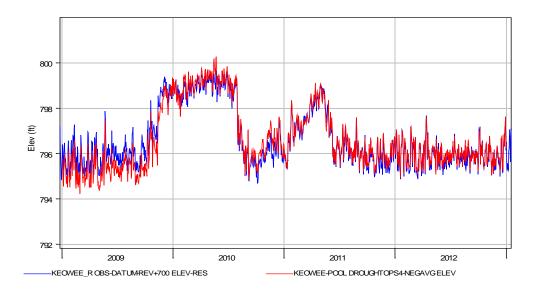


Figure 6a. (Comparison of Keowee elevation (2009-2012): simulated (red) and observed (blue).)

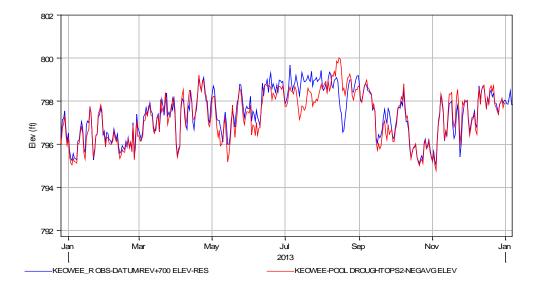


Figure 7b. (Comparison of Keowee elevation (2013): simulated (red) and observed (blue).)

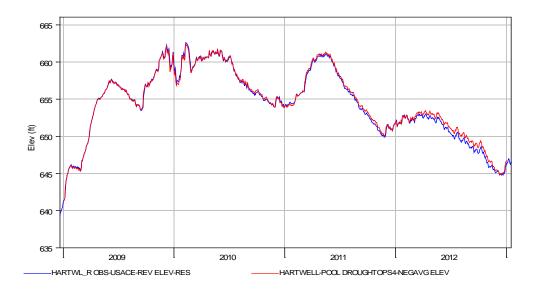


Figure 8a. (Comparison of Hartwell elevation (2009-2012): simulated (red) and observed (blue).)

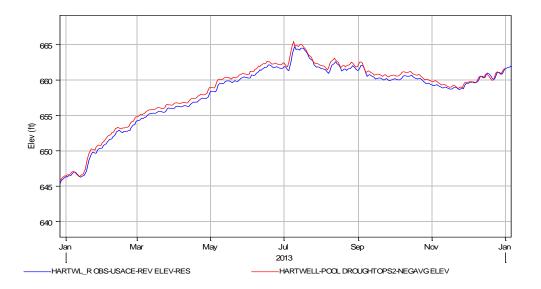


Figure 9b. (Comparison of Hartwell elevation (2013): simulated (red) and observed (blue).)

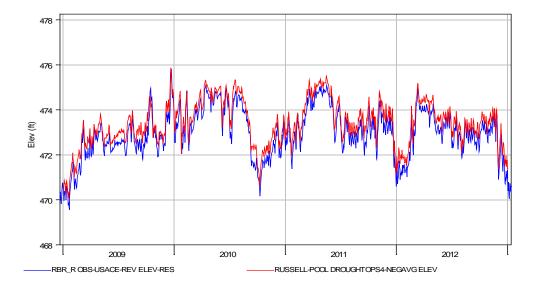


Figure 10a. (Comparison of Russell elevation (2009-2012): simulated (red) and observed (blue)).

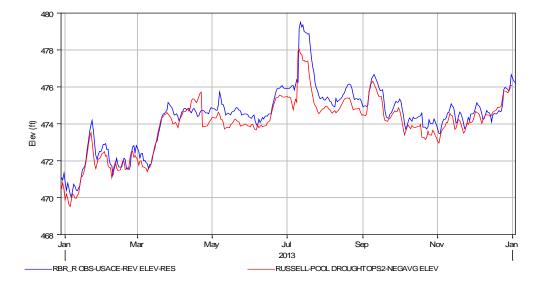


Figure 11b. (Comparison of Russell elevation (2013): simulated (red) and observed (blue)).

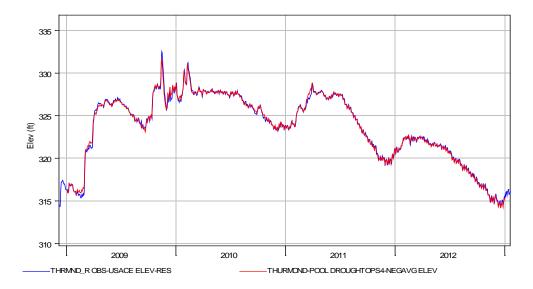


Figure 12a. (Comparison of Thurmond elevation (2009-2012): simulated (red) and observed (blue)).

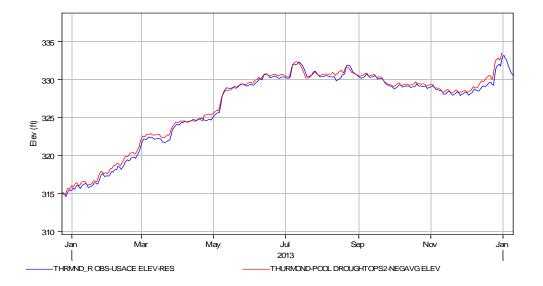
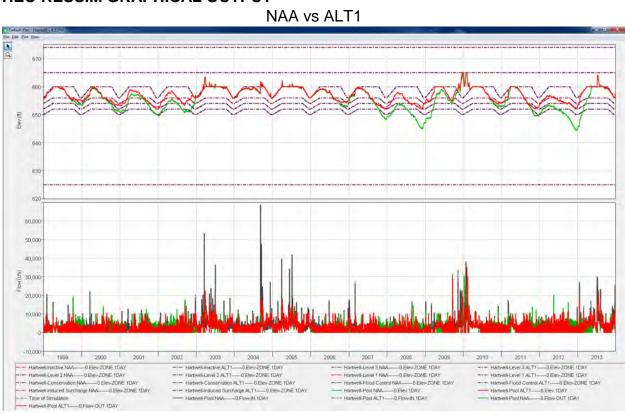


Figure 13b. (Comparison of Thurmond elevation (2013): simulated (red) and observed (blue)).

Reference

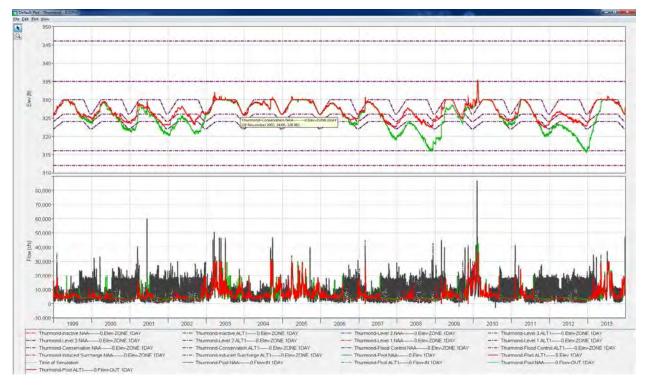
Georgia Department of Natural Resources (Georgia DNR) (2010). Unimpaired Flow Data

Report Surface Water - Availability Modeling and Technical Analysis for State-wide Water

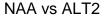

Management Plan, Prepared by ARCADIS U.S. Inc., Atlanta, Georgia.

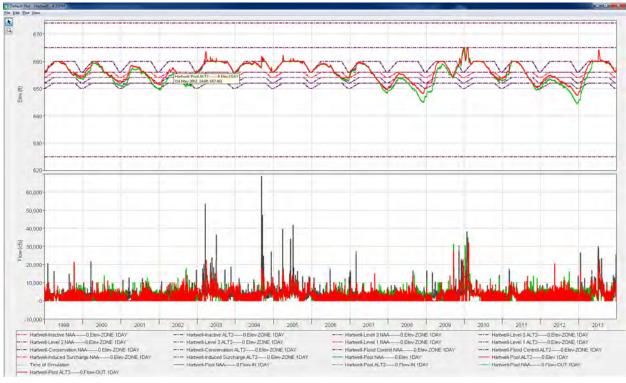
Deliverable

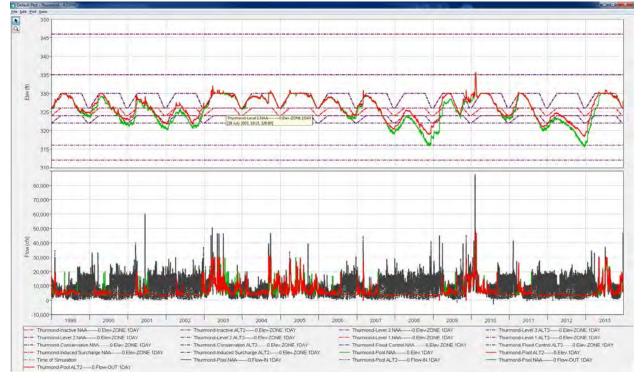
A data disk is delivered including following items:

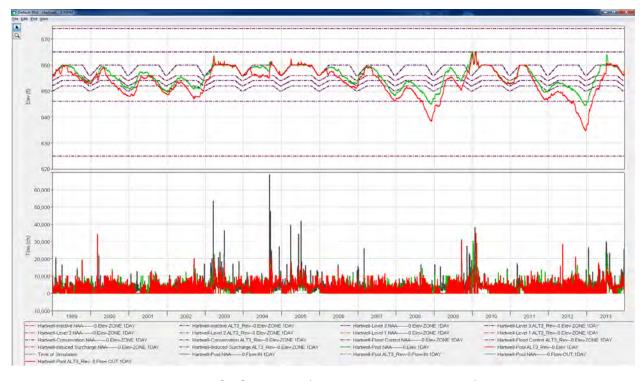

- 1. A draft report named as SO-UIF-X4-Rpt-draft-20150325.doc
- 2. A DSS file contains 2009-2013 UIF data named as SO-UIFX4.dss.
- 3. A DSS file contains 1939-2013 UIF data named as SO-UIFX4-Merged.dss

11 Annex C - Savannah River Basin Comprehensive Study II: HEC-ResSim Model Output

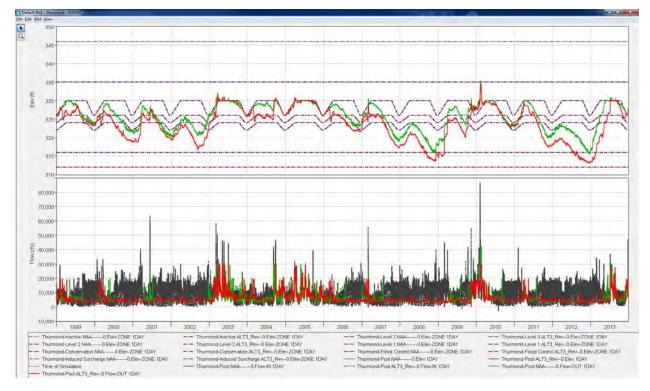



HEC-RESSIM GRAPHICAL OUTPUT

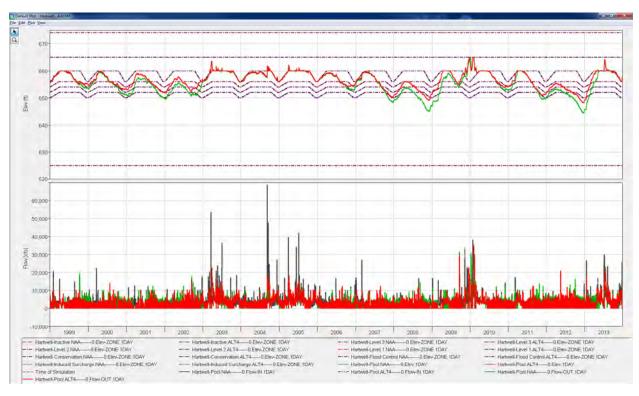




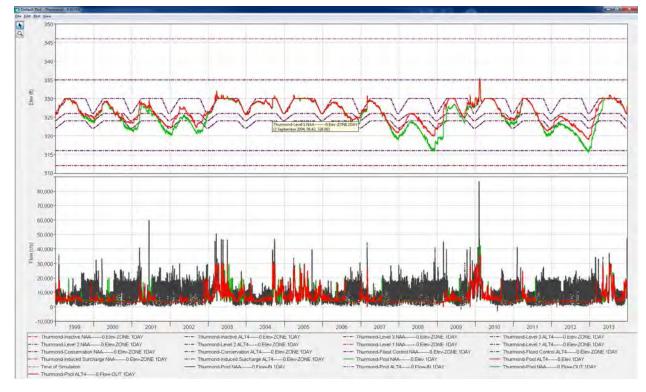
Annex C- Screen 3 (NAA vs ALT2, Hartwell)

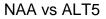


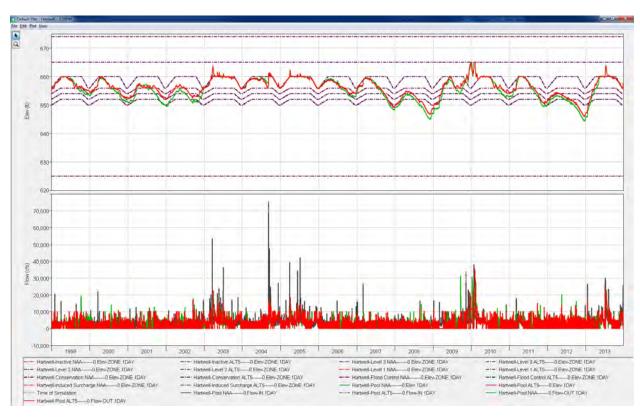
Annex C- Screen 4 (NAA vs ALT2, Thurmond)



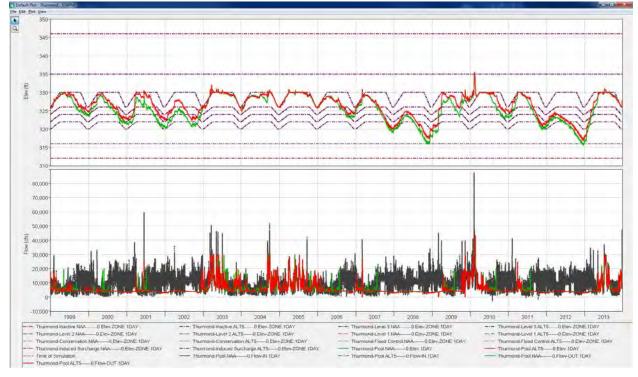
Annex C- Screen 5 (NAA vs ALT3, Hartwell)



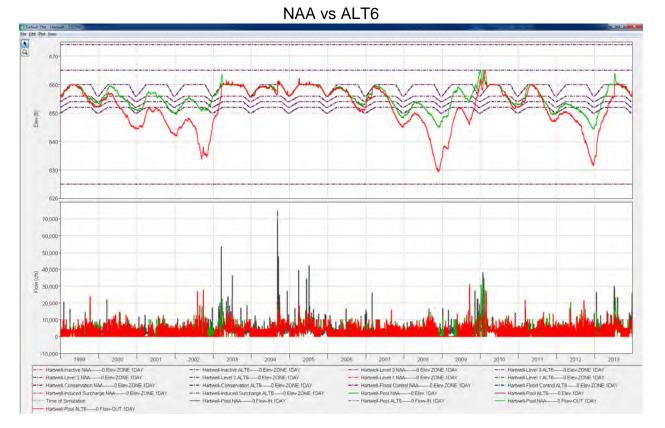


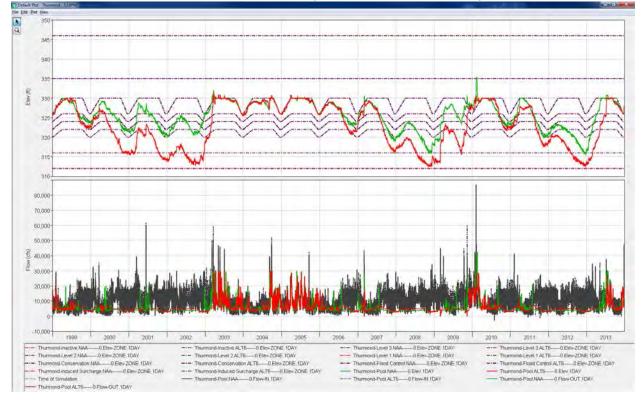


Annex C- Screen 7 (NAA vs ALT1, Hartwell)

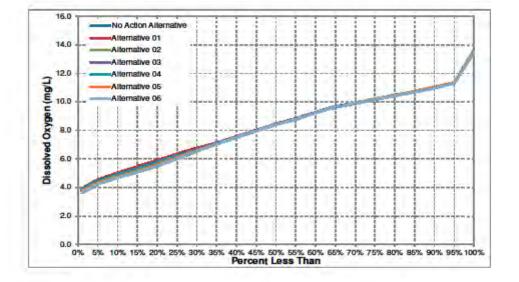


Annex C- Screen 8 (NAA vs ALT1, Thurmond)





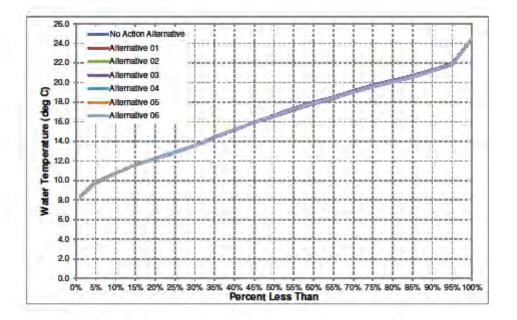
Annex C- Screen 11 (NAA vs ALT6, Hartwell)


12 Annex D - Savannah River Basin Comprehensive Study II: Riv-1 Output

RIV-1 OUTPUT ANALYSIS

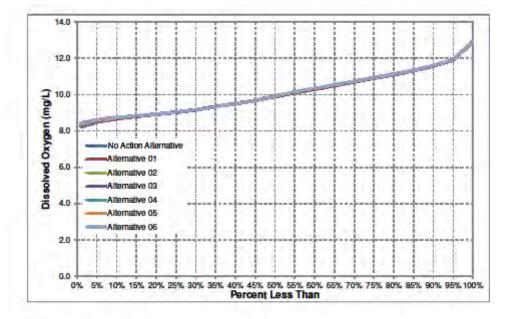
Riv-1 output data was analyzed looking at a time window of January 1999 thru December 2013. The modeling effort and analysis of output for RIV-1 was performed by Georgia DNR. The following are the output plot from the RIV-1 modeling effort.

5	Highway 28 Dissolved Oxygen (mg/L)								
-	No Action	No Action Alternative	Alternative Alternativ 02 03	Alternative	Alternative	Alternative	Alternative		
Percentile	Atternative	01		03	04	05	06		
Minimum:	3.0	3.0	3.0	3.1	3.0	2.9	2.7		
1%	3.8	3.9	3.9	3.9	3.9	3.7	3.6		
5%	4.4	4.5	4.4	4.5	4.5	4.3	4.2		
10%	4.8	5.0	4.8	4.9	4.9	4.8	4.7		
15%	5.3	5.5	5.3	5.3	5.3	5.2	5.1		
20%	5.7	5.9	5.7	5.8	5.8	5.6	5.5		
25%	6.1	6.3	6.2	6.3	6.2	6.1	6.0		
30%	6.6	6.8	6.6	6.7	6.6	6.6	6.5		
35%	7.0	7.1	7.0	7.1	7.0	7.1	7.1		
40%	7.5	7.5	7.5	7.6	7.5	7.5	7.5		
45%	8.0	8.0	8.0	8.0	8.0	8.0	7.9		
50%	8.4	8.5	8.4	8.4	8.4	8.4	8.4		
55%	8.8	8.8	8.8	8.8	8.8	8.8	8.7		
60%	9.2	9.3	9.3	9.2	9.3	9.2	9.2		
65%	9.7	9.7	9.7	9.6	9.7	9.6	9.6		
70%	9.9	9.9	9.9	9.9	9.9	9.9	9.9		
75%	10.2	10.2	10.2	10.2	10.2	10.2	10.2		
80%	10.5	10.4	10.5	10.4	10.5	10.5	10.4		
85%	10.7	10.7	10.7	10.7	10.7	10.7	10.7		
90%	11.0	11.0	11.0	11.0	11.0	11.0	11.0		
95%	11.3	11.3	11.3	11.3	11.3	11.3	11.3		
100%	13.6	13.6	13.6	13.6	13.6	13.6	13.5		


Highway 28 Dissolved Oxygen Exceedance For Study Alternatives

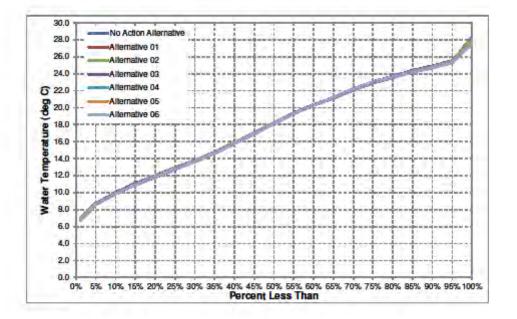
Annex D- Screen 1 (Highway 28 Dissolved Oxygen Exceedance)

	Highway 28 Water Temperature (deg C)									
	No Action	Action Alternative	Alternative	Alternative 03	Alternative	Alternative	Alternative			
Percentile	Atternative	01	02		04	05	06			
Maximum:	24.5	24.5	24.5	24.5	24.5	24.5	24.5			
1%	8.4	8.4	8.4	8.4	8.4	8.4	8.3			
5%	9.9	9.8	9.9	9.8	9.9	9.9	9.8			
10%	10.7	10.8	10.7	10.7	10.7	10.7	10.7			
15%	11.6	11.6	11.6	11.6	11.6	11.6	11.6			
20%	12.2	12.2	12.2	12.2	12.2	12.2	12.2			
25%	12.9	12.9	12.9	12.9	12.9	12.9	12.9			
30%	13.6	13.5	13.6	13.6	13.6	13.6	13.5			
35%	14.4	14.4	14.4	14.4	14.4	14.5	14.4			
40%	15.2	15.2	15.2	15.2	15.2	15.2	15.2			
45%	15.9	15.9	15.9	15.9	15.9	15.9	15.9			
50%	16.6	16.5	16.6	16.7	16.5	16.6	16.6			
55%	17.3	17.2	17.3	17.4	17.3	17.3	17.3			
60%	17.9	17.8	17.8	18.0	17.8	17.9	17.9			
65%	18.4	18.4	18.4	18.5	18.4	18.4	18.5			
70%	19.1	19.1	19.0	19.1	19.1	19.0	19.0			
75%	19.6	19.6	19.6	19.7	19.6	19.6	19.5			
80%	20.1	20.2	20.2	20.2	20.2	20.1	20.1			
85%	20.6	20.7	20.6	20.7	20.6	20.5	20.5			
90%	21.2	21.3	21.2	21.3	21.2	21.2	21.2			
95%	21.9	21.9	21.8	21.9	21.9	21.9	21.8			
100%	24.5	24.5	24.5	24.5	24.5	24.5	24.5			


Highway 28 Water Temperature Exceedance For Study Alternatives

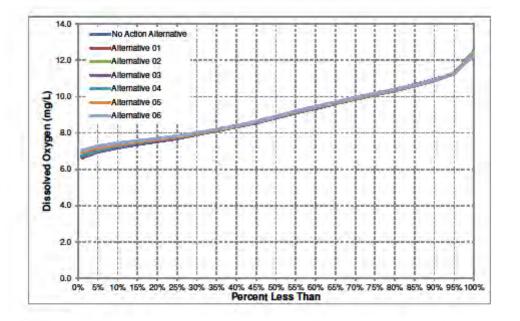
Annex D- Screen 2 (Highway 28 Water Temperature Exceedance)

	Augusta Node Dissolved Oxygen (mg/L)								
	No Action	Alternative	Alternative	Alternative	Alternative	Atternative	Alternative		
Percentile	Atternative	Ne 01	02	03	04	05	06		
Minimum:	8.0	8.0	8.0	8.1	8.0	8.2	8.3		
1%	8.3	8.3	8.3	8.2	8.3	8.4	8.4		
5%	8.5	8.5	8.6	8.5	8.5	8.6	8.6		
10%	8.7	8.7	8.7	8.6	8.7	8.7	8.7		
15%	8.8	8.8	8.8	8.8	8.8	8.8	8.8		
20%	8.9	8.9	8.9	8.9	8.9	8.9	8.9		
25%	9.0	9.0	9.0	9.0	9.1	9.0	9.0		
30%	9.2	9.1	9.2	9.1	9.2	9.2	9.2		
35%	9.3	9.3	9.4	9.3	9.3	9.3	9.3		
40%	9.5	9.5	9.5	9.5	9.5	9.5	9.5		
45%	9.7	9.7	9.7	9.7	9.7	9.7	9.7		
50%	9.9	9.9	9.9	9.9	9.9	9.9	9.9		
55%	10.1	10.1	10.1	10.1	10.1	10.1	10.1		
60%	10.3	10.3	10.3	10.3	10.3	10.3	10.4		
65%	10.5	10.5	10.5	10.5	10.5	10.5	10.5		
70%	10.7	10.7	10.7	10.7	10.7	10.7	10.7		
75%	10.9	10.9	10.9	10.9	10.9	10.9	10.9		
80%	11.1	11.1	11.1	11.1	11.1	11.1	11.1		
85%	11.3	11.3	11.3	11.3	11.3	11.4	11.3		
90%	11.6	11.6	11.6	11.6	11.6	11.6	11.6		
95%	11.9	11.9	11.9	11.9	11.9	11.9	11.9		
100%	12.9	12.9	12.9	12.9	12.9	12.9	12.9		


Augusta Node Dissolved Oxygen Exceedance For Study Alternatives

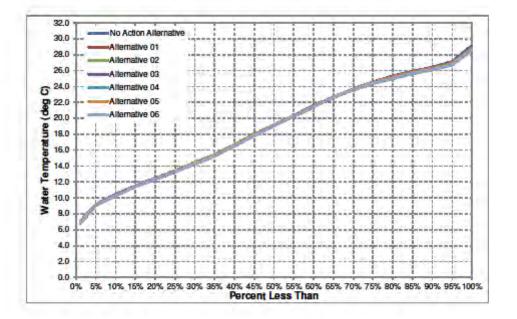
Annex D- Screen 3 (Augusta Node Dissolved Oxygen Exceedance)

	Augusta Node Water Temperature (deg C)								
	No Action	Alternative	Alternative	Alternative	Alternative	Atternative	Alternative		
Percentile	Atternative	01	02	03	04	05	06		
Maximum:	28.3	28.3	28.3	28.1	28.3	28.0	27.6		
1%	6.8	7.0	7.0	6.7	7.0	6.7	6.7		
5%	8.6	8.7	8.7	8.6	8.7	8.6	8.6		
10%	10.0	10.0	10.0	9.9	10.0	9.9	9.9		
15%	11.0	11.1	11.0	10.9	11.1	10.9	10.9		
20%	11.9	12.0	12.0	11.8	12.0	11.9	11.9		
25%	12.8	12.9	12.9	12.8	12.9	12.8	12.8		
30%	13.7	13.8	13.7	13.7	13.8	13.7	13.6		
35%	14.7	14.8	14.7	14.6	14.8	14.7	14.6		
40%	15.8	15.8	15.9	15.8	15.9	15.8	15.8		
45%	17.0	17.0	17.0	17.0	17.0	17.0	16.9		
50%	18.2	18.2	18.2	18.2	18.2	18.2	18.2		
55%	19.3	19.4	19.3	19.3	19.3	19.3	19.3		
60%	20.3	20.3	20.3	20.3	20.3	20.3	20.3		
65%	21.2	21.2	21.1	21.2	21.2	21.2	21.2		
70%	22.1	22.1	22.1	22.2	22.1	22.2	22.2		
75%	22.9	23.0	22.9	23.0	22.9	23.0	23.0		
80%	23.5	23.6	23.5	23.7	23.6	23.6	23.6		
85%	24.2	24.3	24.2	24.4	24.3	24.3	24.2		
90%	24.8	24.8	24.8	24.9	24.8	24.8	24.7		
95%	25.4	25.4	25.3	25.5	25.4	25.4	25.3		
100%	28.3	28.3	28.3	28.1	28.3	28.0	27.6		


Augusta Node Water Temperature Exceedance For Study Alternatives

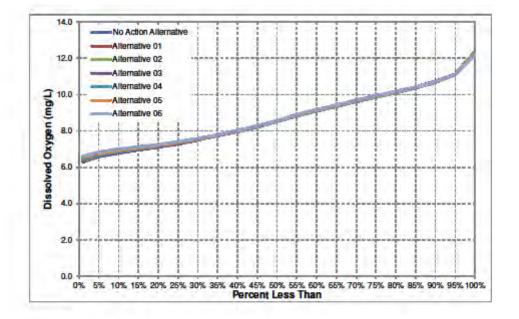
Annex D- Screen 4 (Augusta Node Water Temperature Exceedance)

	Waynesboro Node Dissolved Oxygen (mg/L)								
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative		
Percentile	Atternative	e 01	02	03	04	05	06		
Mnimum:	6.3	6.2	6.3	6.2	6.3	6.6	6.8		
1%	6.8	6.7	6.8	6.6	6.8	6.9	7.0		
5%	7.1	7.0	7.1	7.0	7.0	7.2	7.3		
10%	7.3	7.2	7.3	7.2	7.3	7.3	7.4		
15%	7.5	7.4	7.5	7.4	7.5	7.5	7.6		
20%	7.6	7.6	7.6	7.5	7.6	7.6	7.7		
25%	7.8	7.7	7.8	7.7	7.8	7.8	7.8		
30%	7.9	7.9	7.9	7.9	7.9	8.0	8.0		
35%	8.2	8.1	8.2	8.2	8.2	8.2	8.2		
40%	8.4	8.3	8.4	8.4	8.4	8.4	8.4		
45%	8.6	8.6	8.6	8.6	8.6	8.6	8.6		
50%	8.9	8.8	8.8	8.9	8.8	8.9	8.9		
55%	9.1	9.1	9.1	9.2	9.1	9.2	9.2		
60%	9.4	9.3	9.4	9.4	9.4	9.4	9.5		
65%	9.6	9.6	9.6	9.6	9.6	9.6	9.7		
70%	9.9	9.9	9.9	9.9	9.9	9.9	10.0		
75%	10.1	10.1	10.1	10.1	10.1	10.1	10.2		
80%	10.3	10.3	10.3	10.4	10.3	10.4	10.4		
85%	10.6	10.6	10.6	10.7	10.6	10.6	10.6		
90%	10.9	10.9	10.9	10.9	10.9	10.9	10.9		
95%	11.3	11.3	11.3	11.3	11.3	11.3	11.3		
100%	12.5	12.5	12.3	12.3	12.5	12.4	12.3		


Waynesboro Node Dissolved Oxygen Exceedance For Study Alternatives

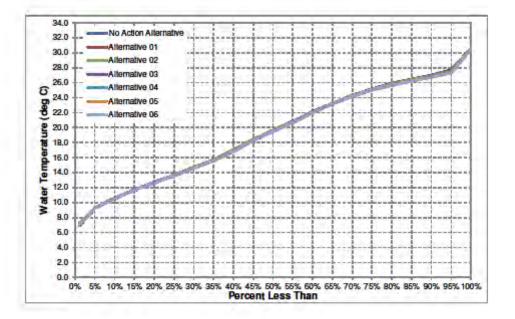
Annex D- Screen 5 (Waynesboro Node Dissolved Oxygen Exceedance)

	Waynesboro Water Temperature (deg C)								
	No Action	Alternative	Alternative	Alternative	Alternative	Atternative	Alternative		
Percentile	Atternative	01	02	03	04	05	06		
Maximum:	28.7	28.9	28.7	29.1	28.8	28.7	28.7		
1%	6.9	7.0	7.0	6.8	7.0	6.8	6.8		
5%	9.1	9.1	9.1	9.0	9.1	9.1	9.1		
10%	10.4	10.4	10.4	10.3	10.4	10.3	10.3		
15%	11.5	11.5	11.5	11.4	11.5	11.5	11.4		
20%	12.4	12.5	12.4	12.3	12.4	12.4	12.3		
25%	13.3	13.4	13.4	13.3	13.4	13.4	13.3		
30%	14.4	14.4	14.4	14.3	14.4	14.4	14.3		
35%	15.4	15.4	15.4	15.3	15.4	15.4	15.2		
40%	16.6	16.6	16.6	16.6	16.7	16.6	16.5		
45%	18.0	18.0	18.0	18.0	18.0	18,0	17.8		
50%	19.1	19.1	19.2	19.2	19.2	19.2	19.1		
55%	20.3	20.3	20.3	20.3	20.3	20.3	20.2		
60%	21.5	21.6	21.5	21.5	21.5	21.4	21.4		
65%	22.7	22.6	22.6	22.6	22.6	22.7	22.7		
70%	23.6	23.7	23.6	23.7	23.6	23.7	23.6		
75%	24.4	24.4	24.3	24.5	24.3	24.5	24.4		
80%	25.1	25.2	25.1	25.3	25.1	25.2	25.0		
85%	25.8	25.8	25.8	25.9	25.8	25.8	25.6		
90%	26.2	26.3	26.2	26.4	26.3	26.2	26.1		
95%	26.9	26.9	26.9	27.1	26.9	26.9	26.7		
100%	28.7	28.9	28.7	29.1	28.8	28.7	28.7		


Waynesboro Water Temperature Exceedance For Study Alternatives

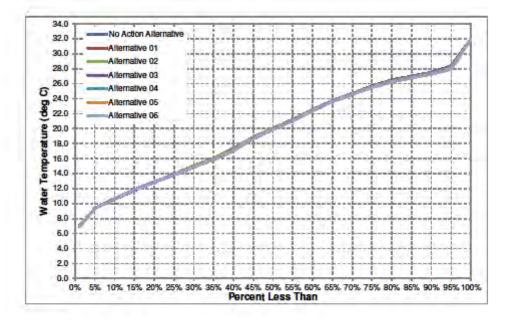
Annex D- Screen 6 (Waynesboro Water Temperature Exceedance)

	1.00	MI	Ihaven Nod	e Dissolved	Oxygen (m	g/L)	
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative
Percentile	Atternative	01	02	03	04	05	06
Minimum:	6.1	6.0	6.1	6.0	6.0	6.2	6.3
1%	6.4	6.4	6.4	6.3	6.4	6.5	6.6
5%	6.7	6.6	6.7	6.6	6.7	6.8	6.8
10%	6.9	6.8	6.9	6.8	6.9	6.9	7.0
15%	7.0	7.0	7.0	7.0	7.0	7.1	7.1
20%	7.2	7.2	7.2	7.1	7.2	7.2	7.2
25%	7.3	7.3	7.3	7.3	7.3	7.4	7.4
30%	7.5	7.5	7.5	7.5	7.5	7.5	7.6
35%	7.8	7.7	7.8	7.8	7.7	7.8	7.8
40%	8.0	8.0	8.0	8.0	8.0	8.0	8.0
45%	8.2	8.2	8.2	8.2	8.2	8.3	8.3
50%	8.5	8.5	8.5	8.6	8.5	8.6	8.6
55%	8.8	8.8	8.8	8.9	8.8	8.9	8.9
60%	9.1	9.1	9.1	9.1	9.1	9.1	9.2
65%	9.4	9.3	9.4	9.4	9.3	9.4	9.4
70%	9.6	9.6	9.6	9.6	9.6	9.7	9.7
75%	9.9	9.8	9.8	9.9	9.9	9.9	9,9
80%	10.1	10.1	10.1	10.2	10.1	10.1	10.2
85%	10.4	10.4	10.4	10.4	10.4	10.4	10.4
90%	10.7	10.7	10.7	10.7	10.7	10.7	10.7
95%	11.1	11.1	11.1	11.1	11.1	11.1	11.1
100%	12.4	12.4	12.2	12.4	12.4	12.3	12.2



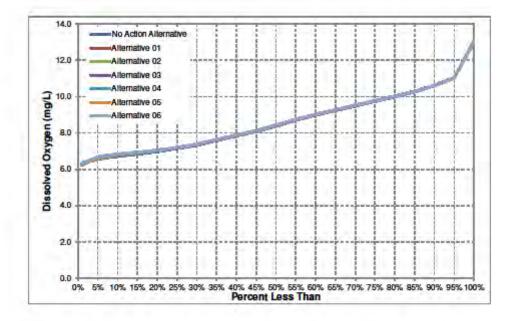
Annex D- Screen 7 (Millhaven Node Oxygen Exceedance)

	Milihaven Water Temperature (deg C) No Action Alternative Alternative Alternative Alternative Alternative Alternative											
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative					
Percentile	Atternative	01	02	03	04	05	06					
Maximum:	30.6	30.6	30.6	30.6	30.6	30.5	30.5					
1%	7.0	7.1	7.0	6.9	7.0	7.0	7.0					
5%	9.3	9.3	9.3	9.2	9.3	9.3	9.2					
10%	10.6	10.6	10.6	10.5	10.6	10.5	10.5					
15%	11.7	11.7	11.7	11.6	11.7	11.6	11.7					
20%	12.6	12.7	12.7	12.6	12.7	12.7	12.6					
25%	13.6	13.7	13.6	13.6	13.7	13.6	13.5					
30%	14.7	14.7	14.7	14.6	14.7	14.7	14.6					
35%	15.7	15.7	15.7	15.7	15.7	15.7	15.6					
40%	17.0	17.0	17.0	16.9	17.0	16.9	16.8					
45%	18.4	18.4	18.4	18.4	18.4	18.4	18.3					
50%	19.6	19.6	19.6	19.6	19.7	19.6	19.5					
55%	20.8	20.8	20.8	20.7	20.8	20.8	20.7					
60%	22.0	22.1	22.0	22.0	22.1	22.0	22.0					
65%	23.2	23.2	23.2	23.2	23.2	23.2	23.2					
70%	24.2	24.3	24.2	24.3	24.2	24.2	24.2					
75%	25.0	25.1	25.0	25.1	25.0	25.1	25.0					
80%	25.7	25.8	25.7	25.9	25.7	25.8	25.6					
85%	26.4	26.4	26.3	26.5	26.4	26.4	26.2					
90%	26.8	26.9	26.8	27.0	26.9	26.8	26.7					
95%	27.5	27.5	27.4	27.7	27.5	27.5	27.3					
100%	30.6	30.6	30.6	30.6	30.6	30.5	30.5					


Millhaven Node Water Temperature Exceedance For Study Alternatives

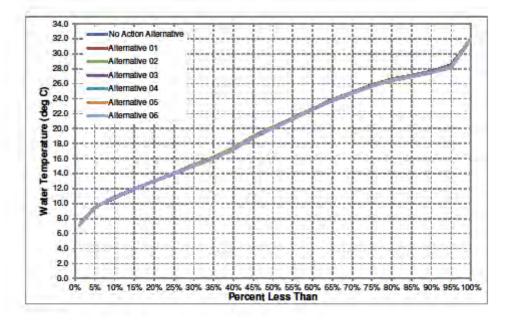
Annex D- Screen 8 (Millhaven Node Water Temperature Exceedance)

		Rh	er Mile 87 \	Water Temp	erature (dep	(C)	
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative
Percentile	Atternative	01	02	03	04	05	06
Maximum:	32.0	32.0	32.0	32.0	32.0	32.0	32.0
1%	6.9	6.9	6.9	6.9	6.9	6.9	6.9
5%	9.3	9.3	9.3	9.3	9.3	9.3	9.3
10%	10.6	10.6	10.6	10.6	10.7	10.6	10.6
15%	11.8	11.9	11.9	11.8	11.9	11.8	11.8
20%	12.9	12.9	12.9	12.8	12.9	12.8	12.8
25%	13.9	13.9	13.9	13.9	13.9	13.9	13.8
30%	15.0	15.0	15.0	14.9	15.0	15.0	14.9
35%	16.0	16.0	16.0	16.0	16.0	16.0	15.8
40%	17.2	17.3	17.3	17.2	17.3	17.2	17.0
45%	18.8	18.8	18.8	18.8	18.8	18.8	18.7
50%	20.0	20.0	20.0	19.9	20.0	20.0	19.9
55%	21.2	21.2	21.2	21.1	21.2	21.2	21.1
60%	22.4	22.5	22.5	22.4	22.5	22.4	22.4
65%	23.7	23.7	23.7	23.6	23.7	23.6	23.6
70%	24.6	24.7	24.6	24.7	24.6	24.6	24.5
75%	25.5	25.6	25.5	25.7	25.5	25.6	25.5
80%	26.3	26.4	26.3	26.5	26.3	26.3	26.2
85%	26.9	27.0	26.9	27.0	26.9	26.8	26.8
90%	27.4	27.4	27.4	27.5	27.4	27.4	27.3
95%	28.1	28.1	28.1	28.3	28.2	28.1	27.9
100%	32.0	32.0	32.0	32.0	32.0	32.0	32.0


River Mile 87 Water Temperature Exceedance For Study Alternatives

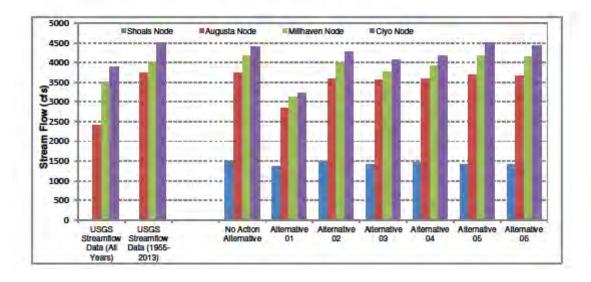
Annex D- Screen 9 (River Mile 87 Water Temperature Exceedance)

	Civo Node Dissolved Oxygen (mg/L) No Action Alternative Alternativ										
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative				
Percentile	Atternative	01	02	03	04	05	06				
Minimum:	5.7	5.7	5.7	5.7	5.7	5.7	5.7				
1%	6.3	6.3	6.3	6.3	6.3	6.2	6.3				
5%	6.6	6.6	6.6	6.6	6.6	6.6	6.7				
10%	6.8	6.7	6.8	6.7	6.8	6.8	6.8				
15%	6.9	6.9	6.9	6.8	6.9	6.9	6.9				
20%	7.0	7.0	7.0	7.0	7.0	7.0	7.1				
25%	7.2	7.2	7.2	7.1	7.2	7.2	7.2				
30%	7.4	7.4	7.4	7.3	7.4	7.4	7.4				
35%	7.6	7.6	7.6	7.6	7.6	7.6	7.6				
40%	7.9	7.8	7.9	7.9	7.8	7.9	7.9				
45%	8.1	8.1	8.1	8.1	8,1	8.1	8.1				
50%	8.4	8.4	8.4	8.4	8.4	8.4	8.4				
55%	8.7	8.7	8.7	8.7	8.7	8.7	8.8				
60%	9.0	9.0	9.0	9.0	9.0	9.0	9.0				
65%	9.2	9.2	9.2	9.2	9.2	9.3	9.3				
70%	9.5	9.5	9.5	9.5	9.5	9.5	9.5				
75%	9.7	9.7	9.7	9.8	9.7	9.8	9.8				
90%	10.0	10.0	10.0	10.0	10.0	10.0	10.0				
85%	10.3	10.3	10.3	10.3	10.3	10.3	10.3				
90%	10.6	10.6	10.6	10.6	10.6	10.6	10.6				
95%	11.0	11.0	11.0	11.0	11.0	11.0	11.0				
100%	13.0	13.0	13.0	13.0	13.0	13.1	13.1				


Ciyo Node Dissolved Oxygen Exceedance For Study Alternatives

Annex D- Screen 10 (Clyo Node Dissolved Oxygen Exceedance)

	Cityo Water Temperature (deg C) No Action Alternative Alternative Alternative Alternative Alternative Alternative									
	No Action	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative			
Percentile	Atternative	01	02	03	04	05	06			
Maximum:	32.1	32.1	32.1	32.0	32.1	32.0	32.0			
1%	7.2	7.2	7.2	7.1	7.2	7.1	7.1			
5%	9.5	9.4	9.5	9.5	9.5	9.4	9.5			
10%	10.8	10.9	10.8	10.8	10.9	10.8	10.8			
15%	12.0	12.0	12.0	11.9	12.0	12.0	12.0			
20%	13.0	13.0	13.0	13.0	13.0	13.0	13.0			
25%	14.0	14.0	14.0	14.0	14.0	14.0	14.0			
30%	15.1	15.2	15.2	15.1	15.2	15.1	15.0			
35%	16.1	16.2	16.2	16.1	16.2	16.1	16.0			
40%	17.3	17.4	17.4	17.4	17.4	17.4	17.2			
45%	18.9	18.9	19.0	18.9	19.0	18.9	18.8			
50%	20.1	20.1	20.2	20.1	20.2	20.1	20.0			
55%	21.4	21.4	21.4	21.3	21.4	21.3	21.3			
60%	22.6	22.6	22.6	22.6	22.6	22.6	22.6			
65%	23.8	23.9	23.8	23.8	23.9	23.8	23.7			
70%	24.8	24.8	24.7	24.9	24.8	24.8	24.7			
75%	25.7	25.8	25.7	25.8	25.7	25.8	25.7			
90%	26.5	26.6	26.5	26.6	26.5	26.5	26.4			
85%	27.0	27.1	27.0	27.1	27.0	27.0	26.9			
90%	27.6	27.6	27.6	27.7	27.6	27.5	27.5			
95%	28.3	28.3	28.3	28.5	28.3	28.2	28.1			
100%	32.1	32.1	32.1	32.0	32.1	32.0	32.0			


Ciyo Water Temperature Exceedance For Study Alternatives

Annex D- Screen 11 (Clyo Node Water Temperature Exceedance)

	Compu	ited 7Q10	Stream Flow	vs (cfs)
Location:	Shoals Node	Augusta Node	Millhaven Node	Ciyo Node
USGS Streamflow Data (All Years)	-	2397	3499	3888
USGS Streamflow Data (1955-2013)		3746	4028	4513
No Action Alternative	1477	3747	4174	4409
Alternative 01	1359	2851	3119	3236
Alternative 02	1483	3589	3989	4265
Alternative 03	1416	3557	3767	4062
Alternative 04	1467	3575	3905	4159
Alternative 05	1425	3696	4172	4512
Alternative 06	1417	3670	4142	4432

Savannah River Basin Phase 2 Comprehensive Study Comparison of 7Q10 Stream Flows For Study Alternatives

Annex D- Screen 12 (Savannah River Basin, Phase 2 Comparison of 7Q10 Stream Flows)

Savannah River Basin Phase 2 Comprehensive Study Water Quality Modeling Results

90% Exceedance Dissolved Oxygen Concentrations at Selected Locations for Period 1999 Through 2013

Location:	Highway 28	Augusta	Waynesboro	Millhaven	River Mile 87	Ciyo
NAA	4.8	8.7	7.3	6.9	6.6	6.8
ALT01	5.0	8.7	7.2	6.8	6.6	6.7
ALT02	4.8	8.7	7.3	6.9	6.6	6.8
ALT03	4.9	8.6	7.2	6.8	6.5	6.7
ALT04	4.9	8.7	7.3	6.9	6.6	6.8
ALT05	4.8	8.7	7.3	6.9	6.6	6.8
ALT06	4.7	8.7	7.4	7.0	6.7	6.8
	ygen concentra um Dissolw	ed Oxyger			ected Locatio	ns foi
Minim		ed Oxyger	Concentrati		River Mile 87	
Minim Location:	um Dissolw Highway 28	Augusta	d 1999 Throu Waynesboro	gh 2013 Milhaven	River Mile 87	Ciyo
Minim Location: NAA	um Dissolw Highway 28 3.0	ed Oxyger Perio Augusta 8.0	6.3	gh 2013 Milihaven 6.1	River Mile 87	Ciyo 5.7
Minim Location: NAA ALT01	Highway 28 3.0 3.0	Augusta 8.0 8.0	d 1999 Throu Waynesboro	gh 2013 Milhaven	River Mile 87	Ciyo 5.7 5.7
Minim Location: NAA ALT01 ALT02	um Dissolw Highway 28 3.0	ed Oxyger Perio Augusta 8.0	6.3 6.2	gh 2013 Milihaven 6.1 6.0	River Mile 87 5.2 5.2	Ciyo 5.7 5.7 5.7
Minim Location: NAA ALT01	Highway 28 3.0 3.0 3.0 3.1	Augusta 8.0 8.0 8.0 8.0 8.0 8.1	Waynesboro 6.3 6.2 6.3 6.2 6.3 6.2	gh 2013 Milhaven 6.1 6.0 6.1	River Mile 87 5.2 5.2 5.2 5.2	Ciyo 5.7 5.7 5.7 5.7
Minim Location: NAA ALT01 ALT02 ALT03	Highway 28 3.0 3.0 3.0 3.0	Augusta 8.0 8.0 8.0 8.0	Kaynesboro 6.3 6.2 6.3	gh 2013 Milhaven 6.1 6.0 6.1 6.0	River Mile 87 5.2 5.2 5.2 5.2 5.2	Ciyo 5.7 5.7 5.7

Dissolved oxygen concentration in milligrams per liter.

Annex D- Screen 13 (Savannah River Basin, Phase 2 Water Quality Modeling)

Savannah	River B	asin	Phase	2 Con	npre he nsive	Study
	Hydrod	ynam	IC MOO	leling	Results	

	New		Burton's	uckahoe	Tuckahoe					
	Savannah	Yuchi WMA	Ferry	WMA -	WMA -	Tuckahoe				
	Bluff Lock	Brighams	Landing (US	Possum	Dick's	WMA -	Poor Robins	Blue Springs	Tuckasee	Ebenezer
Location:	and Dam	Landing	301)	Eddy	Lookout	Miller Lake	Landing	Landing	King	Landing
	97.4	77.9	58.8	52.0	50.0	45.8	35.0	29.5	17.5	9
NAA										
ALT01	96.9			51.5	49.5	45.3			17.1	9.
ALT02	97.2			51.9	49.8	45.8			17.4	9.
ALT03	97.3			51.9	49.9	45.7			17.4	9.
ALT04	97.0			51.6	49.5	45.4			17.2	9.
ALT05	97.8			52.3	50.2	46.0			17.7	9.
ALT06	98.1 e elevations a		57.1	52.8	50.5	48.3	35.5	30.0	17.9	10.
ater surface			Inface Eleva	ations at G	eordia Bo	at Ramps	for Period	1939 Throu	ah 2013	
	New		Burton's	Tuckahoe	Tuckahoe					
	Savannah	Yuchi WMA	Ferry	WMA-	WMA -	Tuckahoe				
	Bluff Lock	Brighams	Landing (US	Possum	Dick's	WMA -	Poor Robins	Blue Springs	Tuckasee	Ebenezer
Location:	and Dam	Landing	301)	Eddy	Lookout	Miller Lake	Landing	Landing	King	Landing
NAA	96.1	75.2	55.2	50.4	48.4	44.1	33.3	28.2	16.1	7.
ALT01	94.6			48.5	48.6	42.3			14.2	5
ALT02	96.1			50.1	48.2	44.0			16.0	7
	96.1									
ALT03	96.1			49.9	47.9	43.5			15.7	7.
ALT04					48.0				15.8	7.
ALT05	96.4			50.4	48.4	44.1	33.4		16.1	7.
ALT06	96.4		55.2	50.5	48.5	44.2	33.5	28.3	16.2	7.
	e elevations a	are in feet.								
	e Excond	anno Wain	r Curfaco E	inveilane	at Coorals	Bost Dan	me for Dor	T 0001 hol	brough 90:	12
90	% Exceed	ance Wate	F Surface E Burton's	Tuckahoe	at Georgia Tuckahoe	Boat Ran	nps for Per	10d 1999 T	hrough 201	13
90	New	Yuchi WMA	Burton's			Boat Ran	nps for Per	10d 1999 T	hrough 20	13
90	New	Yuchi WMA	Burton's	Tuckahoe WMA -	Tuckahoe		200	Blue Springs		
	New Savannah	Yuchi WMA	Burton's Ferry	Tuckahoe WMA -	Tuckahoe WMA -	Tuckahoe	200			Ebenezer Landing
Location:	New Savannah Bluff Look and Dam	Yuchi WMA Brighams Landing	Burton's Ferry Landing (US 301)	Tuckahoe WMA - Possum Eddy	Tuckahoe WMA - Dick's Lookout	Tuckahoe WMA - Miller Lake	Poor Robins Landing	Blue Springs Landing	Tuckasee King	Ebenezer Landing
Location: NAA	New Savannah Bluff Lock and Dam 97.0	Yuchi WMA Brighams Landing 77.5	Burton's Ferry Landing (US 301) 58.0	Tuckahoe WMA - Possum Eddy 51.4	Tuckahoe WMA - Dick's Lookout 49.3	Tuckahoe WMA - Miller Lake 45.0	Poor Robins Landing 34.3	Blue Springs Landing 29.0	Tuckasee King 16.9	Ebenezer Landing 8.
Location: NAA ALTO1	New Savannah Bluff Lock and Dam 97.0 95.7	Yuchi WMA Brighams Landing 77.5 74.7	Burton's Ferry Landing (US 301) 58.0 54.9	Tuckahoe WMA - Possum Eddy 51.4 50.2	Tuckahoe WMA - Dick's Lookout 49.3 48.2	Tuckahoe WMA - Miller Lake 45.0 44.0	Poor Robins Landing 34.3 33.3	Blue Springs Landing 29.0 28.3	Tuckasee King 16.9 16.1	Ebenezer Landing 8. 7.
Location: NAA ALT01 ALT02	New Savannah Bluff Lock and Dam 97.0 95.7 96.8	Yuchi WMA Brighams Landing 77.5 74.7 77.5	Burton's Ferry Landing (US 301) 58.0 54.9 55.9	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9	Poor Robins Landing 34.3 33.3 34.2	Blue Springs Landing 29.0 28.3 28.9	Tuckasee King 16.9 16.1 16.8	Ebenezer Landing 8. 7. 8.
Location: NAA ALT01 ALT02 ALT03	New Savannah Bluff Lock and Dam 97.0 96.8 96.8 96.5	Yuchi WMA Brighams Landing 77.5 74.7 77.5 77.3	Burton's Ferry Landing (US 301) 58.0 54.9 55.9 55.7	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7	Poor Robins Landing 34.3 33.3 34.2 34.0	Blue Springs Landing 29.0 28.3 28.9 28.9 28.7	Tuckasee King 16.9 16.1 16.8 16.8	Ebenezer Landing 8. 7. 8. 8. 8.
Location: NAA ALT01 ALT02 ALT03 ALT04	New Savannah Bluff Lock and Dam 97.0 96.7 96.8 96.6 96.6	Yuchi WMA - Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3	Burton's Ferry Landing (US 301) 56.0 56.9 56.9 55.7 55.7	Tuckahoe WMA - Possum Eddy 51.4 60.2 61.2 51.0 51.0	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7	Tuckasee King 16.9 16.1 16.8 18.6 16.6	Ebenezer Landing 8. 7. 8. 8. 8. 8.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05	New Savannah Bluff Lock and Dam 97.0 96.8 96.8 98.5 98.6 97.0	Yuchi WMA - Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3 77.3	Burton's Ferry Landing (US 301) 56.0 54.9 56.9 55.7 56.7 56.3	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.7	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.6	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7 44.7 45.4	Poor Robins Landing 34.3 34.3 34.2 34.0 34.0 34.9 34.6	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7 29.3	Tuckasee King 16.9 16.1 16.8 16.8 16.6 17.2	Ebenezer Landing 8. 7. 8. 8. 8. 8. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06	New Savannah Bluff Lock and Dam 97.0 96.8 96.5 96.6 97.0 97.1	Yuchi WMA - Brighams Landing 77.5 74.7 77.6 77.3 77.3 77.3 77.7 77.7	Burton's Ferry Landing (US 301) 56.0 54.9 56.9 55.7 56.7 56.3	Tuckahoe WMA - Possum Eddy 51.4 60.2 61.2 51.0 51.0	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7	Poor Robins Landing 34.3 34.3 34.2 34.0 34.0 34.9 34.6	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7 29.3	Tuckasee King 16.9 16.1 16.8 18.6 16.6	Ebenezer Landing 8. 7. 8.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06	New Savannah Bluff Lock and Dam 97.0 96.8 98.5 98.6 97.0 97.1 e elevations c	Yuchi WMA - Brighams Landing 77.5 74.7 77.6 77.3 77.3 77.3 77.7 77.8 are in feet.	Burton's Ferry Landing (US 301) 58.0 56.9 56.9 56.7 56.7 56.3 58.8	Tuckahoe WMA - Possum Eddy 51.4 60.2 51.2 51.2 51.0 51.0 51.0 51.7 52.1	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.0 50.0	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7 45.8	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7 29.3	Tuckasee King 16.9 16.1 16.8 16.6 16.6 17.2 17.5	Ebenezer Landing 8. 7. 8. 8. 8. 8. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06	New Savannah Bluff Look and Dam 97.0 96.8 96.8 96.8 96.6 97.0 97.1 c elevations of Minimum New	Yuchi WMA Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3 77.3 77.8 77.7 77.8 are in feet. n Water Su	Burton's Ferry Landing (US 301) 56.0 54.9 56.7 56.7 56.7 56.2 56.8 156.8 156.8 156.8 156.8 156.8	Tuckahoe WMA - Possum Eddy 51.4 60.2 51.2 51.0 51.0 51.0 51.7 52.1 ations at G	Tuckahoe WMA - Dick's Lookout 49.3 49.2 49.2 49.0 49.0 49.0 49.0 50.0 Eorgia Bo Tuckahoe	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7 45.4 45.8 at Ramps	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0	Blue Springs Landing 29.0 28.3 28.7 28.7 29.3 29.8	Tuckasee King 16.9 16.1 16.8 16.6 16.6 17.2 17.5	Ebenezer Landing 8. 7. 8. 8. 8. 8. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06	New Savannah Bluff Lock and Dam 97.0 96.8 96.5 96.8 96.5 96.6 97.0 97.0 97.1 e elevations c Minimum New Savannah	Yuchi WMA Brighams Landing 77.5 74.7 77.3 77.3 77.3 77.7 77.8 are in feet. n Water Su Yuchi WMA	Burton's Ferry Landing (US 301) 56.0 54.9 55.7 56.7 56.7 56.3 56.8 Burtace Eleva Burton's Ferry	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.7 52.1 itions at G Tuckahoe WMA -	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.0 49.0 49.0 49.0 49.0 50.0 Eoorgia Boo Tuckahoe WMA -	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.8 45.8 at Ramps Tuckahoe	Poor Robins Landing 34.3 33.2 34.2 34.0 33.9 34.0 33.9 34.0 35.0 for Period	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7 29.7 29.8 29.8 1999 Throu	Tuckasee King 16.9 16.1 16.8 16.6 16.6 16.6 17.2 17.5 10gh 2013	Ebenezer Landing 8. 7. 8. 8. 8. 9. 9. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06	New Savannah Bluff Look and Dam 97.0 96.8 96.8 96.8 96.6 97.0 97.1 c elevations of Minimum New	Yuchi WMA Brighams Landing 77.5 74.7 77.3 77.3 77.3 77.7 77.8 are in feet. n Water Su Yuchi WMA	Burton's Ferry Landing (US 301) 56.0 54.9 56.7 56.7 56.7 56.2 56.8 156.8 156.8 156.8 156.8 156.8	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.7 52.1 itions at G Tuckahoe WMA -	Tuckahoe WMA - Dick's Lookout 49.3 49.2 49.2 49.0 49.0 49.0 49.0 50.0 Eorgia Bo Tuckahoe	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 44.7 45.4 45.8 at Ramps	Poor Robins Landing 34.3 33.2 34.2 34.0 33.9 34.0 33.9 34.0 35.0 for Period	Blue Springs Landing 29.0 28.3 28.7 28.7 29.3 29.8	Tuckasee King 16.9 16.1 16.8 16.6 16.6 16.6 17.2 17.5 10gh 2013	Ebenezer Landing 8. 7. 8. 8. 8. 8. 9.
NAA ALTO1 ALTO2 ALTO3 ALTO4 ALTO6 ater surfac	New Savannah Bluff Lock and Dam 97.0 96.8 96.5 96.8 96.5 96.6 97.0 97.0 97.1 e elevations c Minimum New Savannah	Yuchi WMA Brighams Landing 77.5 74.7 77.3 77.3 77.3 77.7 77.8 are in feet. n Water Su Yuchi WMA	Burton's Ferry Landing (US 301) 56.0 54.9 55.7 56.7 56.7 56.3 56.8 Burtace Eleva Burton's Ferry	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.7 52.1 itions at G Tuckahoe WMA -	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.0 49.0 49.0 49.0 49.0 50.0 Eoorgia Boo Tuckahoe WMA -	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.8 45.8 at Ramps Tuckahoe	Poor Robins Landing 34.3 33.2 34.2 34.0 33.9 34.0 33.9 34.0 35.0 for Period	Blue Springs Landing 29.0 28.3 28.9 28.7 28.7 29.7 29.8 29.8 1999 Throu	Tuckasee King 16.9 16.1 16.8 16.6 16.6 16.6 17.2 17.5 10gh 2013	Ebenezer Landing 8. 7. 8. 8. 8. 9. 9. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT06 ALT06 ater surface	New Savannah Bluff Lock and Dam 97.0 96.8 96.8 96.6 97.0 97.0 97.1 c elevations of Minimum New Savannah Bluff Lock and Dam	Yuchi WMA Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3 77.3 77.9 77.9 77.9 77.9	Burton's Ferry Landing (US 301) 56.0 54.9 55.7 56.7 56.7 58.3 58.3 58.4 Burton's Ferry Landing (US 301)	Tuckahoe WMA - Possum Eddy 51.4 60.2 51.2 51.0 51.0 51.0 51.7 52.1 atlons at G Tuckahoe WMA - Possum Eddy	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.0 49.0 50.0 Borgia Bo Tuckahoe WMA - Dick's Lookout	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.4 45.8 at Ramps Tuckahoe WMA - Miller Lake	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.6 35.0 for Period Poor Robins Landing	Blue Springs Landing 28.3 28.9 28.7 28.7 29.3 29.3 29.3 29.8 1999 Throu Blue Springs Landing	Tuckasee King 16.9 16.1 16.8 16.8 16.8 16.8 17.2 17.5 Ugh 2013 Tuckasee King	Ebenezer Landing 8. 7. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT05 ater surface Location: NAA	New Sevannah Bluff Lock and Dam 97.0 96.8 96.5 96.6 97.0 97.1 97.1 e elevations o Minimum New Savannah Bluff Lock and Dam 96.1	Yuchi WMA Brighams Landing 77.5 74.7 77.6 77.3 77.3 77.3 77.3 77.3 77.3 77	Burton's Ferry Landing (US 301) 58.0 56.7 56.7 56.7 56.3 56.6 Burton's Ferry Landing (US 301) 56.2	Tuckahoe WMA- Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.0 51.0 51.7 52.1 ations at G Tuckahoe WMA- Possum Eddy 50.5	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.0 50.0 Eoorgia Boo Tuckahoe WMA - Dick's Lookout 48.5	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.4 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.6 35.0 for Period Poor Robins Landing 33.6	Blue Springs Landing 29.0 28.3 28.9 28.7 29.7 29.3 29.6 1999 Throu Blue Springs Landing 28.5	Tuckasee King 16.9 16.1 16.8 16.6 17.2 17.5 19 2013 Tuckasee King 18.4	Ebenezer Landing 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT05 ater surfac Location: NAA ALT01	New Sevannah Bluff Lock and Dam 97.0 96.8 98.5 96.6 97.0 97.1 96.8 97.0 97.1 97.0 97.1 96.8 97.0 97.1 96.8 97.0 97.1 96.8 97.0 97.1 96.8 97.0 97.1 96.8 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	Yuchi WMA Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3 77.3 77.7 77.8 n Watter Su Brighams Landing 76.2 73.5	Burton's Ferry Landing (US 301) 68.0 54.9 55.7 56.7 56.3 58.8 Burton's Ferry Landing (US 301) 55.2 53.8	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.0 51.0 51.0 51.0 51.7 52.1 itilons at G Tuckahoe WMA - Possum Eddy 50.5 48.8	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.6 50.0 Eorgia Bo Tuckahoe WMA - Dick's Lookout 48.5 48.8	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.4 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3 42.6	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0 for Period Poor Robins Landing 33.8 31.8	Blue Springs Landing 28.0 28.3 28.9 28.7 29.3 29.8 1999 Throu Blue Springs Landing 28.5 27.1	Tuckasee King 16.9 16.1 16.8 16.8 16.6 17.2 17.5 10gh 2013 Tuckasee King 16.4 14.5	Ebenezer Landing 8. 7. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06 ater surface Location: NAA ALT01 ALT01	New Sevannah Bluff Lock and Dam 97.0 96.8 98.5 96.8 97.0 97.1 e elevations of Minimum New Savannah Bluff Lock and Dam 96.1 94.8 94.8	Yuchi WMA Brighams Landing 77.5 74.7 77.5 77.3 77.3 77.3 77.3 77.3 77.3 77	Burton's Ferry Landing (US 301) 56.0 54.9 56.7 56.7 56.3 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.1 Burton's Ferry Landing (US 301) 56.2 53.8 55.1	Tuckahee WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.0 51.7 52.1 atlons at G Tuckahee WMA - Possum Eddy 50.5 48.8 50.3	Tuckahoe WMA - Dick's Lookout 49.3 49.2 49.2 49.0 49.0 49.0 49.0 49.0 49.0 50.0 Tuckahoe WMA - Dick's Lookout 48.5 46.8 48.4	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.4 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3 42.6 44.1	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.6 35.0 for Period Poor Robins Landing 33.6 31.8 33.4	Blue Springs Landing 28.3 28.9 28.7 28.7 28.3 29.3 29.3 29.8 1999 Throu Blue Springs Landing 28.5 27.1 28.3	Tuckasee King 16.9 16.8 16.8 16.8 16.8 17.2 17.5 19gh 2013 Tuckasee King 18.4 14.5 16.1	Ebenezer Landing 8. 8. 8. 8. 9. 9. 9. Ebenezer Landing 8. 6. 7.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT06 ater surface Location: NAA ALT01 ALT02 ALT02 ALT03	New Savannah Bluff Lock and Dam 97.0 96.8 96.6 96.6 97.0 97.0 97.1 c elevations a Minimum New Savannah Bluff Lock and Dam 96.1 94.1 94.1 94.1 94.1 94.1	Yuchi WMA Brighams Landing 77.5 74.7 77.3 77.3 77.3 77.3 77.3 77.7 77.8 are in feet. N Water Su Yuchi WMA Brighams Landing 75.2 73.5 75.1 74.8	Burton's Ferry Landing (US 301) 56.0 54.9 56.7 56.7 56.7 58.2 58.8 Burton's Ferry Landing (US 301) 55.2 53.8 55.1 54.8	Tuckahoe WMA - Possum Eddy 51.4 60.2 51.2 51.0 51.0 51.0 51.7 52.1 atlons at G Tuckahoe WMA - Possum Eddy 50.5 48.8 50.3 50.0	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.0 49.0 49.0 49.0 49.0 49.0 50.0 Borgia Bo Tuckahoe WMA - Dick's Lookout 48.5 48.8 48.4 48.4	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3 42.6 44.1 43.9	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0 for Period Poor Robins Landing 33.8 31.8 33.4 33.2	Blue Springs Landing 29.0 28.3 28.9 28.7 29.3 29.3 29.8 1999 Throu Blue Springs Landing 28.5 27.1 28.5 27.1 28.5 28.1	Tuckasee King 16.9 16.1 16.8 16.8 16.8 17.2 17.5 Igh 2013 Tuckasee King 16.4 14.5 16.1 16.0	Ebenezer Landing 8. 7. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06 (ater surface) Location: NAA ALT01 ALT01 ALT02 ALT02 ALT04	New Sevannah Bluff Lock and Dam 97.0 96.8 98.5 96.6 97.0 97.1 97.1 97.1 97.1 97.0 97.1 97.1 97.1 97.0 97.1 97.1 97.1 96.8 97.0 97.1 97.0 97.1 96.8 97.0 97.1 96.8 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	Yuchi WMA Brighams Landing 77.5 77.7 77.8 77.3 77.7 77.8 77.3 77.7 77.8 77.3 77.7 77.8 77.9 77.9 8 75.1 74.8 8 75.1 74.8 75.0	Burton's Ferry Landing (US 301) 68.0 54.9 56.7 56.7 56.3 58.8 Burton's Ferry Landing (US 301) 65.2 53.8 55.4 54.9 54.9 54.9	Tuckahoe WMA - Possum Eddy 51.4 50.2 51.2 51.0 51.0 51.0 51.7 52.1 ations at G Tuckahoe WMA - Possum Eddy 50.5 48.8 50.3 50.0 50.1	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.2 49.0 49.0 49.0 49.0 49.0 50.0 eorgia Boo Tuckahoe WMA - Dick's Lookout 48.5 48.8 48.4 48.1 48.2	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.4 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3 42.6 44.1 43.9 44.0	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0 for Period Poor Robins Landing 33.8 31.8 33.4 33.2 33.3	Blue Springs Landing 28.0 28.3 28.9 28.7 28.7 29.3 29.8 1999 Throu Blue Springs Landing 28.5 27.1 28.3 28.1 28.3 28.1 28.3	Tuckasee King 16.9 16.8 16.8 16.8 17.2 17.5 19 2013 Tuckasee King 18.4 14.5 16.1 16.0 16.1	Ebenezer Landing 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
Location: NAA ALT01 ALT02 ALT03 ALT04 ALT06 ALT06 ater surface Location: NAA ALT01 ALT02 ALT02 ALT03	New Savannah Bluff Lock and Dam 97.0 96.8 96.6 96.6 97.0 97.0 97.1 c elevations a Minimum New Savannah Bluff Lock and Dam 96.1 94.1 94.1 94.1 94.1 94.1	Yuchi WMA Brighams Landing 77.5 74.7 77.3 77.3 77.3 77.3 77.7 77.8 arc in feet. n Water Su Yuchi WMA Brighams Landing 75.2 73.5 75.1 74.8 75.0 75.1 74.8 75.0 75.1	Burton's Ferry Landing (US 301) 66.0 54.9 56.7 56.7 56.7 56.7 56.3 58.8 Burton's Ferry Landing (US 301) 55.2 53.8 54.9 55.1 54.8 54.9 55.1 54.9 55.2	Tuckahoe WMA - Possum Eddy 51.4 60.2 51.2 51.0 51.0 51.0 51.7 52.1 atlons at G Tuckahoe WMA - Possum Eddy 50.5 48.8 50.3 50.0	Tuckahoe WMA - Dick's Lookout 49.3 48.2 49.0 49.0 49.0 49.0 49.0 49.0 50.0 Borgia Bo Tuckahoe WMA - Dick's Lookout 48.5 48.8 48.4 48.4	Tuckahoe WMA - Miller Lake 45.0 44.0 44.9 44.7 45.8 at Ramps Tuckahoe WMA - Miller Lake 44.3 42.6 44.1 43.9	Poor Robins Landing 34.3 33.3 34.2 34.0 33.9 34.8 35.0 for Period Poor Robins Landing 33.6 31.8 33.4 33.2 33.5	Blue Springs Landing 28.3 28.9 28.7 28.7 28.7 28.3 29.3 29.3 29.8 1999 Throu Blue Springs Landing 28.5 27.1 28.3 28.1 28.3 28.1 28.3	Tuckasee King 16.9 16.1 16.8 16.8 16.8 17.2 17.5 Igh 2013 Tuckasee King 16.4 14.5 16.1 16.0	Ebenezer Landing 8. 7. 8. 8. 8. 9. 9. 9. 9.

Annex D- Screen 14 (Savannah River Basin, Phase 2 Hydrodynamic Modeling)

	Thurmond		Stevens	Riverview		Steel	and the second second	and the second second	Cohens	Stokes
Location:	Dam	Furys Ferry	Creek	Park	Jackson	Creek	Little Hell	Johnsons	Bluff	Bluff
NAA	184.9	184.8	184.8	116.3	88.3	73.9	67.9	60.2	48.2	18.
ALT01	184.4	184.3	184.3	116.0	87.8	73.5	67.5	59.7	47.7	17.
ALT02	184.8	184.7	184.7	116.2	88.1	73.7	67.8	60.0	48.1	18.
ALT03	184.8	184.7	184.7	116.2	88.2	73.8	67.8	60.1	48.1	18.
ALT04	184.6	184.5	184.5	116.0	87.8	73.5	67.6	59.8	47.8	17.
ALT05	185.1		185.0	116.5	88.7	74.1	68.2	60.4	48.4	18.
ALT06	185.4		185.2	116.7	89.0	74.4	68,5	60.7	48.8	18.
		s are in feet. r Surface E	evations	at South	Carolina I	Roat R	mos for l	Period 193	9 Through	2013
	Thurmond		Stevens	Riverview		Steel			Cohens	Stokes
Location:	Dam	Furys Ferry	Creek	Park	Jackson	Creek	Little Hell	Johnsons	Bluff	Bluff
NAA	183.7	183.6	183.6	115.3	86.7	71.9	66.7	58.9	46.7	16.
ALT01	178.7	178.5	178.5	113.8	85.4	70.2	65.2	57.3	45.0	14.
ALT02	183.7	183.6	183.6	115.3	86.7	71.5	66.3	58.5	46.6	16.
ALT03	183.2	183.2	183.2	115.2	86.7	71.4	66.2	58.5	46.2	16.
ALT04	183.7	183.6	183.6	115.3	86.7	71.5	66.3	58.5	46.3	16.
ALT05	183.3	183.3	183.3	115.5	86.7	71.8	66.6	58.9	46.7	16.
						_				
90% Exc	eedance	s are in feet. Water Su			86.7 South Car		66.7 Boat Ramp	58.9 os for Peri		nrough
ater surface 90% Exc	elevation eedance	s are in feet. e Water Su	rface Elev Stevens	ations at Riverview	South Ca	steel	Boat Ramp	os for Peri	od 1999 Th Cohens	Stokes
ater surface 90% Exc	elevation	s are in feet. Water Su	rface Elev	ations at	Color Col	rolina E	1. J. C	10.10.4	od 1999 TI	nrough
ater surface 90% Exc	elevation eedance Thurmond Dam 184.6	s are in feet. Water Su Furys Ferry 184.5	rface Elev Slevens Creek 184.5	ations at Riverview	South Ca	Steel Creek 73.4	Boat Ramp	os for Peri	od 1999 Th Cohens	Stokes Bluff
Location: NAA ALTO1	elevation eedance Thurmond Dam 184.6 181.4	s are in feet. • Water Su Furys Ferry 184.5 181.3	rface Elev Slevens Creek 184.5 181.3	ations at Riverview Park 116.0 115.0	Jackson 87.8 86.4	Steel Creek 73.4 71.5	Boat Ramp Little Hell 67.4 66.3	Johnsons 69.7 58.7	od 1999 T1 Cohens Bluff 47.6 46.5	Stokes Bluff 17. 16.
Location: NAA ALTO1 ALTO2	elevation eedance Thurmond Dam 184.6 181.4 184.3	s are in feet. Water Su Furys Ferry 184.5 181.3 184.2	rface Elev Slevens Creek 184.5 181.3 184.2	Ations at Riverview Park 116.0 115.0 115.8	South Car Jackson 87.8 86.4 87.6	Tolina E Steel Creek 73.4 71.5 73.4	Boat Ramp Little Hell 67.4 66.3 67.3	Johnsons 69.7 58.7 59.6	od 1999 T1 Cohens Bluff 47.6 46.5 47.5	Stokes Bluff 17. 16. 17.
ater surface 90% Exc Location: NAA ALTO1 ALTO2 ALTO3	e elevation eedance Thurmond Dam 184.6 181.4 184.3 184.1	s are in feet. Water Su Furys Ferry 184.5 181.3 184.2 184.0	rface Elev Stevens Creek 184.5 181.3 184.2 183.9	Averview Park 116.0 115.0 115.8 115.6	South Car Jackson 87.8 96.4 97.6 87.3	73.4 73.4 73.4 73.4 73.4 73.1	Boat Ramp Little Hell 67.4 66.3 67.3 67.1	Johnsons 59.7 58.7 59.6 59.3	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2	17. Stokes Bluff 17. 16. 17. 17.
Location: NAA ALTO1 ALTO2 ALTO3 ALTO4	elevation eedance Thurmond Dam 184.6 181.4 184.3 184.1 184.0	s are in feet. Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9	rface Elev Stevens Creek 184.5 181.3 184.2 183.9 183.9	ations at Riverview Park 116.0 115.0 115.8 115.6 115.6	South Cal Jackson 87.8 96.4 97.6 87.3 87.4	73.4 73.4 71.5 73.4 73.1 73.2	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.1	Johnsons 59.7 58.7 59.6 59.3 59.4	od 1999 Ti Cohens Biuff 47.6 46.5 47.5 47.2 47.3	17. Stokes Bluff 17. 16. 17. 17. 17. 17. 17. 17. 17. 17
Location: NAA ALTO1 ALTO2 ALTO3 ALTO4 ALTO5	elevation eedance Thurmond Dam 184.6 181.4 184.3 184.1 184.0 184.6	s are in feet. 2 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5	rface Elev Slevens Creek 184.5 181.3 184.2 183.9 183.9 183.9 183.9	ations at Riverview Park 116.0 115.0 115.8 115.6 115.6 115.6	South Cal Jackson 87.8 96.4 97.6 97.6 97.4 97.7 97.4 97.9	73.4 73.4 73.4 73.4 73.1 73.2 73.6	Boat Ramp Little Hell 67.4 66.3 67.3 67.1 67.1 67.1 67.1	59.7 59.7 59.7 59.6 59.3 59.4 59.9	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9	Stokes Bluff 17. 16. 17. 17. 17. 17. 17.
Aler surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT05	elevation eedance Thurmond Dam 184.6 181.4 184.3 184.1 184.0 184.6 184.6 184.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.5 184.5	rface Elev Stevens Creek 184.5 181.3 184.2 183.9 183.9	ations at Riverview Park 116.0 115.0 115.8 115.6 115.6	South Cal Jackson 87.8 96.4 97.6 87.3 87.4	73.4 73.4 71.5 73.4 73.1 73.2	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.1	Johnsons 59.7 58.7 59.6 59.3 59.4	od 1999 Ti Cohens Biuff 47.6 46.5 47.5 47.2 47.3	Stokes Bluff 17. 16. 17. 17. 17. 17. 17.
Aler surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06 ater surface	e elevation eedance Thurmond Dam 184.6 181.4 184.3 184.1 184.0 184.6 184.7 2 elevation	s are in feet. 2 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5	rface Elev Slavens Creek 184.5 181.3 184.2 183.9 183.9 183.9 184.5 184.6 184.6	Ations at 5 Riverview Park 116.0 115.0 115.6 115.6 115.6 116.0 116.1 at South	Jackson 97.8 96.4 97.6 97.3 97.4 97.9 88.1	rolina E Steel Creek 73.4 73.4 73.4 73.2 73.6 73.8 Boat Ri	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.1 67.6 67.9	Johnsons 59.7 59.7 59.6 59.3 59.4 59.9 60.2	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3	Stokes Bluff 17. 16. 17. 17. 17. 17. 17. 18.
Location: NAA ALTO1 ALTO2 ALTO2 ALTO3 ALTO5 ALTO5 ALTO5 ALTO5 Minimu	e elevation eedance Thurmond Darn 184.6 181.4 184.3 184.1 184.0 184.6 184.7 e elevation m Wate Thurmond	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.5 s are in feet. r Surface E	rface Elev Slevens Creek 184.5 181.3 184.2 183.9 183.9 183.9 184.5 184.6 Slevens	ations at 5 Riverview Park 116.0 115.0 115.6 115.6 115.6 116.0 116.1 at South	South Car Jackson 87.8 96.4 97.6 87.3 97.4 87.9 88.1 Carolina I	rolina E Steel Creek 73.4 73.4 73.4 73.2 73.6 73.8 80at Ri Steel	Boat Ramp Little Hell 67.4 65.3 67.3 67.1 67.1 67.1 67.6 67.9 87.9 67.9	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens	1700gh Stokes Bluff 17. 16. 17. 17. 17. 17. 17. 18. 12013 Stokes
Location: NAA ALTO1 ALTO2 ALTO2 ALTO3 ALTO5 ALTO5 ALTO5 ALTO5 Minimu	e elevation eedanco Thurmond Dam 184.6 181.4 184.3 184.1 184.0 184.6 184.7 2 elevation im Wate	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.5 184.6 s are in feet. r Surface E	rface Elev Slavens Creek 184.5 181.3 184.2 183.9 183.9 183.9 184.5 184.6 184.6	Ations at 5 Riverview Park 116.0 115.0 115.6 115.6 115.6 116.0 116.1 at South	Jackson 97.8 96.4 97.6 97.3 97.4 97.9 88.1	rolina E Steel Creek 73.4 73.4 73.4 73.2 73.6 73.8 Boat Ri	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.1 67.6 67.9	Johnsons 59.7 59.7 59.6 59.3 59.4 59.9 60.2	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3 9 Through	Stokes Blutf 17. 16. 17. 17. 17. 17. 17. 17. 18. 2013
ater surface 90% Exc Location: NAA ALT01 ALT02 ALT02 ALT03 ALT04 ALT05 ALT06 ALT06 Minimu Location: NAA	e elevation seedance Thurmond Darm 184.6 181.4 184.3 184.1 184.0 184.6 184.7 9 elevation Im Wate Thurmond Darm 183.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 183.9 184.5 184.6 s are in feet. r Surface E Furys Ferry 183.6	rface Elev Slavens Creek 184.5 181.3 184.2 183.9 183.9 183.9 184.5 184.6 Slavens Creek 183.6	ations at Riverview Park 116.0 115.0 115.6 115.6 115.6 116.0 116.1 At South Riverview Park 115.3	South Car Jackson 87.8 96.4 97.6 87.3 87.4 87.9 88.1 Carolina I Jackson 87.1	Tolina E Steel Creek 73.4 73.6 73.6 73.6 73.6 73.6 73.8 Boat Ri Steel Creek 71.9	Boat Ramp Little Hell 67.4 66.3 67.3 67.1 67.1 67.6 67.9 amps for I Little Hell 66.7	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 Johnsons 58.9	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens Bluff 46.8	Trough Stokes Blutt 17. 16. 17. 17. 17. 17. 17. 18. 2013 Stokes Blutt 17.
ater surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ater surface Minimu Location:	e elevation seedance Thurmond Darn 184.6 181.4 184.3 184.1 184.0 184.6 184.7 184.7 184.7 184.7 184.7 184.7 184.7 178.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 183.9 184.5 s are in feet. r Surface E Furys Ferry 183.6 178.5	rface Elev Slevens Creek 194.5 181.3 184.2 183.9 183.9 184.5 184.6 184.6 Slevens Creek 183.6 178.5	ations at 5 Riverview Park 116.0 115.0 115.8 115.6 116.0 116.1 116.1 At South Park Park 115.3 113.8	South Car Jackson 87.8 96.4 97.6 97.3 97.4 87.9 98.1 Carolina I Jackson 87.1 85.4	Creek 73.4 71.5 73.4 73.1 73.2 73.6 73.8 Boat R: Steel Creek 71.9 70.3	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.6 67.9 amps for f Little Hell 66.7 65.3	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 Johnsons 58.9 57.4	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens Bluff 46.8 45.2	Trough Stokes Blutt 17. 16. 17. 17. 17. 17. 17. 18. 2013 Stokes Blutt 17. 15.
ater surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT03 ALT05 ALT05 ALT05 ater surface Minimu Location: NAA ALT01 ALT02	e elevation seedance Thurmond Darn 184.6 181.4 184.7 184.0 184.6 194.7 e elevation mr Wate Thurmond Darn 183.7 178.7 178.7 183.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 s are in feet. Furys Ferry 183.6 178.5 183.6	rface Elev Slevens Creek 184.5 181.3 184.2 183.9 184.5 184.6 184.6 Slevens Creek 183.6 184.6	ations at 3 Riverview Park 116.0 115.8 115.6 115.6 116.1 116.1 Riverview Park 116.3 113.8 115.3	South Car Jackson 87.8 96.4 97.6 97.3 97.4 87.9 88.1 Carolina I Jackson 87.1 85.4 87.0	rolina E Steel Creek 73.4 73.4 73.4 73.2 73.6 73.8 Boat Ri Steel Creek 71.9 70.3 71.8	Boat Ramp Little Hell 67.4 65.3 67.3 67.1 67.1 67.1 67.6 67.9 amps for 1 Little Hell 66.7 65.3 66.6	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 58.9 58.9 57.4 58.9	cohans Blurr 47.6 46.5 47.6 47.6 47.3 47.9 48.3 9 Through Cohens Blurt 46.8 45.2 46.7	Trough Stokes Bluff 17. 16. 17. 17. 17. 17. 17. 18. Stokes Bluff 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
ater surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06 ater surface Minimu Location: NAA ALT01	e elevation seedance Thurmond Darn 184.6 181.4 184.3 184.1 184.0 184.6 184.7 184.7 184.7 184.7 184.7 184.7 184.7 178.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 s are in feet. Furys Ferry 183.6 178.5 183.6	rface Elev Slevens Creek 194.5 181.3 184.2 183.9 183.9 184.5 184.6 184.6 Slevens Creek 183.6 178.5	ations at 5 Riverview Park 116.0 115.0 115.8 115.6 116.0 116.1 116.1 At South Park Park 115.3 113.8	South Car Jackson 87.8 96.4 97.6 97.3 97.4 87.9 98.1 Carolina I Jackson 87.1 85.4	Tolina E Steel Creek 73.4 73.4 73.4 73.4 73.4 73.4 73.4 73.8 Steel Creek 71.9 70.3 71.8 71.8 71.8	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.6 67.9 amps for f Little Hell 66.7 65.3	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 Johnsons 58.9 57.4	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens Bluff 46.8 45.2	Trough Stokes Bluff 17. 16. 17. 17. 17. 17. 17. 18. Stokes Bluff 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
aler surface 90% Exc Location: NAA ALT01 ALT03 ALT04 ALT03 ALT04 ALT05 ALT06 Minimu Location: NAA ALT01 ALT01 ALT01 ALT01 ALT03 ALT04	e elevation seedance Thurmond Darm 184.6 181.4 184.3 184.1 184.0 184.6 184.7 184.7 184.7 184.7 183.7 178.7 183.7 183.7 183.7	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 183.9 184.5 184.6 184.5 184.6 183.6 183	rface Elev Slavens Creek 184.5 184.2 183.9 183.9 183.9 184.6 184.6 Slavens Creek 183.6 178.5 183.6 178.5 183.6 183.4 183.4 183.4	Ations at 5 Riverview Park 116.0 115.0 115.6 115.6 115.6 115.6 116.0 116.1 At South Riverview Park 115.3 115.3 115.2 115.2 115.2 115.2	South Car Jackson 87.8 96.4 97.6 87.3 87.4 87.9 88.1 Carolina I Jackson 87.1 85.4 87.0 96.7 97.0	Tolina E Sieel Creek 73.4 73.4 73.1 73.2 73.6 73.8 Steel Creek 71.9 70.3 71.8 71.5 71.5	Boat Ramp Little Hell 67.4 66.3 67.3 67.1 67.1 67.6 67.9 amps for I Little Hell 66.7 66.3 66.6 66.3 66.5	Johnsons 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 Johnsons 58.9 57.4 58.5 58.6	od 1999 TI Cohens Bluff 47.6 46.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens Bluff 46.8 46.2 46.7 46.5 46.5	Trough Stokes Blutt 17. 16. 17. 17. 17. 17. 17. 17. 17. 18. Stokes Blutt 17. 16. 16. 16. 16. 16.
Aler surface 90% Exc Location: NAA ALT01 ALT02 ALT03 ALT04 ALT05 ALT06 Valer surface Minimu Location: NAA ALT01 ALT01 ALT02 ALT03	e elevation sectanc: Thurmond Darm 184.6 181.4 184.3 184.1 184.0 184.7 184.7 e elevation im Wate Thurmond Darm 183.7 178.7 183.7 183.5	s are in feet. 9 Water Su Furys Ferry 184.5 181.3 184.2 184.0 183.9 184.5 184.6 183.9 184.5 184.6 184.5 184.6 184.5 184.6 184.5 184.6 184.5 184.6 184.5 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.6 183.5 183.6 183.5 183.6 183.5 183	rface Elev Slavens Creek 184.5 181.3 184.2 183.9 184.5 184.6 184.6 Slavens Creek 183.6 178.5 183.6 178.5 183.6 183.4	ations at 5 Riverview Park 116.0 115.0 115.6 115.6 116.0 116.1 Averview Park 115.3 115.2 115.3 115.3 115.3 115.2 115.3 115.3 115.3 115.3 115.2 115.3	South Car Jackson 87.8 96.4 97.6 87.3 87.4 87.9 88.1 Carolina I Jackson 87.1 85.4 96.7	Tolina E Steel Creek 73.4 73.4 73.4 73.4 73.4 73.4 73.4 73.8 Steel Creek 71.9 70.3 71.8 71.8 71.8	Boat Ramp Little Hell 67.4 66.3 67.3 67.3 67.1 67.6 67.9 amps for I Little Hell 66.7 66.3 66.3 66.3	Johnsons 59.7 59.7 59.6 59.3 59.4 59.9 60.2 Period 199 Johnsons 58.9 57.4 58.8 58.8 58.8	cohens Bluff 47.6 46.5 47.5 47.5 47.2 47.3 47.9 48.3 9 Through Cohens Bluff 46.8 45.2 46.7 46.8 45.2 46.7 46.5	Trough Stokes Blutt 17. 16. 17. 17. 17. 17. 17. 18. 2013 Stokes Blutt 17. 15. 16. 16. 16.

Savannah River Basin Phase 2 Comprehensive Study Hydrodynamic Modeling Results

Water surface elevations are in feet.

Annex D- Screen 15 (Savannah River Basin, Phase 2 Hydrodynamic Modeling Cont.)

90% Exceeda m Flows at Selected Locations for Period 1939 Through 2013 nce St

													_		10.00								HM 112					
															RM 183						FM 136		(Cutoff			Savannah		
					Augusta							Kimborly			(Fritz Cut,	RM 177		SCE8G			(Prime		Channel	RM 104		Electric -	Georgia	RM-
	Thurmond	Columbia	Stay ons	Edgefield	Canal	Shoals		North	Augusta -	SCEAG	DSM/PCS	Clark -	Augusta	International	Angling	(Spawning	Savannah	SRS Area D	Waynesbore.		Mussel	Milhavon	Oxbow	(Cohen's		Plant	Pacific	Oxbo
Location:	Dam	County	Creek Node		Diversion	Node	Augusta	Augusta	Hicks Plant			Beech Island	Node	Paper	(sonA	Bar)	River Site	Power Plant	Node	Plant Vogtle	Habitat)	Node	Habitat)	Bluff)	Ciyo Node	Mointosh	Corporation	n Habit
Description:	12.25	Withdrawal	ResSim	Withdrawal	Withdrawal	ResSim	Withdraw al	Withdrawal	Withdrawal	Withdrawal	Withdrawal	Withdrawal	ResSim	Withdrawal	TNC	TNC	Withdraw al	Withdrawal	ResSim	Withdrawal	TNC	ResSim	TNC	TNC	ResSim	Withdrawal	Withdrawal	I TNC
NAA	3800	4064	4213	4214	2858	1581	1594	1595	4162	4227	4235	4243	4261	4198	4273	427.4	4609	4609	4623	4642	4730	4888	4886	4919	5311	5403	5410	5 54
ALT01	3500	3727	3853	3854	2685	1591	1605	1607	3798	3860	3868	3876	3910	3832	3902	3902	4236	4236	4245	4260	4359	4524	4519	4551	4966	5060	5073	2 50
ALT02	3600	4001	4076	4076	2796	1577	1590	1591	4038	4090	4098	4107	4134	4052	4128	4127	4475	4475	4485	4503	4603	4764	4766	4799	5226	5314	5325	9 53
ALT03	3600	3895	4063	4063	2817	1576	1587	1588	4045	4114	4121	4136	4173	4100	4176	4179	4520	4520	4532	4554	4646	4807	4805	4841	5285	5381	5387	7 539
ALT04	3600	3787	3922	3922	2735	1592	1604	1605	3875	3938	3841	3948	3968	3889	3954	3957	4294	4294	4304	4322	4418	4588	4584	4609	5021	5118	5133	2 513
ALTOS	3963	4275	4451	4451	3013	1574	1584	1585	4417	4482	4486	4499	4541	4463	4534	4534	4827	4827	4835	4850	4938	5082	5079	5111	5514	5606	5621	1 562
ALTOS	4240	4634	4712	4712	3104	1588	1601	1602	4652	4701	4711	4726	4762	4675	4754	4769	5110	5110	5116	5134	5216	5354	5348	5388	5771	5859	5873	2 587

	Thurmond	Columbia	Stavens	Edgefield	Augusta Canal	Shoals		North	Augusta -	SCEAG	DSM/PCS	Kimborly Clark -	Augusta		RM 183 (Fritz Cut, Angling	RM 177 (Spawning	Savannah	SCESG SRS Area D	Waynesbore		RM 136 (Prime Mussel	Milhavon		RM 104 (Cohan's		Savannah Electric - Plant	Georgia Pacific	RM 4
Location:	Dam	County	Creek Node		Diversion	Node	Augusta	Augusta	Hicks Plant	Urguhart	Nitrogen	Booch Island		Paper	Area)	Bar)				Plant Vogtle	Habitat)	Node	Habitat)	Bluff)	Ciyo Node		Corporation	
Description:	· · · · ·	Withdrawal	ResSim	Withdrawal	Withdrawal	ResSim	Withdrawal	Withdrawal	Withdrawal	Withdrawal	Withdrawal	Withdrawal	ResSim	Withdrawal	TNC	TNC	Withdraw al	Withdrawal	ResSim	Withdrawal	TNC	ResSim	TNC	TNC	ResSim	Withdrawal	Withdrawa	TNC
NAA	0	2989	3489	3489	2247	468	477	505	2755	2857	2909	2972	3182	3119	3335	3245	3668	3668	3704	3721	3766	3831	3824	3832	3951	3966	3990	0 39
ALT01	0	2276	2600	2600	1566	237	378	366	2088	2213	2270	2318	2427	2324	2382	23/5	2618	2618	2620	2623	2631	2644	2638	2648	2762	2787	2791	1 27
ALT02	0	3249	3488	3497	2307	659	638	656	2936	3001	3041	3089	3182	3119	3335	3245	3516	3516	3526	3525	3518	3531	3527	3567	3891	3821	3927	7 38
ALT03	0	2642	3333	3329	2113	449	529	555	2536	2715	2760	2806	3329	3243	3354	3245	3418	3418	3433	3442	3447	3478	3475	3466	3605	3631	3636	6 36
ALT04	0	3249	3488	3487	2250	534	544	566	2765	2848	2891	2939	3214	3161	3345	3245	3503	3503	3504	3505	3506	3511	3504	3515	3621	3655	3661	1 35
ALTOS	0	2811	3381	3382	2390	723	770	783	2944	3243	3267	3295	3571	3490	3505	3245	3655	3655	3670	3675	3709	3787	3782	3802	3990	4009	4013	3 40
ALTOS	0	2811	3381	3382	2349	708	760	765	2984	3249	3319	3401	3532	3430	3505	3245	3668	3668	3721	3729	3771	3831	3827	3855	4064	4104	4110	0 410

ind 1030 Th

															1944 A. 19			10 Contractor			10.4		HM 112					
					Aurorata							Kimborly			RM 183	BM 177		SCERG			RM 136 (Prime	15.0	(Cutoff Channel	FM 104		Savannah Electric -	Comis	RM
	Thurmond	Columbia	Stavans	Edgefield	Canal	Shoals		North	Augusta -	SCE&G	DSM/PCS	Clark -	Augusta	International	Angling	(Spawning		SRS Area D	Waynesboro		Mussel		Oxbow	(Cohen's		Plant	Paofic	Oxbo
Location: Description:	Dam	County Withdrawal	Creek Node ResSim		Diversion Withdrawal	Node ResSim	Augusta Withdrawal		Hicks Plant Withdrawal		Nitrogan Withdrawal	Beech Island Withdrawal		Paper Withdrawal	Area) TNC	Bar) TNC		Power Plant Withdrawal	Node ResSim	Plant Vogtie Withdrawal		Node ResSim	Habitat) TNC	Bluff) TNC	Ciyo Node ResSim	McIntosh Withdrawal	Corporation Withdrawa	
NAA	3600	3824	3916	3915	2701	1545	1555	1556	3868	3904	3905	3911	3932	3840	3917	3915	4209	4209	4219	4235	4317	4457	4453	4465	4707	4753	476	2 47
ALT01	2500	2778	2961	2961	2283	1536	1547	1548	2982	3056	3053	3049	3051	2977	3047	3047	3346	3346	3356	3372	3467	3632	3634	3654	3994	4046	405	1 40
ALT02	3600	3680	3763	3763	2635	1548	1558	1559	3709	3753	3754	3754	3766	3685	3776	3777	4128	4128	4140	4156	4237	4365	4359	4376	4615	4651	4654	6 46
ALT03	3520	3622	3659	3659	2559	1531	1538	1538	3604	3636	3636	3639	3638	3543	3610	3609	3940	3940	3949	3965	4041	4181	4168	4188	4457	4504	451	1 45
ALT04	3485	3571	3652	3652	2563	1553	1562	1562	3624	3651	3651	3654	3655	3567	3648	3649	3967	3997	3994	4011	4084	4220	4218	4235	4428	4469	447	3 447
ALT05	3600	3799	3911	3910	2729	1532	1540	1541	3897	3936	3937	3940	3946	3870	3958	3957	4352	4352	4367	4386	4490	4665	4663	4688	5009	5049	505-	4 50
ALT06	3600	3844	3973	3973	2772	1539	1547	1549	3978	4034	4029	4033	4020	3962	4059	4007	4551	4551	4560	4585	4705	4923	4923	4956	5347	5427	543	9 544

																							BM 112	-				_
															RM 183						FM 136		(Cutoff			Savannah		
					Augusta							Kimborly			(Fritz Cut,	RM 177		SCE8G			(Prime		Channel	FM 104		Electric -	Georgia	RM 4
	Thurmond	Columbia	Stavons	Edgefield	Canal	Shoals		North	Augusta -	SCE&G	DSM/PCS	Clark -	Augusta	International	Angling	(Spawning	Savannah	SRS Area D	Waynesboro		Mussol	Milhaven	Oxbow	(Cohen's		Plant	Pacific	Oxbox
Location:	Dam	County	Creek Node		Diversion	Node	Augusta		Hicks Plant	Urguhart	Nitrogen	Beech Island	Node	Paper	Arpa)	Bar)	River Site	Power Plant	Node	Plant Vogtio	Habitat)	Node	(Habitat)	Bluff)	Ciyo Node	Mointosh	Corporation	Habitz
escription:	1.000	Withdrawal	ResSim	Withdrawal	Withdrawal	ResSim	Withdrawal	Withdrawal	Withdrawal	Withdrawal	Withdrawal	Withdrawal	ResSim	Withdrawal	TNC	TNC	Withdraw al	Withdrawal	ResSim	Withdrawal	TNC	ResSim	TNC	TNC	ResSim	Withdrawal	Withdrawal	TNC
NAA	0	3296	3489	3489	2394	565	556	582	2822	2900	2950	3011	3182	3119	3335	3408	3685	3685	3704	3721	3766	3831	3826	3851	4217	4297	430	430
ALT01	0	2276	2600	2600	1566	237	376	366	2068	2213	2270	2318	2427	2324	2392	2375	2652	2652	2657	2661	2680	2696	2686	2718	2928	2956	2960	29
ALT02	0	3261	3488	3487	2307	659	638	658	2936	3001	3041	3089	3182	3119	3335	3408	3630	3630	3639	3647	3679	3733	3729	3760	3973	3996	4000	
ALT03	0	2961	3423	3422	2162	449	529	559	2588	2715	2760	2806	3329	3243	3354	3330	3418	3418	3433	3451	3507	3520	3520	3564	3864	3883	3886	388
ALT04	0	3261	3488	3487	2307	549	567	594	2798	2880	2929	2988	3214	3161	3345	3359	3588	3588	3589	3591	3604	3626	3608	3632	3973	3996	4000	400
ALTOS	0	2611	3381	3382	2407	853	889	928	3226	3417	3431	3449	3571	3490	3545	3548	3655	3655	3670	3675	3709	3787	3782	3802	4055	4083	4067	405
ALT06	0	2811	3381	3382	2414	806	838	847	3227	3401	3410	3419	3532	3430	3553	3552	37.03	3703	3721	3729	3771	3831	3827	3855	4115	4148	4153	415

Annex D- Screen 16 (Savannah River Basin, Phase 2 Hydrodynamic Modeling Cont.)

Annex D- Screen 17 (Savannah River Basin Map)

Savannah River Basin Phase 2 Comprehensive Study

90% Exceedance water Surface Elevations at Selected Locations for Period 1939 Inrough 2013	90% Exceedance Water Surface Elevations at Selected Locations for P	eriod 1939 Through 2013
--	---	-------------------------

Location: Description:	Thurmond Dam	Columbia County Withdrawal	Stavans Creek Node ResSim		Augusta Canal Diversion Withdrawal	Shoals Node ResSim	Augusta Withdrawal		Augusta - Hicks Plant Withdrawal	SCEAG Urquhart Withdrawal		Kimberly Clark - Beech Island Withdrawal		International Paper Withdrawal	RM 183 (Fritz Cut, Angling Area) TNC	RM 177 (Spawning Bar) TNC	Savannah River Site Withdrawal	SCE&G SRS Area D Power Plant Withdrawal	Node	Plant Vogtlø Withdrawal		Milhavon Nodo RosSim		RM 104 (Cohon's Bluff) TNC	Ciyo Node ResSim	Savannah Electric - Plant Molntosh Withdrawal	Georgia Pacific Corporation Withdrawal	RM 41 Oxbow Habital TNC
NAA	184.9	184.8	184.8	154.3	147.0	139.5	116.7	116.3	116.2	116.2	116.1	116.1	97.7	96.6	95.4	92.3	82.9	82.9	79.6	79.3	69.9	57.1	53.2	48.2	17.3	8.8	75	6.4
ALT01	184.4	184.3	184.3	154.3	147.1	139.5	116.5	116.0	115.9	115.9	115.8	115.8	97.2	96.1	94.9	91.9	82.4	82.4	79.2	78.9	69.5	56.7	52.7	47.7	17.0	8.3	7.1	5.9
ALT02	184.8	184.7	184.7	154.3	147.0	139.5	116.7	116.2	116.1	116.1	116.0	116.0	97.5	96.4	95.2	92.1	82.7	82.7	79.5	79.1	69.8	57.0	53.0	48.1	17.3	8.7	7.4	6.2
ALT03	184.8	184.7	184.7	154.4	147.0	139.5	116.7	116.2	116.1	116.1	116.1	116.0	97.6	96.5	95.3	92.2	82.8	82.8	79.5	79.2	69.8	57.0	53.1	48.1	17.3	8.8	7.5	6.4
ALT04	184.6	184.5	184.5	154.3	147.1	139.5	116.6	116.0	116.0	115.9	115.9	115.8	97.3	96.2	95.0	91.9	82.4	82.4	79.3	78.9	69.6	56.7	52.8	47.8	17.1	8.4	72	2 6.0
ALTOS	185.1	185.0	185.0	154.3	147.0	139.5	116.9	116.5	116.4	116.4	116.3	116.2	98.1	97.0	95.8	92.6	83.2	83.2	79.9	79.5	70.2	57.4	53.4	48.4	17.5	9.0	7.8	6.6
ALT06	185.4	185.2	185.2	154.3	147.1	139.5	117.0	116.7	116.6	116.5	116.5	116.4	96.3	97.3	96.1	92.9	83.6	83.6	80.2	79.8	70.5	57.7	53.8	48.8	17.8	94	8.1	7.6

or Derind 1030 Th

Location: Description:	Thurmond Dam	Columbia County Withdrawal	Stavens Creek Node ResSim		Augusta Canal Diversion Withdrawal	Shoals Node ResSim	Augusta Withdraw al		Augusta - Hicks Plant Withdrawal	SCE&G Urquhart Withdrawal		Kimborly Clark - Booch Island Withdrawal		International Paper Withdrawal	RM 183 (Fritz Cut, Angling Area) TNC	RM 177 (Spawning Bar) TNC					FM 136 (Prime Mussol Habitat) TNC	Milhavon Nodo RosSim	HM 112 (Cutoff Channel Oxbow Habitat) TNC	RM 104 (Cohan's Bluff) TNC	Ciyo Node ResSim	Savannah Electric - Plant Mointosh Withdrawal	Georgia Pacific Corporation Withdrawal	
NAA	183.7	183.6	183.6	154.1	144.2	138.2	115.6	115.3	115.2	115.1	115.1	115.1	96.4	95.3	94.0	90.8	81.3	81.3	77.7	77.2	68.8	55.8	51.6	45.7	16.0	6.8	5.5	4
ALT01	178.7	178.5	178.5	154.0	144.1	137.8		113.8	113.7	113.7	113.7	113.6		93.6		89.5				75.5	67.3		49.7	45.0		5.0	3.8	3 2.
ALT02	183.7	183.6	183.6	154.1	144.2	138.4	115.7	115.3	115.2	115.1	115.1	115.1	96.4	95.3	94.0	90.8	81.0	81.0	77.4	76.9	68.5	55.4	51,2	46.6	15.9	6.7	5.4	4 4.
ALT03	183.2	183.2	183.2	154.1	144.2	138.2	115.4	115.2	115.2	115.1	115.1	115.1	96.5	95.3	94.0	90.8	80.9	80.9	77.2	76.8	68.4	55.3	51.1	46.2	15.7	6.3	5.0	4.
ALT04	183.7	183.6	183.6	154.1	144.2	138.3	115.5	115.3	115.2	115.1	115.1	115.1	96.5	95.2	94.0	90.8	81.0	81.0	77.3	76.8	68.5	55.3	51,1	46.3	15.7	6.3	5.0	4
ALTOS	183.3	183.3	183.3	154.1	144.3	138.5	115.8	115.5	115.5	115.4	115.4	115.4	96.8	95.4	94.0	90.8	81.2	81.2	77.6	77.1	68.7	55.7	51.6	46.7	16.0	6.8	5.5	5 4.
ALTOS	183.3	183.3	183.3	154.1	144.2	138.5	115.8	115.5	115.4	115.4	115.4	115.3	96.8	95.4	94.0	90.8	81.3	81.3	77.7	77.2	68.8	55.8	51.7	46.8	16.1	7.0	57	1 4

Location: Description:	Thurmond Dam	Columbia County Withdrawal	Stavons Creek Node ResSim		Augusta Canal Diversion Withdrawal	Shoals Node ResSim	Augusta Withdrawal	North Augusta Withdrawal	Augusta - Hicks Plant Withdrawal		DSM/PCS Nitrogen Withdrawal	Kimborly Clark - Beech Island Withdrawal	Augusta Node ResSim	International Paper Withdrawal	RM 183 (Fritz Cut, Angling Area) TNC	RM 177 (Spawning Bar) TNC	River Site	SCE&G SRS Area D Power Plant Withdrawal	Node		Habitat)	Milhaven	HM 112 (Cutoff Channel Oxbow Habitat) TNC	RM 104 (Cohen's Bluff) TNC	Ciyo Node ResSim		Georgia Pacific Corporation Withdrawal	
NAA	184.6	184.5	184.5	154.2	146.9	139.5	116.5	116.0	115.9	115.9	115.9	115.8	97.3	96.1	94.9	91.9	82.3	82.3	79.2	78.8	69.5	56.6	52.5	47.6	16.7	7.9	67	5.5
ALT01	181.4	181.3	181.3	154.2	146.8	139.5	116.0	115.0	115.0	114.9	114.9	114.9	96.1	94.7	93.5	90.5	80.8	80.8	77.2	76.7	68.4	55.5	51.4	46.5	16.0	6.9	5/	5 4.5
ALT02	184.3	184.2	184.2	154.2	146.9	139.5	116.4	115.8	115.7	115.7	115.7	115.6	97.1	95.9	94.7	917	82.2	82.2	79.1	78.7	69.4	56.5	52.4	47.5	16.7	7.7	6.5	5 5.3
ALT03	184.1	183.9	183.9	154.2	146.8	139.5	116.3	115.6	115.6	115.5	115.5	115.5	96.9	95.7	94.5	91.5	81.9	81.9	78.9	78.5	69.1	56.2	52.2	47.2	16.5	7.5	6.5	3 5.2
ALT04	184.0	183.9	183.9	154.2	146.9	139.5	116.3	115.7	115.6	115.6	115.5	115.5	96.9	95.7	94.5	91.5	82.0	82.0	78.9	78.6	69.2	56.3	52.2	47.3	16.5	7.5	5 6.2	2 5.1
ALT05	184.6	184.5	184.5	154.2	146.8	139.5	116.6	116.0	116.0	115.9	115.9	115.8	97.3	96.2	95.0	91.9	82.5	82.5	79.4	79.0	69.7	56.8	52.9	47.9	17.0	8.3	7.0	0 5.9
ALT06	184.7	184.6	184.6	154.3	146.8	139.5	116.6	116.1	116.0	116.0	116.0	115.9	97.4	96.3	95.1	92.1	82.8	82.8	79.6	79.2	69.9	57.2	53.2	48.3	17.4	88	1 71	6 64

Location:	Thurmond Dam	Columbia County Withdrawal	Stevens Creek Node RosSim		Augusta Canal Diversion Withdrawal	Shoals Node ResSim	Augusta Withdrawal	North Augusta Withdrawal	Augusta - Hicks Plant Withdrawal	SCE&G Urquhart Withdrawal	DSM/PCS Nitrogen Withdrawal	Kimboriy Clark - Beech Island Withdrawal	Node	International Paper Withdrawal	RM 183 (Fritz Cut, Angling Area) TNC	RM 177 (Spawning Bar) TNC	River Site	SCE&G SRS Area D Power Plant Withdrawal	Waynesboro Node ResSim		RM 136 (Prima Mussel Habitat) TNC	Milhavon	RM 112 (Cutoff Channel Oxbow Habitat) TNC	(Cohen's	Ciyo Node		Georgia Pacific Corporation Withdrawal	
NAA	183.7	183.6	183.6	154.1	144.2	138.3	115.7	115.3	115.2	115.1	115.1	115.1	96.4	95.3	94.2	91.3	81.3	81.3	11.1	77.2	68.8	55.8	51.7	46.8	16.3	7.3	6.0	0 4
ALT01	178.7	178.5	178.5	154.0	144.1	137.8	114.5	113.8	113.7	113.7	113.7	113.6	95.1	93.6	92.4	89.5	79.6	79.6	76.0	75.5	67.4	54.1	49.8	45.2	14.4	5.3	4.0	0 3.
ALT02	183.7	183.6	183.6	154.1	144.3	138.4	115.7	115.3	115.2	115.1	115.1	115.1	96.4	95.3	84.2	91.2	81.2	81.2	77.6	77.1	68.7	55.6	51.5	46.7	16.0	6.8	5.5	5 4.
ALT03	183.5	183.4	183.4	154.1	144.2	138.2	115.4	115.2	115.2	115.1	115.1	115.1	96.5	95.3	94.0	90.9	80.9	80.9	77.3	76.8	68.5	55.3	51.2	46.5	15.9	6.7	5.4	4 4
ALT04	183.7	183.6	183.6	154.1	144.2	138.3	115.6	115.3	115.2	115.1	115.1	115.1	96.5	95.2	94.1	91.2	81.1	81.1	77.5	77.0	68.6	55.5	51.3	46.5	16.0	6.8	5.5	5 4.
ALT05	183.3	183.3	183.3	154.1	144.4	138.7	116.0	115.5	115.5	115.4	115.4	115.4	96.8	95.6	94.3	91.3	81.2	81.2	77.6	77.1	68.7	55.7	51.6	46.8	16.1	6.9	5.7	7 4.
ALT06	183.3	183.3	183.3	154.1	144.3	138.6	115.9	115.5	115.4	115.4	115.4	115.3	96.8	95.6	84.4	91.3	81.3	81.3	77.7	77.2	68.8	55.8	51.7	46.8	16.2	7.0	57	A 4

Annex D- Screen 18 (Savannah River Basin, Phase 2 Hydrodynamic Modeling Cont.)

Savannah River Basin Phase 2 Comprehensive Study Water Quality Modeling Results

10% Exceedance Water Temperature at Selected Locations for Period 1999 Through 2013

Location:	Highway 28	Augusta	Waynesboro	Milhaven	River Mile 87	Ciyo
NAA	21.2	24.8	26.2	26.8	27.4	27.6
ALT01	21.3	24.8	26.3	26.9	27.4	27.6
ALT02	21.2	24.8	26.2	26.8	27.4	27.6
ALT03	21.3	24.9	26.4	27.0	27.5	27.7
ALT04	21.2	24.8	26.3	26.9	27.4	27.6
ALT05	21.2	24.8	26.2	26.8	27.4	27.5
ALT06	21.2	24.7	26.1	26.7	27.3	27.5

temperature in degrees Celsius. Maximum Water Temperature at Selected Locations for Period 1999 Through 2013

Location:	Highway 28	Augusta	Waynesboro	Milhaven	River Mile 87	Ciyo
NAA	24.5	28.3	28.7	30.6	32.0	32.1
ALT01	24.5	28.3	28.9	30.6	32.0	32.1
ALT02	24.5	28.3	28.7	30.6	32.0	32.1
ALT03	24.5	28.1	29.1	30.6	32.0	32.0
ALT04	24.5	28.3	28.8	30.6	32.0	32.1
ALT05	24.5	28.0	28.7	30.5	32.0	32.0
ALT06	24.5	27.6	28.7	30.5	32.0	32.0

Annex D- Screen 19 (Savannah River Basin, Phase 2 Hydrodynamic Modeling Cont.)

13 Annex E - Savannah River Basin Comprehensive Study II: EFDC Output

EFDC OUTPUT ANALYSIS

EFDC output data was analyzed looking at a time window of January 1999 thru December 2013. The modeling effort and analysis of output for EFDC was performed by SouthCarolina DNR.

Salinity and Dissolved Oxygen Zone Analysis - Savannah Harbor 2015 SHEP Model Summary

The 2015 SHEP Savannah Harbor model was used to compile these results. All input conditions, parameters and kinetics were kept the same for all the runs and analyses. The only difference is the RIV1 flow, temperature, Daily Dissolved Oxygen, CBOD and Nitrogen values provide for the No Action Alternative (NAA) and the four alternatives – 01, 02, 03 and 04. The model was run for 15 years – 1999 thru 2013. Alternatives 6 and 7 are also included.

Salinity, Daily Dissolved Oxygen, Temperature and Chloride results were compile and outputted at the average and 90 percentile (10 Percentile for Daily Dissolved Oxygen) levels. The results were compile and summarized by the 26 zones that were specified in the Savannah Harbor Draft EIS. The Zone descriptions are located in Section 5.

A chloride analysis was completed for the upper harbor/river area near the Savannah Water Intake, including number of days chloride levels were predicted to be above 12 mg/L.

The complete summary of every Zone and parameter results are located in the accompanying spreadsheet – SHEP NAA & Alternative 01- 04 Monthly Results – 1999-2013 Harbor Model.xlsx

The following zones have been identified as being indicators of the change in Harbor conditions due change in headwater conditions as indicated by each Alternative.

For the main Channel, Zones FR2, FR3, FR4 and FR5 represent the area of the Daily Dissolved Oxygen sag or the place where the lowest Daily Dissolved Oxygen levels occur.

For the Little Back, Back and Middle Rivers, Zones LBR1, LBR2, MR4 and MR5 as areas around the Fish and Wildlife Sanctuary where both Daily Dissolved Oxygen and Salinity are important.

Results for these critical zones are presented in this report.

13.1 Salinity Analysis by Zone

13.1.1 Average Salinity

			Avera	ge Salinity	- NAA			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.2	2.5	0.2	13.3	10.2	7.6	6.5
Feb	0.2	0.3	3.5	0.4	14.5	11.4	8.9	7.6
Mar	0.3	0.5	4.4	0.5	15.7	12.7	10.1	8.7
Apr	0.1	0.1	1.5	0.1	10.3	7.2	5.1	4.5
May	0.1	0.1	1.9	0.1	12.1	8.9	6.4	5.5
Jun	0.0	0.0	1.2	0.0	10.9	7.7	5.3	4.6
Jul	0.1	0.2	2.9	0.2	13.9	10.9	8.3	7.2
Aug	0.4	0.5	3.8	0.6	14.9	12.0	9.3	8.1
Sep	0.2	0.2	1.9	0.3	10.7	7.8	5.7	4.9
Oct	0.2	0.3	2.6	0.3	13.1	10.0	7.4	6.3
Nov	0.5	0.7	4.3	0.8	15.8	12.7	10.1	8.7
Dec	0.2	0.3	2.2	0.3	11.8	8.8	6.4	5.5
Annual	0.2	0.3	2.7	0.3	13.1	10.0	7.6	6.5

Figure 5-1 (Average Salinity – NAA)

Figure 5-2 (Average Salinity - Alternative 01)

			Average Sa	linity - Alte	ernative 01			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.3	2.5	0.4	13.1	9.9	7.3	6.2
Feb	0.1	0.2	1.9	0.2	12.0	8.8	6.3	5.3
Mar	0.1	0.1	1.5	0.1	11.0	7.9	5.5	4.7
Apr	0.1	0.1	1.8	0.1	11.4	8.3	6.0	5.2
May	0.1	0.2	2.8	0.3	13.4	10.3	7.8	6.7
Jun	0.2	0.3	2.7	0.3	12.7	9.6	7.3	6.3
Jul	0.2	0.3	2.8	0.3	12.8	9.7	7.4	6.5
Aug	0.3	0.5	3.7	0.5	14.0	10.9	8.6	7.6
Sep	0.4	0.6	4.5	0.7	15.3	12.4	10.0	8.8
Oct	0.5	0.7	4.7	0.8	15.7	12.9	10.4	9.1
Nov	0.5	0.6	3.9	0.7	14.8	11.7	9.1	7.9
Dec	0.3	0.5	2.9	0.5	13.0	9.8	7.4	6.4
Annual	0.3	0.4	3.0	0.4	13.3	10.2	7.8	6.7

Figure 5-3 (Average Salinity - Alternative 02)

Annex	E—	EFDC	Output
-------	----	------	--------

			Average Sa	alinity - Alte	ernative 02			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.3	2.5	0.3	12.9	9.7	7.2	6.2
Feb	0.4	0.5	3.5	0.6	14.4	11.3	8.7	7.5
Mar	0.5	0.7	4.2	0.8	15.6	12.5	9.9	8.6
Apr	0.1	0.2	1.5	0.2	10.2	7.1	5.0	4.4
May	0.2	0.2	2.1	0.3	11.9	8.7	6.2	5.4
Jun	0.1	0.1	1.4	0.1	10.7	7.5	5.1	4.5
Jul	0.3	0.4	3.0	0.4	13.8	10.8	8.2	7.1
Aug	0.4	0.6	3.7	0.6	14.9	11.9	9.3	8.0
Sep	0.2	0.2	1.9	0.3	10.7	7.8	5.7	4.9
Oct	0.2	0.3	2.6	0.3	13.1	10.0	7.4	6.4
Nov	0.5	0.7	4.3	0.8	15.8	12.7	10.1	8.7
Dec	0.2	0.3	2.2	0.3	11.8	8.8	6.4	5.5
Annual	0.3	0.4	2.7	0.4	13.0	9.9	7.5	6.4

Figure 5-4 (Average Salinity - Alternative 04)

			Average Sa	alinity - Alte	ernative 04			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.3	0.4	2.5	0.4	12.9	9.7	7.1	6.0
Feb	0.2	0.2	2.1	0.3	11.9	8.8	6.2	5.3
Mar	0.1	0.2	1.7	0.2	11.2	8.1	5.7	4.9
Apr	0.2	0.2	2.1	0.3	11.6	8.6	6.2	5.3
May	0.3	0.4	3.0	0.4	13.5	10.4	7.9	6.8
Jun	0.3	0.4	2.8	0.4	12.8	9.7	7.3	6.4
Jul	0.3	0.4	2.9	0.5	12.8	9.6	7.3	6.5
Aug	0.4	0.5	3.4	0.6	13.7	10.7	8.3	7.4
Sep	0.4	0.6	3.7	0.6	14.7	11.8	9.3	8.2
Oct	0.4	0.6	3.7	0.6	15.0	12.1	9.6	8.3
Nov	0.4	0.5	3.3	0.6	14.3	11.2	8.6	7.4
Dec	0.3	0.4	2.6	0.5	12.6	9.5	7.0	6.0
Annual	0.3	0.4	2.8	0.4	13.1	10.0	7.6	6.5

			Average Sa	alinity - Alte	ernative 05			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.3	0.3	2.6	0.4	13.1	9.9	7.2	6.1
Feb	0.2	0.2	2.0	0.3	11.9	8.8	6.2	5.3
Mar	0.1	0.2	1.7	0.2	11.3	8.2	5.7	4.9
Apr	0.2	0.2	2.1	0.3	11.8	8.7	6.3	5.4
May	0.3	0.3	2.8	0.4	13.3	10.1	7.6	6.6
Jun	0.3	0.4	2.9	0.4	13.1	10.0	7.6	6.6
Jul	0.3	0.4	3.1	0.5	13.0	9.9	7.6	6.7
Aug	0.3	0.4	3.0	0.4	13.2	10.1	7.7	6.8
Sep	0.3	0.3	3.1	0.4	14.0	11.0	8.5	7.5
Oct	0.3	0.4	3.2	0.5	14.4	11.6	8.9	7.7
Nov	0.4	0.5	3.1	0.5	14.1	11.0	8.4	7.2
Dec	0.3	0.3	2.4	0.4	12.3	9.2	6.7	5.8
Annual	0.3	0.3	2.7	0.4	13.0	9.9	7.4	6.4

Figure 5-5 (Average Salinity - Alternative 05)

Figure 5-6 (Average Salinity - Alternative 06)

			Average Sa	alinity - Alte	ernative 06			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.3	0.4	2.6	0.4	13.2	10.0	7.3	6.2
Feb	0.1	0.2	1.8	0.2	11.7	8.5	5.9	5.0
Mar	0.1	0.1	1.5	0.1	11.0	7.8	5.3	4.6
Apr	0.1	0.2	2.0	0.2	11.8	8.6	6.2	5.3
May	0.3	0.3	2.8	0.4	13.3	10.2	7.7	6.6
Jun	0.2	0.3	2.8	0.4	12.9	9.8	7.4	6.5
Jul	0.3	0.4	2.9	0.4	12.9	9.7	7.4	6.5
Aug	0.2	0.3	2.7	0.3	12.8	9.7	7.3	6.4
Sep	0.2	0.2	2.6	0.3	13.4	10.5	7.9	6.9
Oct	0.2	0.2	2.7	0.3	13.7	10.8	8.2	7.1
Nov	0.3	0.4	2.9	0.4	13.9	10.9	8.2	7.0
Dec	0.2	0.3	2.3	0.4	12.4	9.3	6.7	5.8
Annual	0.2	0.3	2.5	0.3	12.8	9.7	7.1	6.2

13.1.2 Average Salinity Delta Change from NAA

	Average Delta Salinity Increase from NAA - Alternative 01										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0.1	0.2	0.0	0.2	-0.2	-0.3	-0.3	-0.3			
Feb	-0.1	-0.2	-1.6	-0.2	-2.5	-2.6	-2.6	-2.3			
Mar	-0.3	-0.4	-3.0	-0.4	-4.7	-4.8	-4.6	-4.0			
Apr	0.0	0.0	0.4	0.0	1.1	1.1	0.9	0.7			
May	0.1	0.1	0.9	0.1	1.3	1.4	1.4	1.2			
Jun	0.2	0.2	1.4	0.2	1.8	1.9	2.0	1.7			
Jul	0.1	0.1	-0.1	0.1	-1.1	-1.2	-0.9	-0.7			
Aug	-0.1	-0.1	0.0	-0.1	-0.9	-1.0	-0.7	-0.4			
Sep	0.3	0.4	2.6	0.4	4.5	4.5	4.3	3.9			
Oct	0.3	0.4	2.1	0.4	2.6	2.9	2.9	2.7			
Nov	-0.1	-0.1	-0.4	-0.1	-1.0	-1.0	-1.0	-0.8			
Dec	0.1	0.2	0.7	0.2	1.2	1.1	1.0	0.9			
Annual	0.1	0.1	0.3	0.1	0.2	0.2	0.2	0.2			

Figure 5-7 (Average Delta Salinity Increase from NAA Alternative 01)

Figure 5-8 (Average Delta Salinity Increase from NAA Alternative 02)

	A	verage Del	ta Salinity I	ncrease fro	m NAA - A	lternative C	2	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.0	0.2	-0.5	-0.5	-0.4	-0.3
Feb	0.2	0.2	0.0	0.2	-0.1	-0.1	-0.1	-0.1
Mar	0.2	0.2	-0.2	0.3	-0.1	-0.1	-0.2	-0.1
Apr	0.1	0.1	0.0	0.1	-0.1	-0.1	-0.1	-0.1
May	0.1	0.1	0.2	0.1	-0.1	-0.1	-0.1	-0.1
Jun	0.0	0.0	0.1	0.1	-0.1	-0.2	-0.1	-0.1
Jul	0.2	0.2	0.1	0.2	-0.1	-0.1	-0.1	-0.1
Aug	0.1	0.1	-0.1	0.1	0.0	0.0	-0.1	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annual	0.1	0.1	0.0	0.1	-0.1	-0.1	-0.1	-0.1

	A	verage Del	ta Salinity I	ncrease fro	m NAA - A	lternative C	3	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	-0.1	0.1	-0.3	-0.4	-0.4	-0.4
Feb	-0.1	-0.2	-1.7	-0.2	-2.6	-2.7	-2.7	-2.4
Mar	-0.3	-0.4	-2.9	-0.4	-4.5	-4.6	-4.4	-3.9
Apr	0.0	0.0	0.5	0.1	1.5	1.5	1.2	1.0
May	0.1	0.2	1.0	0.2	1.4	1.5	1.6	1.3
Jun	0.2	0.3	1.7	0.3	2.1	2.2	2.3	2.0
Jul	0.1	0.1	-0.1	0.2	-1.1	-1.2	-0.9	-0.7
Aug	-0.1	-0.2	-0.5	-0.2	-1.3	-1.5	-1.2	-0.9
Sep	0.1	0.2	1.6	0.2	3.8	3.7	3.4	3.0
Oct	0.1	0.1	1.0	0.1	1.7	2.0	2.0	1.8
Nov	-0.3	-0.3	-1.1	-0.4	-1.6	-1.6	-1.6	-1.5
Dec	0.0	0.0	0.3	0.0	0.9	0.8	0.7	0.5
Annual	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Figure 5-9 (Average Delta Salinity Increase from NAA Alternative 03)

Figure 5-10 (Average Delta Salinity Increase from NAA Alternative 04)

	А	verage Del	ta Salinity I	ncrease fro	m NAA - A	lternative 0	4	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.2	0.0	0.2	-0.5	-0.5	-0.6	-0.5
Feb	0.0	-0.1	-1.5	-0.1	-2.6	-2.6	-2.7	-2.3
Mar	-0.2	-0.3	-2.7	-0.4	-4.5	-4.6	-4.4	-3.8
Apr	0.1	0.1	0.6	0.2	1.3	1.4	1.1	0.9
May	0.2	0.3	1.1	0.3	1.4	1.5	1.5	1.3
Jun	0.3	0.3	1.6	0.4	1.9	2.0	2.1	1.8
Jul	0.2	0.2	0.0	0.3	-1.2	-1.3	-0.9	-0.7
Aug	0.0	0.0	-0.3	0.0	-1.2	-1.3	-1.0	-0.7
Sep	0.3	0.3	1.7	0.3	4.0	3.9	3.6	3.3
Oct	0.2	0.3	1.1	0.3	1.9	2.1	2.1	1.9
Nov	-0.1	-0.2	-1.0	-0.2	-1.4	-1.5	-1.5	-1.3
Dec	0.1	0.1	0.4	0.1	0.8	0.7	0.6	0.5
Annual	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0

	Average Delta Salinity Increase from NAA - Alternative 05										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0.2	0.2	0.0	0.2	-0.3	-0.3	-0.4	-0.4			
Feb	0.0	-0.1	-1.5	-0.1	-2.6	-2.6	-2.7	-2.4			
Mar	-0.2	-0.3	-2.7	-0.4	-4.5	-4.5	-4.4	-3.8			
Apr	0.1	0.1	0.6	0.2	1.5	1.5	1.2	1.0			
May	0.2	0.2	0.9	0.3	1.2	1.3	1.3	1.1			
Jun	0.3	0.3	1.7	0.4	2.2	2.3	2.3	2.0			
Jul	0.2	0.2	0.1	0.3	-0.9	-0.9	-0.6	-0.5			
Aug	-0.1	-0.2	-0.8	-0.2	-1.7	-1.8	-1.6	-1.3			
Sep	0.1	0.1	1.1	0.1	3.2	3.2	2.8	2.5			
Oct	0.1	0.1	0.6	0.1	1.3	1.6	1.5	1.4			
Nov	-0.2	-0.2	-1.1	-0.3	-1.7	-1.7	-1.7	-1.5			
Dec	0.0	0.0	0.1	0.1	0.5	0.5	0.3	0.2			
Annual	0.1	0.0	-0.1	0.1	-0.1	-0.1	-0.2	-0.1			

Figure 5-11 (Average Delta Salinity Increase from NAA Alternative 05)

E	(Aurana Dalla	Onlinite Income	fue and ALAA	$A_{1}(z_{1}, z_{2}, z_{1}) = A_{1}(z_{1}, z_{2}, z_{2})$
Flaure 5-12	(Averade Delta	Salinity Increase	TOM NAA	Alternative 06)
J				

	A	verage Del	ta Salinity I	ncrease fro	m NAA - A	lternative 0	6	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.2	0.1	0.3	-0.2	-0.2	-0.3	-0.3
Feb	-0.1	-0.2	-1.7	-0.2	-2.8	-2.9	-3.0	-2.6
Mar	-0.2	-0.4	-2.9	-0.4	-4.8	-4.9	-4.8	-4.2
Apr	0.1	0.1	0.5	0.1	1.5	1.4	1.1	0.9
May	0.2	0.2	0.9	0.3	1.2	1.3	1.3	1.1
Jun	0.2	0.3	1.5	0.3	2.0	2.1	2.1	1.8
Jul	0.1	0.2	-0.1	0.2	-1.1	-1.2	-0.9	-0.7
Aug	-0.2	-0.2	-1.1	-0.2	-2.1	-2.3	-2.1	-1.7
Sep	0.0	0.0	0.7	0.0	2.7	2.6	2.2	2.0
Oct	0.0	0.0	0.1	-0.1	0.6	0.9	0.7	0.7
Nov	-0.2	-0.3	-1.4	-0.3	-1.8	-1.8	-1.9	-1.7
Dec	0.0	0.0	0.1	0.0	0.6	0.5	0.3	0.2
Annual	0.0	0.0	-0.3	0.0	-0.3	-0.4	-0.4	-0.4

13.1.3 90 Percentile Salinity

			90 Perce	entile Salinit	ty - NAA			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.4	4.0	0.4	15.4	12.6	10.0	8.5
Feb	0.5	0.7	5.3	0.8	16.6	13.7	11.1	9.7
Mar	0.6	0.9	6.3	1.0	17.7	14.7	12.1	10.6
Apr	0.2	0.4	4.1	0.4	15.8	12.8	10.0	8.7
May	0.2	0.3	3.7	0.4	15.2	12.1	9.3	8.2
Jun	0.0	0.1	2.6	0.1	14.4	11.4	8.5	7.3
Jul	0.3	0.5	4.6	0.6	16.2	13.4	10.7	9.2
Aug	0.7	0.9	5.4	1.1	17.1	14.3	11.7	10.2
Sep	0.5	0.6	3.9	0.7	15.6	12.6	9.9	8.7
Oct	0.5	0.6	4.0	0.8	15.7	12.7	10.0	8.6
Nov	0.8	1.1	5.5	1.3	17.3	14.5	11.9	10.2
Dec	0.7	0.9	4.7	0.9	16.7	13.8	11.0	9.5
Annual	0.4	0.6	4.5	0.7	16.1	13.2	10.5	9.1

Figure 5-13 (90 Percentile Salinity - NAA)

Figure 5-14 (90 Percentile Salinity - Alternative 01)

		90) Percentile	Salinity - A	Alternative	01		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.8	1.1	5.0	1.1	17.0	13.7	11.0	9.4
Feb	0.4	0.6	4.0	0.7	15.8	12.6	9.8	8.2
Mar	0.2	0.3	3.2	0.3	14.7	11.7	8.8	7.4
Apr	0.3	0.4	3.9	0.5	15.5	12.6	9.8	8.4
May	0.5	0.7	4.9	0.7	16.4	13.5	10.8	9.4
Jun	0.5	0.7	4.9	0.7	16.2	13.2	10.7	9.3
Jul	0.8	1.1	6.4	1.2	17.3	14.3	12.0	10.6
Aug	0.9	1.2	7.0	1.4	18.0	15.1	12.8	11.2
Sep	1.2	1.5	7.8	1.8	18.6	15.7	13.5	11.9
Oct	1.4	1.8	7.6	1.9	18.8	16.0	13.5	12.0
Nov	1.3	1.7	7.0	1.7	18.7	15.4	12.9	11.3
Dec	1.0	1.3	6.3	1.4	18.0	14.9	12.2	10.7
Annual	0.8	1.0	5.6	1.1	17.1	14.0	11.5	10.0

		90	Percentile	Salinity - A	Alternative	02		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.4	0.6	3.9	0.7	15.3	12.4	9.7	8.3
Feb	0.7	0.9	5.0	1.1	16.4	13.5	11.0	9.6
Mar	0.9	1.1	5.7	1.4	17.5	14.6	12.0	10.5
Apr	0.4	0.5	3.9	0.6	15.7	12.8	9.8	8.6
May	0.4	0.6	3.9	0.7	15.1	11.9	9.2	8.2
Jun	0.2	0.2	2.9	0.3	14.3	11.3	8.4	7.2
Jul	0.5	0.7	4.4	0.9	16.1	13.3	10.5	9.1
Aug	0.8	1.0	5.2	1.2	17.0	14.2	11.6	10.2
Sep	0.5	0.6	3.9	0.7	15.6	12.6	9.9	8.6
Oct	0.5	0.6	4.1	0.8	15.7	12.8	10.0	8.6
Nov	0.8	1.1	5.5	1.3	17.3	14.5	11.9	10.3
Dec	0.7	0.9	4.7	0.9	16.7	13.8	11.1	9.5
Annual	0.6	0.7	4.4	0.9	16.1	13.1	10.4	9.1

Figure 5-15 (90 Percentile Salinity - Alternative 02)

Figure 5-16 (90 Percentile Salinity - Alternative 03)

		90) Percentile	Salinity - A	Alternative	03		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.5	0.7	4.2	0.8	16.0	12.8	9.9	8.4
Feb	0.4	0.6	3.8	0.7	15.4	12.2	9.4	7.8
Mar	0.2	0.3	3.1	0.3	14.7	11.7	8.8	7.4
Apr	0.3	0.4	4.0	0.5	15.7	12.8	9.9	8.7
May	0.4	0.6	4.7	0.7	16.3	13.4	10.7	9.2
Jun	0.6	0.8	4.9	0.9	16.2	13.4	10.8	9.4
Jul	0.8	1.0	5.7	1.2	17.1	14.1	11.6	10.2
Aug	0.7	0.9	5.8	1.0	17.1	14.3	11.7	10.2
Sep	0.7	0.9	5.5	1.0	17.2	14.4	11.8	10.3
Oct	0.7	0.9	5.2	1.0	17.1	14.3	11.7	10.0
Nov	0.6	0.9	5.2	0.9	17.2	14.1	11.5	9.7
Dec	0.5	0.7	4.6	0.8	16.7	13.6	10.9	9.1
Annual	0.5	0.7	4.7	0.8	16.4	13.4	10.7	9.2

		90) Percentile	Salinity - A	Alternative	04		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.6	0.8	4.4	1.0	16.3	13.0	10.1	8.5
Feb	0.5	0.7	4.0	0.8	15.6	12.4	9.7	8.0
Mar	0.3	0.5	3.3	0.6	14.7	11.8	8.9	7.4
Apr	0.5	0.6	3.9	0.7	15.5	12.5	9.8	8.5
May	0.6	0.8	4.6	1.0	16.5	13.5	10.7	9.4
Jun	0.6	0.8	4.8	1.0	16.0	13.1	10.6	9.2
Jul	0.9	1.2	5.8	1.4	17.2	14.3	11.9	10.5
Aug	0.9	1.2	5.9	1.4	17.5	14.7	12.1	10.8
Sep	0.8	1.1	5.6	1.3	17.5	14.7	12.3	10.6
Oct	0.8	1.0	5.2	1.1	17.4	14.7	12.0	10.3
Nov	0.8	1.0	5.1	1.2	17.3	14.4	11.7	9.9
Dec	0.7	1.0	4.7	1.1	16.7	13.8	11.1	9.3
Annual	0.7	0.9	4.8	1.0	16.5	13.6	10.9	9.4

Figure 5-17 (90 Percentile Salinity - Alternative 04)

Figure 5-18 (90 Percentile Salinity -	Alternative 05)
---------------------------------------	-----------------

		90) Percentile	Salinity - A	Alternative	05		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.6	0.8	4.1	1.0	16.0	12.8	9.8	8.3
Feb	0.4	0.6	3.6	0.7	15.3	12.1	9.1	7.6
Mar	0.3	0.4	3.3	0.6	14.7	11.8	8.9	7.5
Apr	0.4	0.6	3.9	0.7	15.6	12.6	9.8	8.5
May	0.5	0.7	4.5	0.9	16.1	13.1	10.4	9.0
Jun	0.6	0.8	4.6	1.0	15.7	12.8	10.2	8.9
Jul	0.7	0.9	4.9	1.1	16.4	13.5	10.9	9.6
Aug	0.6	0.8	4.6	0.9	16.4	13.3	10.6	9.4
Sep	0.5	0.7	4.6	0.9	16.4	13.5	10.9	9.5
Oct	0.6	0.8	4.6	0.9	16.6	13.8	11.1	9.5
Nov	0.7	0.9	4.9	1.1	17.1	14.1	11.4	9.7
Dec	0.6	0.8	4.4	1.0	16.5	13.4	10.7	9.0
Annual	0.6	0.7	4.3	0.9	16.1	13.1	10.3	8.9

		90) Percentile	Salinity - A	Iternative	06		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.6	0.8	4.1	1.0	15.9	12.6	9.7	8.2
Feb	0.4	0.5	3.3	0.5	14.6	11.5	8.5	7.1
Mar	0.2	0.3	2.9	0.4	14.0	10.9	7.9	6.8
Apr	0.4	0.5	3.7	0.7	15.3	12.3	9.4	8.1
May	0.5	0.7	4.2	0.8	15.8	12.9	10.1	8.6
Jun	0.5	0.7	4.5	0.9	15.7	12.8	10.2	8.9
Jul	0.6	0.8	4.7	1.0	16.0	13.0	10.3	9.1
Aug	0.5	0.6	4.3	0.8	15.6	12.6	9.9	8.8
Sep	0.4	0.5	4.1	0.7	15.6	12.7	9.9	8.7
Oct	0.4	0.5	3.8	0.6	15.6	12.8	10.1	8.6
Nov	0.7	0.9	4.7	1.0	16.7	13.9	11.0	9.3
Dec	0.6	0.8	4.3	0.9	16.3	13.1	10.5	8.9
Annual	0.5	0.6	4.0	0.8	15.6	12.6	9.8	8.4

Figure 5-19 (90 Percentile Salinity - Alternative 06)

13.1.4 90 Percentile Salinity Delta Change from NAA

	90 F	90 Percentile Delta Salinity Increase from NAA - Alternative 01										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	0.5	0.7	0.9	0.7	1.6	1.1	1.1	0.9				
Feb	-0.1	-0.1	-1.4	-0.2	-0.8	-1.1	-1.3	-1.4				
Mar	-0.4	-0.6	-3.1	-0.7	-3.0	-3.0	-3.4	-3.2				
Apr	0.1	0.1	-0.2	0.1	-0.3	-0.3	-0.2	-0.3				
May	0.3	0.4	1.2	0.3	1.2	1.4	1.5	1.2				
Jun	0.4	0.6	2.2	0.7	1.8	1.8	2.3	1.9				
Jul	0.5	0.6	1.8	0.7	1.1	0.8	1.3	1.3				
Aug	0.1	0.3	1.6	0.3	0.9	0.8	1.1	1.1				
Sep	0.7	0.9	3.9	1.1	3.0	3.1	3.6	3.2				
Oct	0.9	1.2	3.5	1.1	3.1	3.2	3.5	3.4				
Nov	0.5	0.6	1.5	0.4	1.4	0.9	1.0	1.1				
Dec	0.3	0.4	1.6	0.4	1.3	1.1	1.2	1.2				
Annual	0.3	0.4	1.1	0.4	0.9	0.8	1.0	0.9				

Figure 5-20 (90 Percentile Delta Salinity Increase from NAA Alternative 01)

Figure 5-21 (90 Percentile Delta Salinity Increase from NAA Alternative 02)

	90 F	Percentile D	elta Salinit	y Increase f	from NAA	Alternativ	e 02	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.2	-0.1	0.3	-0.1	-0.2	-0.2	-0.2
Feb	0.2	0.2	-0.3	0.3	-0.1	-0.1	-0.1	-0.1
Mar	0.3	0.3	-0.6	0.3	-0.1	-0.1	-0.2	-0.1
Apr	0.2	0.2	-0.2	0.2	-0.2	0.0	-0.2	-0.1
May	0.2	0.3	0.2	0.3	-0.1	-0.2	-0.1	-0.1
Jun	0.2	0.2	0.2	0.2	-0.1	-0.1	0.0	-0.1
Jul	0.2	0.2	-0.2	0.3	-0.1	-0.1	-0.2	-0.1
Aug	0.1	0.1	-0.1	0.1	-0.1	-0.1	-0.1	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.0
Annual	0.1	0.1	-0.1	0.2	-0.1	-0.1	-0.1	-0.1

	90 F	Percentile D	elta Salinit	y Increase	from NAA	- Alternativ	e 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.3	0.3	0.2	0.4	0.6	0.2	-0.1	-0.1
Feb	-0.1	-0.1	-1.5	-0.2	-1.2	-1.5	-1.7	-1.8
Mar	-0.4	-0.6	-3.2	-0.7	-3.0	-3.0	-3.4	-3.1
Apr	0.1	0.1	-0.1	0.1	-0.2	-0.1	0.0	0.0
May	0.2	0.3	1.0	0.3	1.1	1.3	1.3	1.0
Jun	0.5	0.7	2.3	0.8	1.8	2.0	2.4	2.0
Jul	0.4	0.6	1.2	0.6	0.9	0.7	0.9	1.0
Aug	-0.1	-0.1	0.5	-0.1	0.0	0.0	-0.1	0.0
Sep	0.2	0.3	1.6	0.3	1.6	1.8	1.9	1.7
Oct	0.2	0.2	1.2	0.2	1.4	1.6	1.7	1.4
Nov	-0.2	-0.2	-0.3	-0.4	-0.1	-0.4	-0.4	-0.5
Dec	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.4
Annual	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.1

Figure 5-22 (90 Percentile Delta Salinity Increase from NAA Alternative 03)

Figure 5-23 (90 Percentile Delta Salinity Increase from NAA Alternative 04)

	A	verage Del	ta Salinity I	ncrease fro	m NAA - A	lternative C	4	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.2	0.2	0.0	0.2	-0.5	-0.5	-0.6	-0.5
Feb	0.0	-0.1	-1.5	-0.1	-2.6	-2.6	-2.7	-2.3
Mar	-0.2	-0.3	-2.7	-0.4	-4.5	-4.6	-4.4	-3.8
Apr	0.1	0.1	0.6	0.2	1.3	1.4	1.1	0.9
May	0.2	0.3	1.1	0.3	1.4	1.5	1.5	1.3
Jun	0.3	0.3	1.6	0.4	1.9	2.0	2.1	1.8
Jul	0.2	0.2	0.0	0.3	-1.2	-1.3	-0.9	-0.7
Aug	0.0	0.0	-0.3	0.0	-1.2	-1.3	-1.0	-0.7
Sep	0.3	0.3	1.7	0.3	4.0	3.9	3.6	3.3
Oct	0.2	0.3	1.1	0.3	1.9	2.1	2.1	1.9
Nov	-0.1	-0.2	-1.0	-0.2	-1.4	-1.5	-1.5	-1.3
Dec	0.1	0.1	0.4	0.1	0.8	0.7	0.6	0.5
Annual	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0

	90 Percentile Delta Salinity Increase from NAA - Alternative 05										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0.3	0.4	0.1	0.6	0.6	0.2	-0.1	-0.2			
Feb	0.0	-0.1	-1.7	-0.1	-1.3	-1.6	-2.0	-2.1			
Mar	-0.3	-0.4	-3.0	-0.5	-2.9	-2.9	-3.2	-3.1			
Apr	0.2	0.2	-0.2	0.3	-0.3	-0.2	-0.1	-0.2			
May	0.3	0.4	0.8	0.6	0.9	1.0	1.1	0.7			
Jun	0.6	0.7	2.0	0.9	1.3	1.4	1.7	1.6			
Jul	0.3	0.4	0.4	0.5	0.2	0.1	0.3	0.4			
Aug	-0.2	-0.2	-0.8	-0.2	-0.7	-1.0	-1.2	-0.8			
Sep	0.1	0.1	0.7	0.2	0.8	0.9	1.0	0.8			
Oct	0.1	0.2	0.6	0.2	0.9	1.1	1.1	0.8			
Nov	-0.1	-0.1	-0.6	-0.2	-0.2	-0.4	-0.6	-0.5			
Dec	0.0	0.0	-0.3	0.0	-0.2	-0.4	-0.4	-0.4			
Annual	0.1	0.1	-0.2	0.2	-0.1	-0.2	-0.2	-0.2			

Figure 5-24 (90 Percentile Delta Salinity Increase from NAA Alternative 05)

Figure 5-25 (90 Percentile Delta Salinity Increase from NAA Alternative 06)

	90 Percentile Delta Salinity Increase from NAA - Alternative 06										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0.3	0.4	0.1	0.6	0.5	0.0	-0.2	-0.3			
Feb	-0.1	-0.2	-2.1	-0.3	-2.0	-2.2	-2.6	-2.5			
Mar	-0.4	-0.6	-3.4	-0.6	-3.7	-3.8	-4.2	-3.8			
Apr	0.2	0.2	-0.4	0.3	-0.5	-0.6	-0.6	-0.6			
May	0.3	0.4	0.5	0.5	0.6	0.8	0.8	0.4			
Jun	0.5	0.6	1.9	0.8	1.3	1.4	1.7	1.6			
Jul	0.3	0.3	0.1	0.4	-0.2	-0.4	-0.3	-0.2			
Aug	-0.2	-0.3	-1.1	-0.3	-1.5	-1.7	-1.8	-1.4			
Sep	-0.1	-0.1	0.1	0.0	0.0	0.1	0.0	0.1			
Oct	-0.1	-0.1	-0.2	-0.2	-0.1	0.0	0.0	0.0			
Nov	-0.1	-0.2	-0.8	-0.3	-0.6	-0.6	-0.9	-0.9			
Dec	-0.1	0.0	-0.4	0.0	-0.4	-0.7	-0.5	-0.6			
Annual	0.0	0.0	-0.5	0.1	-0.5	-0.6	-0.7	-0.7			

13.2 Dissolved Oxygen

13.2.1 Surface Daily Dissolved Oxygen Analysis

13.2.1.1 Average Surface Daily Dissolved Oxygen

			Average Di	ssolved Ox	/gen - NAA			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.1	10.1	9.7	10.1	8.3	8.5	8.8	9.0
Feb	9.9	9.9	9.6	9.9	8.4	8.6	8.9	9.0
Mar	9.1	8.9	8.8	9.1	7.7	8.0	8.2	8.3
Apr	7.9	7.7	7.5	7.9	6.5	6.7	7.0	7.1
May	6.7	6.4	6.2	6.7	5.1	5.3	5.6	5.7
Jun	6.1	5.7	5.6	6.1	4.5	4.7	4.9	5.0
Jul	5.9	5.4	5.2	5.9	4.1	4.4	4.6	4.7
Aug	5.8	5.3	5.1	5.8	3.8	4.1	4.3	4.4
Sep	6.5	6.0	5.6	6.5	4.2	4.4	4.7	4.8
Oct	7.1	6.9	6.4	7.0	4.9	5.0	5.3	5.5
Nov	8.5	8.4	7.9	8.4	6.3	6.5	6.8	7.0
Dec	9.6	9.5	9.1	9.5	7.7	8.0	8.2	8.4
Annual	7.8	7.5	7.2	7.8	6.0	6.2	6.5	6.6

Figure 5-26 (Surface Average Dissolved Oxygen – NAA)

Figure 5-27	(Surface Average	Dissolved	Oxvaen -	Alternative 01)

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 01		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.1	10.1	9.7	10.1	8.3	8.5	8.8	9.0
Feb	9.9	9.8	9.6	9.9	8.4	8.6	8.9	9.0
Mar	9.1	8.9	8.8	9.1	7.7	8.0	8.3	8.3
Apr	7.9	7.7	7.6	8.0	6.5	6.8	7.0	7.1
May	6.7	6.4	6.2	6.8	5.2	5.4	5.6	5.7
Jun	6.2	5.7	5.6	6.2	4.5	4.8	5.0	5.1
Jul	5.9	5.3	5.2	6.0	4.1	4.3	4.6	4.7
Aug	5.7	5.2	4.9	5.8	3.8	4.0	4.2	4.3
Sep	6.3	5.8	5.3	6.3	4.0	4.2	4.4	4.5
Oct	6.9	6.7	6.1	6.8	4.7	4.8	5.0	5.2
Nov	8.4	8.3	7.7	8.3	6.2	6.4	6.6	6.8
Dec	9.5	9.4	9.0	9.5	7.6	7.9	8.2	8.3
Annual	7.7	7.5	7.1	7.7	5.9	6.1	6.4	6.5

	Average Dissolved Oxygen - Alternative 02										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.1	10.1	9.7	10.1	8.3	8.6	8.9	9.1			
Feb	9.9	9.8	9.6	9.8	8.3	8.6	8.9	9.0			
Mar	8.9	8.8	8.7	8.9	7.6	7.8	8.1	8.2			
Apr	7.9	7.7	7.5	7.9	6.5	6.7	7.0	7.1			
May	6.7	6.5	6.3	6.7	5.2	5.4	5.6	5.7			
Jun	6.1	5.7	5.6	6.1	4.4	4.7	4.9	5.0			
Jul	5.9	5.4	5.3	5.9	4.0	4.3	4.6	4.7			
Aug	5.9	5.4	5.2	5.9	3.9	4.2	4.4	4.5			
Sep	6.5	6.1	5.8	6.5	4.3	4.5	4.8	4.9			
Oct	7.2	7.0	6.6	7.1	5.0	5.2	5.4	5.6			
Nov	8.6	8.5	8.0	8.5	6.4	6.7	7.0	7.1			
Dec	9.6	9.5	9.2	9.5	7.8	8.1	8.4	8.5			
Annual	7.8	7.5	7.3	7.7	6.0	6.2	6.5	6.6			

Figure 5-28 (Surface Average Dissolved Oxygen – Alternative 02)

Figure 5-29	(Surface Average	Dissolved Oxv	gen – Alternative 03)

	Average Dissolved Oxygen - Alternative 03										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.1	10.1	9.7	10.1	8.3	8.5	8.8	9.0			
Feb	9.9	9.9	9.6	9.9	8.4	8.6	8.9	9.0			
Mar	9.1	8.9	8.8	9.1	7.7	8.0	8.2	8.3			
Apr	7.9	7.7	7.5	7.9	6.5	6.7	7.0	7.1			
May	6.7	6.4	6.2	6.7	5.1	5.3	5.6	5.7			
Jun	6.1	5.7	5.6	6.1	4.5	4.7	4.9	5.0			
Jul	5.9	5.4	5.2	5.9	4.1	4.4	4.6	4.7			
Aug	5.8	5.3	5.1	5.8	3.8	4.1	4.3	4.4			
Sep	6.5	6.0	5.6	6.5	4.2	4.4	4.7	4.8			
Oct	7.1	6.9	6.4	7.0	4.9	5.0	5.3	5.5			
Nov	8.5	8.4	7.9	8.4	6.3	6.5	6.8	7.0			
Dec	9.6	9.5	9.1	9.5	7.7	8.0	8.2	8.4			
Annual	7.8	7.5	7.2	7.8	6.0	6.2	6.5	6.6			

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 04		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.1	10.1	9.7	10.1	8.3	8.6	8.9	9.0
Feb	9.9	9.8	9.6	9.9	8.4	8.6	8.9	9.0
Mar	9.1	8.9	8.8	9.1	7.7	8.0	8.2	8.3
Apr	7.9	7.7	7.6	7.9	6.5	6.8	7.0	7.1
May	6.7	6.5	6.3	6.7	5.2	5.4	5.6	5.7
Jun	6.2	5.8	5.7	6.2	4.5	4.8	5.0	5.1
Jul	5.9	5.4	5.3	5.9	4.1	4.4	4.6	4.7
Aug	5.8	5.3	5.1	5.8	3.8	4.1	4.3	4.4
Sep	6.4	6.0	5.7	6.4	4.2	4.4	4.6	4.8
Oct	7.0	6.9	6.4	7.0	4.9	5.0	5.3	5.4
Nov	8.5	8.4	7.9	8.4	6.3	6.5	6.8	7.0
Dec	9.5	9.5	9.1	9.5	7.7	8.0	8.3	8.4
Annual	7.7	7.5	7.3	7.7	6.0	6.2	6.5	6.6

Figure 5-30 (Surface Average Dissolved Oxygen – Alternative 04)

Eiguro 5-21	(Surface Average	Dissolvad	Ovuqon	Altornativo (05)
i iyure J-Si (Sunace Average	DISSUIVED	Охууст –	Allemative 00)

	Average Dissolved Oxygen - Alternative 05										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.11	10.08	9.72	10.07	7.44	7.35	7.50	7.56			
Feb	9.90	9.85	9.61	9.89	7.52	7.43	7.58	7.65			
Mar	9.04	8.93	8.77	9.05	6.88	6.78	6.89	6.93			
Apr	7.86	7.68	7.52	7.87	5.82	5.68	5.71	5.73			
May	6.78	6.52	6.35	6.79	4.76	4.56	4.48	4.47			
Jun	6.07	5.68	5.54	6.08	3.95	3.69	3.57	3.54			
Jul	5.81	5.31	5.16	5.85	3.45	3.17	3.03	3.01			
Aug	5.86	5.40	5.21	5.90	3.35	3.05	2.90	2.89			
Sep	6.52	6.12	5.85	6.56	3.80	3.51	3.39	3.37			
Oct	7.14	6.96	6.56	7.09	4.49	4.23	4.15	4.12			
Nov	8.49	8.40	7.95	8.43	5.67	5.50	5.53	5.54			
Dec	9.58	9.54	9.20	9.55	6.85	6.72	6.84	6.89			
Annual	7.76	7.54	7.29	7.76	5.33	5.14	5.13	5.14			

r –											
	Average Dissolved Oxygen - Alternative 06										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.10	10.07	9.70	10.06	7.43	7.34	7.49	7.55			
Feb	9.95	9.89	9.67	9.94	7.52	7.43	7.58	7.65			
Mar	9.13	9.01	8.87	9.14	6.89	6.80	6.91	6.96			
Apr	7.92	7.74	7.58	7.93	5.83	5.69	5.72	5.74			
May	6.79	6.52	6.35	6.80	4.75	4.55	4.48	4.46			
Jun	6.11	5.74	5.60	6.13	3.97	3.72	3.60	3.58			
Jul	5.88	5.39	5.25	5.93	3.47	3.19	3.06	3.05			
Aug	5.95	5.50	5.33	6.00	3.40	3.10	2.97	2.97			
Sep	6.61	6.23	5.98	6.66	3.87	3.59	3.48	3.47			
Oct	7.26	7.08	6.73	7.24	4.57	4.31	4.25	4.23			
Nov	8.51	8.43	8.00	8.46	5.71	5.53	5.56	5.58			
Dec	9.57	9.52	9.19	9.54	6.83	6.70	6.82	6.87			
Annual	7.81	7.59	7.35	7.82	5.35	5.16	5.16	5.18			

Figure 5-32 (Surface Average Dissolved Oxygen – Alternative 06)

13.2.1.2 Average Surface Daily Dissolved Oxygen Delta

	Avera	ge Delta Dis	solved Oxy	gen Increas	se from NA	A - Alterna	tive 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
May	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jun	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aug	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1
Sep	-0.1	-0.2	-0.3	-0.2	-0.2	-0.2	-0.3	-0.3
Oct	-0.2	-0.2	-0.3	-0.2	-0.2	-0.2	-0.3	-0.3
Nov	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2	-0.2	-0.2
Dec	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Annual	0.0	-0.1	-0.1	0.0	0.0	-0.1	-0.1	-0.1

Figure 5-33 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 01)

Figure 5-34 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 02)

Average Delta Dissolved Oxygen Increase from NAA - Alternative 02								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1
Feb	-0.1	0.0	-0.1	-0.1	0.0	0.0	0.0	-0.1
Mar	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.0
Jun	-0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0
Jul	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Aug	0.1	0.1	0.2	0.0	0.1	0.1	0.1	0.1
Sep	0.0	0.1	0.2	0.0	0.1	0.1	0.1	0.1
Oct	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Nov	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Dec	0.0	0.0	0.1	0.0	0.1	0.2	0.2	0.1
Annual	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0

	Average Delta Dissolved Oxygen Increase from NAA - Alternative 03								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5	
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
May	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Annual	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Figure 5-35 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 03)

Figure 5-36 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 04)

	Average Delta Dissolved Oxygen Increase from NAA - Alternative 04								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5	
Jan	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Apr	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
May	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	
Jun	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	
Jul	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	
Aug	0.0	0.0	0.1	-0.1	0.0	0.0	0.0	0.0	
Sep	-0.1	0.0	0.1	-0.1	0.0	0.0	0.0	0.0	
Oct	0.0	0.0	0.1	-0.1	0.0	0.0	0.0	0.0	
Nov	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Annual	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	

	Average Delta Dissolved Oxygen Increase from NAA - Alternative 05								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5	
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
May	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	
Jun	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
Jul	0.0	0.0	0.0	-0.1	0.0	-0.1	-0.1	-0.1	
Aug	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2	
Sep	0.1	0.2	0.3	0.1	0.2	0.2	0.2	0.2	
Oct	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	
Nov	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	
Dec	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	
Annual	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	

Figure 5-37 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 05)

Figure 5-38 (Average Delta Surface Dissolved Oxygen Increase from NAA - Alternative 06)

	Average Delta Dissolved Oxygen Increase from NAA - Alternative 06								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5	
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Feb	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	
Mar	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Apr	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.1	
May	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	
Jun	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.1	
Jul	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	
Aug	0.2	0.3	0.4	0.2	0.2	0.3	0.3	0.3	
Sep	0.2	0.3	0.4	0.2	0.3	0.4	0.4	0.4	
Oct	0.2	0.3	0.4	0.2	0.3	0.3	0.4	0.4	
Nov	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	
Dec	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	
Annual	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	

13.2.1.3 10 Percentile Surface Average Daily Dissolved Oxygen

	10 Percentile Dissolved Oxygen - NAA									
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5		
Jan	9.1	9.1	8.8	9.1	7.5	7.6	7.9	8.0		
Feb	9.1	9.0	8.7	9.0	7.5	7.6	7.9	8.0		
Mar	8.1	8.0	7.8	8.1	6.7	6.8	7.1	7.1		
Apr	7.0	6.8	6.6	7.0	5.6	5.6	5.8	5.9		
May	6.0	5.5	5.2	5.9	4.4	4.4	4.5	4.7		
Jun	5.4	4.8	4.6	5.3	3.4	3.5	3.7	3.9		
Jul	5.3	4.6	4.4	5.3	3.2	3.3	3.4	3.6		
Aug	5.3	4.6	4.1	5.2	3.0	3.1	3.2	3.4		
Sep	5.8	5.2	4.7	5.8	3.5	3.6	3.7	3.9		
Oct	6.3	6.1	5.6	6.3	4.2	4.2	4.4	4.6		
Nov	7.7	7.6	7.0	7.7	5.6	5.6	5.8	6.1		
Dec	8.4	8.4	7.9	8.3	6.4	6.5	6.7	6.9		
Annual	7.0	6.6	6.3	6.9	5.1	5.2	5.4	5.5		

Figure 5-39 (10 Percentile Surface Dissolved O)xygen – NAA)
--	---------------

Figure 5-40 (10 Percentile Surface Dissolved Oxygen – Alternative 01)

	10 Percentile Dissolved Oxygen - Alternative 01								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5	
Jan	9.1	9.1	8.7	9.1	7.4	7.5	7.8	7.9	
Feb	9.0	8.9	8.6	9.0	7.4	7.5	7.7	7.9	
Mar	8.1	8.0	7.8	8.1	6.7	6.8	7.0	7.2	
Apr	7.0	6.8	6.6	7.0	5.6	5.6	5.9	6.0	
May	5.9	5.5	5.2	5.9	4.3	4.3	4.5	4.7	
Jun	5.4	4.8	4.6	5.4	3.5	3.6	3.8	4.0	
Jul	5.3	4.6	4.1	5.2	3.1	3.2	3.3	3.4	
Aug	5.2	4.4	3.8	5.1	2.9	2.9	3.0	3.2	
Sep	5.5	4.8	4.2	5.5	3.3	3.2	3.3	3.4	
Oct	6.0	5.7	4.9	5.8	3.8	3.8	3.8	3.9	
Nov	7.5	7.4	6.7	7.4	5.2	5.3	5.4	5.6	
Dec	8.2	8.2	7.5	8.1	6.2	6.1	6.3	6.5	
Annual	6.9	6.5	6.1	6.8	4.9	5.0	5.1	5.3	

		10 Perc	entile Disso	olved Oxyge	en - Alterna	ative 02		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	9.1	9.1	8.8	9.0	7.5	7.7	7.9	8.0
Feb	9.0	8.9	8.6	8.9	7.5	7.6	7.8	8.0
Mar	7.8	7.6	7.4	7.8	6.4	6.5	6.7	6.8
Apr	6.9	6.8	6.6	6.9	5.5	5.6	5.8	5.9
May	5.9	5.6	5.4	5.9	4.3	4.4	4.6	4.7
Jun	5.4	4.9	4.7	5.4	3.5	3.6	3.8	3.9
Jul	5.3	4.7	4.5	5.3	3.2	3.3	3.5	3.6
Aug	5.3	4.7	4.4	5.2	3.0	3.2	3.3	3.5
Sep	5.8	5.3	5.0	5.7	3.6	3.7	3.8	4.0
Oct	6.4	6.2	5.7	6.3	4.2	4.3	4.5	4.7
Nov	7.7	7.6	7.2	7.7	5.6	5.8	6.0	6.2
Dec	8.4	8.4	7.9	8.3	6.5	6.6	6.8	7.0
Annual	6.9	6.6	6.4	6.9	5.1	5.2	5.4	5.5

Figure 5-41 (10 Percentile Surface Dissolved Oxygen – Alternative 02)

=	()	0 1 01		A.L
-100000 - 5-42	(11) Parcantila	Surtana Dieer	nlvad ()vvaan _	- Alternative 03)
I Iguie J-TZ		Ourrace Diss		

		10 Perc	entile Disso	olved Oxyge	en - Alterna	ative 03		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	9.1	9.1	8.8	9.1	7.5	7.6	7.9	8.0
Feb	9.1	9.0	8.7	9.0	7.5	7.6	7.9	8.0
Mar	8.1	8.0	7.8	8.1	6.7	6.8	7.1	7.1
Apr	7.0	6.8	6.6	7.0	5.6	5.6	5.8	5.9
May	6.0	5.5	5.2	5.9	4.4	4.4	4.5	4.7
Jun	5.4	4.8	4.6	5.3	3.4	3.5	3.7	3.9
Jul	5.3	4.6	4.4	5.3	3.2	3.3	3.4	3.6
Aug	5.3	4.6	4.1	5.2	3.0	3.1	3.2	3.4
Sep	5.8	5.2	4.7	5.8	3.5	3.6	3.7	3.9
Oct	6.3	6.1	5.6	6.3	4.2	4.2	4.4	4.6
Nov	7.7	7.6	7.0	7.7	5.6	5.6	5.8	6.1
Dec	8.4	8.4	7.9	8.3	6.4	6.5	6.7	6.9
Annual	7.0	6.6	6.3	6.9	5.1	5.2	5.4	5.5

		10 Perc	entile Disso	olved Oxyge	en - Alterna	ative 04		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	9.1	9.1	8.8	9.1	7.5	7.7	7.9	8.1
Feb	9.0	8.9	8.6	9.0	7.4	7.6	7.8	8.0
Mar	8.1	8.0	7.8	8.1	6.7	6.9	7.1	7.2
Apr	7.0	6.8	6.7	7.0	5.6	5.7	5.9	6.0
May	5.9	5.6	5.4	5.9	4.4	4.5	4.6	4.7
Jun	5.4	4.9	4.7	5.3	3.5	3.6	3.8	3.9
Jul	5.3	4.6	4.4	5.3	3.2	3.2	3.4	3.5
Aug	5.2	4.6	4.3	5.1	3.0	3.1	3.2	3.4
Sep	5.7	5.2	4.9	5.7	3.4	3.5	3.7	3.9
Oct	6.3	6.2	5.7	6.3	4.2	4.3	4.4	4.6
Nov	7.6	7.5	7.1	7.6	5.5	5.7	5.8	6.1
Dec	8.4	8.4	7.9	8.3	6.4	6.5	6.6	6.9
Annual	6.9	6.6	6.4	6.9	5.1	5.2	5.4	5.5

Figure 5-43 (10 Percentile Surface Dissolved Oxygen – Alternative 04)

	(· · · ·	-		-	
Eiguro 5 11	(10 Doroontilo	Surface	Discolund	Ovugon	– Alternative 05)
FIGULE 3-44 I		Sunace	DISSUIVED	UXVUEII	- AILEITIALIVE UST

		10 Per	cent Disso	ved Oxyger	n - Alternat	tive 05		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	9.1	9.1	8.8	9.1	7.5	7.7	7.9	8.1
Feb	9.0	9.0	8.7	9.0	7.5	7.6	7.8	8.0
Mar	8.1	8.0	7.9	8.1	6.8	7.0	7.2	7.3
Apr	7.0	6.8	6.7	7.0	5.6	5.7	5.9	6.0
May	6.1	5.7	5.5	6.0	4.5	4.6	4.8	4.9
Jun	5.5	5.0	4.8	5.4	3.5	3.6	3.8	4.0
Jul	5.4	4.8	4.6	5.4	3.2	3.4	3.6	3.8
Aug	5.4	4.8	4.7	5.4	3.2	3.4	3.7	3.8
Sep	6.0	5.5	5.2	5.9	3.7	3.9	4.1	4.3
Oct	6.5	6.3	5.9	6.4	4.4	4.5	4.6	4.9
Nov	7.7	7.6	7.2	7.6	5.6	5.7	5.9	6.2
Dec	8.5	8.5	8.0	8.4	6.5	6.6	6.8	7.0
Annual	7.0	6.8	6.5	7.0	5.2	5.3	5.5	5.7

		10 Pei	rcent Disso	ved Oxygei	n - Alternat	ive 06		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	9.1	9.1	8.8	9.1	7.5	7.7	8.0	8.1
Feb	9.2	9.1	8.8	9.1	7.6	7.9	8.1	8.3
Mar	8.3	8.1	8.0	8.3	6.9	7.2	7.4	7.5
Apr	7.0	6.8	6.7	7.0	5.6	5.8	6.0	6.1
May	6.2	5.8	5.7	6.1	4.6	4.7	4.9	5.0
Jun	5.5	5.0	4.8	5.4	3.7	3.8	4.0	4.2
Jul	5.5	4.9	4.7	5.5	3.3	3.5	3.7	3.9
Aug	5.6	5.0	4.8	5.5	3.3	3.5	3.8	4.0
Sep	6.1	5.7	5.4	6.1	3.9	4.0	4.3	4.5
Oct	6.6	6.4	6.1	6.5	4.5	4.7	4.9	5.1
Nov	7.8	7.7	7.3	7.7	5.8	5.9	6.2	6.4
Dec	8.5	8.5	8.1	8.4	6.5	6.6	6.9	7.1
Annual	7.1	6.8	6.6	7.1	5.3	5.4	5.7	5.8

Figure 5-45 (10 Percentile Surface Dissolved Oxygen – Alternative 06)

13.2.1.4 Delta Surface 10 Percentile Daily Dissolved Oxygen

	10 Perce	ntile Delta I	Dissolved O	xygen Incre	ease from N	NAA - Alter	native 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	-0.1	0.0	-0.1	-0.1	-0.1	-0.1
Feb	-0.1	-0.1	-0.1	0.0	-0.1	-0.1	-0.1	-0.1
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1
May	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.1
Jun	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1
Jul	0.0	0.0	-0.3	-0.1	-0.1	-0.1	-0.2	-0.1
Aug	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.3
Sep	-0.3	-0.4	-0.5	-0.3	-0.2	-0.3	-0.4	-0.4
Oct	-0.4	-0.4	-0.7	-0.5	-0.4	-0.5	-0.6	-0.7
Nov	-0.2	-0.2	-0.3	-0.2	-0.3	-0.4	-0.4	-0.5
Dec	-0.2	-0.2	-0.4	-0.2	-0.3	-0.4	-0.4	-0.4
Annual	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2	-0.2	-0.2

Figure 5-46 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 01)

Figure 5-47 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 02)

	10 Perce	ntile Delta I	Dissolved O	xygen Incre	ease from N	NAA - Alter	native 02	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0
Mar	-0.3	-0.4	-0.4	-0.3	-0.3	-0.3	-0.4	-0.3
Apr	-0.1	0.0	0.0	-0.1	0.0	0.0	-0.1	0.0
May	-0.1	0.0	0.2	-0.1	0.0	0.0	0.0	0.0
Jun	0.0	0.1	0.2	0.0	0.0	0.0	0.1	0.0
Jul	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.1
Aug	0.0	0.1	0.4	0.0	0.0	0.1	0.1	0.1
Sep	0.0	0.1	0.3	0.0	0.1	0.1	0.1	0.1
Oct	0.0	0.1	0.2	0.0	0.0	0.1	0.1	0.1
Nov	0.0	0.1	0.2	0.0	0.1	0.1	0.2	0.1
Dec	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1
Annual	0.0	0.0	0.1	-0.1	0.0	0.0	0.0	0.0

	10 Perce	ntile Delta I	Dissolved O	xygen Incre	ease from N	IAA - Alter	native 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annual	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Figure 5-48 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 03)

Figure 5-49 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 04)

	10 Perce	ntile Delta I	Dissolved O	xygen Incre	ease from N	NAA - Alter	native 04	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1
Feb	-0.1	-0.1	-0.1	-0.1	-0.1	0.0	-0.1	-0.1
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Apr	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1
May	-0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Jun	0.0	0.1	0.2	0.0	0.0	0.0	0.1	0.1
Jul	-0.1	0.0	0.1	-0.1	0.0	-0.1	-0.1	-0.1
Aug	-0.1	0.0	0.2	-0.1	0.0	0.0	0.0	-0.1
Sep	-0.1	0.0	0.2	-0.1	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.1	-0.1	0.0	0.0	0.0	0.0
Nov	-0.1	0.0	0.1	-0.1	0.0	0.0	0.0	0.0
Dec	-0.1	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.1
Annual	0.0	0.0	0.1	-0.1	0.0	0.0	0.0	0.0

	10 Perc	ent Delta D	issolved Ox	ygen Increa	ase from N	AA - Altern	ative 05	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Feb	-0.1	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1
Apr	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.1
May	0.1	0.2	0.3	0.1	0.1	0.2	0.2	0.2
Jun	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Jul	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2
Aug	0.1	0.3	0.6	0.2	0.2	0.4	0.4	0.4
Sep	0.2	0.3	0.6	0.2	0.3	0.3	0.4	0.4
Oct	0.1	0.1	0.3	0.1	0.2	0.2	0.3	0.3
Nov	0.0	0.0	0.2	0.0	0.0	0.1	0.1	0.1
Dec	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Annual	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2

Figure 5-50 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 05)

Figure 5-51 (10 Percentile Delta Surface Dissolved Oxygen Increase from NAA – Alternative 06)

	10 Perce	ent Delta D	issolved Ox	ygen Increa	ase from N	AA - Altern	ative 06	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Feb	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2
Mar	0.2	0.1	0.2	0.2	0.3	0.3	0.3	0.4
Apr	0.0	0.1	0.1	0.0	0.1	0.2	0.2	0.2
May	0.2	0.3	0.5	0.2	0.2	0.3	0.3	0.3
Jun	0.1	0.1	0.2	0.1	0.2	0.3	0.3	0.3
Jul	0.1	0.2	0.3	0.2	0.1	0.2	0.3	0.3
Aug	0.3	0.4	0.7	0.3	0.3	0.4	0.5	0.5
Sep	0.3	0.4	0.7	0.3	0.4	0.5	0.6	0.6
Oct	0.2	0.3	0.5	0.2	0.4	0.5	0.5	0.5
Nov	0.1	0.1	0.3	0.0	0.2	0.3	0.3	0.3
Dec	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2
Annual	0.1	0.2	0.3	0.1	0.2	0.3	0.3	0.3

13.2.2 Water Column Average Daily Dissolved Oxygen

13.2.2.1 Average Daily Dissolved Oxygen

	Average Dissolved Oxygen - NAA										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.11	10.07	9.71	10.08	7.42	7.31	7.45	7.51			
Feb	9.90	9.83	9.61	9.89	7.48	7.38	7.53	7.58			
Mar	9.04	8.91	8.76	9.06	6.85	6.74	6.84	6.88			
Apr	7.88	7.67	7.49	7.90	5.80	5.65	5.67	5.69			
May	6.73	6.42	6.20	6.75	4.70	4.48	4.40	4.37			
Jun	6.07	5.65	5.47	6.11	3.92	3.66	3.53	3.50			
Jul	5.84	5.31	5.14	5.91	3.46	3.18	3.04	3.02			
Aug	5.76	5.23	4.96	5.81	3.28	2.96	2.79	2.77			
Sep	6.41	5.94	5.55	6.45	3.69	3.38	3.22	3.20			
Oct	7.05	6.83	6.32	7.02	4.39	4.12	4.01	3.96			
Nov	8.47	8.36	7.85	8.43	5.63	5.44	5.45	5.46			
Dec	9.54	9.48	9.09	9.52	6.79	6.65	6.75	6.79			
Annual	7.73	7.48	7.18	7.74	5.28	5.08	5.06	5.06			

Figure 5-52 (Water Column Average Dissolved Oxygen – NAA)

Figure 5-53	(Water C	Column Average	Dissolved	Oxygen -	Alternative 01)
	1	5			/

	Average Dissolved Oxygen - Alternative 01										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.09	10.05	9.67	10.06	7.41	7.29	7.42	7.48			
Feb	9.89	9.82	9.58	9.89	7.47	7.36	7.50	7.55			
Mar	9.05	8.92	8.78	9.08	6.85	6.74	6.84	6.88			
Apr	7.91	7.70	7.53	7.94	5.81	5.66	5.69	5.71			
May	6.75	6.44	6.22	6.79	4.71	4.50	4.41	4.39			
Jun	6.11	5.68	5.51	6.17	3.95	3.69	3.57	3.54			
Jul	5.84	5.29	5.10	5.92	3.45	3.16	3.02	3.00			
Aug	5.67	5.11	4.78	5.72	3.23	2.90	2.71	2.68			
Sep	6.26	5.75	5.24	6.28	3.57	3.25	3.06	3.02			
Oct	6.86	6.64	6.02	6.80	4.28	3.98	3.84	3.78			
Nov	8.36	8.24	7.65	8.30	5.55	5.35	5.35	5.35			
Dec	9.48	9.42	9.00	9.44	6.75	6.61	6.70	6.74			
Annual	7.69	7.42	7.09	7.70	5.25	5.04	5.01	5.01			

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 02		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.11	10.08	9.75	10.07	7.48	7.39	7.55	7.61
Feb	9.89	9.83	9.61	9.88	7.51	7.43	7.58	7.64
Mar	9.03	8.92	8.77	9.04	6.87	6.77	6.88	6.93
Apr	7.87	7.69	7.54	7.88	5.82	5.69	5.71	5.74
May	6.73	6.46	6.28	6.73	4.73	4.52	4.44	4.42
Jun	6.09	5.71	5.57	6.11	3.95	3.70	3.58	3.56
Jul	5.85	5.37	5.23	5.90	3.48	3.21	3.08	3.07
Aug	5.76	5.29	5.10	5.79	3.31	3.00	2.84	2.83
Sep	6.41	5.99	5.71	6.43	3.72	3.43	3.29	3.27
Oct	7.06	6.87	6.45	7.00	4.43	4.17	4.08	4.04
Nov	8.47	8.38	7.93	8.41	5.67	5.49	5.52	5.54
Dec	9.54	9.49	9.14	9.49	6.82	6.70	6.81	6.86
Annual	7.73	7.51	7.26	7.73	5.32	5.12	5.11	5.12

Figure 5-54 (Water Column Average Dissolved Oxygen – Alternative 02)

Figure 5-55	(Water Column	Average Di	ssolved Oxvaen	– Alternative 03)
		Tronage Di		

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 03		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.11	10.09	9.73	10.08	7.46	7.37	7.52	7.59
Feb	9.96	9.90	9.70	9.95	7.54	7.45	7.61	7.67
Mar	9.12	9.01	8.89	9.13	6.92	6.83	6.95	7.00
Apr	7.88	7.71	7.54	7.89	5.82	5.68	5.71	5.74
May	6.81	6.54	6.38	6.82	4.76	4.56	4.49	4.48
Jun	6.01	5.63	5.50	6.02	3.93	3.66	3.53	3.51
Jul	5.66	5.14	5.01	5.67	3.38	3.08	2.92	2.90
Aug	5.67	5.18	4.99	5.68	3.24	2.92	2.75	2.73
Sep	6.27	5.83	5.52	6.27	3.63	3.32	3.16	3.13
Oct	7.08	6.90	6.50	7.03	4.44	4.18	4.09	4.05
Nov	8.48	8.39	7.95	8.42	5.68	5.51	5.54	5.55
Dec	9.57	9.53	9.19	9.54	6.84	6.71	6.83	6.88
Annual	7.72	7.49	7.24	7.71	5.30	5.11	5.09	5.10

	Average Dissolved Oxygen - Alternative 04											
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	10.10	10.07	9.72	10.06	7.45	7.36	7.51	7.58				
Feb	9.87	9.81	9.58	9.85	7.50	7.42	7.56	7.63				
Mar	9.04	8.92	8.77	9.04	6.87	6.77	6.88	6.93				
Apr	7.89	7.71	7.55	7.89	5.83	5.70	5.73	5.75				
May	6.72	6.45	6.28	6.72	4.72	4.52	4.44	4.42				
Jun	6.11	5.73	5.61	6.13	3.97	3.72	3.60	3.58				
Jul	5.84	5.36	5.22	5.89	3.48	3.21	3.08	3.07				
Aug	5.72	5.24	5.05	5.74	3.29	2.97	2.81	2.79				
Sep	6.36	5.93	5.64	6.38	3.69	3.39	3.24	3.22				
Oct	7.02	6.83	6.40	6.95	4.41	4.15	4.04	4.01				
Nov	8.43	8.34	7.88	8.37	5.65	5.47	5.49	5.51				
Dec	9.52	9.48	9.13	9.48	6.82	6.69	6.81	6.86				
Annual	7.72	7.49	7.24	7.71	5.31	5.11	5.10	5.11				

Figure 5-56 (Water Column Average Dissolved Oxygen – Alternative 04)

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 05		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.11	10.08	9.72	10.07	7.44	7.35	7.50	7.56
Feb	9.90	9.85	9.61	9.89	7.52	7.43	7.58	7.65
Mar	9.04	8.93	8.77	9.05	6.88	6.78	6.89	6.93
Apr	7.86	7.68	7.52	7.87	5.82	5.68	5.71	5.73
May	6.78	6.52	6.35	6.79	4.76	4.56	4.48	4.47
Jun	6.07	5.68	5.54	6.08	3.95	3.69	3.57	3.54
Jul	5.81	5.31	5.16	5.85	3.45	3.17	3.03	3.01
Aug	5.86	5.40	5.21	5.90	3.35	3.05	2.90	2.89
Sep	6.52	6.12	5.85	6.56	3.80	3.51	3.39	3.37
Oct	7.14	6.96	6.56	7.09	4.49	4.23	4.15	4.12
Nov	8.49	8.40	7.95	8.43	5.67	5.50	5.53	5.54
Dec	9.58	9.54	9.20	9.55	6.85	6.72	6.84	6.89
Annual	7.76	7.54	7.29	7.76	5.33	5.14	5.13	5.14

Figure 5-57 (Water Column Average Dissolved Oxygen – Alternative 05)

Figure 5-58 (Water Column Average Dissolved Oxygen – Alternative 06)

		Aver	age Dissolv	ed Oxygen	- Alternativ	ve 06		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.10	10.07	9.70	10.06	7.43	7.34	7.49	7.55
Feb	9.95	9.89	9.67	9.94	7.52	7.43	7.58	7.65
Mar	9.13	9.01	8.87	9.14	6.89	6.80	6.91	6.96
Apr	7.92	7.74	7.58	7.93	5.83	5.69	5.72	5.74
May	6.79	6.52	6.35	6.80	4.75	4.55	4.48	4.46
Jun	6.11	5.74	5.60	6.13	3.97	3.72	3.60	3.58
Jul	5.88	5.39	5.25	5.93	3.47	3.19	3.06	3.05
Aug	5.95	5.50	5.33	6.00	3.40	3.10	2.97	2.97
Sep	6.61	6.23	5.98	6.66	3.87	3.59	3.48	3.47
Oct	7.26	7.08	6.73	7.24	4.57	4.31	4.25	4.23
Nov	8.51	8.43	8.00	8.46	5.71	5.53	5.56	5.58
Dec	9.57	9.52	9.19	9.54	6.83	6.70	6.82	6.87
Annual	7.81	7.59	7.35	7.82	5.35	5.16	5.16	5.18

13.2.2.2 Delta Water Column Average Daily Dissolved Oxygen Increase from NAA

	Averag	ge Delta Dis	solved Oxy	gen Increas	e from NA	A - Alterna	tive 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	-0.02	-0.02	-0.03	-0.02	-0.01	-0.02	-0.02	-0.03
Feb	-0.01	-0.01	-0.02	-0.01	-0.01	-0.02	-0.03	-0.03
Mar	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00
Apr	0.03	0.03	0.04	0.04	0.01	0.01	0.02	0.02
May	0.02	0.02	0.02	0.03	0.01	0.01	0.02	0.02
Jun	0.04	0.04	0.04	0.06	0.02	0.03	0.03	0.03
Jul	0.00	-0.02	-0.04	0.01	-0.01	-0.01	-0.02	-0.02
Aug	-0.08	-0.12	-0.17	-0.09	-0.05	-0.07	-0.08	-0.09
Sep	-0.14	-0.19	-0.31	-0.17	-0.11	-0.13	-0.16	-0.17
Oct	-0.19	-0.19	-0.31	-0.22	-0.12	-0.13	-0.17	-0.18
Nov	-0.11	-0.11	-0.20	-0.13	-0.08	-0.09	-0.11	-0.11
Dec	-0.06	-0.06	-0.09	-0.07	-0.03	-0.04	-0.05	-0.05
Annual	-0.04	-0.05	-0.09	-0.05	-0.03	-0.04	-0.05	-0.05

Figure 5-59 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 01)

Figure 5-60 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 02)

	Average Delta Dissolved Oxygen Increase from NAA - Alternative 02										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0.00	0.01	0.05	-0.01	0.06	0.08	0.10	0.10			
Feb	-0.01	0.00	0.00	-0.02	0.03	0.04	0.05	0.06			
Mar	-0.01	0.01	0.01	-0.02	0.02	0.03	0.03	0.04			
Apr	0.00	0.02	0.04	-0.02	0.02	0.04	0.05	0.05			
May	0.00	0.04	0.09	-0.03	0.03	0.04	0.04	0.05			
Jun	0.02	0.06	0.10	0.00	0.03	0.04	0.05	0.06			
Jul	0.01	0.06	0.09	-0.01	0.02	0.03	0.04	0.05			
Aug	0.01	0.06	0.14	-0.02	0.03	0.04	0.05	0.06			
Sep	0.00	0.05	0.16	-0.02	0.04	0.05	0.06	0.07			
Oct	0.01	0.04	0.13	-0.02	0.04	0.06	0.07	0.08			
Nov	0.00	0.02	0.08	-0.02	0.04	0.05	0.07	0.07			
Dec	-0.01	0.01	0.04	-0.02	0.03	0.05	0.06	0.07			
Annual	0.00	0.03	0.08	-0.02	0.03	0.05	0.06	0.06			

	Averag	ge Delta Dis	solved Oxy	gen Increas	e from NA	A - Alterna	tive 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.01	0.02	0.03	0.00	0.04	0.06	0.07	0.08
Feb	0.06	0.07	0.09	0.06	0.05	0.07	0.08	0.09
Mar	0.07	0.09	0.12	0.07	0.07	0.09	0.11	0.12
Apr	0.01	0.04	0.05	-0.01	0.02	0.03	0.04	0.05
May	0.08	0.12	0.18	0.06	0.06	0.08	0.10	0.11
Jun	-0.06	-0.02	0.03	-0.09	0.00	0.00	0.00	0.01
Jul	-0.18	-0.17	-0.13	-0.24	-0.08	-0.10	-0.11	-0.11
Aug	-0.08	-0.05	0.03	-0.13	-0.04	-0.04	-0.04	-0.04
Sep	-0.14	-0.11	-0.03	-0.18	-0.06	-0.06	-0.06	-0.06
Oct	0.03	0.07	0.18	0.01	0.04	0.06	0.08	0.09
Nov	0.01	0.04	0.10	-0.01	0.05	0.07	0.08	0.09
Dec	0.03	0.04	0.10	0.02	0.05	0.07	0.09	0.09
Annual	-0.01	0.01	0.06	-0.04	0.02	0.03	0.04	0.04

Figure 5-61 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 03)

Figure 5-62 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 04)

	Averag	ge Delta Dis	solved Oxy	gen Increas	se from NA	A - Alterna	tive 04	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	-0.01	0.00	0.02	-0.02	0.04	0.05	0.06	0.07
Feb	-0.03	-0.02	-0.03	-0.04	0.02	0.03	0.04	0.04
Mar	-0.01	0.01	0.01	-0.02	0.02	0.03	0.04	0.04
Apr	0.01	0.04	0.06	-0.01	0.03	0.05	0.06	0.07
May	-0.01	0.03	0.08	-0.04	0.02	0.03	0.04	0.05
Jun	0.04	0.09	0.14	0.02	0.05	0.06	0.07	0.08
Jul	0.00	0.05	0.08	-0.03	0.02	0.03	0.04	0.05
Aug	-0.04	0.01	0.09	-0.07	0.01	0.01	0.01	0.02
Sep	-0.05	-0.01	0.09	-0.08	0.00	0.01	0.02	0.02
Oct	-0.03	0.00	0.08	-0.07	0.01	0.03	0.04	0.04
Nov	-0.04	-0.01	0.03	-0.06	0.02	0.03	0.04	0.04
Dec	-0.02	0.00	0.03	-0.03	0.03	0.05	0.06	0.07
Annual	-0.02	0.02	0.06	-0.04	0.02	0.03	0.04	0.05

	Averag	ge Delta Dis	solved Oxy	gen Increas	e from NA	A - Alterna	tive 05	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.00	0.01	0.01	-0.01	0.03	0.04	0.05	0.06
Feb	0.00	0.01	0.01	-0.01	0.03	0.05	0.06	0.07
Mar	0.00	0.02	0.01	-0.01	0.03	0.04	0.04	0.05
Apr	-0.02	0.01	0.03	-0.03	0.02	0.03	0.04	0.04
May	0.05	0.09	0.15	0.04	0.06	0.07	0.09	0.10
Jun	0.00	0.04	0.07	-0.03	0.03	0.03	0.03	0.04
Jul	-0.03	0.00	0.02	-0.07	-0.01	-0.01	-0.01	0.00
Aug	0.11	0.17	0.26	0.09	0.07	0.08	0.11	0.13
Sep	0.11	0.18	0.31	0.11	0.11	0.13	0.16	0.18
Oct	0.09	0.12	0.24	0.07	0.09	0.11	0.14	0.15
Nov	0.02	0.04	0.10	0.00	0.04	0.06	0.07	0.08
Dec	0.04	0.05	0.11	0.03	0.06	0.08	0.10	0.10
Annual	0.03	0.06	0.11	0.01	0.05	0.06	0.07	0.08

Figure 5-63 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 05)

Figure 5-64 (Average Delta, Water Column Dissolved Oxygen Increase from NAA – Alternative 06)

	Averag	ge Delta Dis	solved Oxy	gen Increas	e from NA	A - Alterna	tive 06	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	-0.01	0.00	-0.01	-0.02	0.01	0.03	0.04	0.04
Feb	0.05	0.05	0.06	0.04	0.03	0.05	0.06	0.07
Mar	0.08	0.10	0.11	0.08	0.04	0.06	0.07	0.08
Apr	0.04	0.07	0.09	0.03	0.03	0.04	0.05	0.06
May	0.06	0.10	0.15	0.04	0.05	0.07	0.08	0.09
Jun	0.04	0.09	0.13	0.02	0.05	0.06	0.07	0.08
Jul	0.04	0.08	0.11	0.02	0.01	0.01	0.02	0.04
Aug	0.20	0.27	0.37	0.19	0.12	0.14	0.18	0.20
Sep	0.20	0.28	0.44	0.21	0.18	0.21	0.26	0.28
Oct	0.21	0.25	0.41	0.22	0.17	0.20	0.24	0.26
Nov	0.04	0.07	0.15	0.03	0.07	0.09	0.11	0.12
Dec	0.03	0.04	0.10	0.02	0.04	0.06	0.07	0.08
Annual	0.08	0.12	0.17	0.07	0.07	0.08	0.10	0.12

13.2.2.3 Number of Days Daily Dissolved Oxygen below 5 mg/l

The total number of Zone-Days below 5 mg/l is calculated by adding up the number of days below 5 mg/l Daily Dissolved Oxygen for each separate zone. Also provided are the total number of days for just the most critical zone FR4, which had the largest amount of days below 5 Daily Dissolved Oxygen and the number of days below 5 Daily Dissolved Oxygen for reference the total number of days is about 142350 for 1999 – 2013.

Alternative	Total Zone-	Delta Change
Alternative	Days < 5	from NAA
NAA	40104	
Alt01	41667	1563
Alt02	38768	-1336
Alt03	39996	-108
Alt04	39235	-869
Alt05	38043	-2061
Alt06	36670	-3434

Figure 5-65 Number of Days Daily Dissolved Oxygen below 5 m/gL

Figure 5-66 Number of Days Daily Dissolved Oxygen below 5 m/gL for FR6

Alternative	Total Zone- Days < 5 for FR6	Delta Change from NAA
NAA	2849	
Alt01	2874	25
Alt02	2793	-56
Alt03	2789	-60
Alt04	2794	-55
Alt05	2803	-46
Alt06	2778	-71

13.2.2.4 Number of Days Daily Dissolved Oxygen below 5 mg/L by Zone

	Number of Days Below 5 mg/L - NAA										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0			
Mar	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	19	65	76	77			
May	0	12	32	1	310	382	383	383			
Jun	9	108	184	8	462	466	466	463			
Jul	24	124	201	21	456	457	456	454			
Aug	5	170	257	5	466	466	466	466			
Sep	0	15	100	0	443	443	443	442			
Oct	0	0	8	0	403	437	438	436			
Nov	0	0	0	0	32	76	85	83			
Dec	0	0	0	0	0	0	0	0			
Annual	38	429	782	35	2591	2792	2813	2804			

Figure 5-67	(Number of Days	Dissolved Oxygen	below 5 mg/L – NAA)
i iguie 0-07	(INUTIDET OF Days,	Dissolved Oxygen	$\mathcal{D} = \mathcal{D} \mathcal{D} = \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D}$

Figure 5-68 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 01)

	Number of Days Below 5 mg/L - Alternative 01										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0			
Mar	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	17	68	79	81			
May	0	12	34	1	308	379	382	384			
Jun	0	92	181	0	461	466	466	463			
Jul	22	121	188	24	456	457	456	454			
Aug	20	210	286	29	466	466	466	466			
Sep	2	63	186	4	443	443	443	442			
Oct	0	6	61	5	416	437	438	437			
Nov	0	0	0	0	56	111	117	118			
Dec	0	0	0	0	0	0	0	0			
Annual	44	504	936	63	2623	2827	2847	2845			

	Number of Days Below 5 mg/L - Alternative 02											
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	0	0	0	0	0	0	0	0				
Feb	0	0	0	0	0	0	0	0				
Mar	0	0	0	0	0	0	0	0				
Apr	0	0	0	0	15	54	63	67				
May	0	10	11	1	295	365	374	382				
Jun	9	76	138	10	462	470	469	464				
Jul	20	103	158	24	456	457	456	454				
Aug	4	149	228	6	466	466	466	466				
Sep	0	11	53	0	442	443	442	442				
Oct	0	0	3	0	390	430	432	430				
Nov	0	0	0	0	28	59	63	62				
Dec	0	0	0	0	0	0	0	0				
Annual	33	349	591	41	2554	2744	2765	2767				

Figure 5-69 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 02)

Figure 5-70 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 03)

	Number of Days Below 5 mg/L - Alternative 03										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0			
Mar	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	11	55	64	69			
May	0	9	10	3	292	364	374	370			
Jun	19	103	156	32	462	473	475	464			
Jul	59	185	238	71	456	457	456	454			
Aug	37	177	237	58	466	466	466	466			
Sep	0	23	103	0	445	446	446	446			
Oct	0	0	7	0	382	423	429	429			
Nov	0	0	0	0	27	55	60	58			
Dec	0	0	0	0	0	0	0	0			
Annual	115	497	751	164	2541	2739	2770	2756			

	Number of Days Below 5 mg/L - Alternative 04											
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	0	0	0	0	0	0	0	0				
Feb	0	0	0	0	0	0	0	0				
Mar	0	0	0	0	0	0	0	0				
Apr	0	0	0	0	11	57	68	69				
May	0	10	15	2	298	364	372	376				
Jun	9	77	129	10	462	469	469	464				
Jul	29	102	150	32	456	457	456	454				
Aug	10	169	232	25	466	466	466	466				
Sep	0	16	81	0	442	443	443	442				
Oct	0	0	5	0	398	430	431	429				
Nov	0	0	0	0	31	73	75	73				
Dec	0	0	0	0	0	0	0	0				
Annual	48	374	612	69	2564	2759	2780	2773				

Figure 5-71 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 04)

Figure 5-72 (Number of Days,	Dissolved Oxvaen below \$	5 ma/L – Alternative 05)
-		

	Number of Days Below 5 mg/L - Alternative 05										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0			
Mar	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	14	57	64	67			
May	0	11	14	1	285	362	364	366			
Jun	8	56	114	9	468	482	482	481			
Jul	5	121	202	7	458	458	456	455			
Aug	2	92	169	3	466	466	466	466			
Sep	0	0	16	0	440	441	441	440			
Oct	0	0	4	0	387	421	429	426			
Nov	0	0	0	0	29	61	64	64			
Dec	0	0	0	0	0	0	0	0			
Annual	15	280	519	20	2547	2748	2766	2765			

					/							
	Number of Days Below 5 mg/L - Alternative 06											
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	0	0	0	0	0	0	0	0				
Feb	0	0	0	0	0	0	0	0				
Mar	0	0	0	0	0	0	0	0				
Apr	0	0	0	0	8	47	55	58				
May	0	6	7	0	294	380	385	386				
Jun	7	51	81	13	468	478	477	478				
Jul	0	99	155	2	462	461	461	459				
Aug	2	51	143	3	466	466	466	466				
Sep	0	0	5	0	439	441	441	440				
Oct	0	0	0	0	371	409	415	412				
Nov	0	0	0	0	21	45	47	45				
Dec	0	0	0	0	0	0	0	0				
Annual	9	207	391	18	2529	2727	2747	2744				

Figure 5-73 (Number of Days, Dissolved Oxygen below 5 mg/L – Alternative 06)

13.2.2.5 Change in Number of Days below 5 mg/L from NAA

	Chang	e in Numbe	r of Days B	elow 5 mg/	L from NA	A - Alterna	tive 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0
Apr	0	0	0	0	-2	3	3	4
May	0	0	2	0	-2	-3	-1	1
Jun	-9	-16	-3	-8	-1	0	0	0
Jul	-2	-3	-13	3	0	0	0	0
Aug	15	40	29	24	0	0	0	0
Sep	2	48	86	4	0	0	0	0
Oct	0	6	53	5	13	0	0	1
Nov	0	0	0	0	24	35	32	35
Dec	0	0	0	0	0	0	0	0
Annual	6	75	154	28	32	35	34	41

Figure 5-74 (Change in Number of Days below 5 mg/L from NAA – Alternative 01)

Figure 5-75 (Change in	Number of Dave	holow 5 ma/l trom	$\Lambda \Delta \Delta = \Delta I t_{\Delta} r_{D} \sigma t_{1/2}$
	INVITING OF Days		$\nabla A = A (G $

	Change	e in Numbe	r of Days B	elow 5 mg/	L from NA	A - Alterna	tive 02	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0
Apr	0	0	0	0	-4	-11	-13	-10
May	0	-2	-21	0	-15	-17	-9	-1
Jun	0	-32	-46	2	0	4	3	1
Jul	-4	-21	-43	3	0	0	0	0
Aug	-1	-21	-29	1	0	0	0	0
Sep	0	-4	-47	0	-1	0	-1	0
Oct	0	0	-5	0	-13	-7	-6	-6
Nov	0	0	0	0	-4	-17	-22	-21
Dec	0	0	0	0	0	0	0	0
Annual	-5	-80	-191	6	-37	-48	-48	-37

	Change	e in Numbe	r of Days B	elow 5 mg/	L from NA	A - Alterna	tive 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0
Apr	0	0	0	0	-8	-10	-12	-8
May	0	-3	-22	2	-18	-18	-9	-13
Jun	10	-5	-28	24	0	7	9	1
Jul	35	61	37	50	0	0	0	0
Aug	32	7	-20	53	0	0	0	0
Sep	0	8	3	0	2	3	3	4
Oct	0	0	-1	0	-21	-14	-9	-7
Nov	0	0	0	0	-5	-21	-25	-25
Dec	0	0	0	0	0	0	0	0
Annual	77	68	-31	129	-50	-53	-43	-48

Figure 5-76 (Change in Number of Days below 5 mg/L from NAA – Alternative 03)

Figure 5-77 (Change in	Number of Davs	below 5 ma/L from	NAA – Alternative 04)

	Chang	e in Numbe	r of Days B	elow 5 mg/	L from NA	A - Alterna	tive 04	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0
Apr	0	0	0	0	-8	-8	-8	-8
May	0	-2	-17	1	-12	-18	-11	-7
Jun	0	-31	-55	2	0	3	3	1
Jul	5	-22	-51	11	0	0	0	0
Aug	5	-1	-25	20	0	0	0	0
Sep	0	1	-19	0	-1	0	0	0
Oct	0	0	-3	0	-5	-7	-7	-7
Nov	0	0	0	0	-1	-3	-10	-10
Dec	0	0	0	0	0	0	0	0
Annual	10	-55	-170	34	-27	-33	-33	-31

	Change	e in Numbe	r of Days B	elow 5 mg/	L from NA	A - Alterna	tive 05	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0
Apr	0	0	0	0	-5	-8	-12	-10
May	0	-1	-18	0	-25	-20	-19	-17
Jun	-1	-52	-70	1	6	16	16	18
Jul	-19	-3	1	-14	2	1	0	1
Aug	-3	-78	-88	-2	0	0	0	0
Sep	0	-15	-84	0	-3	-2	-2	-2
Oct	0	0	-4	0	-16	-16	-9	-10
Nov	0	0	0	0	-3	-15	-21	-19
Dec	0	0	0	0	0	0	0	0
Annual	-23	-149	-263	-15	-44	-44	-47	-39

Figure 5-78 (Change in Number of Days below 5 mg/L from NAA – Alternative 05)

Figure 5-79 (Change in Number of Days below 5 mg/L from NAA – Alternative 06)

	Change in Number of Days Below 5 mg/L from NAA - Alternative 06										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0			
Mar	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	-11	-18	-21	-19			
May	0	-6	-25	-1	-16	-2	2	3			
Jun	-2	-57	-103	5	6	12	11	15			
Jul	-24	-25	-46	-19	6	4	5	5			
Aug	-3	-119	-114	-2	0	0	0	0			
Sep	0	-15	-95	0	-4	-2	-2	-2			
Oct	0	0	-8	0	-32	-28	-23	-24			
Nov	0	0	0	0	-11	-31	-38	-38			
Dec	0	0	0	0	0	0	0	0			
Annual	-29	-222	-391	-17	-62	-65	-66	-60			

13.2.3 Bottom Daily Dissolved Oxygen

13.2.3.1 Bottom Daily Dissolved Oxygen by Critical Zone

	Average Bottom Dissolved Oxygen - NAA										
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5			
Jan	10.09	10.05	9.70	10.07	6.58	6.53	6.53	6.51			
Feb	9.89	9.81	9.59	9.88	6.63	6.57	6.55	6.56			
Mar	9.02	8.89	8.74	9.05	6.08	5.97	5.89	5.87			
Apr	7.85	7.64	7.45	7.89	5.18	4.97	4.77	4.71			
May	6.74	6.45	6.21	6.78	4.32	3.97	3.62	3.47			
Jun	6.01	5.59	5.38	6.08	3.56	3.10	2.63	2.44			
Jul	5.77	5.25	5.04	5.88	3.07	2.54	2.01	1.81			
Aug	5.69	5.17	4.86	5.78	2.93	2.35	1.79	1.58			
Sep	6.35	5.90	5.47	6.43	3.33	2.81	2.30	2.09			
Oct	7.01	6.80	6.27	6.99	4.02	3.64	3.28	3.09			
Nov	8.45	8.33	7.83	8.41	5.06	4.83	4.65	4.54			
Dec	9.53	9.46	9.08	9.51	5.97	5.85	5.77	5.73			
Annual	7.70	7.45	7.13	7.73	4.73	4.43	4.15	4.03			

Figure 5-80 (Average Bottom Dissolved Oxygen by Critical Zone – NAA)

Figure 5-81	(Average Bottom	Dissolved Oxygen b	oy Critical Z	one – Alternative 01)

		Average	Bottom Dis	solved Oxy	gen - Alter	native 01		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.07	10.03	9.74	8.10	6.71	6.61	6.61	6.60
Feb	9.88	9.80	9.53	8.19	6.77	6.66	6.64	6.65
Mar	9.03	8.90	8.57	7.48	6.19	6.05	5.98	5.97
Apr	7.88	7.67	7.22	6.23	5.27	5.04	4.87	4.82
May	6.76	6.47	5.81	4.83	4.38	4.03	3.70	3.56
Jun	6.06	5.63	4.86	3.93	3.63	3.18	2.75	2.60
Jul	5.77	5.24	4.37	3.38	3.13	2.61	2.13	1.96
Aug	5.60	5.05	4.15	3.03	2.96	2.39	1.88	1.69
Sep	6.20	5.71	4.86	3.34	3.32	2.80	2.33	2.13
Oct	6.82	6.60	5.89	4.14	4.02	3.62	3.26	3.07
Nov	8.34	8.22	7.71	5.85	5.11	4.85	4.66	4.56
Dec	9.47	9.40	9.07	7.42	6.08	5.92	5.85	5.82
Annual	7.66	7.39	6.82	5.49	4.80	4.48	4.22	4.12

		Average	Bottom Dis	solved Oxy	gen - Alter	native 02		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.13	10.11	9.76	10.09	6.61	6.56	6.57	6.58
Feb	9.92	9.87	9.64	9.90	6.65	6.60	6.59	6.61
Mar	9.17	9.06	8.91	9.18	6.09	5.99	5.92	5.91
Apr	7.92	7.74	7.59	7.92	5.19	4.99	4.81	4.76
May	6.72	6.45	6.27	6.72	3.99	3.60	3.22	3.07
Jun	6.18	5.82	5.69	6.19	3.58	3.12	2.66	2.49
Jul	5.87	5.39	5.26	5.91	3.08	2.55	2.03	1.85
Aug	5.65	5.17	4.99	5.67	2.95	2.37	1.82	1.62
Sep	6.33	5.88	5.59	6.35	3.35	2.84	2.34	2.14
Oct	6.94	6.75	6.32	6.88	4.04	3.67	3.32	3.14
Nov	8.35	8.26	7.79	8.29	5.08	4.87	4.70	4.60
Dec	9.50	9.45	9.07	9.45	5.94	5.83	5.77	5.75
Annual	7.72	7.50	7.24	7.71	4.71	4.42	4.15	4.04

Figure 5-82 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 02)

Figure 5-83 (Averag	e Bottom Dissolved	l Oxvaen bv	Critical Zone – A	Iternative 03)
J				

		Average	Bottom Dis	solved Oxy	gen - Alter	native 03		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.12	10.09	9.78	10.09	6.61	6.56	6.57	6.58
Feb	9.93	9.86	9.66	9.92	6.65	6.60	6.59	6.61
Mar	9.15	9.04	8.89	9.17	6.09	5.99	5.92	5.91
Apr	7.88	7.69	7.53	7.89	5.19	4.99	4.81	4.76
May	6.73	6.45	6.27	6.74	3.99	3.60	3.22	3.07
Jun	6.11	5.73	5.58	6.14	3.58	3.12	2.66	2.49
Jul	5.82	5.33	5.18	5.89	3.08	2.55	2.03	1.85
Aug	5.64	5.15	4.95	5.68	2.95	2.37	1.82	1.62
Sep	6.33	5.88	5.59	6.37	3.35	2.84	2.34	2.14
Oct	6.95	6.75	6.34	6.90	4.04	3.67	3.32	3.14
Nov	8.37	8.27	7.83	8.31	5.08	4.87	4.70	4.60
Dec	9.50	9.44	9.07	9.45	5.94	5.83	5.77	5.75
Annual	7.71	7.47	7.22	7.71	4.71	4.42	4.15	4.04

		Average	Bottom Dis	solved Oxy	gen - Alter	native 04		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.11	10.08	9.75	10.06	6.60	6.56	6.58	6.58
Feb	10.00	9.95	9.77	10.00	6.64	6.59	6.57	6.59
Mar	9.16	9.08	8.99	9.19	6.08	5.98	5.91	5.91
Apr	7.86	7.71	7.56	7.87	5.20	4.99	4.81	4.76
May	6.90	6.69	6.56	6.90	4.34	4.01	3.67	3.53
Jun	5.90	5.56	5.43	5.90	3.57	3.11	2.64	2.47
Jul	5.40	4.92	4.77	5.40	3.05	2.50	1.97	1.77
Aug	5.52	5.08	4.91	5.52	2.91	2.33	1.77	1.56
Sep	6.08	5.68	5.41	6.07	3.33	2.80	2.30	2.09
Oct	7.08	6.94	6.62	7.02	4.04	3.66	3.31	3.14
Nov	8.47	8.40	8.03	8.40	5.09	4.87	4.70	4.61
Dec	9.58	9.55	9.27	9.54	5.99	5.88	5.82	5.79
Annual	7.67	7.47	7.26	7.66	4.74	4.44	4.17	4.07

Figure 5-84 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 04)

Figure 5-85 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 05)

		Average	Bottom Dis	solved Oxy	gen - Alter	native 05		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.10	10.06	9.71	10.06	6.61	6.57	6.58	6.58
Feb	9.89	9.83	9.60	9.88	6.66	6.61	6.61	6.63
Mar	9.02	8.90	8.75	9.04	6.11	6.01	5.94	5.93
Apr	7.84	7.65	7.48	7.85	5.20	5.00	4.82	4.76
May	6.77	6.50	6.32	6.78	4.35	4.02	3.68	3.54
Jun	6.01	5.62	5.46	6.05	3.59	3.14	2.67	2.49
Jul	5.75	5.24	5.06	5.81	3.08	2.55	2.02	1.83
Aug	5.81	5.33	5.12	5.87	2.96	2.39	1.84	1.65
Sep	6.47	6.07	5.79	6.53	3.38	2.88	2.38	2.19
Oct	7.11	6.92	6.52	7.06	4.06	3.69	3.34	3.17
Nov	8.47	8.37	7.93	8.41	5.08	4.86	4.70	4.60
Dec	9.57	9.51	9.19	9.54	6.00	5.89	5.82	5.79
Annual	7.73	7.50	7.25	7.74	4.76	4.47	4.20	4.10

r												
	Average Bottom Dissolved Oxygen - Alternative 06											
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5				
Jan	10.08	10.05	9.69	10.05	6.38	6.31	6.29	6.29				
Feb	9.93	9.87	9.66	9.93	6.71	6.67	6.68	6.68				
Mar	9.11	8.99	8.85	9.13	6.44	6.36	6.32	6.33				
Apr	7.89	7.70	7.54	7.91	5.68	5.53	5.40	5.38				
May	6.78	6.51	6.33	6.80	4.80	4.54	4.27	4.18				
Jun	6.06	5.68	5.51	6.10	4.04	3.65	3.25	3.10				
Jul	5.82	5.32	5.15	5.90	3.25	2.74	2.22	2.04				
Aug	5.90	5.44	5.25	5.97	2.97	2.42	1.87	1.68				
Sep	6.56	6.18	5.92	6.64	3.10	2.55	2.02	1.83				
Oct	7.23	7.05	6.70	7.21	3.70	3.27	2.83	2.67				
Nov	8.49	8.40	7.98	8.44	4.53	4.24	3.97	3.84				
Dec	9.55	9.50	9.18	9.52	5.55	5.39	5.28	5.22				
Annual	7.78	7.56	7.31	7.80	4.76	4.47	4.20	4.10				

Figure 5-86 (Average Bottom Dissolved Oxygen by Critical Zone – Alternative 06)

13.2.3.2 Delta Change in Bottom Daily Dissolved Oxygen

Figure 5-87 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 01)

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	-0.02	-0.02	-0.03	-0.02	0.14	0.09	0.08	0.09
Feb	-0.01	-0.01	-0.02	-0.01	0.13	0.08	0.08	0.09
Mar	0.01	0.01	0.02	0.01	0.10	0.07	0.09	0.10
Apr	0.03	0.03	0.04	0.04	0.09	0.07	0.10	0.11
May	0.03	0.02	0.03	0.04	0.06	0.05	0.08	0.09
Jun	0.04	0.04	0.03	0.06	0.06	0.07	0.12	0.15
Jul	0.00	-0.01	-0.04	0.01	0.05	0.07	0.12	0.15
Aug	-0.09	-0.12	-0.18	-0.09	0.03	0.04	0.09	0.11
Sep	-0.15	-0.19	-0.32	-0.17	-0.01	-0.01	0.03	0.05
Oct	-0.19	-0.20	-0.31	-0.23	0.01	-0.01	-0.01	-0.01
Nov	-0.11	-0.11	-0.21	-0.13	0.06	0.03	0.03	0.03
Dec	-0.06	-0.06	-0.09	-0.07	0.12	0.08	0.08	0.09
Annual	-0.04	-0.05	-0.09	-0.05	0.07	0.05	0.07	0.09

Figure 5-88 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 02)

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 02	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.04	0.06	0.06	0.02	0.03	0.04	0.05	0.06
Feb	0.03	0.05	0.05	0.02	0.01	0.02	0.04	0.05
Mar	0.15	0.17	0.17	0.13	0.01	0.02	0.03	0.04
Apr	0.07	0.10	0.14	0.04	0.02	0.03	0.04	0.06
May	-0.02	0.00	0.06	-0.05	-0.32	-0.38	-0.40	-0.40
Jun	0.17	0.23	0.30	0.11	0.02	0.02	0.03	0.04
Jul	0.09	0.14	0.23	0.03	0.01	0.01	0.02	0.03
Aug	-0.04	0.00	0.13	-0.10	0.02	0.02	0.03	0.04
Sep	-0.02	-0.02	0.12	-0.08	0.02	0.03	0.04	0.05
Oct	-0.07	-0.05	0.05	-0.11	0.03	0.04	0.04	0.06
Nov	-0.09	-0.07	-0.03	-0.12	0.03	0.04	0.05	0.06
Dec	-0.03	-0.01	-0.01	-0.06	-0.03	-0.01	0.00	0.02
Annual	0.02	0.05	0.11	-0.01	-0.01	-0.01	0.00	0.01

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.03	0.04	0.08	0.03	0.03	0.04	0.05	0.06
Feb	0.04	0.05	0.06	0.03	0.01	0.02	0.04	0.05
Mar	0.13	0.15	0.15	0.12	0.01	0.02	0.03	0.04
Apr	0.03	0.05	0.08	0.01	0.02	0.03	0.04	0.06
May	-0.01	0.01	0.06	-0.04	-0.32	-0.38	-0.40	-0.40
Jun	0.10	0.14	0.19	0.06	0.02	0.02	0.03	0.04
Jul	0.04	0.08	0.14	0.01	0.01	0.01	0.02	0.03
Aug	-0.05	-0.02	0.09	-0.09	0.02	0.02	0.03	0.04
Sep	-0.03	-0.01	0.12	-0.06	0.02	0.03	0.04	0.05
Oct	-0.06	-0.05	0.07	-0.09	0.03	0.04	0.04	0.06
Nov	-0.08	-0.06	0.00	-0.10	0.03	0.04	0.05	0.06
Dec	-0.03	-0.02	-0.01	-0.05	-0.03	-0.01	0.00	0.02
Annual	0.01	0.03	0.09	-0.02	-0.01	-0.01	0.00	0.01

Figure 5-89 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 03)

Figure 5-90 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 04)

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 04	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.01	0.03	0.06	-0.01	0.02	0.04	0.05	0.07
Feb	0.11	0.13	0.18	0.12	0.01	0.02	0.01	0.03
Mar	0.14	0.19	0.25	0.13	0.00	0.01	0.02	0.04
Apr	0.01	0.07	0.11	-0.02	0.02	0.03	0.04	0.05
May	0.16	0.24	0.36	0.13	0.03	0.03	0.05	0.07
Jun	-0.11	-0.03	0.05	-0.18	0.01	0.01	0.01	0.02
Jul	-0.37	-0.33	-0.27	-0.48	-0.03	-0.04	-0.05	-0.04
Aug	-0.17	-0.09	0.06	-0.25	-0.02	-0.03	-0.03	-0.02
Sep	-0.27	-0.22	-0.06	-0.36	-0.01	-0.01	-0.01	0.00
Oct	0.07	0.14	0.35	0.03	0.02	0.02	0.04	0.05
Nov	0.02	0.07	0.20	-0.01	0.03	0.04	0.06	0.07
Dec	0.06	0.09	0.19	0.04	0.02	0.04	0.05	0.06
Annual	-0.03	0.02	0.12	-0.07	0.01	0.01	0.02	0.03

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 05	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.00	0.01	0.02	-0.01	0.03	0.04	0.05	0.07
Feb	0.00	0.01	0.01	-0.01	0.02	0.04	0.06	0.07
Mar	0.00	0.01	0.01	-0.01	0.03	0.03	0.05	0.06
Apr	-0.01	0.01	0.03	-0.04	0.02	0.03	0.05	0.06
May	0.03	0.06	0.12	0.01	0.03	0.04	0.06	0.08
Jun	0.00	0.03	0.08	-0.04	0.03	0.04	0.04	0.05
Jul	-0.02	-0.01	0.03	-0.07	0.01	0.00	0.00	0.02
Aug	0.12	0.16	0.27	0.09	0.03	0.04	0.05	0.07
Sep	0.12	0.17	0.32	0.11	0.05	0.06	0.07	0.10
Oct	0.09	0.12	0.25	0.07	0.04	0.05	0.06	0.09
Nov	0.02	0.04	0.10	0.00	0.02	0.03	0.05	0.06
Dec	0.04	0.05	0.11	0.03	0.03	0.04	0.05	0.06
Annual	0.03	0.05	0.11	0.01	0.03	0.04	0.05	0.07

Figure 5-91 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 05)

Figure 5-92 (Average Bottom Delta Change Dissolved Oxygen Increase from NAA – Alternative 06)

	Average De	elta Botton	n Dissolved	Oxygen Inc	rease from	NAA - Alte	ernative 06	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	-0.01	0.00	-0.01	-0.02	-0.20	-0.21	-0.23	-0.23
Feb	0.05	0.05	0.06	0.05	0.07	0.10	0.12	0.12
Mar	0.08	0.09	0.11	0.08	0.35	0.39	0.43	0.46
Apr	0.04	0.06	0.09	0.03	0.50	0.56	0.63	0.67
May	0.05	0.07	0.13	0.02	0.49	0.56	0.65	0.71
Jun	0.05	0.08	0.13	0.02	0.48	0.55	0.63	0.65
Jul	0.05	0.07	0.11	0.02	0.18	0.19	0.21	0.23
Aug	0.21	0.27	0.39	0.20	0.04	0.06	0.08	0.10
Sep	0.21	0.28	0.45	0.21	-0.23	-0.26	-0.29	-0.26
Oct	0.21	0.25	0.42	0.22	-0.32	-0.37	-0.44	-0.42
Nov	0.04	0.06	0.16	0.03	-0.53	-0.59	-0.67	-0.70
Dec	0.03	0.04	0.10	0.02	-0.42	-0.45	-0.49	-0.51
Annual	0.08	0.11	0.18	0.07	0.03	0.04	0.05	0.07

Annex E– EFDC Output

13.3 Daily Average Temperature

13.3.1 Temperature by Zone

			Average	Temperatu	re - NAA			
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.7	10.8	10.9	10.8	11.3	11.2	11.1	11.1
Feb	12.3	12.4	12.3	12.3	12.1	12.1	12.1	12.2
Mar	16.1	16.2	16.1	16.0	15.6	15.7	15.8	15.8
Apr	20.4	20.7	20.6	20.3	20.1	20.1	20.2	20.2
May	24.5	25.0	24.9	24.5	24.4	24.3	24.4	24.4
Jun	27.6	28.2	28.1	27.5	27.9	27.8	27.8	27.7
Jul	29.2	29.8	29.8	29.2	29.9	29.7	29.7	29.6
Aug	28.9	29.5	29.7	28.9	30.0	29.8	29.7	29.6
Sep	26.0	26.5	26.8	26.0	27.7	27.4	27.2	27.1
Oct	21.2	21.6	22.1	21.3	23.3	23.0	22.8	22.6
Nov	15.9	16.1	16.5	15.9	17.8	17.5	17.2	17.1
Dec	12.3	12.4	12.6	12.3	13.4	13.3	13.1	13.0
Annual	20.4	20.8	20.9	20.4	21.1	21.0	20.9	20.9

Figure 5-93 (Average Temperature – NAA)

Figure 5-94 (Average Temperature – Alternative 01)

		Av	erage Tem	perature -	Alternative	01		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.9	10.9	11.0	10.9	11.4	11.3	11.2	11.2
Feb	12.3	12.4	12.3	12.3	12.1	12.1	12.2	12.2
Mar	16.0	16.2	16.1	16.0	15.6	15.7	15.8	15.8
Apr	20.3	20.7	20.6	20.3	20.1	20.1	20.2	20.2
May	24.4	24.9	24.8	24.4	24.4	24.3	24.3	24.3
Jun	27.5	28.1	28.1	27.5	27.9	27.7	27.7	27.7
Jul	29.2	29.8	29.9	29.2	29.9	29.7	29.7	29.6
Aug	29.0	29.6	29.8	29.0	30.1	29.9	29.8	29.7
Sep	26.2	26.7	27.1	26.2	27.8	27.6	27.4	27.3
Oct	21.5	21.8	22.4	21.5	23.5	23.3	23.0	22.9
Nov	16.0	16.2	16.7	16.0	17.9	17.6	17.4	17.2
Dec	12.3	12.4	12.7	12.4	13.5	13.3	13.1	13.1
Annual	20.5	20.8	21.0	20.5	21.2	21.1	21.0	20.9

		Av	erage Tem	perature -	Alternative	02		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	11.1	11.1	11.2	11.1	11.6	11.5	11.4	11.3
Feb	12.4	12.5	12.4	12.4	12.2	12.2	12.2	12.3
Mar	16.5	16.7	16.6	16.5	16.1	16.1	16.3	16.3
Apr	20.6	21.0	20.9	20.6	20.4	20.4	20.5	20.5
May	24.6	25.1	25.0	24.6	24.6	24.5	24.6	24.6
Jun	27.9	28.5	28.4	27.8	28.2	28.1	28.1	28.1
Jul	29.3	30.0	30.0	29.3	30.2	30.0	29.9	29.8
Aug	28.6	29.2	29.3	28.6	29.8	29.6	29.5	29.4
Sep	25.8	26.2	26.5	25.7	27.4	27.2	27.0	26.8
Oct	20.9	21.3	21.7	20.9	23.0	22.7	22.4	22.3
Nov	15.7	15.8	16.2	15.7	17.5	17.2	16.9	16.8
Dec	12.3	12.4	12.6	12.4	13.4	13.2	13.0	12.9
Annual	20.5	20.8	20.9	20.5	21.2	21.1	21.0	20.9

Figure 5-95 (Average Temperature – Alternative 02)

Figure 5-96 (Average Temperature – Alternative 03)

		Av	erage Tem	perature -	Alternative	03		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.9	10.9	11.0	10.9	11.4	11.3	11.2	11.2
Feb	12.2	12.3	12.3	12.2	12.1	12.1	12.1	12.1
Mar	16.0	16.2	16.1	16.0	15.6	15.7	15.8	15.8
Apr	20.4	20.7	20.6	20.3	20.1	20.1	20.2	20.2
May	24.4	24.9	24.7	24.3	24.4	24.3	24.4	24.3
Jun	27.7	28.3	28.2	27.6	28.0	27.9	27.9	27.8
Jul	29.6	30.2	30.1	29.5	30.2	30.0	30.0	29.9
Aug	29.1	29.7	29.8	29.0	30.2	30.0	29.9	29.8
Sep	26.2	26.7	27.0	26.2	27.9	27.6	27.5	27.3
Oct	21.2	21.6	22.0	21.2	23.3	23.0	22.7	22.6
Nov	15.9	16.1	16.5	15.9	17.8	17.5	17.2	17.0
Dec	12.3	12.4	12.6	12.3	13.4	13.2	13.0	12.9
Annual	20.5	20.8	20.9	20.5	21.2	21.1	21.0	20.9

		Av	erage Tem	perature -	Alternative	04		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.9	10.9	11.0	10.9	11.4	11.3	11.2	11.2
Feb	12.3	12.4	12.4	12.3	12.1	12.1	12.2	12.2
Mar	16.1	16.2	16.2	16.0	15.6	15.7	15.8	15.8
Apr	20.4	20.7	20.6	20.4	20.2	20.2	20.3	20.3
May	24.5	25.0	24.9	24.5	24.4	24.4	24.5	24.5
Jun	27.6	28.2	28.1	27.5	27.9	27.8	27.8	27.8
Jul	29.3	29.9	29.9	29.2	30.0	29.8	29.7	29.7
Aug	29.0	29.6	29.7	29.0	30.1	29.9	29.8	29.7
Sep	26.1	26.6	26.9	26.1	27.8	27.5	27.3	27.2
Oct	21.3	21.7	22.1	21.3	23.4	23.1	22.8	22.7
Nov	16.0	16.1	16.5	16.0	17.8	17.5	17.3	17.1
Dec	12.3	12.4	12.6	12.3	13.4	13.3	13.1	13.0
Annual	20.5	20.8	20.9	20.5	21.2	21.1	21.0	20.9

Figure 5-97 (Average Temperature – Alternative 04)

Figure 5-98 (Average Temperature – Alternative 05)

		Av	erage Tem	perature -	Alternative	05		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.8	10.9	11.0	10.9	11.4	11.3	11.2	11.1
Feb	12.3	12.3	12.3	12.2	12.1	12.1	12.1	12.1
Mar	16.0	16.2	16.1	16.0	15.6	15.7	15.8	15.8
Apr	20.4	20.7	20.6	20.4	20.1	20.2	20.3	20.3
May	24.4	24.9	24.8	24.4	24.4	24.3	24.4	24.4
Jun	27.6	28.2	28.1	27.6	27.9	27.8	27.8	27.8
Jul	29.4	30.0	30.0	29.3	30.1	29.9	29.8	29.8
Aug	28.9	29.5	29.6	28.8	30.1	29.8	29.7	29.6
Sep	25.9	26.4	26.7	25.9	27.6	27.4	27.1	27.0
Oct	21.3	21.6	22.0	21.2	23.3	23.0	22.7	22.5
Nov	15.9	16.1	16.5	16.0	17.8	17.5	17.2	17.1
Dec	12.3	12.4	12.6	12.3	13.4	13.2	13.0	13.0
Annual	20.4	20.8	20.8	20.4	21.2	21.0	20.9	20.9

		Av	erage Tem	perature - A	Alternative	06		
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	10.9	10.9	11.0	10.9	11.4	11.3	11.2	11.2
Feb	12.2	12.3	12.3	12.2	12.1	12.1	12.1	12.1
Mar	15.9	16.0	16.0	15.8	15.5	15.5	15.6	15.7
Apr	20.3	20.6	20.5	20.3	20.1	20.1	20.1	20.2
May	24.4	24.9	24.8	24.4	24.4	24.3	24.4	24.4
Jun	27.6	28.1	28.1	27.5	27.9	27.8	27.8	27.7
Jul	29.3	29.9	29.9	29.2	30.0	29.8	29.8	29.7
Aug	28.7	29.3	29.4	28.6	30.0	29.7	29.5	29.4
Sep	25.8	26.3	26.5	25.7	27.5	27.2	27.0	26.8
Oct	21.1	21.5	21.8	21.1	23.2	22.8	22.5	22.3
Nov	15.9	16.1	16.5	15.9	17.8	17.5	17.2	17.0
Dec	12.3	12.4	12.6	12.3	13.4	13.2	13.0	13.0
Annual	20.4	20.7	20.8	20.3	21.1	20.9	20.8	20.8

Figure 5-99 (Average Temperature – Alternative 06)

13.3.2 Delta Change in Temperature

	Avei	rage Delta 1	Temperatur	e Increase	from NAA	- Alternativ	e 01	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	-0.1	-0.1	-0.1	-0.1	0.0	-0.1	-0.1	-0.1
Jun	-0.1	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aug	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sep	0.2	0.2	0.3	0.2	0.1	0.2	0.2	0.2
Oct	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.3
Nov	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2
Dec	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1
Annual	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Figure 5-100 (Average Delta Temperature Increase from NAA – Alternative 01)

Figure 5-101 (Average Delta Temperature Increase from NAA – Alternative 02)

	Aver	age Delta 1	Temperatur	e Increase	from NAA	- Alternativ	e 02	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Feb	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Mar	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Apr	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
May	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.2
Jun	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3
Jul	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2
Aug	-0.2	-0.3	-0.3	-0.3	-0.2	-0.2	-0.2	-0.2
Sep	-0.2	-0.2	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3
Oct	-0.3	-0.3	-0.4	-0.3	-0.3	-0.3	-0.3	-0.3
Nov	-0.2	-0.2	-0.3	-0.2	-0.3	-0.3	-0.3	-0.3
Dec	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0
Annual	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1

	Aver	rage Delta 1	Temperatur	e Increase	from NAA	- Alternativ	e 03	
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Feb	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	-0.1
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	-0.1
Jun	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Jul	0.4	0.4	0.3	0.3	0.2	0.3	0.3	0.3
Aug	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.2
Sep	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Oct	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1
Annual	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1

Figure 5-102 (Average Delta Temperature Increase from NAA – Alternative 03)

Figure 5-103 (Average Delta Temperature Increase from NAA – Alternative 04)

Average Delta Temperature Increase from NAA - Alternative 04								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1
May	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jul	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1
Aug	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1
Sep	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1
Oct	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1
Nov	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.1
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annual	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1

Average Delta Temperature Increase from NAA - Alternative 05								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0
Jun	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jul	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.2
Aug	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0
Sep	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1
Oct	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.1	-0.1
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annual	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Figure 5-104 (Average Delta Temperature Increase from NAA – Alternative 05)

Figure 5-105 (Average Delta Temperature Increase from NAA – Alternative 06)

Average Delta Temperature Increase from NAA - Alternative 06								
Date	LBR1	LBR2	MR4	MR5	FR2	FR3	FR4	FR5
Jan	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Feb	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0
Mar	-0.2	-0.2	-0.2	-0.2	-0.1	-0.1	-0.1	-0.2
Apr	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
May	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0
Jun	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0
Jul	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1
Aug	-0.2	-0.2	-0.3	-0.2	-0.1	-0.1	-0.2	-0.2
Sep	-0.2	-0.2	-0.3	-0.3	-0.2	-0.2	-0.3	-0.3
Oct	-0.1	-0.2	-0.3	-0.2	-0.2	-0.2	-0.3	-0.3
Nov	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annual	-0.1	-0.1	-0.1	-0.1	0.0	-0.1	-0.1	-0.1

13.4 Chlorides – Abercorn Creek

Chlorides at Savannah Water Intake on Abercorn Creek and at the junction of Abercorn Creek and Savannah River were calculated from the Harbor Model prediction of salinity at these areas. The conversion formula of Chlorides = Salinity / 0.0018066 was used to determine the Chloride level.

13.4.1 Average Chloride Levels

Chlorides (mg/L) - NAA		
Date	Savannah Water Intake - Abercorn	Savannah River at Abercorn Creek
	Creek	Aberconnereek
Jan	0.198	4.845
Feb	0.066	2.405
Mar	0.031	1.102
Apr	0.095	2.353
May	0.266	5.094
Jun	0.326	6.048
Jul	0.496	8.135
Aug	0.532	9.174
Sep	0.522	9.010
Oct	0.525	9.244
Nov	0.611	9.501
Dec	0.336	6.518
Annual	0.334	6.119

Figure 5-106 (Average Chloride Levels – NAA)

Chlorides (mg/L) - Alternative 01		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.559	9.325
Feb	0.113	3.049
Mar	0.037	1.157
Apr	0.080	2.067
May	0.267	4.843
Jun	0.250	4.928
Jul	0.688	9.492
Aug	1.148	15.622
Sep	2.289	25.811
Oct	2.955	32.573
Nov	2.505	27.646
Dec	1.357	17.515
Annual	1.021	12.836

Figure 5-107 (Average Chloride Levels – Alternative 01)

Figure 5-108 (Average Chloride Levels – Alternative 02)

Chlorides (mg/L) - Alternative 02		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.224	5.619
Feb	0.077	2.836
Mar	0.041	1.588
Apr	0.127	3.491
May	0.337	6.941
Jun	0.377	7.416
Jul	0.569	9.536
Aug	0.642	11.543
Sep	0.635	11.459
Oct	0.638	11.618
Nov	0.707	11.628
Dec	0.399	8.169
Annual	0.398	7.654

Chlorides (mg/L) - Alternative 03		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.108	2.366
Feb	0.434	7.610
Mar	0.695	12.045
Apr	0.095	1.789
May	0.048	1.512
Jun	0.012	0.339
Jul	0.146	3.284
Aug	0.714	11.760
Sep	0.200	3.714
Oct	0.146	4.278
Nov	1.019	18.071
Dec	0.427	7.330
Annual	0.337	6.175

Figure 5-109 (Average Chloride Levels – Alternative 03)

Figure 5-110 (Average Chloride Levels – Alternative 04)

Chlorides (mg/L) - Alternative 04		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.276	6.442
Feb	0.109	3.541
Mar	0.056	1.868
Apr	0.132	3.483
May	0.355	7.378
Jun	0.305	6.556
Jul	0.693	10.538
Aug	0.931	14.805
Sep	0.899	14.834
Oct	0.899	14.846
Nov	0.985	15.184
Dec	0.528	9.856
Annual	0.514	9.111

Chlorides (mg/L) - Alternative 05		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.223	5.663
Feb	0.083	2.964
Mar	0.049	1.780
Apr	0.111	3.223
May	0.337	6.543
Jun	0.328	6.585
Jul	0.335	7.620
Aug	0.230	6.072
Sep	0.299	6.687
Oct	0.501	9.007
Nov	0.795	12.593
Dec	0.334	6.739
Annual	0.302	6.290

Figure 5-111 (Average Chloride Levels – Alternative 05)

Figure 5-112 (Average Chloride Levels – Alternative 06)

Chlorides (mg/L) - Alternative 06		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.224	5.851
Feb	0.023	1.413
Mar	0.014	0.815
Apr	0.062	2.367
May	0.223	5.400
Jun	0.266	5.423
Jul	0.223	5.814
Aug	0.151	4.410
Sep	0.121	3.607
Oct	0.115	3.412
Nov	0.661	10.087
Dec	0.316	6.278
Annual	0.200	4.573

13.4.2 Delta Change in Chlorides from NAA

Chlorides (mg/L) - Alternative 01 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.362	4.480
Feb	0.046	0.643
Mar	0.006	0.055
Apr	-0.015	-0.286
May	0.001	-0.251
Jun	-0.076	-1.119
Jul	0.192	1.358
Aug	0.616	6.448
Sep	1.767	16.801
Oct	2.429	23.328
Nov	1.893	18.146
Dec	1.022	10.996
Annual	0.687	6.717

Figure 5-113 (Average Chloride Levels Delta Change from NAA – Alternative 01)

Figure 5-114 (Average Chloride Levels Delta Change from NAA – Alternative 02)

Chlorides (mg/L) - Alternative 02 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.026	0.775
Feb	0.011	0.431
Mar	0.010	0.486
Apr	0.031	1.138
May	0.071	1.848
Jun	0.051	1.368
Jul	0.073	1.401
Aug	0.110	2.369
Sep	0.113	2.449
Oct	0.113	2.374
Nov	0.096	2.128
Dec	0.063	1.651
Annual	0.064	1.535

Chlorides (mg/L) - Alternative 03 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	-0.090	-2.478
Feb	0.368	5.205
Mar	0.664	10.944
Apr	-0.001	-0.564
May	-0.219	-3.582
Jun	-0.314	-5.709
Jul	-0.350	-4.850
Aug	0.182	2.586
Sep	-0.322	-5.295
Oct	-0.379	-4.966
Nov	0.407	8.570
Dec	0.091	0.812
Annual	0.003	0.056

Figure 5-115 (Average Chloride Levels Delta Change from NAA – Alternative 03)

Figure 5-116 (Average Chloride Levels Delta Change from NAA – Alternative 04)

Chlorides (mg/L) - Alternative 04 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.079	1.598
Feb	0.043	1.136
Mar	0.025	0.766
Apr	0.036	1.129
May	0.089	2.284
Jun	-0.021	0.508
Jul	0.197	2.403
Aug	0.399	5.631
Sep	0.377	5.825
Oct	0.374	5.601
Nov	0.373	5.683
Dec	0.193	3.338
Annual	0.180	2.992

Chlorides (mg/L) - Alternative 05 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.024	0.796
Feb	0.014	0.493
Mar	0.018	0.677
Apr	0.015	0.890
May	0.072	1.478
Jun	0.008	0.591
Jul	-0.161	-0.497
Aug	-0.295	-3.023
Sep	-0.220	-2.313
Oct	-0.037	-0.331
Nov	0.182	3.059
Dec	0.001	0.255
Annual	-0.032	0.173

Figure 5-117 (Average Chloride Levels Delta Change from NAA – Alternative 05)

Figure 5-118 (Average Chloride Levels Delta Change from NAA – Alternative 06)

Chlorides (mg/L) - Alternative 06 Delta change from NAA		
Date	Savannah Water Intake - Abercorn Creek	Savannah River at Abercorn Creek
Jan	0.025	0.983
Feb	-0.046	-1.058
Mar	-0.017	-0.288
Apr	-0.033	0.034
May	-0.042	0.335
Jun	-0.054	-0.572
Jul	-0.274	-2.304
Aug	-0.375	-4.684
Sep	-0.398	-5.392
Oct	-0.423	-5.926
Nov	0.048	0.552
Dec	-0.017	-0.206
Annual	-0.134	-1.544

13.4.3 Average Chloride Levels – Days when Chlorides greater than 12

Chlorides (mg/L) - NAA		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	65
Feb	0	35
Mar	0	13
Apr	0	26
May	0	62
Jun	0	89
Jul	0	111
Aug	0	121
Sep	0	113
Oct	0	126
Nov	0	133
Dec	0	97
Annual	0	991

Figure 5-119 (Days When Average Chloride Levels > 12 - NAA)

Figure 5-120 (Days When Average Chloride Levels > 12 – Alternative 01)

Chlorides (mg/L) - Alternative 01		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	37
Feb	1	132
Mar	9	236
Apr	7	52
May	0	17
Jun	0	3
Jul	0	68
Aug	24	237
Sep	0	17
Oct	0	109
Nov	30	313
Dec	23	134
Annual	94	1355

Chlorides (mg/L) - Alternative 02		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	46
Feb	0	159
Mar	0	247
Apr	0	38
May	0	26
Jun	0	11
Jul	0	81
Aug	0	182
Sep	0	41
Oct	0	61
Nov	0	235
Dec	0	107
Annual	0	1234

Figure 5-121 (Days When Average Chloride Levels > 12 – Alternative 02)

Figure 5-122 (Days When Average Chloride Levels > 12 – Alternative 03)

Chlorides (mg/L) - Alternative 03		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan		77
Feb	0	10
Mar	0	21
Apr	0	36
May	0	82
Jun	2	148
Jul	0	186
Aug	2	201
Sep	2	239
Oct	0	194
Nov	0	177
Dec	0	107
Annual	6	1478

Chlorides (mg/L) - Alternative 04		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	83
Feb	0	47
Mar	0	17
Apr	0	39
May	0	96
Jun	0	107
Jul	0	116
Aug	2	165
Sep	0	199
Oct	0	203
Nov	0	201
Dec	0	144
Annual	2	1417

Figure 5-123 (Days When Average Chloride Levels > 12 – Alternative 04)

Figure 5-124 (Days When Average Chloride Levels > 12 – Alternative 05)

Chlorides (mg/L) - Alternative 05		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	78
Feb	0	35
Mar	0	17
Apr	0	33
May	0	70
Jun	0	92
Jul	0	111
Aug	0	81
Sep	0	89
Oct	0	106
Nov	2	169
Dec	0	96
Annual	2	977

Chlorides (mg/L) - Alternative 06		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	68
Feb	0	15
Mar	0	14
Apr	0	33
May	0	78
Jun	1	135
Jul	0	147
Aug	2	184
Sep	3	218
Oct	0	194
Nov	0	173
Dec	0	121
Annual	6	1380

Figure 5-125 (Days When Average Chloride Levels > 12 – Alternative 06)

13.4.4 Delta Change in Chlorides from NAA

Chlorides (mg/L) - Alternative 01 Delta change from NAA		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	-28
Feb	1	97
Mar	9	223
Apr	7	26
May	0	-45
Jun	0	-86
Jul	0	-43
Aug	24	116
Sep	0	-96
Oct	0	-17
Nov	30	180
Dec	23	37
Annual	94	364

Figure 5-126 (Delta Change in Chloride Levels from NAA – Alternative 01)

Figure 5-127 (Delta Change in Chloride Levels from NAA – Alternative 02)

Chlorides (mg/L) - Alternative 02 Delta change from NAA		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	-19
Feb	0	124
Mar	0	234
Apr	0	12
May	0	-36
Jun	0	-78
Jul	0	-30
Aug	0	61
Sep	0	-72
Oct	0	-65
Nov	0	102
Dec	0	10
Annual	0	243

Chlorides (mg/L) - Alternative 03 Delta change from NAA		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	12
Feb	0	-25
Mar	0	8
Apr	0	10
May	0	20
Jun	2	59
Jul	0	75
Aug	2	80
Sep	2	126
Oct	0	68
Nov	0	44
Dec	0	10
Annual	6	487

Figure 5-128 (Delta Change in Chloride Levels from NAA – Alternative 03)

Figure 5-129 (Delta Change in Chloride Levels from NAA – Alternative 04)

Chlorides (mg/L) - Alternative 04 Delta change from NAA		
	Savannah Water	Savannah River at
Date	Intake - Abercorn	Abercorn Creek
	Creek Days > 12	Days > 12
Jan	0	18
Feb	0	12
Mar	0	4
Apr	0	13
May	0	34
Jun	0	18
Jul	0	5
Aug	2	44
Sep	0	86
Oct	0	77
Nov	0	68
Dec	0	47
Annual	2	426

Chlorides (mg/L) - Alternative 05 Delta change from NAA							
	Savannah Water	Savannah River at					
Date	Intake - Abercorn	Abercorn Creek					
	Creek Days > 12	Days > 12					
Jan	0	13					
Feb	0	0					
Mar	0	4					
Apr	0	7					
May	0	8					
Jun	0	3					
Jul	0	0					
Aug	0	-40					
Sep	0	-24					
Oct	0	-20					
Nov	2	36					
Dec	0	-1					
Annual	2	-14					

Figure 5-130 (Delta Change in Chloride Levels from NAA – Alternative 05)

Figure 5-131 (Delta Change in Chloride Levels from NAA – Alternative 06)

Chlorides (mg/L) - Alternative 06 Delta change from NAA							
	Savannah Water	Savannah River at					
Date	Intake - Abercorn	Abercorn Creek					
	Creek Days > 12	Days > 12					
Jan	0	3					
Feb	0	-20					
Mar	0	1					
Apr	0	7					
May	0	16					
Jun	1	46					
Jul	0	36					
Aug	2	63					
Sep	3	105					
Oct	0	68					
Nov	0	40					
Dec	0	24					
Annual	6	389					

13.5 Savannah Harbor Zone Information- Location and Model Grid Cells

Table 80 provides the grid coordinates of the zones and Figure 1 through Figure 6 shows the location of the zones.

Annex E– EFDC Output

Zone # Z	Zone Name	Savannah Zones.docx			SHEP 2006				SHEP 2015				
Zone #	Zone Marrie	l beg	J beg	l end	J end	l beg	J beg	I end	J end	l beg	J beg	l end	J end
1	FR1	13	26	17	40	13	26	15	40	9	26	11	40
2	FR2	13	41	17	52	13	41	17	50	9	41	13	50
3	FR3	13	53	17	59	13	51	15	59	9	51	11	59
4	FR4	13	60	17	66	13	60	15	66	9	60	11	66
5	FR5	13	67	17	72	13	67	15	72	9	67	11	74
6	FR6	13	73	17	80	13	73	15	80	9	75	13	80
7	FR7	13	81	17	93	13	81	15	93	9	83	12	96
8	FR8	13	94	17	97	13	94	15	97	9	97	12	100
9	FR9	13	98	15	111	13	98	15	111	9	107	11	120
10	FR10	13	112	15	120	13	112	15	120	9	121	13	130
11	FR11	13	121	14	127	13	121	14	127	8	131	11	148
12	MR1	18	82	21	82	18	82	21	82	12	84	17	84
13	MR2	21	83	21	86	21	83	21	86	17	85	17	89
14	MR3	26	94	26	104	26	94	26	104	22	97	22	113
15	MR4	26	105	26	122	26	105	26	122	22	114	22	131
16	MR5	15	123	26	123	15	123	26	123	16	132	20	138
17	MR6	20	118	20	119	20	118	20	119	5	126	5	131
18	LBR1	27	123	38	123	27	123	38	123	23	132	33	132
19	LBR2	39	106	39	123	39	106	39	123	36	115	34	132
20	LBR3	30	86	30	109	30	86	30	109	26	88	26	118
21	BR1	30	59	34	63	30	59	32	63	26	59	28	63
22	BR2	30	64	34	70	30	64	32	70	26	64	28	70
23	BR3	30	71	32	85	30	71	30	85	26	71	26	87
24	SCh1	9	20	11	38	9	20	11	38	5	20	7	38
25	SCh2	7	45	12	46	7	45	12	46	3	45	8	46
26	SR	13	128	15	166	13	128	14	166	9	149	10	189

Figure 5-132 (Grid Coordinates of the Zones)

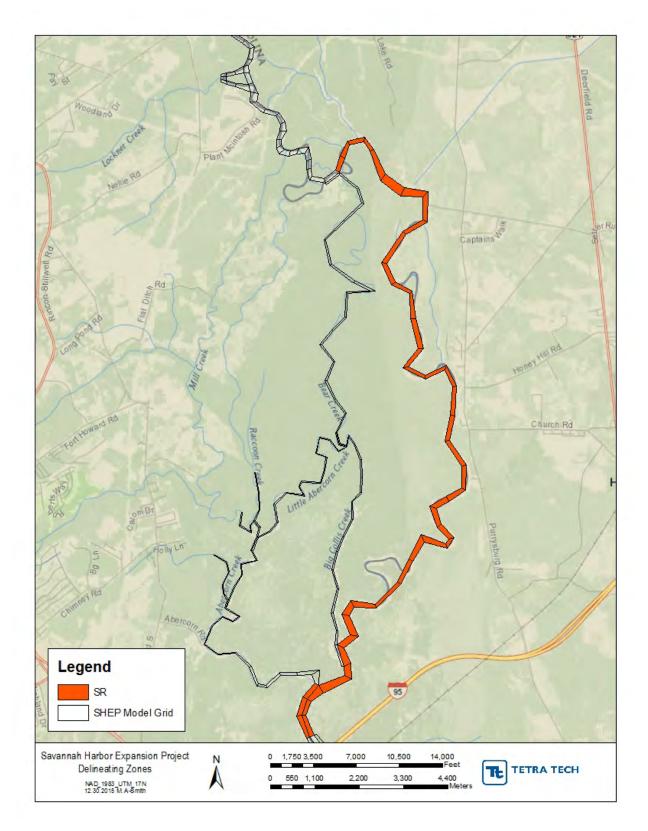


Figure 1 (Location of the Zones for Savannah River)

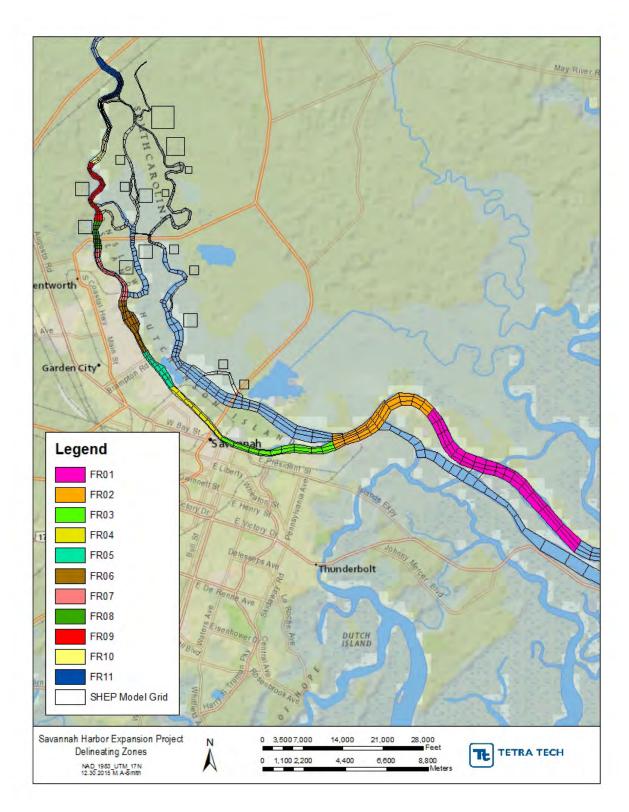


Figure 2 (Location of the Zones for Front River)

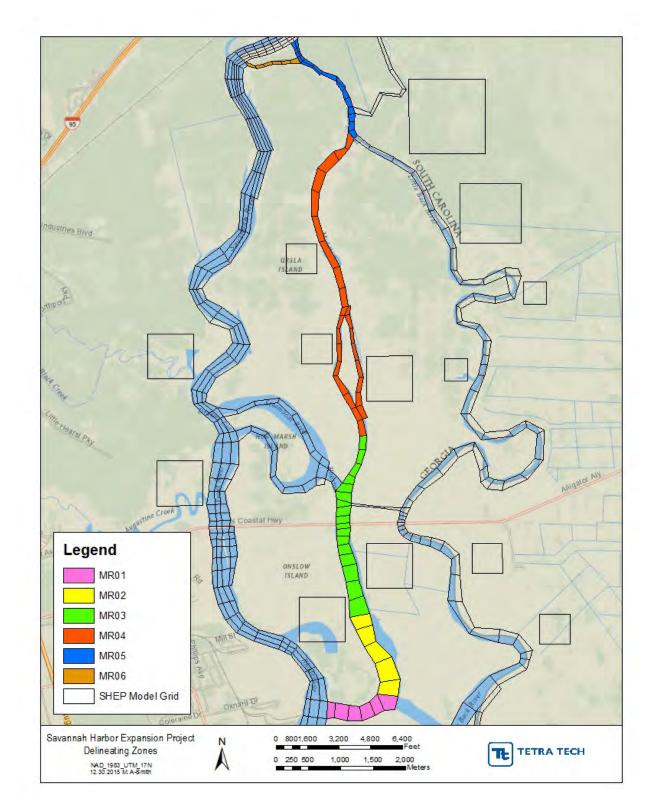


Figure 3 (Location of the Zones for Middle River)

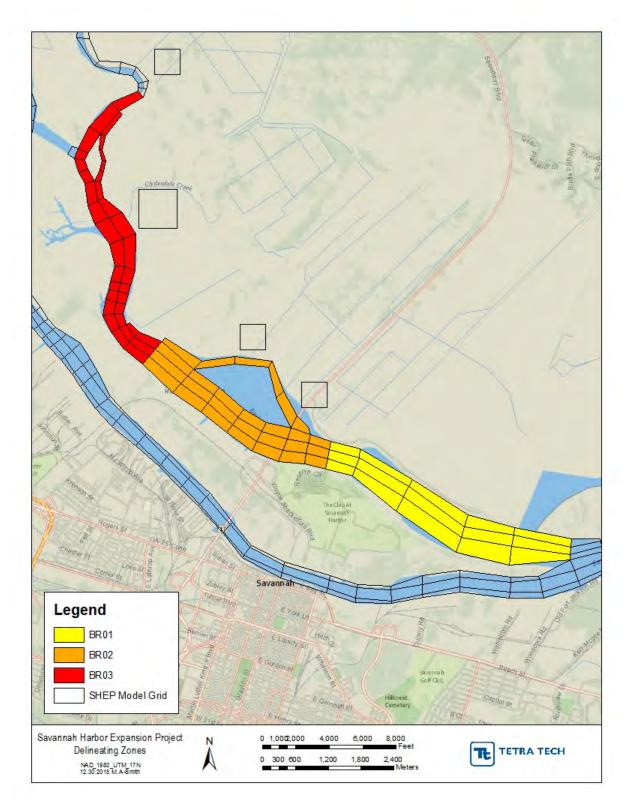


Figure 4 (Location of the Zones for Back River)

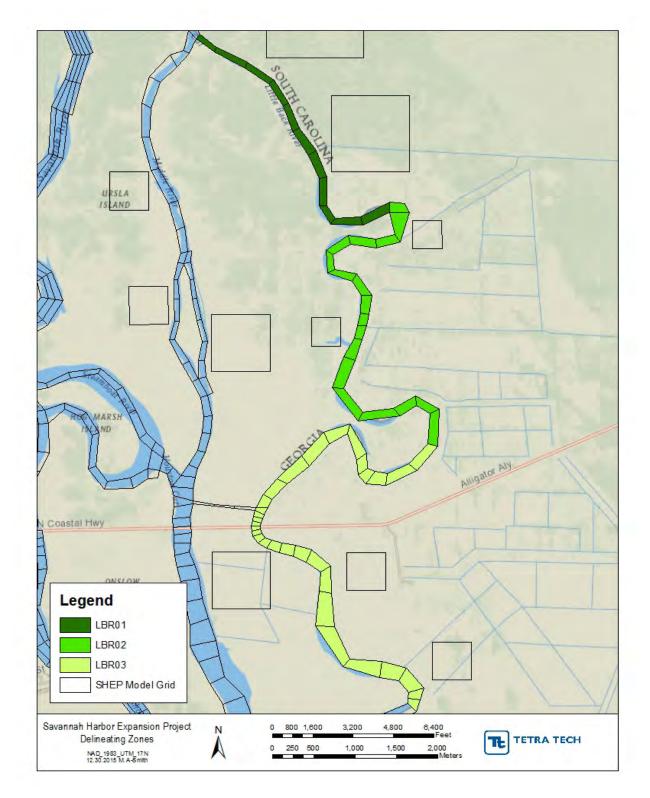


Figure 5. (Location of the Zones for Little Back River)

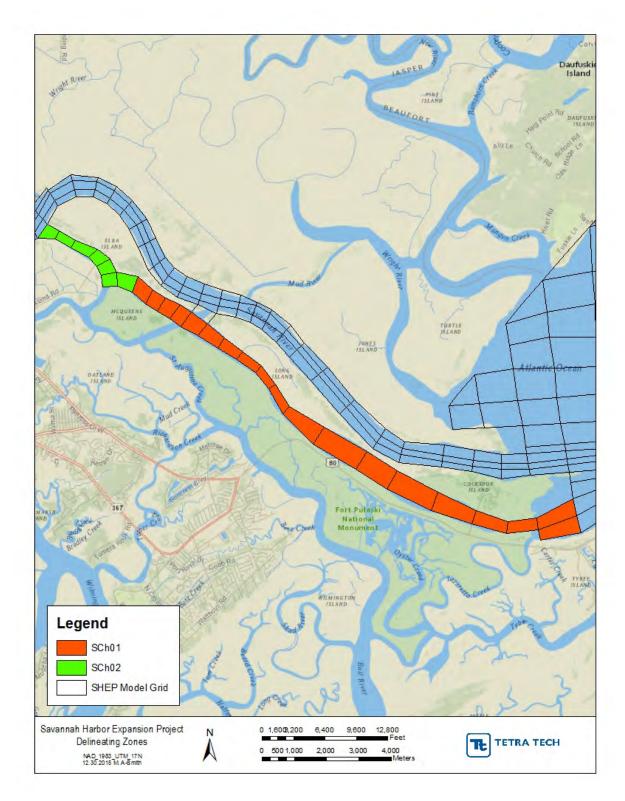


Figure 6. (Location of the Zones for South Channel)

14 Annex F - CLIMATE CHANGE

USACE screening level climate change vulnerability assessment (VA) tool was utilized to assess the potential impacts and likelihood of climate change impacts to this region. The tool operates on a HUC-4 level spatial scale, and it used to quickly assess climate change vulnerably. The tool can be found on https://maps.crrel.usace.army.mil/apex/f?p=170.

The parameters that were used in the Climate Change analysis are as follows:

Division: South Atlantic

District: Savannah

Business lines:

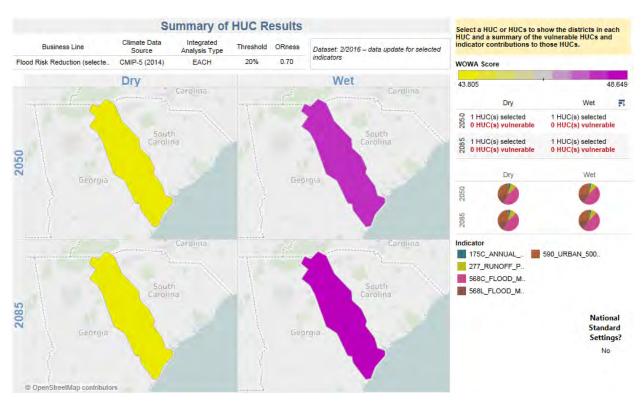
Flood Risk Reduction

Ecosystem Restoration

Hydropower

Navigation

Recreation


Water Supply

Climactic Data Source: CMIP-5 (2014)

Analysis Threshold: 20%

ORness: .71

¹ Specifies how risk-averse the analysis should be. Value should be between 0.5 and 1.0. Higher ORness values weigh the more vulnerable indicators more heavily, resulting in greater perceived vulnerability overall (more risk-averse). Lower ORness values weigh all indicators in a business line more equally, resulting in lower perceived vulnerability overall because less vulnerable indicators average out more vulnerable indicators (less risk-averse). Typical value is 0.7

Figure 6-1 (HUC0306 Summary Results (Flood Risk Reduction))

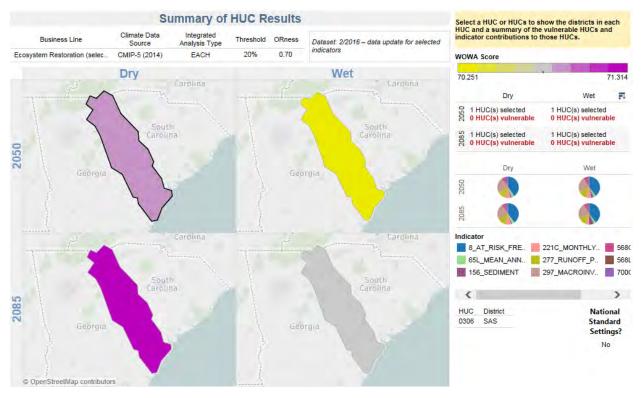


Figure 6-2 (HUC0306 Summary Results (Ecosystem Restoration))

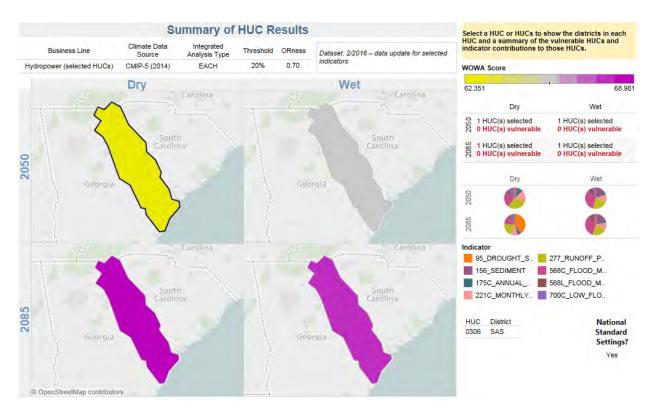


Figure 6-3 (HUC0306 Summary Results (Hydropower))

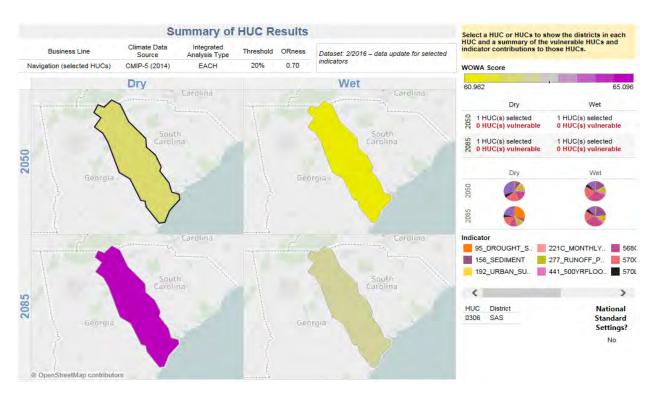
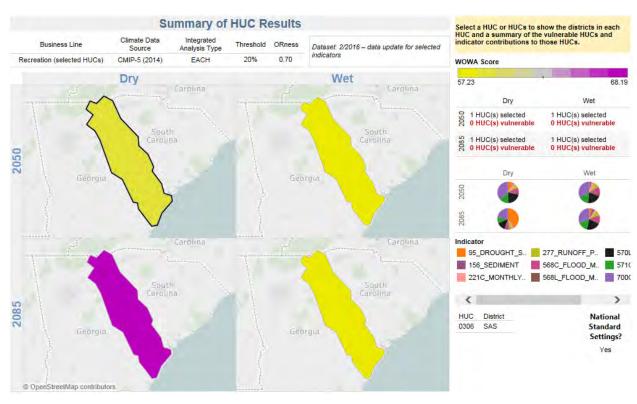



Figure 6-4 (HUC0306 Summary Results (Navigation))

Figure 6-5 (HUC0306 Summary Results (Recreation))

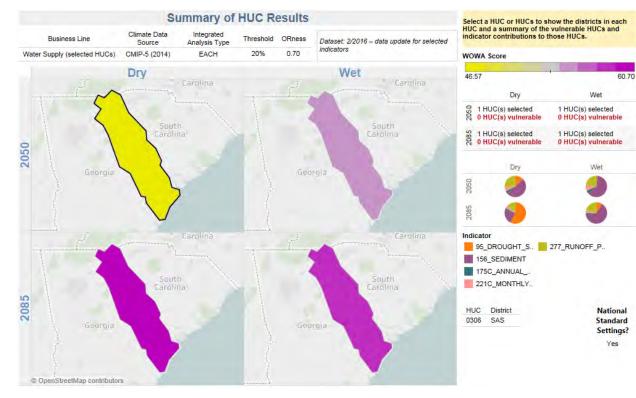


Figure 6-6 (HUC0306 Summary Results (Water Supply))

WOWA Scores ²								
	DRY		WET					
2050	2085	%	2050	2085	%Change			
		Change						
43.805	44.203	0.91%	47.728	48.649	1.93%			
70.932	71.314	0.54%	70.251	70.833	0.83%			
62.351	68.981	10.63%	56.676	67.718	19.48%			
62.320	65.096	4.45%	60.962	62.70	2.85%			
59.17	68.19	15.24%	57.67	57.23	-0.76%			
46.57	60.70	30.34%	55.98	58.03	3.66%			
	43.805 70.932 62.351 62.320 59.17 46.57	DRY 2050 2085 43.805 44.203 70.932 71.314 62.351 68.981 62.320 65.096 59.17 68.19 46.57 60.70	DRY 2050 2085 % Change 43.805 44.203 0.91% 70.932 71.314 0.54% 62.351 68.981 10.63% 62.320 65.096 4.45% 59.17 68.19 15.24%	DRY 2050 2085 % 2050 43.805 44.203 0.91% 47.728 70.932 71.314 0.54% 70.251 62.351 68.981 10.63% 56.676 62.320 65.096 4.45% 60.962 59.17 68.19 15.24% 57.67 46.57 60.70 30.34% 55.98	DRY WET 2050 2085 % 2050 2085 43.805 44.203 0.91% 47.728 48.649 70.932 71.314 0.54% 70.251 70.833 62.351 68.981 10.63% 56.676 67.718 62.320 65.096 4.45% 60.962 62.70 59.17 68.19 15.24% 57.67 57.23 46.57 60.70 30.34% 55.98 58.03			

Table F-1: HUC0306 Summary Results

Conclusion: None of the Business Lines exceeded the default 20% threshold at 2050 or at 2085. The Savannah-Ogeechee watershed is at a relatively low risk for impacts to climate compared to the rest of the continental United States.

² WOWA stands for "Weighted Ordered Weighted Average," which reflects the aggregation approach used to get the final score for each HUC. After normalization and standardization of indicator data, the data are weighted with "importance weights" determined by the Corps (the first "W"). Then, for each HUC-epoch-scenario, all indicators in a business line are ranked according to their weighted score, and a second set of weights (which are the OWA weights," are applied, based on the specified ORness level. This yields a single aggregate score for each HUC-epoch-scenario called the WOWA score. WOWA contributions/indicator contributions are calculated after the aggregation to give a sense of which indicators dominate the WOWA score at each HUC.

The WOWA Score of the Savannah-Ogeechee watershed is a standardized way to compare climate change vulnerability to other basins throughout the United States.

Figure shows how the project basin is related to the rest of the country.

The Savannah-Ogeechee watershed is at a relatively low risk for impacts to climate change within Flood Risk Reduction projects, compared to the rest of the continental United States.

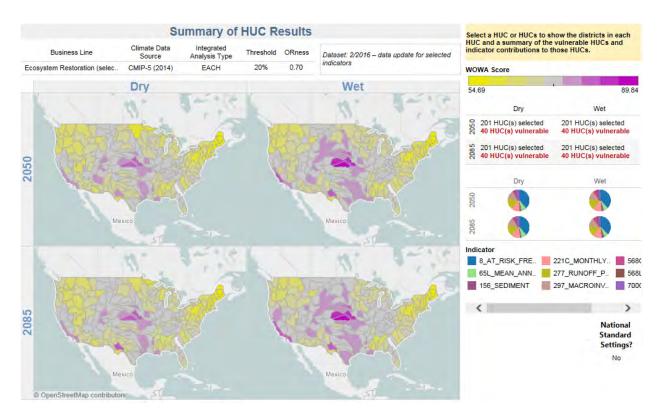


Figure 6-7 (Nationwide HUC Comparison (Ecosystem Restoration))

Annex F– Climate Change

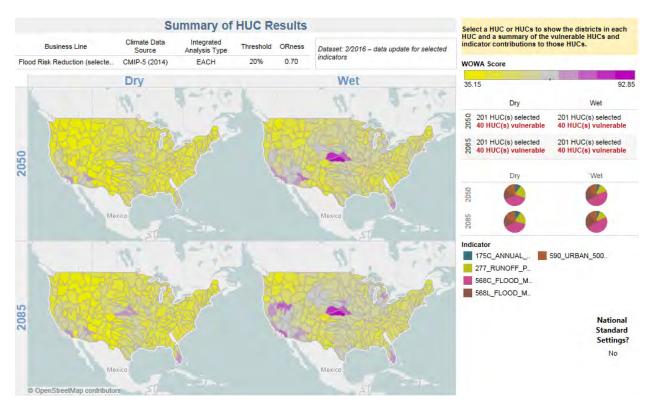


Figure 6-8 (Nationwide HUC Comparison (Flood Risk Management))

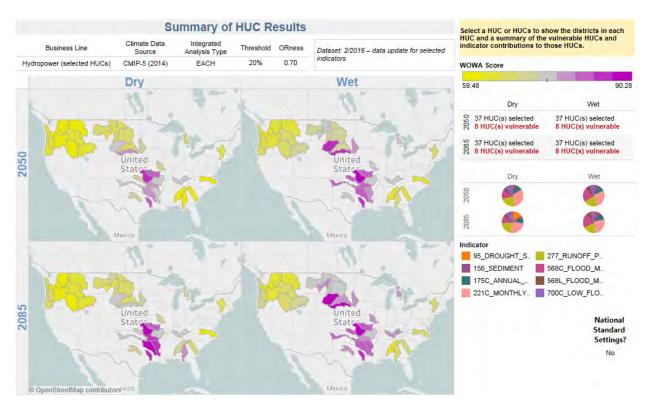
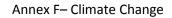



Figure 6-9 (Nationwide HUC Comparison (Hydropower))

84.43

>

National Standard Settings? No

Wet

129 HUC(s) selected 26 HUC(s) vulnerable

129 HUC(s) selected 26 HUC(s) vulnerable

Wet

Dry

Dry

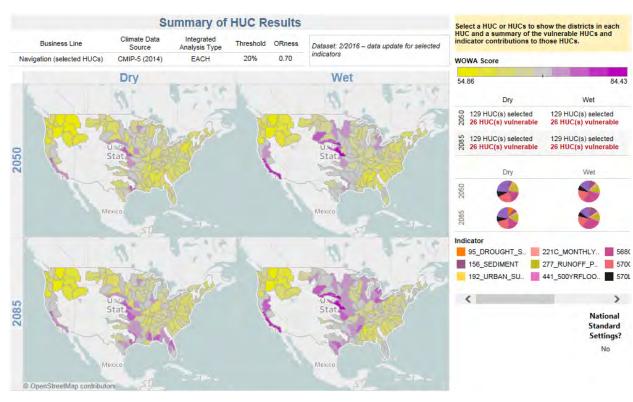


Figure 6-10 (Nationwide HUC Comparison (Navigation))

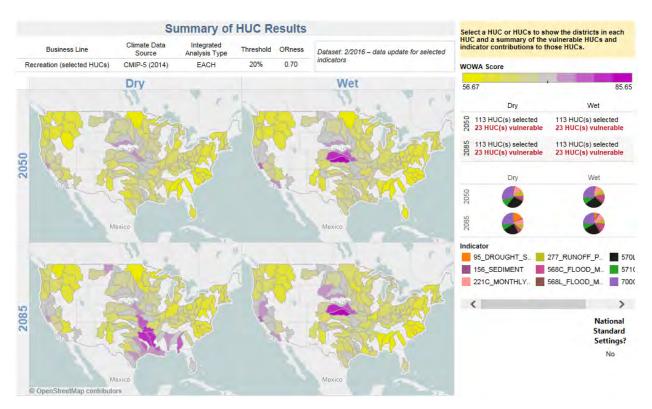


Figure 6-11 (Nationwide HUC Comparison (Recreation))

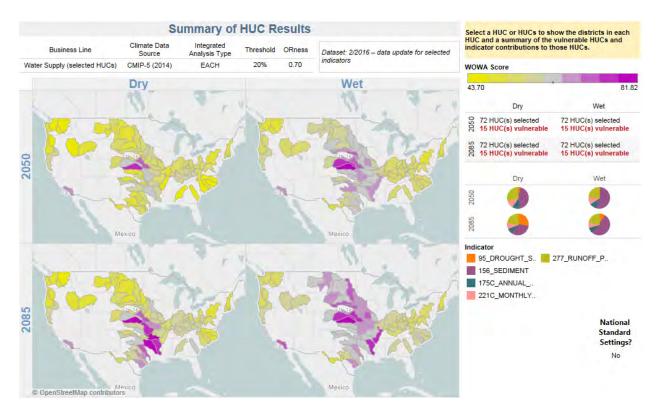


Figure 6-12 (Nationwide HUC Comparison (Water Supply))