Appendix D

Environmental Correspondence Documentation

- * D1: Section 106 Cultural Resources Coordination Documentation
- * D2: March 2018 U.S. Fish and Wildlife Coordination Act Report
- * D3: April 2019 U.S. Fish and Wildlife Coordination Act Report
- D4: 2011 and 2017 Biological Opinions received from National Oceanic and Atmospheric Administration, National Marine Fisheries Service for the Savannah Harbor Expansion Project
- D5: Savannah Harbor Expansion Project, Fish Passage at New Savannah Bluff Lock and Dam Cultural Resources Memorandum of Agreement
- * D6: Correspondence with Agencies

Appendix D1

* Section 106 Cultural Resources Coordination Documentation

Dear Dr. Jim Garvey:

The Savannah District, U.S. Army Corps of Engineers (USACE) will be constructing a fish passage feature at the New Savannah Bluff Lock and Dam as part of the Savannah Harbor Expansion Project. We are coordinating with the Georgia and South Carolina Historic Preservation Officers in accordance with Section 106 of the National Historic Preservation Act (NHPA) on our present investigations and will be coordinating with the public when we have a proposed course of action. We are evaluating several alternatives for the fish passage design, all of which have the potential to affect the New Savannah Bluff Lock and Dam structure, a resource eligible for the National Register of Historic Places.

Would your organization be interested in receiving or providing information related to our work at that site? If your organization is interested in participating in the Section 106 process, please let me know by responding to this email and we will provide you with more details of the project via a formal letter on agency letterhead. If your organization would like to be a consulting party under the terms of the NHPA, please let me know.

Respectfully,

Julie A. Morgan Archaeologist, Planning Branch U.S. Army Corps of Engineers, Savannah District Office: 706-856-0378 Email: julie.a.morgan@usace.army.mil Dear Mr. Erick Montgomery:

The Savannah District, U.S. Army Corps of Engineers (USACE) will be constructing a fish passage feature at the New Savannah Bluff Lock and Dam as part of the Savannah Harbor Expansion Project. We are coordinating with the Georgia and South Carolina Historic Preservation Officers in accordance with Section 106 of the National Historic Preservation Act (NHPA) on our present investigations and will be coordinating with the public when we have a proposed course of action. We are evaluating several alternatives for the fish passage design, all of which have the potential to affect the New Savannah Bluff Lock and Dam structure, a resource eligible for the National Register of Historic Places.

Would your organization be interested in receiving or providing information related to our work at that site? If your organization is interested in participating in the Section 106 process, please let me know by responding to this email and we will provide you with more details of the project via a formal letter on agency letterhead. If your organization would like to be a consulting party under the terms of the NHPA, please let me know.

Respectfully,

Julie A. Morgan Archaeologist, Planning Branch U.S. Army Corps of Engineers, Savannah District Office: 706-856-0378 Email: julie.a.morgan@usace.army.mil

March 6, 2018

Erik T. Blechinger, PMP Deputy District Engineer for Planning, Programs and Project Management Department of the Army U.S. Army Corps of Engineers 100 W. Oglethorpe Avenue Savannah, GA 31401-3604

> Re: Savannah Harbor Expansion Project (SHEP), New Savannah Bluff Lock and Dam, Fish Passage Construction, Change in Scope and Alternatives Analysis Aiken County, South Carolina SHPO Project Numbers 14-ED0108 and 03-VM0063 (HP-911120-001)

Dear Erik Blechinger:

Thank you for your letter of February 5, 2018 which we received on February 7, regarding the additional information submitted in support of the above-referenced undertaking. We also received as supporting documentation information intended to re-initiate Section 106 consultation for this undertaking as well as an alternatives analysis narrative. The State Historic Preservation Office (SHPO) is providing comments to the U.S. Army Corps of Engineers (Corps) pursuant to Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR 800. Consultation with the SHPO is not a substitution for consultation with Tribal Historic Preservation Offices, other Native American tribes, local governments, or the public.

The undertaking's Area of Potential Effect (APE) includes the New Savannah Bluff Lock and Dam (NSBL&D), a property determined eligible for listing in the National Register of Historic Places under Criteria A and C. Based on the submitted information, our office concurs that each of the proposed alternatives will have an Adverse Effect to the NSBL&D. The proposed undertaking may also have an adverse effect on archeological resources that have yet to be identified and evaluated for National Register eligibility.

We recommend further consultation with our office, the Georgia SHPO, local governments, and the public in order to resolve the adverse effect.

Please refer to SHPO Project Numbers 14-ED0108 and 03-VM0063 in any future correspondence regarding this project. If you have any questions, please contact me at (803) 896-6129 or

jsylvest@scdah.sc.gov; for archaeological questions please contact Keely Lewis at (803) 896-6181 or KLewis@scdah.sc.gov.

Sincerely,

John D. Sylvest

John D. Sylvest Project Review Coordinator State Historic Preservation Office

cc: Julie Morgan, Corps Jennifer Dixon, GA SHPO

ENVIRONMENTAL IMPACT STATEMENT APPENDIX G: Programmatic Agreement for Cultural Resources

SAVANNAH HARBOR EXPANSION PROJECT

Chatham County, Georgia and Jasper County, South Carolina

January 2012

US Army Corps of Engineers Savannah District South Atlantic Division This page intentionally blank

PROGRAMMATIC AGREEMENT AMONG THE US ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT, THE GEORGIA STATE HISTORIC PRESERVATION OFFICER, THE SOUTH CAROLINA STATE HISTORIC PRESERVATION OFFICER, AND THE US NAVY NAVAL HISTORY AND HERITAGE COMMAND

WHEREAS, the US Army Corps of Engineers, Savannah District (Savannah District), proposes to expand the Savannah Harbor Navigation Project by deepening the existing navigation channel between station 103+000 and -60+000 by up to 6 feet, extending the bar channel seaward, constructing bend wideners in selected areas along the existing channel, deepening the existing Kings Island Turning Basin, constructing passing lanes, disposing of dredged material in existing disposal areas and possible new sites, and creating fish and wildlife mitigation lands, as described in the attached letter report, and

WHEREAS, the Savannah Harbor Expansion Project lies within the States of South Carolina and Georgia, and

WHEREAS, the Savannah District recognizes that the proposed Savannah Harbor Expansion Project may have an effect upon properties included in or eligible for inclusion in the National Register of Historic Places (National Register) and has consulted with the Advisory Council on Historic Preservation (Council), the Georgia State Historic Preservation Officer (Georgia SHPO), and the South Carolina State Historic Preservation Officer (South Carolina SHPO) pursuant to regulation 36 CFR, Part 800 implementing Section 106 of the National Historic Preservation Act (16 U.S.C. 470h-2(f), and

WHEREAS, the Naval History and Heritage Command of the US Navy (US Navy) owns the National Register listed property CSS *Georgia* and has requested to be a Consulting Party for actions associated with this resource, and

WHEREAS, the definitions given in Appendix A are applicable throughout this Programmatic Agreement;

NOW THEREFORE, the Savannah District, the Consulting Parties composed of the Council, Georgia SHPO, the South Carolina SHPO, and US Navy agree that the project shall be administered in accordance with the following stipulations to satisfy Savannah District's Section 106 responsibilities for all individual aspects of the project.

Site Specific Stipulations

The Savannah District, subject to receiving funds appropriated by the Congress of the United States, shall ensure that the following measures are carried out:

In consultation with the consulting parties, the Savannah District shall prepare and implement a data recovery plan to mitigate impacts of the Savannah Harbor Expansion Project upon the CSS *Georgia*. The plan shall meet all requirements contained in the General Stipulations section of this Programmatic Agreement.

General Stipulations

The Savannah District, subject to receiving funds appropriated by the Congress of the United States, will ensure that the following measures are carried out:

1. The Savannah District shall ensure that archeological surveys of areas that may be affected by the proposed Savannah Harbor Expansion Project are conducted in a manner consistent with the Secretary of Interior's Standards and Guidelines for Identification (48 F.R. 44720-23) and any standards and guidelines developed by the Georgia SHPO and the South Carolina SHPO. The surveys shall be conducted in consultation with the Georgia SHPO and the South Carolina SHPO, and reports of the survey shall be submitted to the Georgia SHPO and the South Carolina SHPO for review and comment.

2. The Savannah District shall evaluate properties identified through the surveys in accordance with 36 CFR, Part 800.4. If the survey results in the identification of properties that are eligible for, or included in, the National Register of Historic Places, Savannah District shall determine the effect of the proposed project upon those resources in accordance with 36 CFR, Part 800.5.

3. The Savannah District shall identify and evaluate alternatives to avoid and/or mitigate adverse effects to properties determined eligible for inclusion, or included in, the National Register of Historic Places in accordance with 36 C.F.R. Part 800.6.

4. The Savannah District shall insure that data recovery plans are developed in consultation with the Georgia SHPO or South Carolina SHPO (as appropriate), and US Navy (as appropriate) for the recovery of archaeological data from properties determined eligible for inclusion in the National Register of Historic Places. The plans shall be consistent with the Secretary of the Interior's Standards and Guidelines for Archeological Documentation (48 F.R. 44734-37) and take into account the Council's publication, *Treatment of Archeological Properties* (Advisory Council on Historic Preservation 1980), and any standards and guidelines set forth by the Georgia SHPO, South Carolina SHPO, and US Navy (as appropriate). The plans shall specify, at a minimum:

a. the property, properties, or portions of properties where data recovery is to be carried out;

b. any property, properties, or portions of properties that will be destroyed without data recovery;

c. the research questions to be addressed through the data recovery, with an explanation of their relevance and importance;

d. the methods to be used, with an explanation of their relevance to the research questions;

e. the methods to be used in analysis, data management, and dissemination of data, including a schedule;

f. the proposed disposition of recovered materials and records;

g. proposed methods for involving the interested public in the data recovery;

h. proposed methods for disseminating results of the work to the interested public;

i. proposed methods by which local historic sites and historic preservation agencies and individuals will be kept informed of the work and afforded the opportunity to participate; and,

j. a proposed schedule for the submission of progress reports to the Savannah District, the Georgia SHPO, South Carolina SHPO, US Navy (as appropriate), and the Council.

5. The data recovery plans shall be submitted by the Savannah District to the Georgia SHPO and/or South Carolina SHPO (as appropriate), the US Navy (as appropriate), and the Council for 45 days review. Unless the Georgia SHPO, South Carolina SHPO, the US Navy (as appropriate), or the Council objects within 45 days after receipt of a data recovery plan, the Savannah District shall ensure that it is implemented.

6. The Savannah District shall ensure that all archeological survey, testing, and data recovery work carried out pursuant to this Programmatic Agreement is carried out by or under the direct supervision of a person or persons meeting at a minimum the standards for archeologist set forth in the Secretary of the Interior's Standards and Guidelines for Archeological Documentation (48 F.R. 44716-42).

7. The Savannah District shall ensure that all materials and records resulting from survey, testing, and data recovery are curated in accordance with 36 CFR, Part 79.

8. The Savannah District shall ensure that all final archeological reports resulting from actions pursuant to this agreement will be provided to the Georgia SHPO, the South Carolina SHPO, the US Navy (as appropriate), and the Council. The Savannah District shall ensure that all such reports are responsive to the contemporary professional standards, and to the Department of Interior's Format Standards for Final Reports of Data Recovery Programs (42 F.R. 5377-79).

9. Any party to this Programmatic Agreement may request that it be amended, whereupon the parties will consult in accordance with 36 CFR, Part 800.6(c)(7) to consider amendment.

10. The Council, the Georgia SHPO, the South Carolina SHPO, and US Navy (as appropriate) may monitor activities carried out pursuant to this Programmatic Agreement, and the Council will review such activities if so requested. The Savannah District will cooperate with the Council, the Georgia SHPO, the South Carolina SHPO, and the US Navy (as appropriate) in carrying out their monitoring and review responsibilities.

11. The parties to this agreement shall consult to review implementation of the terms of this agreement and determine whether revisions are needed. If revisions are needed, the parties to this agreement will consult in accordance with 36 CFR, Part 800 to make such revisions.

12. Any party to this agreement may terminate it by providing 30 days notice to the other parties, provided that the parties will consult during the period prior to termination to seek agreement on amendments or other actions that would avoid termination. In the event of termination, the Savannah District will comply with 36 CFR, Parts 800.4 through 800.6 with regard to individual undertakings covered by this Programmatic Agreement.

13. Should the Georgia SHPO, South Carolina SHPO, the US Navy (as appropriate), or the Council object within 45 days to any actions proposed pursuant to the agreement, the Savannah District shall consult with the objecting party to resolve the objection. If the Savannah District determines that the objection cannot be resolved, the Savannah District shall request further comments of the Council pursuant to 36 CFR, Part 800.7. Any Council comment provided in response to such a request will be taken into account by the Savannah District in accordance with 36 CFR, Part 800.7 with reference only to the subject of the dispute; the Savannah District's responsibility to carry out all actions under this agreement that are not the subjects of the dispute will remain unchanged.

14. At any time during implementation to the measures stipulated in this agreement, should an objection to any such measure be raised by a member of the public, the Savannah District shall take the objection into account and consult as needed with the objecting party, the Georgia SHPO, the South Carolina SHPO, the US Navy (as appropriate), or the Council to resolve the objection.

15. In the event the Savannah District does not carry out the terms of the Programmatic Agreement, the Savannah District will comply with 36 CFR, Parts 800.4 through 800.6 with regard to individual undertakings covered by this Programmatic Agreement.

Execution and implementation of this Programmatic Agreement evidences that the Savannah District has satisfied its Section 106 responsibilities for all individual undertakings of the program.

16. Nothing herein shall constitute, or be deemed to constitute, an obligation of future appropriations by the United States.

US ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT:

DATE: 4 Nov 201

Colonel US Army Commanding

GEORGIA STATE HISTORIC PRESERVATION OFFICER:

David Crass, Ph/D., Division Director and Deputy State Historic Preservation Officer

SOUTH CAROLINA STATE HISTORIC PRESERVATION OFFICER:

Ulizabeth M. Johnson, Departy State Historic Preservation Officer

US NAVY, NAVAL HISTORY AND HERITAGE COMMAND:

2/23/12 J.A. Delloach, Rear Admiral, U.S. Navy (RET.)

5

Director, Naval History and Heritage Command

APPENDIX A DEFINITIONS

Consulting Parties. The consulting parties for the entire project include the US Army Corps of Engineers, Savannah District, the Georgia State Historic Preservation Officer, the South Carolina State Historic Preservation Officer, and the Advisory Council on Historic Preservation. The Naval History and Heritage Command of the US Navy is a Consulting Party for any actions regarding the National Register listed property CSS *Georgia*.

CSS *Georgia*. The CSS *Georgia* was a Confederate ironclad that was constructed in Savannah in 1862, served in the harbor during the Civil War, and was scuttled on December 21, 1864, to prevent capture. The wreck site is located on the Savannah Harbor navigation channel bottom and side slope within Chatham County, Georgia, and Jasper County, South Carolina. The site was listed in the National Register of Historic Places in 1982 at the national level of significance for its architecture, association with important historical personages and events, and for its ability to provide information important in history. The vessel is owned by the US Government and is administered by the US Navy. The Naval History and Heritage Command of the US Navy will act as a Consulting Party for actions affecting this resource.

Savannah Harbor Expansion Project Historic Properties

I. Previous and Proposed Agreement Documents for the Savannah Harbor Navigation Project

In 1992, Savannah District, the South Carolina and Georgia State Historic Preservation Offices, and the Advisory Council on Historic Preservation entered into a Programmatic Agreement to address impacts of the then existing Savannah Harbor Navigation Project and the then proposed harbor deepening project. This deepening project was completed in 1994. All stipulations of the agreement have been carried out.

In 1992, Savannah District, the South Carolina and Georgia State Historic Preservation Offices, and the Advisory Council on Historic Preservation entered into a Programmatic Agreement to address impacts associated with the closing of New Cut and removing the tide gate from operation in Savannah Harbor. Compliance with Stipulation 12 is continuing. All other stipulations have been carried out.

Stipulation 12 states: "In consultation with the Council, the GASHPO, and the SCSHPO, Savannah District will prepare a Memorandum of Agreement to outline procedures for identifying, evaluating, and mitigating and/or removing adverse effects of the Savannah Harbor Navigation Project upon the CSS *Georgia*, a property listed in the National Register of Historic Places."

In 2002, Savannah District and the Georgia Ports Authority initiated studies of the CSS *Georgia* to determine the effects of past and future harbor operation and maintenance activities and the effect of the proposed Savannah Harbor Expansion Project upon this property and to identify mitigation alternatives. The reports have been coordinated with the South Carolina and Georgia State Historic Preservation Officers.

Savannah District prepared a Programmatic Agreement to address Section 106 compliance for the proposed Savannah Harbor Expansion Project. Consulting Parties include the Georgia and South Carolina State Historic Preservation Offices, the Naval History and Heritage Command of the US Navy, and Savannah District. The Advisory Council on Historic Preservation decided not to participate. All parties reviewed and commented upon the draft agreement. All issues and concerns were resolved in the revised final version. The agreement document is currently being circulated for signatures.

II. Project Description

A. Deepen the existing 42-foot-deep inner harbor navigation channel by up to 6 feet between stations 0+000 and +103+000 and to a width that will not disturb existing side slopes. The present project features include an additional 2 feet of allowable over depth and up to 4 feet of advance maintenance dredging. These project features will be retained.

B. Deepen the existing 44-foot-deep bar channel by up to 6 feet from station 0+000 to station -60+000 and to a width that will not disturb existing side slopes. The present project features include an additional 2 feet of allowable over depth and up to 4 feet of advance maintenance dredging. These project features will be retained.

C. Construct bend wideners and perform full-channel-width dredging in isolated areas as necessary to facilitate ship movement.

D. Construct an approximately 38,600-foot-long extension to the 600-foot-wide bar channel to a depth of up to 50 feet plus 2 feet of allowable over depth and up to 4 feet of advance maintenance dredging.

E. Deepen the existing 42-foot-deep Kings Island Turning Basin by 6 feet. The present project features include an additional 2 feet of allowable over depth and up to 4 feet of advance maintenance dredging. These project features will be retained.

F. Construct a passing lane 100 feet wide on the north side of the channel from stations +55+000 to +60+000 and a passing lane 100 feet wide on the south side of the channel from stations +16+000 to +20+000.

G. Dispose of dredged material in existing Savannah Harbor operation and maintenance dredged material disposal areas.

H. Construct mitigation features for project impacts to environmental resources.

III. Alternatives Considered During Project Design in Order to Reduce the Area of Potential Effect.

The initial project design was to deepen the full channel bottom width for the entire 165,000-foot-long navigation channel by up to 10 feet. This design would have resulted in side slope sloughing that would have impacted an area up to 50 to 80 feet wide on either side of the navigation channel. The design was subsequently modified to deepen the channel by no more than 6 feet and to dredge to a width that would not affect existing side slopes.

The initial project design also included a series of 16 bend wideners varying from 76 to 156 feet in width and with a total length of over 56,000 linear feet. The results of a ship simulation study resulted in a new design with four bend wideners with widths from 76 to 156 feet and a total length of less than 15,250 linear feet and nine areas to be dredged to the full existing channel width with a total length of less than 49,000 feet.

IV. Area of Potential Effect

A. Channel bottom and side slopes of bar channel extension.

B. Channel bottom and side slopes of existing navigation channel.

C. Channel bottom and side slopes of bend wideners and channel side slopes where fullchannel-width dredging will occur.

D. Channel bottom and side slopes of the Kings Island Turning Basin.

E. Channel bottom and side slopes in proposed passing lane areas.

F. Existing disposal sites.

G. Environmental mitigation features.

V. Previously Disturbed Areas Located within the Area of Potential Effect for which No Historic Property Investigations are Proposed

A. The existing navigation channel bottom between stations +103+000 and -52+000 has been dredged to a depth well below historic harbor depths. Historically, the deepest place in the inner harbor was a 30-foot-deep hole located near station +57+000 and the average channel depth was less than 15 feet. Any historic properties that were once located in the dredged channel bottom were removed by previous harbor deepening projects

B. That portion of the existing bar channel bottom located between stations -52+000 and -60+000 was surveyed prior to construction during the last harbor deepening project. No historic properties were located.

C. The side slopes and adjacent tops of slopes of the existing navigation channel between stations +103+000 and -60+000 were surveyed prior to construction of the last harbor deepening project. Historic properties that would be affected by construction of that project were identified and mitigated. Since much of the proposed project is to be constructed in a manner that will not alter existing channel side slopes and tops of slopes, these areas will not be investigated for historic properties, except in places where previous surveys have identified historic properties located immediately adjacent to the existing project.

D. Those portions of proposed bend wideners and the proposed passing lane that overlap existing harbor turning basins and channels that have been dredged to a depth of 38 or more feet, well below historic channel depths, will not be surveyed. Historic properties located in these areas would have been removed as part of previous dredging projects.

E. The bottom of the Kings Island Turning Basin has been dredged to a depth well below that which could have contained historic properties. This area will not be surveyed.

F. The existing Savannah Harbor dredged material disposal sites have been used for a number of years. Original land surfaces that may contain historic properties are buried under 30 or more feet of dredged material. Existing offshore disposal areas were designed to avoid impacts to any sonar targets or magnetic anomalies identified during the planning process.

VI. Areas Investigated or to be Investigated for Historic Properties

A. Channel bottom and side slopes of bar channel extension.

B. Sides slopes of the existing navigation channel between stations +103+000 and -60+000 in areas where the full channel width must be dredged to facilitate ship movements and in areas where historic properties abut the existing navigation channel.

C. Bottoms and side slopes of bend wideners where they do not overlap existing turning basins.

D. Sides slopes of the Kings Island Turning Basin.

E. Bottom and side slopes of proposed passing lanes.

F. Lands and water bottoms proposed for enhancement for project-related impacts to environmental resources.

VII. Investigations Completed or in Progress.

A. The portion of the existing navigation project that was deepened in 1994 (stations 103+000 to -60+000 plus the Kings Island Turning Basin) was surveyed at that time and historic properties were investigated and mitigated.

B. Remote sensing surveys were conducted of the Back River sediment basin area and portions on upper Back River were surveyed as part of the studies required under the terms of the 1992 Programmatic Agreement for the closing of New Cut and the removal of the tide gate from operation. The survey area included the Back River, from shore to shore, from the mouth of the sediment basin at its juncture with the Savannah Harbor navigation channel to Hog Island.

C. Investigations of the CSS *Georgia* to identify past, present, and future impacts from the existing navigation project and the effects of the proposed expansion project have been conducted. The reports of these investigations have been coordinated with the Georgia and South Carolina State Historic Preservation Offices.

D. In 2003, Savannah District contractor Panamerican Consultants, Inc., completed a survey of the first channel design.

E. In 2005, Savannah District contractor Panamerican Consultants, Inc., conducted a survey of new design elements and conducted diver investigations of a 10 magnetic anomalies and/or sonar targets located within the area of potential effect.

F. Savannah and Wilmington Districts conducted a study to determine the incremental effect of the proposed expansion project upon Ft. Pulaski National Monument.

G. In 1992, as part of the New Cut Closure Project studies, Savannah District contractor Tidewater Atlantic Resources, Inc., conducted low water shoreline and remote sensing surveys of the Back River from its mouth to the lower end of Hog Island in Little Back River. Thirty-one archaeological sites and 26 magnetic anomalies and/or sonar targets were recorded.

H. In 1993 and 1994, Savannah District archaeologists conducted archival research, archaeological survey, site documentation and monitoring, and diver investigations of the sites and anomalies/targets identified in Back River above the tide gate during the 1992 survey. A number of the sites were determined eligible for inclusion in the National Register of Historic Places. The report concluded that the New Cut Closure Project had caused erosion at some of the resources, but, these sites had since stabilized and the detailed research and documentation conducted by Savannah District was adequate to mitigate this effect.

I. Savannah District recovered core samples from an area of the proposed off-shore bend widener that analysis of sub-bottom profiler data indicated the presence of a Pleistocene stream channel. The cores were analyzed in and results reported by New South Associates, Inc., in 2005.

VIII. Resource Potential and Status of Investigations:

A. Bar Channel Extension (Outside State Waters) – Stations –60+000 to –98,600--Bottom and Side Slopes.

The project, as originally proposed, included a 25,000-foot long channel extension, Savannah District archaeologists and hydrographic surveyors conducted side scan sonar and cesium magnetometer surveys of the proposed channel extension area. The survey area was 700 feet wide, sufficient to include the 600-foot proposed channel width and side slopes. In 2005, Savannah District contracted with Panamerican Consultants, Inc., to analyze the data, identify anomalies and/or targets for further evaluation, and conduct diver investigations of potentially significant anomalies and/or targets. The contractor has completed the analyses and has investigated one magnetic anomaly/sonar target. The anomaly/target was identified as modern debris.

As part of studies to identify potential impacts to the Floridan Aquifer, Savannah District conducted sub-bottom profiler surveys of the existing bar channel area, as well as areas on the bar considered for bend wideners and channel extension. The purpose of the survey was to identify the depth and character of the aquifer's Miocene-age cap and to locate former Pleistocene stream channels that cut into the cap. Since stream banks have a higher potential for containing prehistoric archaeological sites, the results of these surveys were also examined by District archaeologists. No Pleistocene streams were found in the extension area.

Due to changes in shoals, in 2009, the bar channel extension was redesigned to be a 38,600- foot-long by 600-foot-wide channel located on a different alignment. Savannah District is contracting for a side scan sonar, magnetometer, and sub-bottom profiler, and diver investigation of the new location. In order to ensure that avoidance of impacts to potentially significant cultural resources is a viable alternative, the area being surveyed is 1100 feet wide. The survey is designed to locate shipwrecks and landforms likely to contain prehistoric sites.

B. Bend Wideners and Full-width Dredging Areas.

Bend Widener (SC waters)—Stations -21+000 to -14+000, 76-foot bottom width plus side slope of 20 feet. Savannah District archaeologists and hydrographic surveyors conducted side scan sonar and magnetometer surveys of this area. The survey area was 300 feet wide. In 2005, the District contracted with Panamerican Consultants, Inc., to analyze the data, identify anomalies and/or targets for further evaluation, and conduct diver investigations of the anomalies. The contractor completed the analyses and recommended no anomalies and/or targets for evaluation.

Sub-bottom profiler surveys conducted as part of the aquifer impact studies identified a Pleistocene stream channel that bisected this area. Savannah District geologists and a contract geoarchaeologist with Brockington and Associates selected four areas from which to take core samples—three located along the banks of the stream and one located on a terrace that formed within the stream channel as sea level rose. Analysis of the cores revealed that the sediments within and adjacent to the stream channel date to the mid-Pleistocene Era and are not associated with human activity.

<u>Full-channel-width Dredging Area (SC waters)—Stations +9+000 to +12+750—side</u> <u>slope impact area of ca. 20 feet.</u> The easterly 1000 feet has been previously impacted by construction of a 36-foot-deep turning basin. The remaining area was surveyed in 2003 by Savannah District contractor Panamerican Consultants for a then-planned 76-footwide bend widener plus side slopes. Eight anomalies and/or targets were recommended as potentially significant. Due to project redesign, all are located over 200 feet from the revised area of potential effect. No further investigations are recommended.

<u>Full-channel-width Dredging Area (GA waters)</u>—<u>Stations +9+500 to +11+500</u>—<u>side</u> <u>slope impact area of ca. 20 feet.</u> This area was surveyed for a previous deepening project. No magnetic anomalies and/or targets were located. No further investigations are recommended.

<u>Full-channel width Dredging Area (SC waters)</u>—Stations +27+250 to +31+750—side <u>slope impact area of ca. 20 feet.</u> In 2003, an area 300 feet wide was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with a then-planned 76-foot-wide channel widener plus side slopes. Ten magnetic anomalies and/or targets were recommended as potentially significant. Due to project redesign, all are located over 100 feet from the revised area of potential effect. <u>Full-channel-width Dredging Area (SC waters)—Stations +41+500 to +49+500—side</u> <u>slope impact area of ca. 20 feet.</u> This area was surveyed as part of a previous deepening project. The survey identified four anomalies and/or targets for further evaluation. Two of the targets, SH-R15 and SH-R19N-1 were located within that project's area of potential of effect and were investigated. Both targets were found to be generated by modern debris. The remaining two anomalies/targets, SH-R16-2 and SH-R17N-1, have not been investigated. These targets will be relocated and assessed.

<u>Full-channel-width Dredging Area (GA waters)—Stations +31+000 to +49+500—side</u> <u>slope impact area of ca. 20 feet.</u> In 2003, an area 300 feet wide was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with a then-planned 76-foot-wide channel widener plus side slopes. Seven individual or clusters of anomalies and/or targets recommended as potentially significant are located within or near to the side slope impact area. Two anomalies and/or targets clusters (cluster 7C-1, 7C-9, 7C-10 and cluster 7E-6, 7E-14, 7E-18, 7E-34, 7E-53, 7E-55) were investigated by Panamerican Consultants, Inc., in 2005 and were found to be generated by modern debris. The remaining three potentially significant individual anomalies and one cluster are recommended for evaluation. Anomaly 7B-4 and anomaly cluster 7C-5, 7C-14 appear to extend into the area of potential effect and will be investigated.

<u>Bend Widener (GA waters)</u>—<u>Stations +49+500 to +53+000</u>—<u>156-foot bottom width</u> <u>plus side slope of less than 75 feet.</u> In 2003, an area 450 feet wide was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with this widener. In 2005, Panamerican Consultants considered diving on anomalies 7A-1 and 7A-8, but, further analysis of the fathometer data and additional remote sensing data gathered as part of that investigation found that the anomalies were located in the dredged channel bottom and were generated by modern debris. Anomaly 7A-9 would be located within the side slope of the proposed bend widener and, based on limited dated, anomalies 7A-26, 7A-28, 7A-31, and 7A-32 are located sufficiently near to the area of potential effect to warrant further investigation.

<u>Bend Widener (SC waters)</u>—Stations +52+250 to +55+000—76-foot bottom width plus side slope of less than 100 feet. In 2003, an area 350 feet wide was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with this widener. No anomalies and/or targets were recommended for further investigation. No further investigations are proposed for this bend widener.

<u>Full-channel-width Dredging (GA waters)—Stations +63+250 to +69+000—side slope</u> <u>impact area of ca. 20 feet.</u> The westernmost 1,750 feet of this area overlaps the Fig Island Turning Basin that has been previously dredged to 38 feet. The eastern portion of this area was surveyed as part of a previous deepening project. Five anomalies and/or targets were identified, none of which were recommended for additional investigation. No further investigations are recommended for this area. <u>Full-channel-width Dredging (GA waters)</u><u>Stations +69+000 to +71+000</u><u>side slope</u> <u>impact area of ca. 20 feet.</u> In 2003, an area 500 feet wide was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with a then-planned 76-foot-wide channel widener plus side slopes. Four anomalies located within the existing channel side slope (4-22, 4-24, 4-26, and 4-27) are recommended for further investigation.

<u>Full-channel-width Dredging (GA waters)</u>—<u>Stations +76+000 to +77+500</u>—<u>side slope</u> <u>impact area of ca. 20 feet.</u> In 2003, an area 150 feet wide (to the shoreline) was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with a then-planned 76-foot-wide channel widener plus side slopes. One anomaly (3-1) was recommended for additional investigation based on the characteristics of its magnetic signature, however, this anomaly is located at the toe of the side slope of the existing navigation channel in an area that has been dredged to 36 feet for commercial wharves. Based on the history of bottom disturbance in this area, no further investigations are recommended for this anomaly.

<u>Full-channel-width Dredging (GA waters)—Stations +87+750 to +89+500—side slope</u> <u>impact area of ca. 20 feet.</u> In 2003, an area 400 feet wide (to the shoreline) was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with a then-planned 76-foot-wide channel widener plus side slopes. No anomalies and/or targets located within the side slope impact area were recommended for further investigation. No further investigations are proposed for this area.

<u>Bend Widener (GA waters)—Stations +101+000 to +103+000—128.6 feet plus side</u> <u>slope of less than 100 feet.</u> This area was investigated by a Georgia Ports Authority archaeological contractor as part of studies conducted for proposed channel modifications associated with the construction of Container Berth 8. Section 106 compliance was completed as required by a Department of the Army Permit issued under the authority of Section 404 of the Clean Water Act of 1972. It has since been dredged. No further investigations are recommended for this area.

C. Kings Island Turning Basin Side Slopes (GA waters)—Stations 98+500 to 100+500 side slope impact area of ca. 20 feet.

In 2003, an area 150 feet wide (to the shoreline) was surveyed by Savannah District contractor Panamerican Consultants, Inc., in order to identify potential impacts associated with side slope changes. No anomalies and/or targets were recommended for additional investigation. Two shoreline sites that had been identified by a previous survey and determined not to be eligible for inclusion in the National Register of Historic Places were relocated. No further investigations are recommended for this area.

D. Passing Lanes

<u>GA and SC waters</u>—Stations +55+000 to +68+500—100 feet wide plus side slope of less than 100 feet.

In 2005, Savannah District contractor Panamerican Consultants, Inc., surveyed an area 400 feet wide to identify potential impacts associated with this passing lane. One previously identified resource, CSS *Georgia*, is located within this area and is discussed in the following section. The survey also identified a number of magnetic anomalies and sonar targets, six of which were selected for diver investigation. Three were found to be generated by modern harbor debris, one (GA waters) was generated by the remains of a steel-hulled sailing vessel dating to the late nineteenth or early twentieth century, and two (SC waters) were generated by the remains of Confederate crib obstructions.

The sailing vessel has been tentatively identified as the pilot boat *Eclipse*, which burned in this general area in 1918. The vessel is potentially eligible for inclusion in the National Register of Historic Places. It is located behind (north of) the submerged remains of the original Fig Island jetty where historical documentation indicates that the bark *Undine* was also abandoned in 1893. *Undine* was built in 1867 as a clipper ship by William Pyle of Sunderland, England. Attempts were made to redesign the passing lane to avoid impacts to these resources, however, it was found that a shorter lane would not meet the needs of the larger vessels transiting the channel.

The Confederate crib obstructions, although severely degraded, are sufficiently intact for the site to be recommended as eligible for inclusion in the National Register of Historic Places at the local level for their archaeological research potential and association with significant events.

<u>GA waters</u>—Stations +16+000 to +20+000—100 feet wide plus side slopes of less than 100 feet.

An area 100 feet wide was surveyed in 1994 for the previous channel deepening project. No potentially significant sonar targets or magnetic anomalies were located in this area. The remaining 100-foot-wide impact area associated with the construction of the proposed passing lane will be surveyed. Archival research has shown that this area of the harbor has the lowest potential for containing shipwreck remains.

E. Fish and Wildlife Mitigation Lands (GA and SC)

In compliance with requirements of the Clean Water Act, Savannah District is working with the US Fish and Wildlife Service, US Environmental Protection Agency, the Georgia Department of Natural Resources, and the South Carolina Department of Health and Environment identified properties to be used, and actions to be taken, for mitigation of wetland impacts. Lands being considered include wetlands, submerged river bottoms, and high ground. <u>Plan 6a.</u> This plan includes the following features, McCoy Cut diversion structure, channel deepening on McCoy Cut to -4m NGVD and Upper Middle and Little Back Rivers to -3m NGVD, fill entire sediment basin to -3.85M NGVD by constructing a submerged sill, close Rifle Cut, remove tide gate abutments and piers, close lower (western) arm of McCoy Cut. Because the proposed features are designed to change the hydraulics of the Middle, Little Back, and Back Rivers, the area of effect includes the construction areas as well as any areas that will be subjected to increased erosion or deposition. In order to determine the effect of the proposed plan upon historic properties, the construction areas, as well as the entire lengths of Middle, Little Back, and Back River channels and shorelines will need to be archaeologically surveyed. These surveys will include archival research, shoreline low water survey and testing, remote sensing (magnetometer and side scan sonar) surveys of submerged areas, and diver investigation of anomalies and/or targets.

One portion of Back River has been surveyed previously. In 1992, Tidewater Atlantic Research, Inc., conducted remote sensing and low water surveys of the Back River area as part of the studies required under the terms of the 1992 Programmatic Agreement for the closing of New Cut and the removal of the tide gate from operation. The survey area included the Back River, from shore to shore, from the mouth of the sediment basin at its juncture with the Savannah Harbor navigation channel to lower end of Hog Island in Little Back River. The survey identified 31 archaeological sites. Sixteen were wrecked or abandoned vessels. One was a prehistoric archaeological site. The remaining sites were related to historic rice plantations (e.g. wharves, dikes, dams, bulkheads, canals, trunks, mills, etc.). The 1992 survey also identified 26 magnetic anomalies and/or sonar targets.

In 1993 and 1994 Savannah District archaeologists conducted archival research, archaeological survey, site monitoring, and diver investigations of sites, magnetic anomalies, and/or sonar targets in the portion of the 1992 survey area located above the tide gate. The purpose of the work was to determine the historical significance of the previously recorded resources and to assess the effect of the New Cut Closure Project upon these resources. A number of sites were determined eligible for inclusion in the National Register of Historic Places. The research concluded that the project had caused some erosion, the areas had stabilized and the extensive documentation conducted during the survey was sufficient to document the portions of the resources that were impacted. The potential impact of Plan 6a upon these resources will be evaluated.

Seven of the magnetic anomalies and/or sonar targets were located in the sediment basin area below the tide gate. More detailed evaluations of these anomalies/targets are needed to determine if they are located within the area of potential effect and their potential significance.

The remaining portions of the area of effect for Plan 6a are located within the Savannah National Wildlife Refuge. None of these areas have been previously surveyed for cultural resources.

<u>Oxygenation Systems</u>. Two areas have been proposed for construction of oxygenation systems. The area of effect for these systems includes the construction areas, as well as the submerged areas near the outlet pipes that would be subjected to larger increases in oxygen levels. Increases in oxygen result in increased degradation of submerged resources (e.g. wrecks, wharves, artifacts, etc.),

One system would be located on the South Carolina side of Back River at the tide gate. The terrestrial and submerged areas have been severely disturbed by tide gate construction and disposal of dredged material. The second system would be above the harbor located on Drakies Bluff in Georgia. The terrestrial portions of the area of effect will be surveyed for historic properties. The submerged portion of the area of effect includes a channel known as Drakies Cut. Historically, this was a small creek known as Canoe Cut. The creek was enlarged (drag lines and dredging) in the early 20th century and became the main navigation channel.

Other Environmental Mitigation Features. Other proposed environmental features include: constructing a boat ramp on Hutchinson Island, construct a fish passage at New Savannah Bluff Lock and Dam, stocking of striped bass, and restoring brackish marsh in existing Disposal Area 1S. Fish stocking will have no effect upon historic properties. The Hutchinson Island boat ramp would be located in Georgia within the area that was heavily disturbed during Tide Gate Construction and that has previously been determined to not contain historic properties. The fish ladder would be located in South Carolina in an area believed to have been disturbed during original lock and dam construction. Savannah District will conduct archival research and an archaeological survey during the design process to verify that the entire area has been disturbed. Disposal Area 1S (Georgia) was not surveyed prior to its use as a Savannah Harbor disposal area. While it is unlikely that any historic properties buried beneath the disposal sediments would retain sufficient integrity to be determined eligible for inclusion in the National Register of Historic Places, Savannah District will conduct archival research and coring investigations to investigate this possibility.

IX. Previously Identified Significant Properties Located in the Vicinity of the Area of Potential Effect Warranting Special Consideration.

A. National Monuments.

<u>Fort Pulaski National Monument (GA)--Station -2+000 to 8+000.</u> Constructed during the 1830s and 1840s, Fort Pulaski is operated and maintained as an historic site by the National Park Service. It is included in the National Register of Historic Places at the national level of significance for its architecture, association with significant events, association with significant people, and archaeological research potential. Erosion is an on-going problem on the channel ward side of monument property. While the fort itself is not endangered by the erosion, associated archaeological deposits may be. The shoreline is well outside the channel side slope and the erosion is unassociated with channel maintenance dredging.

The Monument has expressed concern about the incremental effect of wakes from deeper draft ships that would transit a deeper navigation channel. Savannah and Wilmington Districts conducted an engineering study to determine the nature and scope of this incremental effect. This study concluded that the proposed expansion project would result in a negligible increase in erosion. No further studies are recommended.

B. National Historic Landmarks.

Savannah National Historic Landmark District (GA)--stations +72+000 to +79+000. The Savannah National Historic Landmark District is located along the south shore of the Savannah Harbor navigation channel. The district is listed in the National Register of Historic Places at the national level for its architecture. All but one small area is protected by modern bulkheads, wharves, or rip rap. The exception is located near station +75+500 where a brick-faced wharf constructed during the last quarter of the nineteenth century forms an alcove in the modern bulkhead. This area is used for small boat mooring. Proposed channel improvements will have no effect upon the landmark district.

Fort James Jackson National Historic Landmark (GA)--station +58+000 and +59+000. Fort Jackson is located at the top of the channel side slope on the south shore of the Savannah Harbor navigation channel. It is owned by the State of Georgia and is operated and maintained as a historic site by the Coastal Heritage Society. It is listed in the National Register at the national level of significance for its architecture and association with significant events and historic figures. In 2003, in accordance with a Memorandum of Agreement between Savannah District and the Georgia State Historic Preservation Office, the District completed a bank stabilization project to protect this property from harbor operation and maintenance activities. The potential for future harbor deepening was considered in the design process. No further protection is required for this property.

C. National Register Listed Sites.

<u>CSS Georgia (SC & GA waters)--station 58+500 to 59+000.</u> The wreck of CSS Georgia is included in the National Register of Historic Places at the national level of significance for architecture, association with significant events, association with significant people, and archaeological research potential. The National Register boundary includes the channel side slope, the top of slope, and an area extending 50 feet into the authorized navigation channel. The boundary between South Carolina and Georgia runs through the wreck site. Since 1984, Savannah District has had an agreement with both states to avoid the site area during dredging by 50 horizontal feet for a distance of 1000 feet along the channel. No dredging has been conducted of any portion of the existing navigation channel located between stations +58+000 and +59+000 since 1992.

A 1992 Programmatic Agreement required Savannah District to determine past, present, and future effects of the existing Savannah Harbor Navigation Project upon this resource and to identify and evaluate alternatives to mitigate these effects. This evaluation study was conducted in 2003 in conjunction with studies to determine the incremental effect of

the proposed expansion project. The studies demonstrated that past, present, and future operation and maintenance activities have, and will continue to have, an adverse effect upon the wreck site. In addition, the proposed passing lane that would be constructed as part of the expansion project would adversely affect the site. The draft report of these investigations has been coordinated with the Georgia and South Carolina State Historic Preservation Offices. The Savannah Harbor operation and maintenance project will conduct archaeological data recovery prior to construction of the expansion project. The expansion project will be responsible for final clearance of explosive ordnance prior to deepening the channel and constructing the passing lane.

<u>The Savannah and Ogeechee Canal (GA)--station +79+000.</u> The river lock and northern terminus of the Savannah and Ogeechee Canal is located on the south shore adjacent to the Highway 17 Bridge. The canal was constructed during the 1830s. It is listed in the National Register of Historic Places at the state level for architecture and archaeological research potential. The proposed project will have no effect upon the canal.

D. Properties Pending Formal Nomination to the National Register of Historic Places.

Pennyworth Island (Back River, GA). During 1993 and 1994, Savannah District archaeologists conducted archival research, shoreline inspection, and documentation of sites along the shoreline of Pennyworth Island, in support of the New Cut Closure Project. As a result of these investigations, Savannah District recommended that Pennyworth Island was eligible for inclusion in the National Register of Historic Places at the local level for its ability to provide information on 19th century rice culture along the Savannah River. The island had a diverse history spanning the period from 1825 to the early 20th century and was one of the last active rice plantations on the river. The investigations documented all historic shoreline features, noted that shoreline erosion had been on-going for many years, and recommended that no further work be conducted for the New Cut Closure Project.

The island was in private ownership during the 1993/1994 fieldwork. Recently, it was purchased by Chatham County. The County used the 1993/1994 research to prepare a nomination to the National Register of Historic Places. The nomination is pending approval. The island may be affected by the proposed environmental mitigation measures included in the Savannah Harbor Expansion Project. Affects may include increased shoreline erosion or accretion and will be addressed in accordance with the Programmatic Agreement for the project.

E. Properties Formally Determined Eligible for Inclusion in the National Register of Historic Places.

Fig Island Channel Site (GA)--station +72+000 to +73+500. The Fig Island Channel Site is located on the north side slope and shore of the existing navigation channel. The site has been determined eligible for inclusion in the National Register of Historic Places at the state level for its archaeological research potential. The site area was once a channel

between Fig and Hutchinson Islands. The channel was used for disposal of wrecked and derelict vessels during the eighteenth and nineteenth centuries.

The eastern third of the site has been bulk headed and lies beneath the US Army Corps of Engineers Depot. The western two-thirds of the site has been the subject of a number of archaeological investigations. The District excavated and documented three vessels as mitigation for the effects of a 1980s channel widening project. During the 1993/94 deepening project, the District excavated and documented parts of 20 vessels. The vessels spanned the period ca. 1770 to 1900 and were located within the area of potential effect for that deepening project.

In 2000, portions of the site's 1854 pile dam wall were illegally removed. In 2003, the extreme western portion of the site was investigated as part of planning for a Chatham County project that included bulk heading the adjacent slip. One eighteenth century hull was located within the project's potential area of effect. This project requires a Department of the Army Permit that would be issued under the authority of Section 10 of the Rivers and Harbors Act of 1899 and Section 404 of the Clean Water Act of 1972. Federal permitting and consultation under Section 106 is proceeding as part of that project. A Memorandum of Agreement has been completed identifying mitigation procedures for effects to this resource.

The remaining non-bulk headed portions of the site have been purchased by a developer who intends to bulkhead the shoreline and construct residential and commercial buildings on the site. The bulkhead would require a Department of the Army permit. The project is in an early planning stage and the owner has not applied for a permit.

The Fig Island Channel Site area will not be affected by bend widener construction or full- channel-width dredging, however, since the channel side slope has been determined eligible for inclusion in the National Register of Places, the District has conducted a slope stability analysis study to determine if incremental erosion would occur at the site. The analysis indicated that there would be no impact to the side slope.

<u>Mansfield/Shaftsbury Plantation—09CH685 (Back River, GA).</u> Savannah District archaeologists conducted archival research and field documentation for this plantation as part of the 1993/1994 New Cut Closure Project studies. The plantation was recommended eligible for inclusion in the National Register at the local level of significance for its ability to provide information on historic rice culture along the Savannah River. No further investigations were recommended for this resource as part of the New Cut Closure Project. The site may be affected by increased shoreline erosion or accretion as part of the Savannah Harbor Expansion Project. Impacts to the site will be identified and addressed in accordance with the Programmatic Agreement.

<u>Poplar Grove Plantation—38JA203 (Back River, SC).</u> Savannah District archaeologists conducted archival research and field documentation for this plantation as part of the 1993/1994 New Cut Closure Project studies. The plantation was recommended eligible for inclusion in the National Register at the local level of significance for its ability to

provide information on historic rice culture along the Savannah River. No further investigations were recommended for this resource as part of the New Cut Closure Project. The site may be affected by increased shoreline erosion or accretion as part of the Savannah Harbor Expansion Project. Impacts to the site will be identified and addressed in accordance with the Programmatic Agreement.

<u>Shubra Plantation—38JA204 (Back River, SC).</u> Savannah District archaeologists conducted archival research and field documentation for this plantation as part of the 1993/1994 New Cut Closure Project studies. The plantation was recommended eligible for inclusion in the National Register at the local level of significance for its ability to provide information on historic rice culture along the Savannah River. No further investigations were recommended for this resource as part of the New Cut Closure Project. The site may be affected by increased shoreline erosion or accretion as part of the Savannah Harbor Expansion Project. Impacts to the site will be identified and addressed in accordance with the Programmatic Agreement.

X. Consultation with Native American Tribes

The notice of availability for the 1998 draft Environmental Impact Statement for the expansion project was provided to a number of Native American Tribes. In March 2006 and November 2010, coordination letters were sent to the nineteen Federally recognized Native American Tribes who have an interest in the proposed project area informing them of the status of the project and inviting their comments. Several Tribes responded and requested that they be notified should sites with Native American components be encountered.

XI. Consultation with the Georgia and South Carolina Historic Preservation Offices

The draft Programmatic Agreement (PA) and preliminary project description were coordinated with the Georgia and South Carolina Historic Preservation Offices in March 2006. Shortly after both offices reviewed and approved the agreement, it was determined that project planning would proceed for an extended period and it was likely that large, new features would be added. It was decided to hold the document until more of the new features and their potential effect on historic properties could be identified. While the agreement document itself has not been changed, the attached supporting documentation report (this document) has been updated to reflect the final proposed project. The PA and supporting documentation are being re-coordinated with the state offices.

XII. Consultation with the Advisory Council on Historic Preservation

The Advisory Council on Historic Preservation was contacted in May 2006 and asked if they wished to participate in the Programmatic Agreement. They indicated that they would not participate at that time. They are being contacted to reconfirm that position.

XIII. Public Involvement

A number of public involvement meetings have been held as part of the National Environmental Policy Act compliance activities. Two of these events included manned cultural resources information booths which informed the public about the cultural resources studies and potential impacts to these resources.

Savannah District conducted a media day and created brochures during studies of the CSS *Georgia*. A local television station ran a series of stories on the progress of the investigations and one former reporter is creating a documentary about the vessel. District archaeologists made presentations to a large number of groups. Among them were the Society for Georgia Archaeology, local chapters of the Sons of Confederate Veterans and the United Daughters of the Confederacy, the Coastal Georgia Archaeological Society, an honors sorority, and other groups.

The 1998 draft environmental impact statement elicited 1,588 responses from individuals supporting archaeological recovery of the CSS *Georgia* and stabilization of Fort James Jackson (since completed).

HISTORIC PRESERVATION DIVISION

Mark Williams Commissioner Dr. David Crass Division Director

March 1, 2018

Erik T. Blechinger, PMP Deputy District Engineer Planning, Programs and Project Management US Army Corps of Engineers, Savannah District 100 West Oglethorpe Avenue Savannah, Georgia 31401-3604 Attn: Julie Morgan, Archaeologist

RE: Savannah Harbor Navigation Channel Project Chatham County, Georgia HP-911120-001

Dear Mr. Blechinger:

The Historic Preservation Division (HPD) has reviewed the additional information submitted concerning the above referenced project. Our comments are offered to assist the US Army Corps of Engineers (USACE) in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA).

The submitted information pertains to the construction of a fish passage and conveyance of the park and recreation area to Augusta-Richmond County as part of the Savannah Harbor Expansion Project along the Savannah River in Chatham County. The project was previously determined to have an adverse effect on the National Register of Historic Places (NRHP)-eligible New Savannah Bluff Lock and Dam (NSBLD).

Current submitted information includes description of the need to revise the fish passage portion of the project due to Section 1319 of the 2016 Water Infrastructure Improvements for the Nation Act, enacted after the initial fish passage was designed. Based on this additional information provided, HPD concurs that all of the project alternatives continue to constitute an **adverse effect** on the NSBLD, as defined in 36 CFR Part 800.5(a)(2).

HPD is unable to comment on the effects of the fish passage on archaeological resources or the effects of the related conveyance of the park and recreation area to Augusta-Richmond County without additional information. HPD looks forward to receiving the archaeological survey and remote sensing survey, once a fish passage alternative has been selected, in accordance with the Programmatic Agreement, and a cultural resources survey of the property to be conveyed, once available. Additionally, HPD requests a copy of the November 2017 bank line assessment for review and comment.

Once effects for the entire fish passage and conveyance project have been determined, the federal agency must notify the Advisory Council on Historic Preservation of the adverse effect and consult with the State Historic Preservation Officer on ways to avoid or reduce adverse effects to historic properties. HPD would like to make it clear that this determination of an adverse effect is not the end of the consultation process. In regards to mitigation for historic resources, HPD concurs with Historic American Engineering Record documentation and recommends including a public history component as part of the mitigation. HPD looks forward to working with the USACE to discuss mitigation options and the development of a Memorandum of Agreement (MOA) to address the adverse effects of this project on historic resources.

JEWETT CENTER FOR HISTORIC PRESERVATION 2610 GA HWY 155, SW | STOCKBRIDGE, GA 30281 770.389.7844 | Fax 770.389.7878 | WWW.GEORGIASHPO.ORG Mr. Blechinger March 1, 2018 HP-911120-001 Page 2

Please refer to project number **HP-911120-001** in any future correspondence regarding this project. If we may be of further assistance, please do not hesitate to contact Jennifer Dixon, Environmental Review Program Manager, at jennifer.dixon@dnr.ga.gov or (770) 389-7851.

V/r,

Dane fims

Dr. David Crass Division Director Deputy State Historic Preservation Officer

DCC/jad

HISTORIC PRESERVATION DIVISION

Mark Williams Commissioner DR. DAVID CRASS DIVISION DIRECTOR

August 26, 2013

Mr. William Bailey Chief, Planning Division US Army Corps of Engineers Savannah District 100 West Oglethorpe Avenue Savannah, Georgia 31401-3640 Attn: Julie Morgan, julie.a.morgan@usace.army.mil

RE: Compliance with Programmatic Agreement Savannah Harbor Navigation Channel Project Chatham County, Georgia HP-911120-001

Dear Mr. Bailey:

The Historic Preservation Division (HPD) has received the report entitled *Cultural Resources Survey of the New Savannah Bluff Lock and Dam Fish Passage Tract, Aiken County, South Carolina and Richmond County, Georgia* prepared by Brockington and dated June 2013. Our review is in accordance with the Programmatic Agreement (PA) for the above referenced undertaking, which we signed November 22, 2011.

Based on the information provided in the survey report, HPD agrees with the findings of the USACE for the properties in Georgia located within the project's area of potential effects. Specifically, HPD agrees that the New Savannah Bluff Lock and Dam (NSBL&D) is considered eligible for inclusion in the National Register of Historic Places (NRHP) under Criteria A and C. Furthermore, HPD agrees that the project as proposed will have a visual adverse effect to this historic property. Finally, it is our opinion that the mitigation proposed is appropriate to address adverse effects associated with this undertaking. We look forward to further consultation with USACE and South Carolina State Historic Preservation Officer (SHPO) to develop a Memorandum of Agreement.

Please submit one electronic copy of the report to HPD. Please ensure the electronic copy is an optical character enabled .pdf. For your information, the electronic file will be sent to the Georgia Archaeological Site File at the University of Georgia, Athens for permanent retention.

If you have any questions, please feel free to contact Elizabeth Shirk, Environmental Review Coordinator, at 404-651-6624 or via email at <u>elizabeth.shirk@dnr.state.ga.us</u>.

Sincerely,

new Ander

Karen Anderson-Cordova, Program Manager Environmental Review & Preservation Planning

KAC/ECS

Cc: Chris McCabe, DNR

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT 100 W. OGLETHORPE AVENUE SAVANNAH, GEORGIA 31401-3604

FEB 0 5 2018.

Planning Programs and Project Management Division

David Crass, Ph.D. Georgia Department of Natural Resources Director, Historic Preservation Division Jewett Center for Historic Preservation 2610 Georgia Highway 155, SW Stockbridge, Georgia 30281

Dear Dr. Crass:

The U.S. Army Corps of Engineers, Savannah District, is revising the manner in which it will construct a fish passage as part of the Savannah Harbor Expansion Project (SHEP) (HP-911120-001). The undertaking will be located at the New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia, and Aiken County, South Carolina, and allow Shortnose and Atlantic sturgeon to access upstream historic spawning areas at the Augusta Shoals. Construction of the feature was previously approved through the 2012 General Re-evaluation Report and Final Environmental Impact Statement. However, Section 1319 of the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act requires revisions to the approved design. This letter and the enclosed information are provided to re-initiate consultation with your agency pursuant to Section 106 of the National Historic Preservation Act (NHPA).

Please review the enclosed information pursuant to 36 CFR Part 800, and provide your comments within 30 calendar days. Questions may be directed to Ms. Julie Morgan, Archaeologist, Planning Branch, at 706-856-0378, or email, julie.a.morgan@usace.army.mil. Correspondence may be mailed to Ms. Morgan at Hartwell Project, ATTN: J. Morgan, 5625 Anderson Highway, Hartwell, Georgia, 30643.

Sincerely,

Erik T. Blechinger, PMP Deputy District Engineer for Planning, Programs and Project Management

Enclosure

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT 100 W. OGLETHORPE AVENUE SAVANNAH, GEORGIA 31401-3604

FEB 0 5 2018

Planning Programs and Project Management Division

W. Eric Emerson, Ph.D. Director South Carolina Department of Archives and History 8301 Parklane Road Columbia, South Carolina 29223

Dear Dr. Emerson:

The U.S. Army Corps of Engineers, Savannah District, is revising the manner in which it will construct a fish passage as part of the Savannah Harbor Expansion Project (SHEP) (HP-911120-001). The undertaking will be located at the New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia, and Aiken County, South Carolina, and allow Shortnose and Atlantic sturgeon to access upstream historic spawning areas at the Augusta Shoals. Construction of the feature was previously approved through the 2012 General Re-evaluation Report and Final Environmental Impact Statement. However, Section 1319 of the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act requires revisions to the approved design. This letter and the enclosed information are provided to re-initiate consultation with your agency pursuant to Section 106 of the National Historic Preservation Act (NHPA).

Please review the enclosed information pursuant to 36 CFR Part 800, and provide your comments within 30 calendar days. Questions may be directed to Ms. Julie Morgan, Archaeologist, Planning Branch, at 706-856-0378, or email, julie.a.morgan@usace.army.mil. Correspondence may be mailed to Ms. Morgan at Hartwell Project, ATTN: J. Morgan, 5625 Anderson Highway, Hartwell, Georgia, 30643.

Sincerely,

Erik T. Blechinger, PMP Deputy District Engineer for Planning, Programs and Project Management

Enclosure

From:	Morgan-Ryan, Julie A CIV USARMY CESAS (US)
To:	"Erick Montgomery"
Cc:	Paula Knox; Heard Robertson; Thomas H. Robertson; BAILEY, William G CIV USARMY CESAS (US)
Subject:	RE: [Non-DoD Source] Re: New Savannah Bluff Lock and Dam and National Historic Preservation Act Compliance
Date:	Friday, February 2, 2018 12:52:00 PM

Mr. Montgomery:

Thank you for your response. It will likely be a few weeks before anything gets sent out.

Respectfully,

Julie A. Morgan Archaeologist, Planning Branch U.S. Army Corps of Engineers, Savannah District Office: 706-856-0378 Email: julie.a.morgan@usace.army.mil

-----Original Message-----From: Erick Montgomery [mailto:erick@historicaugusta.org] Sent: Saturday, January 27, 2018 12:21 PM To: Morgan-Ryan, Julie A CIV USARMY CESAS (US) <Julie.A.Morgan@usace.army.mil> Cc: Paula Knox <knoxpc@mindspring.com>; Heard Robertson <heardrobertson@yahoo.com>; Thomas H. Robertson <THRobertson@cranstonengineering.com> Subject: [Non-DoD Source] Re: New Savannah Bluff Lock and Dam and National Historic Preservation Act Compliance

Dear Ms. Morgan,

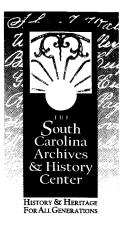
Thank you for reaching out regarding ongoing planning for the New Savannah Bluff Lock and Dam. Yes, we would like to be included in the 106 Review Process, as we have a concern for the preservation of this important historic resource on the Savannah River. Let me know how we can participate and the process goes forward.

Sincerely,

Erick Montgomery Executive Director Historic Augusta, Inc. P. O. Box 37 Augusta, GA 30903 (706) 724-0436 - voice (706) 724-3083 - fax Erick@historicaugusta.org <<u>mailto:Erick@historicaugusta.org</u>>

On Fri, Jan 26, 2018 at 7:50 AM, Morgan-Ryan, Julie A CIV USARMY CESAS (US) <Julie.A.Morgan@usace.army.mil <<u>mailto:Julie.A.Morgan@usace.army.mil</u>>> wrote:

Dear Mr. Erick Montgomery:


The Savannah District, U.S. Army Corps of Engineers (USACE) will be constructing a fish passage feature at the New Savannah Bluff Lock and Dam as part of the Savannah Harbor Expansion Project. We are coordinating with the Georgia and South Carolina Historic Preservation Officers in accordance with Section 106 of the National

Historic Preservation Act (NHPA) on our present investigations and will be coordinating with the public when we have a proposed course of action. We are evaluating several alternatives for the fish passage design, all of which have the potential to affect the New Savannah Bluff Lock and Dam structure, a resource eligible for the National Register of Historic Places.

Would your organization be interested in receiving or providing information related to our work at that site? If your organization is interested in participating in the Section 106 process, please let me know by responding to this email and we will provide you with more details of the project via a formal letter on agency letterhead. If your organization would like to be a consulting party under the terms of the NHPA, please let me know.

Respectfully,

Julie A. Morgan Archaeologist, Planning Branch U.S. Army Corps of Engineers, Savannah District Office: 706-856-0378 <tel:706-856-0378> Email: julie.a.morgan@usace.army.mil <<u>mailto:julie.a.morgan@usace.army.mil</u>> August 29, 2013

William G. Bailey Department of the Army Savannah District, Corps of Engineers 100 W. Oglethorpe Avenue Savannah, GA 31401-3640

> Re: Savannah Harbor Expansion, CRS of New Savannah Bluff Lock and Dam Fish Passage Tract Aiken County, South Carolina SHPO Number: 03-VM0063

Dear William Bailey:

Thank you for your letter of July 26, which we received on July 31, regarding the New Savannah Bluff Lock and Dam Fish Passage Tract. We also received the report entitled *Cultural Resources Survey of the New Savannah Bluff Lock and Dam Fish Passage Tract* as supporting documentation for this undertaking. The State Historic Preservation Office is providing comments to the U.S. Army Corps of Engineers pursuant to Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR 800. Consultation with the SHPO is not a substitution for consultation with Tribal Historic Preservation Offices, other Native American tribes, local governments, or the public.

Brockington and Associates conducted a cultural resources survey of the New Savannah Bluff Lock and Dam Fish Passage Tract which involved terrestrial, submerged, and geomorphological investigations. Terrestrial archaeological and geomorphological investigations identified three unrecorded archaeological sites (38AK1070-38AK1072). Sites 38AK1070 and 38AK1071 were identified as historic artifact scatters, likely the remains of late nineteenth to early twentieth century tenant houses. Site 38AK1072 was identified as a late eighteenth to late nineteenth century artifact scatter. None of the sites were found to contain intact structures or features, and all appeared to be heavily disturbed. Sites 38AK1070-38AK1072 were recommended not eligible for listing on the National Register of Historic Places (NRHP). We concur with this determination; no further archaeological investigation is necessary at these sites. We do, however, have some technical comments (attached) to be addressed in the final report. While the historic tenant house sites are not eligible for listing on the NRHP, we appreciate the effort put forth by Brockington to place these sites in the context of post-bellum tenant farming in South Carolina and Georgia.

Regarding the submerged portion of the archaeological survey, our office and the State Underwater Archaeologist concur with the contractor's recommendation that no additional archaeological investigations are required for this project. Regarding the New Savannah Bluff Lock and Dam, our office concurs that the structure is eligible for listing on the NRHP under Criteria A and C and we agree that the proposed project will have an adverse visual effect. Potential mitigation efforts suggested in the report include interpretive on-site signage such as informational panels or kiosks, as well as photographic and historical documentation of the lock and dam structure through the Historic American Engineering Record (HAER). We concur with these proposed mitigation efforts, but would like to know if you have considered nominating the property for listing on NRHP as a possible component to the mitigation efforts.

To complete the consultation process: SHPO requires two (2) digital copies of the final report in ADOBE Acrobat PDF format on CD and two (2) bound and one (1) unbound hard copies on acid-free paper. Consultants should send all copies directly to SHPO. SHPO will distribute the appropriate copies to SCIAA.

We look forward to working with you in developing the MOA to address the mitigation effort for the New Savannah Bluff Lock and Dam.

If you have any questions, please contact me at (803) 896-6181 or edale@scdah.state.sc.us.

Sincerely, M

Emily Dale Staff Archaeologist State Historic Preservation Office

cc. Keith Derting, SCIAA Jim Spirek, SCIAA

Technical Comments

- 1) In the introduction, site 38AK1072 is not discussed with or in a similar fashion as the two sites identified during the terrestrial survey. Consider putting it with the others or giving it a bold heading within the deep testing section as the others have.
- 2) Pg. 17, paragraph 2 this paragraph discusses refuse disposal patterns at sites in Georgia, but omits South Carolina.

The following is a copy of the comments provided by Jim Spirek, State Underwater Archaeologist:

We do, however, have a comment concerning the reported involvement of the investigations of 38BK15 by the Maritime Research Division (MRD) (see pages iv, 44, and 68). We would like to clarify the sequence of events surrounding MRD's role in the limited underwater archaeological investigation of the Mason's Plantation Mounds. In 2005, Mr. Christopher Thornock undertook to locate the presence of the mounds through the placement of several cores in the bluff. Based on his findings, and now a graduate student at the University of South Carolina, Mr. Thornock contacted the Maritime Research Division in 2008 to conduct a visual inspection of the Savannah River adjacent to the presumed locations of the mounds, as well as downstream and upstream of the site. MRD underwater archaeologists recovered a number of ceramics from the river bottom, primarily from the downstream area. We have not, nor has Mr. Thornock, undertaken any subsequent work at 38AK15 since 2008 (see page 68). Additionally, please change instances of the Underwater Division to the Maritime Research Division.

On an editorial note, the contractor should include a color legend denoting the range of the magnetic contours, especially Figures 17 (pg. 29) and 35 (pg. 44).

We believe the archaeological work outlined in this report satisfies compliance to the Section 106 of the NHPA process concerning the Savannah River Expansion Project. Thank you for the opportunity to review this report and if you have any questions, comments, etc. about our remarks please contact me.

Appendix D2

* March 2018 Draft U.S. Fish and Wildlife Coordination Act Report

United States Department of the Interior

Fish and Wildlife Service 105 Westpark Drive, Suite D Athens, Georgia 30606 March 21, 2018

West Georgia Sub Office P.O. Box 52560 Ft. Benning, Georgia 31995-2560

Coastal Sub Office 4980 Wildlife Drive Townsend, Georgia 31331

Colonel Marvin L. Griffin Commander, Savannah District U.S. Army Corps of Engineers 100 West Oglethorpe Avenue Savannah, Georgia 31402

Dear Colonel Griffin:

We are providing your agency with a Fish and Wildlife Coordination Act Report (FWCAR) for the proposed New Savannah Bluff Lock and Dam Instream Fishway, Richmond County, Georgia and Aiken County, South Carolina, Project Authorization Change (PAC) Report in partial fulfillment of Section 2(b) of the Fish and Wildlife Coordination Act (FWCA) (48 Stat. 401, as amended; 16 U.S.C. § 661 *et seq.*). The purpose of the PAC Report is to propose changes to both the Savannah Harbor Expansion Project (SHEP) and the New Savannah Bluff Lock & Dam (NSBLD), both federally-authorized projects, which are anticipated to result in a total Federal cost savings. The Tentatively Selected Plan (TSP) proposes de-authorizing the NSBLD, inactivating the lock and dam by cutting off the upper portion of the dam down to the sill and removing the lock structure, and constructing an in-channel rock weir to retain the pool of the NSBLD. We submit the following comments and recommendations under the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. § 1531 *et seq.*) and the FWCA. A separate consultation will occur regarding the potential impacts of the United States Army Corps of Engineers (Corps)' proposal on federally-listed threatened and endangered fish and wildlife species protected under the ESA.

The FWCAR outlines fish and wildlife concerns and planning objectives, describes the Corps' No Action Alternative and the four alternatives, compares project impacts of the alternatives, and provides fish and wildlife conservation measures and recommendations that would address our concerns. Our preferred action at NSBLD based on the provided documentation and the alternatives presented is the current Alternative 2-6, a Fixed Weir Crest with Floodplain Bench. Alternative 2-6 should operate over a wider range of flows, demonstrate improved fishway attraction performance, and reduce maintenance issues associated with the existing lock structure, a modified lock structure, or new bypass with gates. However, due to the lack of design detail and analyses regarding design at this time, we cannot provide this FWCAR in *complete* fulfillment of 2(b) of the FWCA. We recommend the Corps implement the Service's recommendations in this report and provide detailed information as the preferred alternative and design progresses for the Service to be able to fulfill our 2(b) duties.

The Service is willing to work with the Corps to expeditiously implement any recommendations. If you have any questions, please contact Georgia Ecological Services staff biologist Carrie Straight at 706-613-9493.

Sincerely, ed wh

Donald Imm Field Supervisor

cc: T. McCoy, USFWS, Charleston, SC M. Caldwell, USFWS, Charleston, SC B. Hamstead, USFWS, Asheville, NC B. Wikoff, USFWS, Townsend, GA D. Walther, USFWS, Lafayette, LA B. Towler, USFWS, Hadley, MA R. Self, SCDNR, Columbia, SC B. Perry, SCDNR, Columbia, SC B. Post, SCDNR, Charleston, SC P. Wendt, SCDNR, Charleston, SC J. Biagi, GDNR-WRD, Social Circle, GA T. Litts, GDNR-WRD, Social Circle, GA S. Robinson, GDNR-WRD, Social Circle, GA E. Betross, GDNR-WRD, Thomson, GA J. Fleming, GDNR-WRD, Richmond Hill, GA T. Barrett, GDNR-WRD, Richmond Hill, GA S. Schleiger, GDNR-WRD, Fort Valley, GA B. Albanese, GDNR-WRD, Social Circle, GA J. Wisniewski, GDNR-WRD, Social Circle, GA P. Wilber, NOAA, Charleston, SC K. Davy, NOAA, Dania Beach, FL F. Rohde, NOAA, Beaufort, NC B. Bailey, ACOE, Savannah, GA D. Walker, ACOE, Savannah, GA

Fish and Wildlife Coordination Act Report

on

New Savannah Bluff Lock and Dam Post-Authorization Analysis, Georgia & South Carolina

Prepared by:

Georgia Ecological Services Athens, Georgia

U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia March 20, 2018

EXECUTIVE SUMMARY

The United States Army Corps of Engineers (Corps) proposes to de-authorize and remove the New Savannah Bluff Lock and Dam (NSBLD) and construct an in-channel rock ramp weir to retain the pool of the NSBLD. This Fish and Wildlife Coordination Act Report (FWCAR) outlines fish and wildlife concerns and planning objectives, describes the Corps' No Action Alternative (NAA) and four alternatives, compares impacts of all alternatives, and provides fish and wildlife concerns.

Our preferred action at NSBLD based on the provided documentation and the alternatives presented is the current Alternative 2-6, a Fixed Weir Crest with Floodplain Bench. Alternative 2-6 should operate over a wider range of flows, demonstrate improved fishway attraction performance, and reduce maintenance issues associated with the existing lock structure, a modified lock structure, or new bypass with gates. However, due to the lack of design detail and analyses regarding the alternatives at this time, we cannot provide this FWCAR in *complete* fulfillment of 2(b) of the FWCA. We recommend the Corps implement the Service's fish and wildlife conservation measures and recommendations. For the Service to be able to fulfill our 2(b) duties, we specifically request the information outlined below to be addressed.

- To ensure successful passage, the Service recommends that the Corps' work to minimize the slope of any selected alternative and, at a minimum, maintain slopes below 3% at all times.
- Any design should assess maintenance of flows for fish attraction and flow diversions that may represent false attractions to migratory fish.
- Any design should seek to create a diversity of hydraulic conditions to promote passage for an entire suite of migratory species. This can be accomplished through designs that include low flow channels, terraces, and flood plains that engage under different river conditions.
- When developing final designs, the Service strongly recommends incorporating fish passage design parameters based on swimming performance, fatigue, slope, turbulence, and biological capacity.
- As the proposed project is developed, consultation with Service's and other agency/private subject-matter experts should continue at significant stages (30%, 60%, 90% design) to ensure that the evolving design constraints do not adversely impact fish passage efficacy or habitat quality for the suite of native species at the project site.
- The Service requests that the Corps' develop a fishway operations and maintenance plan in consultation with the natural resource agencies.
- Target species and passage goals should be identified for the final structure and monitoring should be conducted at a variety of flows to assess if goals are met. Design should also consider the feasibility and cost of how adaptations or modifications of the structure would occur to address any inadequacies of passage.

INTRODUCTION	Table of Contents EXECUTIVE SUMMARY	i
PURPOSE, SCOPE & AUTHORITY 1 FWCA AGENCY CONSULTATION AND PREVIOUS CONSULTATION 2 PRIOR STUDIES AND REPORTS 2 DESCRIPTION OF STUDY AREA 2 SAVANNAH BASIN DESCRIPTION 2 NSBLD DESCRIPTION 5 WATER QUALITY 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Pinal FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 NO ACTION ALTERNATIVE 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
FWCA AGENCY CONSULTATION AND PREVIOUS CONSULTATION 2 PRIOR STUDIES AND REPORTS 2 DESCRIPTION OF STUDY AREA 2 SAVANNAH BASIN DESCRIPTION 2 NSBLD DESCRIPTION 5 WATER QUALITY. 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Pinal FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of Alternative 1-1 23 Fishway Slope 23		
PRIOR STUDIES AND REPORTS 2 DESCRIPTION OF STUDY AREA 2 SAVANNAH BASIN DESCRIPTION 2 NSBLD DESCRIPTION 5 WATER QUALITY 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of Alternative 1-1 23 Fishway Slope 23		
DESCRIPTION OF STUDY AREA 2 SAVANNAH BASIN DESCRIPTION 2 NSBLD DESCRIPTION 5 WATER QUALITY. 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-4 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
SAVANNAH BASIN DESCRIPTION 2 NSBLD DESCRIPTION 5 WATER QUALITY 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
NSBLD DESCRIPTION 5 WATER QUALITY 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Mare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-4 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of Alternative 1-1 23 Fishway Slope 23		
WATER QUALITY. 7 FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-6 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES 8 FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-6 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
FISH AND WILDLIFE CONCERNS 8 Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-6 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 1-1 23 Fishway Slope 23		
Migratory Fishes 8 Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
Rare Mussels Potentially in the Project Area 13 Riverine and Shoal Habitat 16 Recreational Features 16 PLANNING OBJECTIVES 16 Diadromous Fish Restoration Plan for the Middle Savannah River 16 Final FWCAR NSBLD Section 216 Disposition Study 18 DESCRIPTION OF CORPS' ALTERNATIVES 19 NO ACTION ALTERNATIVE 19 Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage 19 Alternative 2-3 – Fixed Crest Weir 21 Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Fishway Slope 23		
Riverine and Shoal Habitat16Recreational Features16PLANNING OBJECTIVES16Diadromous Fish Restoration Plan for the Middle Savannah River16Final FWCAR NSBLD Section 216 Disposition Study18DESCRIPTION OF CORPS' ALTERNATIVES19NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative 1-123Fishway Slope23		
Recreational Features16PLANNING OBJECTIVES16Diadromous Fish Restoration Plan for the Middle Savannah River16Final FWCAR NSBLD Section 216 Disposition Study18DESCRIPTION OF CORPS' ALTERNATIVES19NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative 1-123Fishway Slope23		
PLANNING OBJECTIVES.16Diadromous Fish Restoration Plan for the Middle Savannah River.16Final FWCAR NSBLD Section 216 Disposition Study18DESCRIPTION OF CORPS' ALTERNATIVES19NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir.21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative 1-123Fishway Slope23		
Diadromous Fish Restoration Plan for the Middle Savannah River		
Final FWCAR NSBLD Section 216 Disposition Study18DESCRIPTION OF CORPS' ALTERNATIVES19NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23		-
DESCRIPTION OF CORPS' ALTERNATIVES19NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23		
NO ACTION ALTERNATIVE19Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23		
Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage19Alternative 2-3 – Fixed Crest Weir21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23		
Alternative 2-3 – Fixed Crest Weir.21Alternative 2-6 – Fixed Crest Weir with Floodplain Bench21Alternative 2-8 – Fixed Crest Weir with Gated Bypass21FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS23Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23		
Alternative 2-6 – Fixed Crest Weir with Floodplain Bench 21 Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS 23 Evaluation of No Action Alternative 23 Evaluation of Alternative 1-1 23 Fishway Slope 23		
Alternative 2-8 – Fixed Crest Weir with Gated Bypass 21 FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS		
FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS	-	
Evaluation of No Action Alternative23Evaluation of Alternative 1-123Fishway Slope23	Alternative 2-8 – Fixed Crest Weir with Gated Bypass	21
Evaluation of Alternative 1-1	FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS	23
Fishway Slope	Evaluation of No Action Alternative	23
	Evaluation of Alternative 1-1	23
Boulder Structure and Arrangement	Fishway Slope	23
	Boulder Structure and Arrangement	24

TABLE OF CONTENTS

Lock Wall Extension and Sheetpile	. 24
Fishway Entrance	. 24
Design Flows	. 25
Gate Operations and Flow Partitioning	. 25
Tailwater Fluctuations	. 26
Turbulence, Energy Dissipation and Pool Sizing	. 26
Downstream Passage	. 27
Maintenance	. 27
Evaluation of Alternative 2-3	. 27
Fishway Slope	. 27
Boulder Structure and Arrangement	. 28
Turbulence, Energy Dissipation and Pool Sizing	. 28
Weir Crest and a Low Flow Notch	. 28
Maintenance	. 29
Evaluation of Alternative 2-6	. 29
Fishway Slope	. 29
Boulder Structure and Arrangement	. 29
Turbulence, Energy Dissipation and Pool Sizing	. 30
Weir Crest, Low Flow Notch and Bench	. 30
Maintenance	. 30
Evaluation of Alternative 2-8	. 31
Fishway Slope	. 31
Boulder Structure and Arrangement	. 31
Turbulence, Energy Dissipation and Pool Sizing	. 32
Weir Crest and Low Flow Notch	. 32
Flood Bypass	. 32
Maintenance	. 32
SUMMARY	. 33
FWS POSITION	. 35
LITERATURE CITED	. 35

INTRODUCTION

PURPOSE, SCOPE & AUTHORITY

The New Savannah Bluff Lock and Dam (NSBLD), completed in 1937, is located 187 miles upstream of the mouth of the Savannah River, and approximately 13 miles downstream from Augusta, Georgia. The project was authorized for commercial navigation; however, due to a lack of commercial use, the project has been in a caretaker status since 1979. The structure currently provides a stable pool for water supply intakes for twelve large industries and municipalities and recreation to downtown Augusta and areas near the Lock & Dam. The Water Resources Development Act (WRDA) 2000 authorized the U.S. Army Corps of Engineers (Corps) to rehabilitate the lock and dam at full Federal expense with the option to transfer it to North Augusta/Aiken County, South Carolina. The Consolidated Appropriations Act 2001 added fish passage to the project and removed the estimated cost from the authorized the NSBLD and repealed/replaced language in WRDA 2000/2001 Appropriations Act with requirements to fulfill fish passage mitigation under the Savannah Harbor Expansion Project (SHEP) and provides the Secretary with options to modify the SHEP fish passage feature as follows:

- i. Repair the NSBLD lock wall and modify the structure such that the structure is able:
 - a. to maintain the pool for navigation, water supply, and recreational activities
 - b. to allow safe passage over the structure to historic spawning grounds of shortnose sturgeon, Atlantic sturgeon, and other migratory fish; OR
- ii. a. construction at an appropriate location across the Savannah River of a structure that is able to maintain the pool for water supply and recreational activities; and
 - b. removal of the New Savannah Bluff Lock and Dam on completion of construction of the fish passage structure; and

Conveyance of the park and recreation area adjacent to the NSBLD to Augusta-Richmond County, Georgia, without consideration.

The design and construction to fulfill fish passage requirements as required by the Endangered Species Act (ESA) and included in the approved Savannah Harbor Expansion Project will be cost shared under the project.

The Savannah District of the Corps, in response to WIIN 2016, has developed several new alternatives to evaluate with regards the New Savannah Bluff Lock and Dam Fish Passage mitigation feature of SHEP. The alternatives considered include:

- No Action Alternative
- Alternative 1-1 Repair Lock Wall Georgia Side Fish Passage

- Alternative 2-3 Fixed Crest Weir
- Alternative 2-6 Fixed Crest Weir with Floodplain Bench
- Alternative 2-8 Fixed Crest Weir with Gated Bypass

The Service's involvement in this project is authorized by the Fish and Wildlife Coordination Act (FWCA). The FWCA establishes fish and wildlife conservation as a co-equal purpose or objective of federally-funded or permitted water resource development proposals or projects.

FWCA AGENCY CONSULTATION AND PREVIOUS CONSULTATION

The Service previously provided the Corps with a Fish and Wildlife Coordination Act Report (FWCAR) discussing for the proposed New Savannah Bluff Lock and Dam Instream Fishway dated July 14, 2017. Although that report addressed different fishway alternatives, comments by the Service and other agencies concerning resource concerns in the watershed still remain valid.

This FWCAR is presented in partial fulfillment of FWCA and does not constitute the final report of the Secretary of the Interior as required by Section 2(b) of the FWCA (48 Stat. 401, as amended; 16 U.S.C. § 661 *et seq.*).

PRIOR STUDIES AND REPORTS

- The following studies and/or reports are the most pertinent documents involved in producing this FWCAR:
- Service's 2000 Final FWCAR on NSBLD Project Section 216 Disposition Study;
- Service and NMFS' 2005 Diadromous Fish Restoration Plan for the Middle Savannah River: Strategy and Implementation Schedule;
- Service's May 24, 2013, letter to the Corps regarding off-channel bypass fishway design;
- Blair Remy Architects and Tetra Tech's February 2014 Savannah Harbor Expansion Project New Savannah Bluff Lock & Dam Fish Passage Georgia and South Carolina, Volume 1 Basis of Design and Volume 3 Fish Passage Design;
- Service's May 12, 2014, letter to the Corps regarding off-channel bypass fishway design;
- Corps' 2015 Preliminary Draft FONSI EA NSBLD PAC Report;
- Corps' 2016 Draft FONSI EA NSBLD PAC Report;
- Service's 2016 Draft FWCAR on NSBLD Instream Fishway Project Authorization Change Report, Georgia & South Carolina; and
- Service's 2017 FWCAR on NSBLD Instream Fishway.

DESCRIPTION OF STUDY AREA

SAVANNAH BASIN DESCRIPTION

The headwaters of the Savannah River Basin originate in the Blue Ridge Province of Georgia, North Carolina, and South Carolina. The Savannah River Basin then passes through the Piedmont, Fall Line, and Coastal Plain Provinces, paralleling the Georgia and South Carolina border, before reaching the Atlantic Ocean (Figure 1). Approximately 175 square miles of the estimated 10,577-square-mile basin are located in North Carolina, 4,581 square miles in South Carolina, and 5,821 square miles in Georgia.

In the Upper Savannah River, the Chattooga and Tallulah Rivers join in the headwaters of Georgia to form the Tugaloo River. In South Carolina, the Keowee River and Twelve Mile Creek are the major waterbodies that join to form the Tugaloo River. The Savannah River forms at the junction of the Seneca River and the Tugaloo River, which flows southeasterly for approximately 300 river miles to the Atlantic Ocean.

Although there are numerous smaller impoundments throughout the basin, there are currently 15 large reservoirs on the mainstem Savannah River and its major headwater tributaries (Figure 2). Six major tributary reservoirs are located in the Georgia portion of the upper Savannah River Basin, owned and operated for hydropower production by Georgia Power Company. From an upstream to downstream direction, these include Lake Burton, Lake Seed, Lake Rabun, Tallulah Falls, Lake Tugalo, and Yonah (GDNR-EPD 2001). Three major tributary reservoirs are located in the North and South Carolina portion of the upper Savannah River Basin, owned and operated by Duke Energy Carolinas, LLC for hydropower and nuclear production; from an upstream to downstream direction, these are the pumped storage Bad Creek Project, Lake Jocassee, and Lake Keowee (Corps 2014a).

Continuing downstream, three large mainstem Corps reservoirs in an upstream to downstream direction, include Lake Hartwell, Richard B. Russell, and Clarks Hill Lake. These reservoirs, located on the Savannah River were collectively built for purposes that include hydropower generation, flood control, fish and wildlife, navigation, recreation, water supply, and water quality. Lake Hartwell is a 55,950-acre lake that was impounded in 1963, located approximately seven miles below the confluence of the Tugaloo and Seneca Rivers (GDNR-EPD 2001). Approximately 30 river miles downstream of Lake Hartwell is Richard B. Russell Lake, this 26,650-acre lake impounded in 1985 also operates as a reverse pumped storage hydropower facility (GDNR-EPD 2001, Corps 2013). Lastly, impounded in 1954, Clarks Hill Lake (also known as J. Strom Thurmond Lake) is a 71,535-acre lake that is the lowermost in the string of the three Corps reservoirs; Clarks Hill Dam is located approximately 37 miles downstream of Richard B. Russell Reservoir (GDNR-EPD 2001).

The next facility downstream is the Stevens Creek Project, a hydroelectric facility completed in 1914 and owned and operated by South Carolina Electric & Gas Company. Stevens Creek Dam is 12.8 river miles downstream of Clarks Hill Dam and is generally located on the Savannah River at the confluence with Stevens Creek (USFWS and NMFS 2005). It is approximately a 2,400-acre run-of-river facility that also functions as a re-regulating facility, smoothing out peaking flows discharged from Clarks Hill Dam.

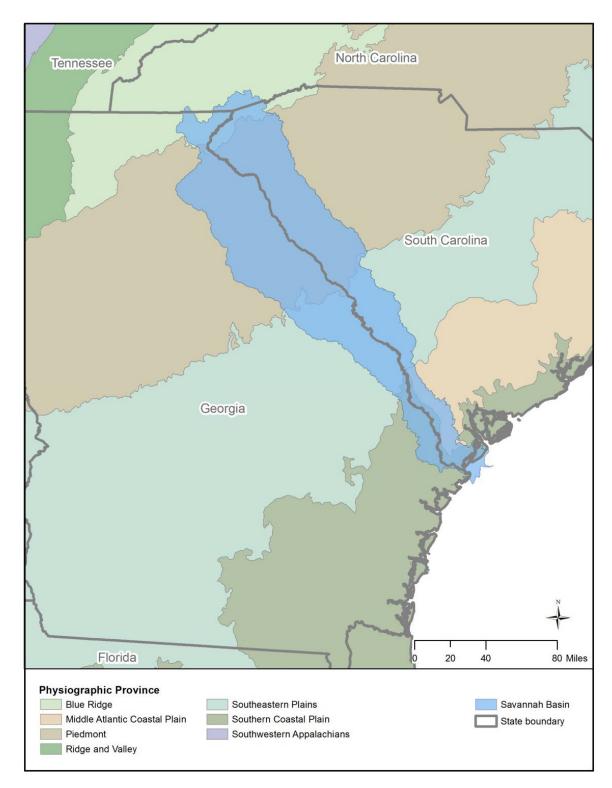


Figure 1. Physiographic provinces and the Savannah River Basin in North Carolina, South Carolina, and Georgia.

The Augusta Canal and Diversion Dam Project, originally constructed in 1845 and expanded in 1875, is located approximately 0.9 river miles below the Stevens Creek Project and is owned and operated by the City of Augusta. It impounds 190 acres and operates run-of-river, currently providing hydro-mechanical power to pump raw drinking water to the City of Augusta's water treatment plant and diverting water to Sibley Mill, Enterprise Mill, and King Mill projects, which are hydropower projects located downstream on the Augusta Canal. These three hydropower projects withdraw water from the Augusta Canal but have no associated dams or impoundments (Corps 2014a).

Below the Augusta Diversion Dam, which is located at river mile 207.2, the mainstem Savannah River drops 52 feet in elevation along seven miles forming a rocky habitat known as the Augusta Shoals. This area is the last extensive rocky shoal habitat in the Savannah River. The lowermost mainstem dam is the NSBLD, located at river mile 187.4, which is approximately 19.8 river miles below the Augusta Diversion Dam (USFWS and NMFS 2005).

NSBLD DESCRIPTION

The NSBLD project site, located at river mile 187.3 and completed in 1937, is the first dam on the mainstem Savannah River encountered by anadromous fishes moving upstream from the Atlantic Ocean. The NSBLD is located at the downstream end of Augusta Shoals and at the lower extent of the Fall Line, a unique geologic feature that is the transitional zone between the Piedmont and Coastal Plain Physiographic Provinces of the southeast. It is expressed at the surface by underlying metamorphic rocks, getting its name from the relatively steep gradient the river assumes as it moves through this transitional zone. Unaltered rivers and streams traversing this physiographic feature are characterized by extensive areas of metamorphic rock outcroppings and are dominated by rapids, short pools, and occasional waterfalls (Corps 2002).

The NSBLD currently consists of a lock chamber on the Georgia side of the Savannah River adjacent to the lock is a 360-foot long by 15-foot high dam, an operation building, and a 50-acre park and recreation area. The dam contains five 60-foot long vertical lift gates located between concrete piers, with the two gates on each end of the dam being of a 12-foot high, overflow type. NSBLD does not serve flood control or hydroelectric power generation functions.

The NSBLD is currently in the ownership of the Federal government, who is responsible for operating and maintaining the dam. Augusta-Richmond County is responsible for the operation of the lock and maintenance of the recreation area under a lease agreement with the Corps.

Commercial shipping through the lock ceased in 1979; however, the facility still currently serves upstream water supply users, including one municipality, five industries, and one sod farm. In addition, the Corps states that NSBLD currently supports upstream water-related recreational uses include boating, fishing, specialized rowing and powerboat race events, as well as regional economic development and tourism (Corps 2015).

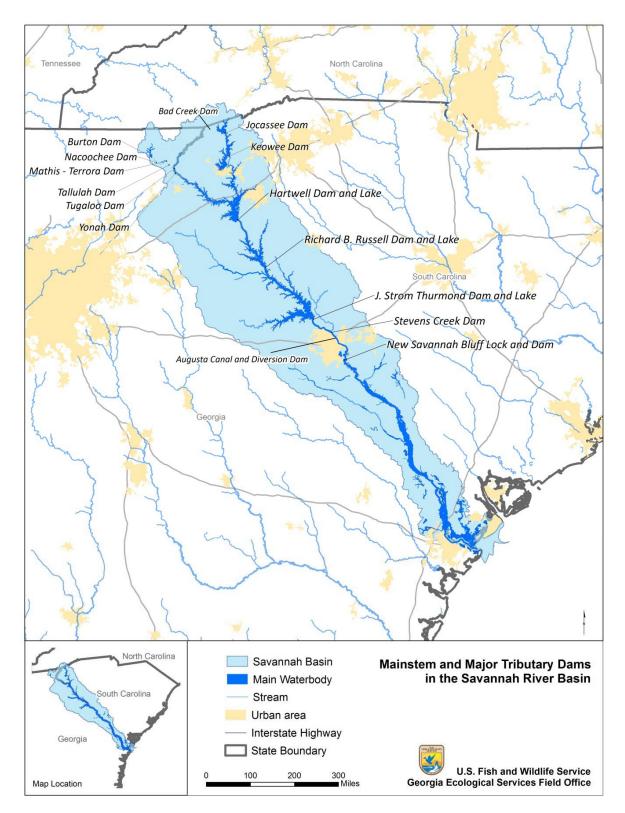


Figure 2. Mainstem and major tributary dams in the Savannah River Basin.

The Corps operates the gates to reduce flooding upstream of the NSBLD. A recent Corps inspection and assessment of the NSBLD indicated deterioration under the riverside lock wall. Continuing erosion has exposed supporting timber piles making them vulnerable to water damage and decay. Channel scour progressing toward the downstream entrance to the lock also increases instability and the risk associated with possible collapse. As a result, the Corps and the City of Augusta, Georgia, closed all access to a portion of the NSBLD due to safety concerns with the aging structure and ended springtime operation of the lock for fish passage on May 15, 2014 (Corps 2014b). Until the lock was recently determined to be a safety hazard, a contract between the Corps and the City of Augusta provided approximately 50 lockages a year (starting annually in mid-March), which enabled a limited level of fish passage to benefit a portion of the migratory fishes present in the river below NSBLD (Augusta Chronicle 2012).

WATER QUALITY

In GEPD's 2016 Draft Integrated 305(b)/303(d) List, the mainstem Savannah River from Stevens Creek Dam stretching downstream nine river miles to the Highway 78/278 crossing currently supports its designated use of Drinking Water. The Highway 78/278 crossing is located in downtown Augusta, below the Augusta Diversion Dam and above NSBLD. From the Highway 78/278 crossing downstream 78 miles to Johnson's Landing, which encompasses NSBLD, the mainstem Savannah River currently supports its designated use of Fishing/Drinking Water (GDNR-EPD 2016).

The Savannah River from the headwaters of Richard B. Russell Lake downstream to Seaboard Coastline Railroad, which includes the project area, has a "Freshwaters" classification by the South Carolina Department of Health and Environmental Control (SCDHEC; SCDHEC 2012). This designation is defined as "freshwaters suitable for primary and secondary contact recreation and as a source of drinking water supply after conventional treatment in accordance with the requirements of the Department. Suitable for fishing and the survival and propagation of a balanced indigenous aquatic community of fauna and flora. Suitable also for industrial and agricultural uses" (SCDHEC 2014a).

Several areas on the mainstem Savannah River in Aiken County, near the proposed project, are included on South Carolina's List of Impaired Waters. These areas are impaired for fish consumption due to mercury levels, an impairment that appears to be fairly common in other reaches of the mainstem Savannah River (SCDHEC 2014b).

FISH AND WILDLIFE CONCERNS AND PLANNING OBJECTIVES

FISH AND WILDLIFE CONCERNS

Migratory Fishes Atlantic Sturgeon

Acipenser oxyrinchus consists of two allopatric subspecies: *Acipenser oxyrinchus desotoi*, which occurs in the Gulf of Mexico and is referred to as the Gulf Sturgeon, and *Acipenser oxyrinchus oxyrinchus*, which occurs along the Atlantic Coast and is typically referred to as the Atlantic Sturgeon. The Atlantic Sturgeon is a benthic, anadromous species that is managed as multiple Distinct Population Segments (DPS) along the Atlantic Coast; Savannah River Atlantic Sturgeon fall within the South Atlantic DPS and are federally-listed as endangered under the Endangered Species Act (ESA) by NMFS (77 FR 5914). This species is generally dark bronze to brown above, lighter on the side, and white below, typically with a pointed snout and a narrow, protrusible mouth. It also has four whiskerlike barbels, five rows of bony plates called scutes, and a heterocercal tail. Adults reach a total length of 880-4300 millimeters (mm). It occurs along the Atlantic Coast of North America from Labrador down to southeastern Florida, typically occurring in the mainstem rivers of the major river drainages and in coastal areas (Rohde et al. 2009).

The species makes extensive upstream spawning migrations and has been documented making these migrations both in the spring and fall, although in the Savannah River only fall spawning migrations have been documented to date (Post et al. 2014). Spawning habitats are composed of hard clay, rubble, or gravel substrate. At 18-20°C larvae have been found to hatch approximately 4-6 days after the demersal, adhesive eggs are deposited on the substrate. Larvae begin a downstream migration in which juveniles continue to move downstream into brackish waters and eventually become residents in estuarine waters. Although Atlantic Sturgeon exhibit a high degree of spawning fidelity to their natal rivers, multiple riverine, estuarine, and marine habitats may serve various life functions outside their natal rivers (77 FR 5914).

In the Savannah River, adults of this species appear to make large upstream spawning migrations beginning in late May, with the majority beginning in August, and detected near spawning grounds below NSBLD in August and September when water temperatures were between 24-29°C. After spawning, Atlantic Sturgeon appear to rapidly return downstream and exit the Savannah River system. A large portion of recently captured Savannah River Atlantic Sturgeon were prior captures in other river systems in Georgia, South Carolina, North Carolina, Virginia, and Delaware (Post et al. 2014).

Shortnose Sturgeon

The Shortnose Sturgeon (*Acipenser brevirostrum*) is also a benthic, anadromous species that has been federally-listed as endangered since 1967 and is under the ESA jurisdiction of NMFS (32 FR 4001). It is generally brownish with pinkish or salmon tones above, lighter on the sides, and ventrally white, and like all sturgeons, has a protrusible mouth, four whiskerlike barbels, five rows of bony plates called scutes, and a heterocercal tail. Unlike Atlantic Sturgeon it lacks scutes between the base of the anal tail and the midlateral scutes and exhibits a larger inner gape width. Adults reach a total length of 430-1090 mm (Rohde et al. 2009). It inhabits large river basins along the Atlantic Coast of North America from the St. John River, New Brunswick, Canada to the St. Johns River, Florida.

This species makes extensive upstream spawning migrations in winter and early spring to habitats that typically includes boulder, bedrock, cobble, and gravel shoal habitats. Eggs are adhesive, demersal, and hatch within 5-8 days. Larvae begin a downstream migration; the young of year remain upriver for their first year of life, and then move downstream closer to the salt-freshwater interface during their second year. Shortnose Sturgeon may enter coastal habitats and migrate between rivers, but populations typically remain within natal river systems and estuaries (USFWS and NMFS 2005).

In the Savannah River, this species appears to typically make large upstream spawning migrations beginning in January (most movement is typically when water temperatures are between 8-14°C) and are usually detected on spawning grounds below NSBLD in February-March of each year (typically when water temperatures are between 10-18°C). Outside of the spawning migrations, Shortnose Sturgeon typically appear to inhabit the lower freshwater tidal reach of the mainstem Savannah River, inhabiting river miles 19-21 in the Middle and Front Rivers during the colder months of the year and upstream in river miles 21-29 during the warmer months of the year. A subset of recently captured Savannah River Shortnose Sturgeon were prior captures in other river systems in Georgia, South Carolina, and North Carolina, which is consistent with movement of a portion of individuals between river drainages (Post et al. 2014).

American Shad

The American Shad (*Alosa sapidissima*) is an anadromous species of herring, the largest member of the herring family in the United States. It is typically blue or green dorsally and silvery on each side, with a dark spot immediately behind the upper edge of each opercule, usually followed by a row of smaller spots. There is no evident lateral line, the cheek is much deeper than it is wide, and the mouth is terminal with a lower jaw that ends even with the upper jaw or that projects only slightly forward of the upper jaw. The total length of adult American Shad is 305-760 mm. It is distributed along the Atlantic Coast from Labrador south to the St. Johns River, Florida (Rohde et al. 2009).

American Shad are highly specific in returning to natal rivers for their spawning migrations, typically reaching far upriver and often to the headwaters when not blocked by dams. Most American Shad native to rivers south of Cape Fear, North Carolina are semelparous spawners, meaning they spawn once and die. American Shad ascends coastal rivers to spawn from mid-January to April. Hightower et al. (2012) updated the American Shad Spawning Habitat Suitability Model for Southeastern rivers, and that model exhibits substantially higher suitability values for gravel, cobble, and boulder/bedrock compared with sand and silt/clay, current velocities of 0.4 meters/second and greater, and water depths of 1.5-4.0 meters (peaking at 2.5 meters). They are broadcast spawners, and fertilized eggs are carried by river currents. After hatching, larvae drift further downstream and mature into juveniles that migrate to nearshore coastal wintering areas by late fall; schools of adults live in the coastal Atlantic Ocean (USFWS and NMFS 2005).

In the Savannah River, the peak spawning migration for American Shad at the NSBLD has been mid-March through mid-May of each year; until NSBLD was recently deemed inoperable, the lock was being operated up to 50 lockages from mid-March through mid-May to facilitate the American Shad migration upstream.

Hickory Shad

The Hickory Shad (*Alosa mediocris*) is an anadromous species of herring, distinguished from closely-related species on the Atlantic Coast by its superior mouth and a lower jaw that projects distinctly forward of the snout. The tip of the lower jaw is darkly pigmented, the cheek width is approximately equal to that of its depth, and the body is typically grayish-green dorsally and silver ventrally. The species has no evident lateral line and a row of dark spots is present on each side just behind the opercle. The total length of adult Hickory Shad is approximately 305-610 mm. It is distributed from Maine south to the St. Johns River, Florida, with sporadic occurrences in the Savannah River drainage and the greatest abundances apparently in southern New England and Chesapeake Bay.

Adults spend their life in the Atlantic Ocean and then enter freshwater to spawn from late winter to early spring. The peak spawning period across South Carolina has been recorded as February through early March; eggs have been collected in North Carolina in March through April (Rohde et al. 2009, Harris and Hightower 2011). In North Carolina, eggs were found to be most abundant in areas with water velocities of at least 0.1 meters/second with substrates of gravel, cobble, and boulder substrates (Harris and Hightower 2001). After hatching, larvae and subsequent juveniles continue to inhabit freshwater, but by late fall they have migrated to higher salinity waters. It is assumed that their spawning migrations in the Savannah River are similar to observations across South Carolina, in which the peak spawning is during February and early March (Rohde et al. 2009).

Blueback Herring

The Blueback Herring (*Alosa aestivalis*) is an anadromous species of herring characterized by a bluish upper side and dorsum, typically one dark spot on each side near the upper edge of the opercle, an eye diameter equal to or less than the snout length, a cheek wider than deep, and no lateral line. The total length of adults is 350-400 mm. It is distributed from Nova Scotia to the St. Johns River, Florida (Rohde et al. 2009).

Adults spend their life over the Continental Shelf in the Atlantic Ocean and ascend rivers in the spring, where they prefer to spawn in swift flowing rivers and tributaries (ASMFC 2015). The egg, larval, and early juvenile stages occur in freshwater, and the older juveniles have migrated into estuarine waters and then into the Atlantic Ocean typically during fall of their first year. It is assumed that their spawning migrations in the Savannah River are similar to observations in South Carolina, in which a spawning run in the Santee River usually peaks in the beginning of March and postspawning migration occurs during the first half of April (Rohde et al. 2009).

Striped Bass

The Striped Bass (*Morone saxatilis*) is a highly migratory species with an elongate, compressed body exhibiting seven to eight mostly unbroken dark lateral stripes on each silvery-white side, with a dark olive to steel blue dorsum. The large mouth has a lower jaw that projects forward of the upper jaw and the body is deepest at the point between the two dorsal fins. This species occurs on the Atlantic Slope from the St. Lawrence River, Canada south to the St. Johns River, Florida and also on the Gulf Slope from the Suwannee River, Florida west to the eastern portion of Texas (Rohde et al. 2009).

The Striped Bass normally spends the majority of its adult life in coastal estuaries or the ocean and generally ascends major drainages to spawn in riverine habitats during spring. Fertilized eggs drift downstream and maintain buoyancy, eventually hatching into larvae and maturing into juveniles that will inhabit nursery areas of estuaries and river deltas (USFWS and NMFS 2005). In the southern portion of the species' range on the Atlantic Coast, Striped Bass appear to be more riverine and estuarine-oriented without exhibiting anadromy (Rohde et al. 2009, USFWS and NMFS 2005).

As a result of ongoing telemetry studies in the Savannah River, it appears that some or many of the adult Striped Bass below NSBLD that migrated upstream for spring spawning purposes remain upstream after spawning. Individuals have been documented below NSBLD as late as September before moving back downstream, which indicates that they may be seeking cooler water temperatures that emanate from upstream reservoirs and provide cooler waters below NSBLD. Therefore, this portion of the Savannah River could be serving as an artificial thermal refugia over the summer months (Joel Fleming, GDNR, 2015, pers. comm.).

American Eel

The American Eel (*Anguilla rostrata*) is a highly migratory species exhibiting catadromy, such that it begins its life in the ocean, migrates into freshwater or estuarine habitats where it spends the majority of its life, and then returns to the ocean to spawn and subsequently die. This species lacks pelvic fins and has an elongate, serpentine body of olive green, grading to yellow or white on the ventral surface. The total length is 610-1520 mm. American Eel are found along the Atlantic and Gulf Slopes, as far north as Iceland and Greenland and as far south as Brazil (Rohde et al. 2009).

The only presumed spawning habitat for the American Eel occurs in the Sargasso Sea, which is located east of the Bahamas and south of Bermuda. After hatching, the transparent, ribbonlike larval eels, called leptocephali, are carried by the Gulf Stream to coastal areas where they develop into the next life stage called glass eels. Glass eels actively move landward and migrate into estuaries during late winter and spring where they transform into elvers, which migrate upstream to spend the majority of their life growing as sexually immature yellow eels in rivers, streams, and lakes (USFWS and NMFS 2005). American Eels are known to be habitat generalists, occurring in perhaps the broadest diversity of habitats of any fish species in the world (Helfman et al. 1987). The eels reach maturity in freshwater rivers, streams and lakes and then the mature adults migrate back downstream from fall to early spring, transforming into a silver eel life stage as they return to the Sargasso Sea to reproduce and die (Helfman et al. 1984, USFWS and NMFS 2005, Rohde et al. 2009). There is not a great deal of detailed information regarding American Eel at the NSBLD, although they have been documented in the area (Service 2000, Rohde et al. 2009).

Robust Redhorse

The Robust Redhorse (*Moxostoma robustum*), is a large, riverine catostomid that is highly migratory. It is a Federal species of concern, has been petitioned to be listed under the ESA, and is listed as Endangered by the State of Georgia. Coppery-bronze in color with a white abdomen, it is recognized by large scales, a thick body, and large and fleshy plicate lips with the lower lip having a posterior extension in the middle of the rear edge. The fins, especially on younger individuals, are red. Total length for adults is 500- 700 mm. The Robust Redhorse inhabits several major Atlantic slope drainages ranging from the Pee Dee River, North and South Carolina, south to the Altamaha River Basin, Georgia (Rohde et al. 2009).

This species is known to make extensive upstream spawning migrations to form spawning aggregations on shallow gravel bars, typically in May and June when water temperatures reach 16-24° C. After spawning, adults migrate back downstream where they spend the remainder of the year. In large undammed, Coastal Plain rivers, adults have been generally collected in association with woody materials and swift current along the outer edge of river bends. Recent young-of-year and juvenile collections indicate that larvae and juveniles appear to slowly drift

downstream and have been found associated with woody materials along the river channel in the lower reaches of the mainstem river.

In the Savannah River, some individuals are known to inhabit the Augusta Shoals year-round and others have been documented making characteristic, extensive migrations in the mainstem Savannah River below NSBLD, initiating such upstream migrations in early to mid-March when water temperatures reached 10-12° C. The two known spawning sites in the Savannah River below NSBLD are both mainstem gravel bars; one is located in the tailrace below NSBLD and the other is located downstream at river mile 176.3. Telemetry results for adult Robust Redhorse in the Savannah River indicated that the majority of individuals below NSBLD stayed in the vicinity of the spawning areas through the summer and then migrated downstream to dispersed overwintering areas in early to mid-fall. Adults exhibited high site fidelity for spawning, staging, and overwintering areas, distributing as far downstream as approximately river mile 60 during winter (Grabowski and Isely 2006). The only known three juvenile captures of Robust Redhorse to date have occurred farther downstream than the known adult habitat use; these juveniles have been located in an approximately 6.8-river mile stretch of the lower Savannah River, stretching between Ebenezer Landing, Georgia and Hardeeville, South Carolina (Alice Lawrence, Service, 2015, pers. comm.).

Other Native Species

Other native, migratory species known from the mainstem Savannah River from the vicinity of the project area that would also be expected to benefit from facilitated passage include the following (Brett Albanese, GDNR, 2015, pers. comm.):

- Brassy Jumprock (Moxostoma sp.), Georgia Species of Concern
- Mountain Mullet (Agonostomus monticola)
- Highfin Carpsucker (*Carpoides velifer*), Georgia Species of Concern
- Quillback (*Carpoides cyprinus*)
- Bartram's Bass (Micropterus sp.), Georgia Species of Concern

Rare Mussels Potentially in the Project Area

To our knowledge, the proposed project area has not been surveyed for freshwater mussels. The closest survey sites to NSBLD occurred in 2006 and were located approximately 5.8 river miles upstream of NSBLD (across from the upper end of the Dead River cutoff at Beech Island) and approximately 380 meters downstream of NSBLD across from the confluence with Butler Creek (GDNR Natural Heritage Data 2015). We highlight the following species that potentially could be in the proposed project area:

Savannah Lilliput

The Savannah Lilliput (*Toxolasma pullus*) is listed as Threatened by the State of Georgia; the Service has been petitioned to federally-list this species and has issued a positive 90-day finding

stating that a status review is warranted (76 FR 59836). The shell is small, typically less than 35 millimeters in length, with valves that are somewhat thick and inflated. In females the anterior margin rounded and the ventral margin is straight to convex. In males the posterior margin is typically broadly pointed while more truncated or broadly rounded in mature females. The umbo typically elevates to the hinge line or slightly above and the periostracum is usually satiny and black or brown. The left valve has two triangular pseudocardinal teeth and short straight lateral teeth; the right valve has one triangular pseudocardinal tooth and one lateral tooth. The umbo pocket is shallow with nacre that is variable in color, ranging from bluish-white to pink, purple, or iridescent (Wisniewski 2008).

The Savannah Lilliput inhabits shallow waters at the edge of streams, rivers, and lakes with mud or silty sand substrate near banks; they also may occur in backwaters. This species is rarely found in deep water (Bogan and Alderman 2008). Little is known regarding the life history of this species in the Altamaha River Basin. Most native freshwater mussels have glochidia in which the larvae must parasitize suitable host fishes. The adult mussels expel glochidia, which must attach to an appropriate host. The Savannah Lilliput is a long-term brooder, and has been reported gravid from late April to early August (Hanlon and Levine 2004). Glochidia have successfully transformed on hybrid sunfish (*Lepomis* sp.), thus transformation likely occurs on other species of Lepomis (Hanlon and Levine 2004).

The range for this species is from the Altamaha River Basin in Georgia to the Neuse River Basin in North Carolina (Bogan and Alderman 2008). In the Savannah River, this species has been found in tributary habitats as well as multiple locations downstream of NSBLD, including a site only approximately 4.5 river miles downstream (GDNR Natural Heritage Data 2015).

Altamaha Arcmussel

The Altamaha Arcmussel (*Alasmidonta arcula*) is listed as Threatened by the State of Georgia. The species rarely exceeds 80 millimeters in length and has a delicate, inflated shell, often with distinct concentric sculpturing near the umbo. The umbo is elevated above the hinge line and positioned centrally to slightly anterior of the triangulate shell. Adults of this species typically have brown to yellow periostracum with dark rays and a posterior ridge that is sharp and straight. The right valve has one delicate pseudocardinal tooth and a short, delicate lateral tooth; the left valve has one to two delicate, serrated pseudocardinal teeth with absent or reduced lateral teeth. The beak cavity is shallow and the nacre is typically white or iridescent (Wisniewski 2008).

The Altamaha Arcmussel inhabits both riverine and reservoir habitats of the Coastal Plain and Piedmont physiographic provinces. The species is most frequently found in habitats consisting of low shear stress, depositional areas often associated with edge waters and pools in sand and mud substrates. They were most commonly found in fine sandy substrates and along gently sloping banks with low hanging willows and soft mud in the Altamaha River (Meador et al. 2011). Individuals have been infrequently found in pools that were 2-3 meters deep with coarse

sand and gravel substrates (Wisniewski 2008). Little is known regarding the life history of this species. Most native freshwater mussels have glochidia in which the larvae must parasitize suitable host fishes. The adult mussels expel glochidia, which must attach to an appropriate host. The Altamaha Arcmussel is gravid beginning in mid-October, and glochidia have successfully transformed on the Robust Redhorse and Striped Jumprock (*Moxostoma rupiscartes*); hence this species may be specialized in using catostomids as its host (Johnson et al. 2012).

The Altamaha Arcmussel was historically considered endemic to the Altamaha River Basin. However, recent collections of conchologically similar (shell structure, shape, patterns) animals have been collected from the Ogeechee and Savannah Rivers (J. Wisniewski, GDNR, pers. comm.). In the Savannah River, this species has been found not only downstream of NSBLD but also has recently been discovered upstream of NSBLD within Clarks Hill Lake (GDNR Natural Heritage Data 2015; J. Wisniewski, GDNR, 2015, pers. comm.).

Delicate Spike

The Delicate Spike (*Elliptio arctata*) is listed as Endangered by the State of Georgia; the Service has been petitioned to federally-list this species and has issued a positive 90-day finding stating that a status review is warranted (76 FR 59836). The species attains a maximum length of 90 millimeters and is laterally compressed. The outline is elliptical and elongated, with older individuals often being arcuate in shape. It has a rounded anterior margin, straight to slightly concave ventral margin, and a straight to slightly curved dorsal margin. The posterior margin can be truncate, rounded, or bluntly pointed, with a low and rounded posterior ridge that may be doubled posterioventrally. It has a low posterior slope that is flat to concave. The umbo is low, broad, and does not exhibit sculpturing, except in young individuals. The periostracum can be olive, brown, or black and can occasionally have variable dark green rays. It has small, low, and triangular pseudocardinal teeth and long, thin, and straight to slightly curved lateral teeth. It exhibits a moderately long, narrow interdentum and a shallow, wide umbo cavity. The nacre is often discolored and is typically bluish-white, but is occasionally purplish (Williams et al. 2008).

The Delicate Spike primarily occurs in lotic systems with moderate current, often in crevices and beneath large cobble or boulders; it can also be found among roots in beds of macrophytes. Little is known regarding the life history of this species. Most native freshwater mussels have an obligate parasitic larval stage (glochidia) in which the larvae must parasitize suitable host fishes. The adult mussels expel glochidia, which must attach to an appropriate host. The Delicate Spike is gravid in spring to early summer, but glochidial hosts are currently unknown (Williams et al. 2008; Wisniewski 2008).

The Delicate Spike has been found in most eastern Gulf Coast drainages, from the Apalachicola River Basin in Georgia and Florida to a western boundary of the Pearl River Basin in Mississippi. Specimens resembling E. arctata have also been collected in Atlantic Slope drainages from the Cape Fear River south to the Altamaha River, Georgia (J. Wisniewski, GDNR, 2014, pers. comm.). Molecular taxonomy research is necessary to definitively determine if this species is in fact the Delicate Spike. In the Savannah River, specimens have been found in multiple locations downstream of the NSBLD, as well as upstream between the Augusta Diversion Dam and NSBLD (The Catena Group 2007).

Riverine and Shoal Habitat

Rocky shoals of the Fall Line are unique habitats characterized by metamorphic rock outcroppings, rapids, short pools, and occasional waterfalls. Large and small impoundments have greatly reduced the amount of riverine and shoal habitat throughout the Piedmont and Fall Line physiographic provinces in the Savannah River Basin as well as other river systems in the Southeast. In general, dams have historically been built along the Fall Line to harness the energy of the water for hydropower as it drops down to the Coastal Plain; therefore, riverine and shoal habitat such as that in the study area has been particularly impacted. The NSBLD and other reservoirs owned by the Corps and private entities have cumulatively contributed to the elimination of riverine habitat, fragmentation of habitat and aquatic populations, and/or altered flows and water quality in the Savannah River Basin. As such, only a few, small, riverine "refuges" remain in this area of the mainstem Savannah, most notably the Augusta Shoals, this reach of rare Fall Line shoal habitat persists below Augusta Diversion Dam and above NSBLD. This habitat harbors the rare Shoals Spiderlily (Hymenocallis coronaria), a bulbose, emergent perennial plant that grows on rocky shoals in streams and rivers at and above the Fall Line. This species a Federal Species of Concern and is listed as Threatened by the State of Georgia. As a result of construction, the NSBLD is thought to have inundated a portion of the Augusta Shoals, and hence eliminated this habitat (USFWS 2000).

Recreational Features

It is important that recreational features in the vicinity of the project are maintained, replaced, and/or created. Current recreational features of the area include local access for fishing and boating, a boardwalk, and boating events. Recreational features can allow access to the river in many different ways, allowing the public to appreciate the resource. Any recreational features incorporated into this project should achieve or be compatible with these objectives.

PLANNING OBJECTIVES

Diadromous Fish Restoration Plan for the Middle Savannah River

The Service and NMFS co-developed two general management goals as part of the *Diadromous Fish Restoration Plan for the Middle Savannah River: Strategy and Implementation Schedule* (USFWS and NMFS 2005). These two general overarching management goals for the Middle Savannah River, defined as the reach between Clarks Hill Dam and the NSBLD, are:

A. Protect and enhance a balanced, diverse fish community and the diversity of aquatic habitats on which that community depends, and

B. Provide safe and effective upstream and downstream passage and access to habitat for diadromous and migratory game and non-game fish species.

The following planning objectives, outlined in Service and NMFS 2005, have been developed and are summarized below:

1. Restore and/or maintain instream flows as needed for upstream and downstream movement (including necessary attraction flows for fishways) of diadromous fish, for maintenance of habitat used by all riverine life stages (spawning, egg and larvae survival, and maturation of sub-adults), and for water quality conditions, between the NSBLD and Clarks Hill Dam, needed to sustain a healthy and productive ecosystem.

The Augusta Shoals are the last example of accessible, extensive, rocky shoal habitat in the mainstem Savannah River; therefore, providing adequate flows in Augusta Shoals is a high priority of the Service and NMFS.

2. Restore, maintain, and enhance water quality at levels needed to support all life stages of diadromous fish in the middle Savannah River.

Water quality should be adequate for successful reproduction and recruitment as well as normal growth of juveniles and survival of adult fish. Suitable water quality for diadromous fish reproduction, recruitment, and growth is necessary for restoration efforts to be successful.

Improved water quality will also benefit other riverine species and the overall health of riverine and associated ecosystems. Dissolved oxygen problems associated with inadequate instream flows and hypolimnetic and surface water reservoir discharges must be identified and corrected.

3. Provide fish access to historic spawning areas where access has been blocked, where restoring access is practicable, and where spawning and/or other habitat is of sufficient quantity and quality, or can be practicably restored, to warrant restoration of fish passage.

River obstructions such as dams and weirs block diadromous fish from reaching spawning, nursery, and maturation sites. If these areas cannot be reached then reproduction success declines and the overall size of the population is reduced. Restoring access to essential habitats would allow populations to expand in accordance with available habitat. Additionally, several target species, particularly the American Shad, have reproductive strategies that extend out reproductive energy both spatially and temporally to better ensure successful recruitment. Restoring access to historic spawning areas would accommodate these life history requirements.

4. Develop and implement safe and effective downstream passage of diadromous species at dams that are downstream of habitats which support diadromous fish populations.

Diadromous fish abundance is essentially linked to successful upstream and downstream passage. The benefits of providing upstream passage to historic spawning habitats can be

negated by blocking of downstream migration, delays, injury, and/or mortality caused by turbine entrainment at downstream facilities. Adverse impacts to out-migrating juvenile and adult fishes may be compounded in systems where multiple hydropower facilities are encountered and synergistic and cumulative impacts incurred.

5. Implement a fry propagation and reintroduction program to accelerate the number of returning adult spawning fish.

Some diadromous species, particularly the American Shad, are highly specific in returning to natal rivers. Dam construction and water quality concerns have curtailed access to prime spawning grounds resulting in reduced populations, in comparison to historic levels. Restoration activities including fry reintroduction to restore the spawning/recruitment cycles in the middle Savannah River should be implemented concomitantly with other measures to restore access to historical spawning habitats.

Final FWCAR NSBLD Section 216 Disposition Study

The following additional planning objectives, outlined in the Service's Final FWCAR for the NSBLD Section 216 Disposition Study (Service 2000), have been developed and are summarized below:

6. Provide unimpeded passage of migratory and riverine fishes to reverse river fragmentation.

As stated earlier, there are 15 dams on the mainstem Savannah River and its major headwater tributaries. These structures can act as barriers to not only fluvial processes and transport of sediment, woody materials, and nutrients, but also to aquatic biota. These barriers can restrict or delay access to historical habitat for resident and diadromous fishes, isolate and fragment aquatic populations (either directly or indirectly by creating lentic habitat that eliminates the lotic habitat required by some free-flowing, riverine species), and reduce or eliminate genetic exchange. In addition to resident and diadromous species, these effects are also seen in host fishes, which in turn may lead to the decline of freshwater mussels.

Anadromous species have been blocked from significant lengths of historic spawning habitats in the Savannah River. Restored passage opportunities for all migratory species should be a part of any chosen alternative. It is also incumbent upon all Federal agencies under section 7(a)(1) of the ESA to foster the recovery of federally listed species, which includes the Shortnose Sturgeon and Atlantic Sturgeon. Providing passage opportunities to former spawning habitats and recovering valuable riverine habitats would be positive actions for these species in the Savannah River.

7. Restore riverine and shoal habitat in the project vicinity.

Shoal habitat in the Savannah River system is concentrated at the Fall Line. Remaining Savannah River riverine and shoal habitats at the Fall Line and upstream in the Piedmont

physiographic province are inaccessible or inundated by multiple reservoir developments. Restoring upstream fish passage at NSBLD would be significant because if designed appropriately, it could restore access to the riverine and rare shoal habitat that still persists upstream as the Augusta Shoals. Although the Service would prefer an alternative that would also restore any additional shoal habitat that currently lies under the backwaters of NSBLD (Service 2000), restoring access to the shoal habitat that is still present upstream would be valuable.

8. Maintain existing or replace opportunities for recreational fishing in the vicinity of the project.

While certain elements of the existing fishery may change with increased opportunities for fish passage, it is important for any chosen alternative to maintain or replace access and fishing opportunities in the vicinity of the project.

DESCRIPTION OF CORPS' ALTERNATIVES

The alternatives that were considered in this evaluation include the following:

NO ACTION ALTERNATIVE

The No Action Alternative (NAA) for this project would include the design and recommendation discussed in the 2012 Final SHEP environmental impact statement. This alternative, however, does not comply with the WIIN of 2016. Section 1319 required changes to the previously-approved SHEP fish bypass at the New Savannah Bluff Lock and Dam. This design would allow for a pool elevation between 113.3 and 115.3 National Geodetic Vertical Datum 1929 (NGVD29; 112.5 and 114.5 North American Vertical Datum of 1988 [NAVD88]) at the dam under the range of "normal" flows ("average" normal pool of 114.5 NGVD29).

Alternative 1-1 – Repair Lock Wall Georgia Side Fish Passage

Alternative 1-1 (ALT 1-1; Figure 3) consists of repairing the NSBLD gates and piers and the riverside lock wall. Additionally, a 200' wide fish ramp structure would be constructed through the lock chamber and into the adjacent area of the park on the Georgia side of the river. The fish passage structure would be constructed with boulders and stone sized following the same design that was previously-approved and discussed for the bypass (Service 2017). The structure would have a 1.3% slope upstream to the weir crest, and a 10% slope upstream from the crest to the river bed.

This alternative would lower the normal pool elevation near the lock and dam by 0.5 feet, with the impacts attenuating quickly as you move upstream. The pool at 5th St. Bridge would be around elevation 114.26 (NAVD88) (0.74 feet lower than existing) during normal flow conditions.

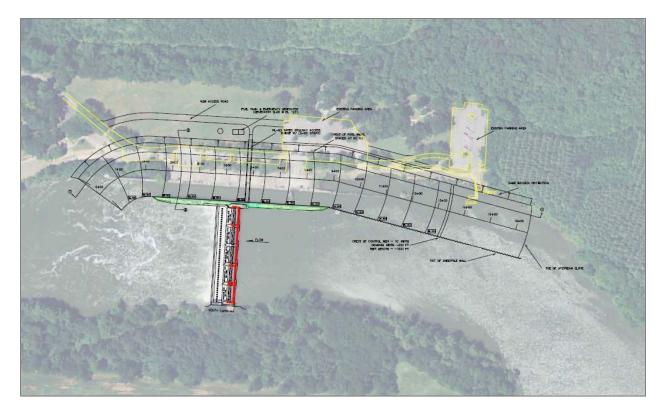


Figure 3: Alternative 1-1. Repair lock wall Georgia side fish passage.

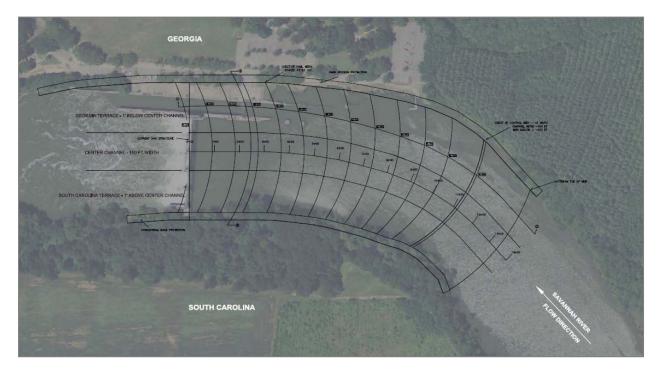


Figure 4: Alternative 2-3. Fixed crest weir.

Alternative 2-3 – Fixed Crest Weir

Alternative 2-3 (ALT 2-3) consists of a fixed crest weir with a rock ramp sloping upstream from the existing dam location. The fish passage structure (Figure 4) would be constructed as described in Alternative 1-1 with these changes. The lock and dam would be removed, including the foundation, down to elevation 91.22 (NAVD88). The weir would be 500 feet in width with an average crest elevation of 106.22 feet (NAVD88, 107.0 NGVD29). At the weir, the pool is expected to be 2.7 feet higher than the weir crest at normal river flows. Therefore, the pool elevation at the weir would fluctuate between 109 and 114 (NAVD88) for normal river flows. The pool at 5th St. Bridge would be around elevation 112.60 (NAVD 88) (2.40 feet lower than existing) during normal flow conditions.

Alternative 2-6 – Fixed Crest Weir with Floodplain Bench

Alternative 2-6 (ALT 2-6) consists of a fixed crest weir with a rock ramp sloping upstream from the existing dam location. The fish passage structure (Figure 5) would be constructed as described in Alternative 1-1 with these changes. The lock and dam would be removed, including the foundation down to elevation 91.22 (NAVD88). The weir would be 500 feet in width with an average crest elevation of 109.22 feet (NAVD88, 110.0 NGVD29). A floodplain bench approximately 275 feet in width would be excavated to elevation 110 (NAVD88) on the Georgia side of the existing dam location. The bench would ease the passage of flood waters past that point in the river. The bench would be grassed or rock lined to prevent erosion. At the weir, the pool is expected to be 2.3 feet higher than the weir crest for normal river flows. Therefore, the pool elevation at the weir would fluctuate between elevation 111.5 and 114.5 during normal river flows. The pool at 5th St. Bridge would be around elevation 113.93 (NAVD 88) (1.07 feet lower than existing) during normal flow conditions.

Alternative 2-8 – Fixed Crest Weir with Gated Bypass

Alternative 2-8 (ALT 2-8) consists of a fixed weir with a rock ramp at the existing dam site with an active flood passage structure in an excavated bypass channel through the park on the Georgia side of the river. The fish passage structure (Figure 6) would be constructed as described in Alternative 1-1 with these changes. The structure in the bypass channel would consist primarily of two 50-foot gates used to pass high flows. The bypass channel would be used to manage flood impacts.

The weir would be 500 feet in width with an average crest elevation of 109.22 feet (NAVD88, 110.0 NGVD29). The lock and dam would be removed, including the foundation down to 91.22 (NAVD88). At the weir, the pool is expected to be 2.9 feet higher than the weir crest at normal river flows. Therefore, the pool elevation at the weir would be 111.93 feet (NAVD88) at normal river flows. The pool at 5th St. Bridge would be around elevation 114.16 (NAVD 88) (0.84 feet lower than existing) during normal flow conditions.

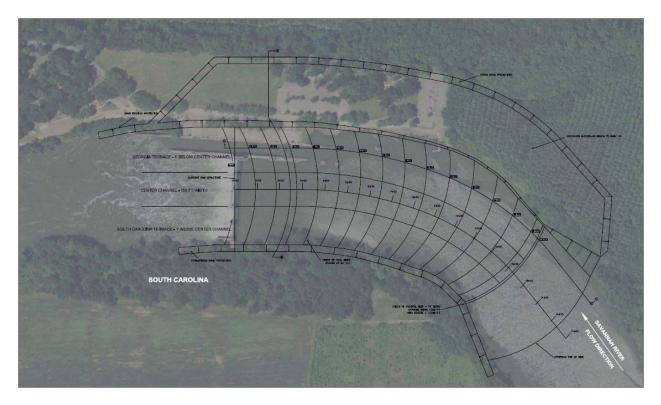


Figure 5: Alternative 2-6. Fixed crest weir with floodplain bench.

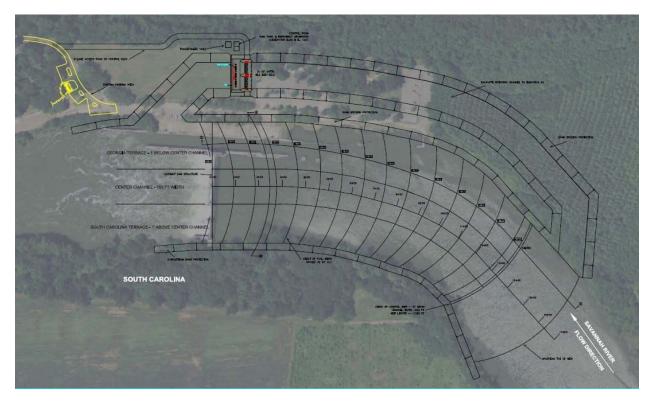


Figure 6: Alternative 2-8. Fixed crest weir with gated bypass.

FISH AND WILDLIFE CONSERVATION MEASURES AND RECOMMENDATIONS

Evaluation of No Action Alternative

Under the NAA no repair of the NSBLD would occur. The structure would remain in place and would be unable to function in accordance with the Federal project purpose. The property would be retained under Federal ownership, the dam would be used for serving various water supply users, and the lock would continue to be inoperable due to structural/safety concerns. This would include construction of an off-channel fish passage bypass design.

In the NAA scenario, the continuing project impacts of impounding riverine and shoal habitat would continue. In summary, the NAA would not restore the 15.6 miles of riverine and rare impounded section of Augusta Shoals habitat, but would be expected to improve fish passage to the vestiges of the Augusta Shoals upstream via an off channel bypass design as discussed in the previous FWCAR (USFWS 2017).

Nature-like fishway (NLF) types include full-width, partial-width, and bypasses. While an NLF bypass may effectively passing migratory species into portions of historical spawning habitats and alleviate some of the cumulative loss of spawning habitat for migratory fishes, bypasses are inherently problematic in that they suffer from attraction issues as noted in Bunt et al. (2012). The Service has documented those concerns in correspondence and in the FWCAR on the New Savannah Bluff Lock and Dam Instream Fishway dated July 14, 2017.

Evaluation of Alternative 1-1

ALT 1-1 proposes to maintain the spillway, dam and gate structures, and facilitate passage through a NLF on the Georgia side of the river. Based on the information provided and Figure 3, salient elements of the evaluation include fishway slope, boulder structure, lock wall extension, fishway entrance, design flows, gate operations, tailwater fluctuation, turbulence, and downstream passage.

Fishway Slope

Nature-like fishways are generally categorized into step-pools, roughened channels, or hybrid designs. In step-pools, water is discharged over and through a sequence of rock weirs and pools. This type mimics more technical fishways and the hydraulics are most stable. However, movement through such fishways is typically slower as the migrants are required to ascend in a burst-rest-burst fashion. Additionally, step-pools only function over a limited headpond fluctuation. The Service recommends that step-pools are designed at slopes less than 5%. Roughened channels take advantage of resistance created by boulders (arranged randomly or in clusters) to reduce water velocities to levels passable by fish. However, the capacity for roughened channels to reduce velocity is limited. The Service recommends that roughened channel NLFs are designed at slopes less than 3%. Hybrid NLFs include a variety of types that, under certain conditions, may operate as a step-pool or a roughened channel. The design

previously approved for this bypass, an arch rapids NLF, approximates a hybrid type. The proposed 1.3% slope (from toe to weir crest) therefore meets with Service criteria.

Boulder Structure and Arrangement

The previous design was an arch-rapids hybrid type NLF based on approaches originally outlined in Aadland (2010). Since the previous design was submitted, the Service gained additional experience in this technology and issued new criteria (Turek et al., 2016). While we remain supportive of the arch-rapids type NLF, specific slope, depth, width and velocity criteria presented in Turek et al. (2016) should be carefully considered before advancing this (or another alternative) to the final design stage. For example, schooling fish such as American shad may be reluctant to enter (or pass through) gaps in the rocks of an arch rapids NLF. Sizing those gaps to accommodate the target species is critical. Turek et al. (2016) provides species-specific criteria for sturgeon, eel, shad and river herring; for species not listed in this document (e.g., the state listed Robust Redhorse) and in the absence of better performance data, the Service recommends conservative assumptions on these design criteria and, where possible, the use of a surrogate to estimate the geometric parameters that influence boulder structure and arrangement.

Lock Wall Extension and Sheetpile

Based on the figure provided, sheetpile is proposed to extend, and presumably permanently contain, the NLF through the impoundment up to what is labeled "Toe of Upstream Slope" (though, by convention, the upstream side of the structure is considered the "heel"). We note two concerns with the use of sheetpile as a training wall: aesthetics and longevity. The appeal, in part, of any NLF is the aesthetic value of a fishway that mimics natural channels. For example, the use of Larsen-type steel sheetpile, exposed above the waterline would certain conflict with the NLF design philosophy. More importantly, however, steel sheet pile may affect the long-term effectiveness of the fishway. Steel sheetpile is subject to corrosion. Indeed, the steel is particularly susceptible to corrosion zone at the air-water interface (i.e., where water stage fluctuates in the headpond). While corrosion rates vary depending on water chemistry, even minor corrosion in water-retaining sheetpile will promote lateral movement of water from the impoundment into the NLF substrate. Over time, this may degrade the fishway structure and hydraulic performance. If feasible, the Service recommends the using cyclopean rock walls or precast concrete piling in lieu of steel sheetpile.

Fishway Entrance

Alternative 1-1 can be described as a partial NLF, insomuch as the fishway does not span the entire lateral width of the river. Bypasses and partial NLFs may be particularly susceptible to poor attraction when they are spatially separated from the spillway (the dominant source of river flow). Separating the fishway entrance from the spillway (as Alternative 1-1 shows) creates the potential for false attraction to the spillway. False attraction is exacerbated if the fish won't search longitudinally for the entrance and is delayed upstream at the spillway. This alternative locates the fishway entrance approximately 500 feet downstream of the spillway. Fishway

layouts of this type conflict with conventional best practices and the Service recommends against it.

Design Flows

As standard practice, the Service recommends that fishways (nature-like or technical) are designed to operate over a wide range of flows occurring when migratory fishes are present in the river. The low and high design flows are defined as the mean daily flow that is equaled or exceeded 95% and 5% of the time, respectively. By ensuring a fishway is built to operate over this flow range, safe, timely, and effective fish passage can be provided for 90% of the annual migration season. Modifications to this fishway operating range may result in delayed migration, reabsorptions of eggs, or spawning in lower quality habitat; design flow modifications should be made cautiously and only due to unalterable constraints.

The Service developed the fish passage design flows at NSBLD using stream flow data collected at USGS 02197000 SAVANNAH RIVER AT AUGUSTA, GA from 1988 to 2017. Based on a composite migration period of January 15 to November 1, the high and low design flows are 22,400 cubic feet per second (cfs) and 3,860 cfs, respectively. The NAA originally discussed in the 2012 Final SHEP environmental impact statement proposes to provide passage up to flows of 8,000 cfs, an exceedance level of only 27%. As a result, the NAA will provide passage only 68% of the migration season. In other words, the NAA rock-ramp bypass is not designed to function during fish migration season for an average of 67 days each year. We do not have sufficient information on the hydraulics of Alternative 1-1 to accurately quantify the upper design flow. However, partial-width NLFs have a limited upper design range limited by the distribution of flow between the fishway and the spillway. This may represent a significant constraint on the availability and effectiveness of fish passage conditions at the site and should be considered.

Additionally, due to changing hydrometeorological and water-use trends in the basin, we note the marked decrease in fish passage design flows in this 30-year period compared with 1958 to 1987. The low design flow or 95% exceedance flow has decreased from 5,460 cfs to 3,860 cfs. Future trends are beyond the scope of this report, but this 29% reduction is stark. A comparable decrease in the future would compromise the effectiveness of the fishway at low flows. Best practices would suggest that the design of any partial-width NLF alternative that seeks to balance competing flows (i.e., spillway) with fishway attraction flow consider this hydrologic trend.

Gate Operations and Flow Partitioning

Alternative 1-1 proposes to retain the NSBLD dam gates on the spillway. The five 60-foot long vertical lift gates and two overflow type gates are integral to the 15-foot high dam. Historically, the Corps has operated the gates to reduce flooding upstream of the NSBLD. Assuming comparable operations to the NAA, the spill gates would be opened for flood management above river flows of 8,000 cfs. Due to the distance between the fishway entrance and the spillway gates, this creates the false attraction to the spillway for 22% percent of the migration season.

The Service regards this as a significant potential impact to fish passage, which could be moderated if the hydraulic capacity of the fishway were increased. For this reason, we recommend increasing the hydraulic capacity of the NLF such that flood operations (i.e. spill gate use) may be limited to flows exceeding 22,400 cfs (the high fish passage design flow).

Tailwater Fluctuations

Fishways require adequate attraction to lure fish into the entrance. Attraction has three important components: flow, velocity, and location (NMFS 2011). At a fishway entrance, an attraction jet with a velocity greater than the surrounding flow field is critical to triggering positive rheotaxis in migrants (e.g. turning into the oncoming current). Unlike technical fishways that are designed to accelerate water and create a focused attraction jet, the entrances of partial width NLFs generally do not. Locating the NLF entrance in fluctuating tailwater may drown out entrance velocities and adversely affect attraction. Bunt et al. (2012) identifies this failure trend and notes many nature-like passes where "flow was too low to effectively attract fish to the entrance location."

The Service has not been provided with information to evaluate the hydraulics at the entrance, but as a partial width NLF, ALT 1-1 appears to be subject to this type of attraction problem. For fish approaching on the South Carolina side of the river, these conditions may lead to delay in or reduced amounts of fish passage. The Service would recommend redesigning the width of the fishway entrance and ensuring that post-construction effectiveness monitoring (e.g., telemetry studies) attempt to separate the effectiveness of the fishway attraction from (in-structure) passage effectiveness.

Turbulence, Energy Dissipation and Pool Sizing

Turbulence has been shown to influence both swimming behavior and performance of fish (Lupandin 2005, Enders et al. 2003, Pavlov et al. 2000). American Shad have demonstrated a particular sensitivity to increased turbulence and associated air entrainment in pool-type fishways (Haro and Kynard 1997). Minimizing turbulence and air entrainment within fishways is generally considered advantageous for fish passage (Towler et al., 2015). This is particularly true for American Shad. The energy dissipation factor (EDF) is a well-known fishway design parameter that correlates with turbulence and air entrainment. The Service recommends that efforts are made to eliminate or minimize unnecessary turbulence in the design; in practice, this will necessitate sizing the pools in the fishway to meet the recommended EDF limit for American Shad of 3.15 ft-lbf/s/ft³ or 150 W/m³.

As a partial-width NLF, ALT 1-1 may constrict the movement of fish that would otherwise have access to the entire breadth of the river. This potential constraint would most likely affect anadromous species with highly compressed migrations (such as American shad, blueback herring and other alosines). In addition to the EDF metric, biological capacity should be considered in sizing the pools of this partial-width NLF to avoid creating a bottleneck for fish movement.

Downstream Passage

Upstream and downstream movement is a critical aspect of the life history of many diadromous and riverine species. ALT 1-1 proposes to maintain the spillway, dam, gate structures and lower the pool by 0.5 feet. The presence of the dam and gates will maintain 700+ foot long pool between the upstream fishway exit and the dam. The discharge at the dam (and any path for outmigration at the dam) would be subject to gate operations, the details of which are unknown at this time. Depending on both the hydraulic capacity of the NLF and gate operations, this pool could strand out-migrating fish that swim past the fishway exit. As a result, downstream passage may be adversely affected. At a minimum, the Service would recommend that one or more dedicated downstream bypasses be incorporated into the dam should this alternative be selected. The form and function of that downstream bypass should approximate a "uniform acceleration weir" as described in Haro et al. (1997).

<u>Maintenance</u>

While repair of the existing lock wall and removal of the lock itself would markedly reduce maintenance needs of the aging NSBLD, ALT 1-1 proposes to maintain the existing seven spillway gate structures. Some infrequent level of operation (for flood management) and routine maintenance will be required for these water-retain structures. The NLF will also require maintenance. NLFs are composed of rock and other natural materials. Their long-term stability is subject to hydraulic forces that, in turn, are dependent on river hydrology. While rock weir size, material stability and the estimated design life of this structure must be determined at a later design stage, the need for a maintenance plan and budget clearly exists.

An operations and maintenance plan is a key component to ensuring long-term success of the facility. Such a plan provides descriptions of the project, the focal species, hydrologic operating ranges, inspection and maintenance schedules, effectiveness-monitoring methods, and any adaptive management measures. Adaptive management defines the protocols and schedule for modifying the project in response to unforeseen conditions (e.g., drought conditions, climate change). Considerations should also assess the feasibility and potential cost of modifying any final project design to adapt to meet inadequacies of fish passage goals. Should ALT 1-1 be selected, the Service would request that the Corps' develop a fishway operations and maintenance plan in consultation with the natural resource agencies.

Evaluation of Alternative 2-3

ALT 2-3 proposes to remove the spillway, dam and gate structures, and construct a full-width nature-like fishway spanning the channel of the river. Based on the information provided and Figure 4, salient elements of the evaluation include fishway slope, boulder structure, turbulence, and weir crest.

Fishway Slope

Roughened channels utilize resistance created by boulders, ledge, and surface relief to reduce water velocities to levels passable by fish. The capacity for roughened channels to reduce

velocity is limited. The Service recommends that roughened channels are designed at slopes less than 3%. Hybrid NLFs, such as the arch rapids NLFs proposed as ATL 2-3, may operate as a step-pool or a roughened channel depending on hydraulic conditions. Accordingly, the Service recommends that arch rapids are also designed at slopes less than 3%. The materials provided to the Service suggest the fishway would be constructed as described in ALT 1-1. However, the stationing in Figure 4 suggests a steeper slope. If this alternative is selected, the Service strongly recommends maintaining a slope less than 3% measured longitudinally along the approximate thalweg.

Boulder Structure and Arrangement

The previous design was an arch-rapids hybrid type NLF based on approaches originally outlined in Aadland (2010). Since the previous design was submitted, the Service gained additional experience in this technology and issued new criteria (Turek et al. 2016). While we remain supportive of the arch-rapids type NLF, specific slope, depth, width and velocity criteria presented in Turek et al. (2016) should be carefully considered before advancing this (or another alternative) to the final design stage. Schooling fish such as American shad may be reluctant to enter (or pass through) gaps in the rocks of an arch rapids NLF. Sizing those gaps to accommodate the target species is critical. Turek et al. (2016) provides species-specific criteria for sturgeon, eel, shad and river herring; for species not listed in this document (e.g., the state listed Robust Redhorse) and in the absence of better performance data, the Service recommends conservative assumptions on these design criteria and, where possible, the use of a surrogate to estimate the geometric parameters that influence boulder structure and arrangement.

Turbulence, Energy Dissipation and Pool Sizing

Turbulence has been shown to influence both swimming behavior and performance of fish (Lupandin 2005, Enders et al. 2003, Pavlov et al. 2000). American Shad have demonstrated a particular sensitivity to increased turbulence and associated air entrainment in pool-type fishways (Haro and Kynard 1997). Minimizing turbulence and air entrainment within fishways is generally considered advantageous for fish passage (Towler et al., 2015). This is particularly true for American Shad. The energy dissipation factor (EDF) is a well-known fishway design parameter that correlates with turbulence and air entrainment. The Service recommends that efforts are made to eliminate or minimize unnecessary turbulence in the design; in practice, this will necessitate sizing the pools in the fishway to meet the recommended EDF limit for American Shad of 3.15 ft-lbf/s/ft3 or 150 W/m3.

Weir Crest and a Low Flow Notch

ALT 2-3 proposes to establish hydraulic control in the upper NLF with a 10-foot wide weir with a crest elevation of 106.22 feet NAVD88. Typically, the cross-sections of roughened channel NLFs vary in channel elevation. This promotes a diversity of hydraulic conditions that make the NLF passable at low, moderate, and high flows. However, the proposed constant elevation weir crest will create largely uniform flow conditions in the upper fishway. If this alternative is selected, the Service would recommend incorporating a low flow notch through the weir that

transitions into a near parabolic channel NLF cross-sections (characteristic of lowland river channels).

Maintenance

With the removal of the lock, spillway and gates, fish passage will be effectively passive. Operations, for flood management or other purposes, are not anticipated. However, the NLF will require maintenance. NLFs are composed of rock and other natural materials. Their long-term stability is subject to hydraulic forces that, in turn, are dependent on river hydrology. While rock weir size, material stability and the estimated design life of this structure must be determined at a later design stage, the need for a maintenance plan and budget clearly exists.

A maintenance plan is a key component to ensuring long-term success of the facility. Such a plan provides descriptions of the project and inspection and maintenance schedules, effectiveness-monitoring methods, and any adaptive management measures. Considerations should also assess the feasibility and potential cost of modifying any final project design to adapt to meet inadequacies of fish passage goals. Should ALT 2-3 be selected, the Service would request that the Corps develop a fishway maintenance plan in consultation with the natural resource agencies.

Evaluation of Alternative 2-6

ALT 2-6 proposes to remove the spillway, dam and gate structures, construct a full-width naturelike fishway spanning the channel of the river, and excavate a floodway bench on the Georgia side of the river. Based on the information provided and Figure 5, salient elements of the evaluation include fishway slope, boulder structure, turbulence, weir crest, and bench.

Fishway Slope

ALT 2-6 proposes a rock ramp similar to the previous design (i.e., an arch rapids NLF). This hybrid-type NLF may operate as a step-pool or a roughened channel depending on hydraulic conditions. Accordingly, the Service recommends that arch rapids are also designed at slopes less than 3%. The materials provided to the Service suggest the fishway would be constructed as described in ALT 1-1. However, the stationing in Figure 5 suggests a steeper slope. If this alternative is selected, the Service strongly recommends maintaining a slope less than 3% measured longitudinally along the approximate thalweg.

Boulder Structure and Arrangement

The previous design was an arch-rapids hybrid type NLF based on approaches originally outlined in Aadland (2010). Since the previous design was submitted, the Service gained additional experience in this technology and issued new criteria (Turek et al., 2016). While we remain supportive of the arch-rapids type NLF, specific slope, depth, width and velocity criteria presented in Turek et al. (2016) should be carefully considered before advancing this (or another alternative) to the final design stage. Schooling fish such as American shad may be reluctant to enter (or pass through) gaps in the rocks of an arch rapids NLF. Sizing those gaps to

accommodate the target species is critical. Turek et al. (2016) provides species-specific criteria for sturgeon, eel, shad and river herring; for species not listed in this document (e.g., the state listed Robust Redhorse) and in the absence of better performance data, the Service recommends conservative assumptions on these design criteria and, where possible, the use of a surrogate to estimate the geometric parameters that influence boulder structure and arrangement.

Additional we note that the incorporation of the floodplain bench in ALT 2-6 may have the ancillary benefit of providing enhanced passage along the bankside where, presumable, side slopes transitioning into the flood plain bench are mild.

Turbulence, Energy Dissipation and Pool Sizing

Turbulence has been shown to influence both swimming behavior and performance of fish (Lupandin 2005, Enders et al. 2003, Pavlov et al. 2000). American Shad have demonstrated a particular sensitivity to increased turbulence and associated air entrainment in pool-type fishways (Haro and Kynard 1997). Minimizing turbulence and air entrainment within fishways is generally considered advantageous for fish passage (Towler et al., 2015). This is particularly true for American Shad. The energy dissipation factor (EDF) is a well-known fishway design parameter that correlates with turbulence and air entrainment. The Service recommends that efforts are made to eliminate or minimize unnecessary turbulence in the design; in practice, this will necessitate sizing the pools in the fishway to meet the recommended EDF limit for American Shad of 3.15 ft-lbf/s/ft³ or 150 W/m³.

Weir Crest, Low Flow Notch and Bench

ALT 2-6 proposes to establish hydraulic control in the upper NLF with a 10-foot wide weir with a crest elevation of 109.22 feet NAVD88. Typically, the cross-sections of roughened channel NLFs vary in channel elevation. This promotes a diversity of hydraulic conditions that make the NLF passable at low, moderate, and high flows. However, the proposed constant elevation weir crest will create largely uniform flow conditions in the upper fishway. If this alternative is selected, the Service would recommend incorporating a low flow notch through the weir that transitions into a near parabolic channel NLF cross-sections (characteristic of lowland river channels).

We note that ALT 2-6's inclusion of a floodplain bench may enhance passage at high flows. However, we do not have sufficient information on the hydraulics of ALT 2-6 to determine the stage at which the floodplain bench will be engaged.

<u>Maintenance</u>

With the removal of the lock, spillway and gates, fish passage will be effectively passive. Operations, for flood management or other purposes, are not anticipated. However, the NLF will require maintenance. NLFs are composed of rock and other natural materials. Their long-term stability is subject to hydraulic forces that, in turn, are dependent on river hydrology. While rock weir size, material stability and the estimated design life of this structure must be determined at a later design stage, the need for a maintenance plan and budget clearly exists.

A maintenance plan is a key component to ensuring long-term success of the facility. Such a plan provides descriptions of the project and inspection, maintenance schedules, contingencies, effectiveness-monitoring methods, and any adaptive management measures. Considerations should also assess the feasibility and potential cost of modifying any final project design to adapt to meet inadequacies of fish passage goals. Should ALT 2-6 be selected, the Service would request that the Corps develop a fishway maintenance plan in consultation with the natural resource agencies.

Evaluation of Alternative 2-8

ALT 2-8 proposes to remove the spillway, dam and gate structures, construct a full-width naturelike fishway spanning the channel of the river, and construct a gated flood canal on the Georgia side of the river. Based on the information provided and Figure 6, salient elements of the evaluation include fishway slope, boulder structure, turbulence, weir crest, and flood bypass.

Fishway Slope

ALT 2-8 proposes a rock ramp similar to the previous design (i.e., an arch rapids NLF). This hybrid-type NLF may operate as a step-pool or a roughened channel depending on hydraulic conditions. Accordingly, the Service recommends that arch rapids are also designed at slopes less than 3%. The materials provided to the Service suggest the fishway would be constructed as described in ALT 1-1. However, the stationing in Figure 6 suggests a steeper slope. If this alternative is selected, the Service strongly recommends maintaining a slope less than 3% measured longitudinally along the approximate thalweg.

Boulder Structure and Arrangement

The previous design was an arch-rapids hybrid type NLF based on approaches originally outlined in Aadland (2010). Since the previous design was submitted, the Service gained additional experience in this technology and issued new criteria (Turek et al. 2016). While we remain supportive of the arch-rapids type NLF, specific slope, depth, width and velocity criteria presented in Turek et al. (2016) should be carefully considered before advancing this (or another alternative) to the final design stage. Schooling fish such as American shad may be reluctant to enter (or pass through) gaps in the rocks of an arch rapids NLF. Sizing those gaps to accommodate the target species is critical. Turek et al. (2016) provides species-specific criteria for sturgeon, eel, shad and river herring; for species not listed in this document (e.g., the state listed Robust Redhorse) and in the absence of better performance data, the Service recommends conservative assumptions on these design criteria and, where possible, the use of a surrogate to estimate the geometric parameters that influence boulder structure and arrangement.

Turbulence, Energy Dissipation and Pool Sizing

Minimizing turbulence and air entrainment within fishways is generally considered advantageous for fish passage (Towler et al. 2015). This is particularly true for American Shad. The energy dissipation factor (EDF) is a well-known fishway design parameter that correlates with turbulence and air entrainment. The Service recommends that efforts are made to eliminate or minimize unnecessary turbulence in the design; in practice, this will necessitate sizing the pools in the fishway to meet the recommended EDF limit for American Shad of 3.15 ft-lbf/s/ft³ or 150 W/m^3 .

Weir Crest and Low Flow Notch

ALT 2-8 proposes to establish hydraulic control in the upper NLF with a 10-foot wide weir with a crest elevation of 109.22 feet NAVD88. Typically, the cross-sections of roughened channel NLFs vary in channel elevation. This promotes a diversity of hydraulic conditions that make the NLF passable at low, moderate, and high flows. However, the proposed constant elevation weir crest will create largely uniform flow conditions in the upper fishway. If this alternative is selected, the Service would recommend incorporating a low flow notch through the weir that transitions into a near parabolic channel NLF cross-sections (characteristic of lowland river channels).

Flood Bypass

This alternative includes a gated flood bypass channel/canal on the Georgia side. At this time, the Service does not have sufficient information to determine the channel's capacity to pass flood flows or the elevation at which the flood bypass is engaged. If the bypass invert were sufficiently low, it may have the capacity to improve passage conditions through the NLF at or near the high design flow of 22,400 cfs. However, the flood gate structure presents new hazards and complications to fish passage: for upstream migrating fish, the high velocity discharge through the gate may act as false attraction (away from the NLF); for downstream passage, movement at high velocity through the gate may prove injurious to fish and the impounded water behind the structure may trap or delay out migrants. The Service regards the excavated flood bench in ALT 2-6 as a superior approach to mitigating flood flows at the site.

<u>Maintenance</u>

The repair of the existing lock wall and removal of the lock itself would markedly reduce maintenance needs of the aging NSBLD; however, ALT 2-8 proposes to construct a new gated flood canal. Operations for flood management and routine maintenance will be required for these new water-retaining structures. The NLF will also require maintenance. NLFs are composed of rock and other natural materials. Their long-term stability is subject to hydraulic forces that, in turn, are dependent on river hydrology. While rock weir size, material stability, and the estimated design life of this structure must be determined at a later design stage, the need for a maintenance plan and budget clearly exists.

An operations and maintenance plan is a key component to ensuring long-term success of the facility. Such a plan provides descriptions of the project, the focal species, hydrologic operating ranges, inspection and maintenance schedules, effectiveness-monitoring methods, and any adaptive management measures. Adaptive management defines the protocols and schedule for modifying the project in response to unforeseen conditions (e.g., drought conditions, climate change). Considerations should also assess the feasibility and potential cost of modifying any final project design to adapt to meet inadequacies of fish passage goals. Should ALT 2-8 be selected, the Service would request that the Corps' develop a fishway operations and maintenance plan in consultation with the natural resource agencies.

SUMMARY

The Savannah District of the United States Army Corps of Engineers (Corps), in response to WIIN 2016, has developed four new alternatives to evaluate with regards the New Savannah Bluff Lock and Dam Fish Passage mitigation feature of SHEP. Along with the NAA, the alternatives include:

- ALT 1-1, Repair Lock Wall Georgia Side Fish Passage
- ALT 2-3, Fixed Crest Weir
- ALT 2-6, Fixed Crest Weir with Floodplain Bench
- ALT 2-8, Fixed Crest Weir with Gated Bypass

The Service's evaluation of these alternatives is based on the concepts illustrated and described in their 9 November 2017 email and attachments and on previous reports and correspondence discussing the future of the NSBLD and the SHEP. The analyses provided and recommendations offered in this report should be carefully considered and integrated into the Corp's preferred alternative. The salient findings and recommendations are summarized below:

- Channel slope is, perhaps, the single most critical parameter in the design of nature-like fishways. Bunt et al. (2012) analyzed monitoring data from 19 different studies and found that NLFs generally demonstrate superior passage efficiency. However, the authors noted that "nature-like fishways tend to be built with very low slope, and it is possible that the superior passage performance of this fishway type is largely attributable to slope rather than to any other intrinsic benefit of their design". The Corps has indicated that ALT 1-1 will maintain a favorable 1.3% slope; from the information provided, it is not clear if ALT 2-3, ALT 2-6 and ALT 2-8 can be built to this same slope. To ensure successful passage, the Service recommends that the Corps' work to minimize the slope of any selected alternative and, at a minimum, maintain slopes below 3% at all times.
- Partial-width NLFs are inherently problematic because they partition the river flow between a fishway and some other flow diversion (e.g., spillways, canals, gates); these flow diversions represent false attractions that could impact attraction efficiency and/or exacerbate migration delays at the site. Full-width NLFs span the entire river width and generally do not suffer

from attraction issues. For this reason, the Service recommends the full-width NLF concepts as presented in ALT 2-3, 2-6 or 2-8.

- Fishways with integrated gate structures are subject to the influence of gate operations. Dependent on fisheries, flood control, and other management objectives, gate operations can alter the distribution of attraction flow (and false attraction flow) and alter velocities within the rock ramp by influencing headpond levels. Properly designed NLFs mimic natural river conditions and are, thus, passive. For this reason, the Service prefers the ungated alternatives: ALT 2-3 and ALT 2-6.
- Nature-like fishways and other stream restoration projects often seek to create a diversity of hydraulic conditions to promote passage for an entire suite of migratory species. This can be accomplished through designs that include low flow channels, terraces and flood plains that engage under different river conditions. Thus, terraces and flood plains design to manage high flow conditions may have ecological benefits. For example, terraces and flood plains may provide passage or refugia for species such as the American eel under higher flow conditions. For this reason, the Service prefers ALT 2-6.
- Fishways of all types, nature-like or technical, are relatively high gradient, engineered structures that, to perform successfully, must integrate myriad constraints to meet the needs of focal species. As the Corps' proceeds with the selection and design of a preferred alternative, the Service strongly recommends incorporating fish passage design parameters based on swimming performance, fatigue, slope, turbulence, and biological capacity. Moreover, criteria (i.e., design values) for each of these metrics are dictated by a different species. For example, the design criteria for EDF may be set for American shad (based on this fish's known aversion to turbulence and air entrainment), while rock gap spacing may be dictated by the needs of larger shortnose sturgeon.
- As the Corps' proposed project is developed, consultation with Service's and other agency/private subject-matter experts should continue to ensure that the evolving design constraints do not adversely impact fish passage efficacy or habitat quality for the suite of native species at the project site. The Service requests the opportunity to review and comment on relevant reports and drawings related to major drawings and issued revisions (e.g., 30%, 60%, 90% design stages).
- An operations and maintenance plan is a key component to ensuring long-term success of the facility. Such a plan provides descriptions of the project, the focal species, hydrologic operating ranges, inspection and maintenance schedules, effectiveness monitoring methods, and any adaptive management measures. Adaptive management defines the protocols and schedule for modifying the project in response to unforeseen conditions (e.g., drought conditions, climate change). The Service requests that the Corps' develop a fishway operations and maintenance plan in consultation with the natural resource agencies.
- The performance of the final fishway design should also be addressed through monitoring and adaptive management. Target species and passage goals should be identified for the structure and monitoring should be conducted at a variety of flows to assess if goals are being

met. Design should also consider the feasibility and cost of how adaptations or modifications of the structure would occur to address any inadequacies of passage.

FWS POSITION

The NSBLD is the lowermost dam and hence the first blockage to migratory species on the Savannah River, restricting access to historic upstream habitat for these species. The Congressionally authorized purpose of commercial navigation has long ceased to be valid and the WIIN Act formally de-authorized the use of NSBLD as a navigation structure. The project works are in a poor state of repair and would require significant Federal dollars to repair and maintain in a safe condition. Our preferred action at NSBLD has been and continues to be dam removal, because of fish passage benefits and the restoration of riverine and shoal habitat that is currently inundated above NSBLD. However, dam removal has not been carried forward by the Corps as an alternative. The Corps has provided four NLF alternatives for our review.

After careful consideration, the Service supports and prefers Alternative 2-6, Fixed Weir Crest with Floodplain Bench. Conceptually, ALT 2-6 features elements that would minimize false attraction from an adjacent spillway, eliminates the need for gate operations, incorporates design features of a low-maintenance, passive arch rapids rock ramp, and includes the ancillary benefits of a dedicated floodplain bench. However, due to the lack of design detail and analyses regarding the ALT 2-6 at this time, we cannot provide this FWCAR in complete fulfillment of 2(b) of the FWCA. We recommend the Corps implement the Service's recommendations contained under the Fish and Wildlife Conservation Measures and Recommendations section of this report; for the Service to be able to fulfill our 2(b) duties, we request continued, active consultation with the Service throughout the design of the Corps' preferred alternative.

To ensure benefits to Savannah River resources, and especially those species that are imperiled, the Service will continue to work cooperatively with the Corps and all stakeholders. The Service would like to work closely with the Corps' team while formulating and evaluating the design for the preferred alternative. We encourage the Corps to follow the recommendations and conservation measures included in this document and are ready to assist in the development of an alternative that is beneficial to Savannah River resources.

LITERATURE CITED

Aadland, L. 2011. Comments on the New Savannah Bluff Project. 12 pp.

- Atlantic States Marine Fisheries Commission. 2015. Shad and River Herring. Available at <u>http://www.asmfc.org/species/Shad-river-herring</u>. (Accessed on December 22, 2015).
- Augusta Chronicle. 2012. Savannah River Shad and Sturgeon Arrive Early This Year. Available at <u>http://chronicle.augusta.com/latest-news/2012-03-29/savannah-river-Shad-and-sturgeon-arrive-early-year-1</u>. March 29, 2012. (Accessed on June 5, 2014).

- Bogan, A.E., and J. M. Alderman. 2008. Workbook and key to the freshwater bivalves of South Carolina. Revised Second Edition.
- Bunt, C.M., T. Castro-Santos, and A. Haro. 2012. Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28: 457-478.
- Enders, E.C., Boisclair, D., and A.G. Roy. 2003. The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 60, 1149–1160.
- Georgia Department of Natural Resources-Environmental Protection Division. 2001. Savannah River Basin Management Plan 2001. Atlanta, Georgia. Available at <u>https://epd.georgia.gov/savannah-river-basin-watershed-protection-plan</u> (Accessed on December 1, 2015).
- Georgia Department of Natural Resources-Environmental Protection Division. 2016. Available at <u>https://epd.georgia.gov/sites/epd.georgia.gov/files/related_files/site_page/303d_Draft_Str</u> eams Y2016.pdf. September 15, 2016. (Accessed on July 12, 2017).
- Grabowski, T.B., and J.J Isely. 2006. Seasonal and diel movements and habitat use of Robust Redhorses in the Lower Savannah River, Georgia and South Carolina. Transactions of the American Fisheries Society 135:1145-1155.
- Hanlon S. D. and J. F. Levine. 2004. Notes on the life history and demographics of the Savannah Lilliput (*Toxolasma pullus*) (Bivalvia: Unionidae) in University Lake, North Carolina. Southeastern Naturalist 3(2): 289-296.
- Haro, A. and B. Kynard. 1997. Video evaluation of passage efficiency of American Shad and sea lamprey in a modified Ice Harbor fishway. North American Journal of Fisheries Management 17: 981–987.
- Harris, J.E. and J. E. Hightower. 2011. Spawning habitat selection of Hickory Shad. North American Journal of Fisheries Management 31:495-505.
- Helfman, G.S., E.L. Bozeman, and E.B. Brothers. 1984. Size, age, and sex of American eels in a Georgia River. Transactions of the American Fisheries Society 115:132-141.
- Helfman, G.S., D.E. Facey, L.S. Hales, Jr., and E.L. Bozeman, Jr. 1987. Reproductive ecology of the American eel. American Fisheries Society Symposium 1:42-56.
- Hightower, J.E., J.E. Harris, J.K. Raabe, P. Brownell, and C.A. Drew. 2012. A Bayesian Spawning Habitat Suitability Model for American Shad in Southeastern United States Rivers. Journal of Fish and Wildlife Management 3:184-198.
- Johnson, J.A., J.M. Wisniewski, A.K. Fritts, and R.B. Bringolf. 2012. Host identification and glochidia morphology of freshwater mussels from the Altamaha basin. Southeastern Naturalist 11(4): 733-746.
- Lupandin, A.I. 2005. Effect of flow turbulence on swimming speed of fish. Biol. Bull. 32, 461–466 No. 5.

- Meador, J.R., J.T. Peterson, and J. Wisniewski. 2011. An evaluation of the factors influencing freshwater mussel capture probability, survival, and temporary emigration in a large, lowland river. Journal of the North American Benthological Society 30(2)507-521.
- National Marine Fisheries Service. 2011. Anadromous salmonid passage facility design. NMFS, Northwest Region, Portland, Oregon. July 2011. 140 pp.
- Pavlov, D.S., Lupandin, A.I., and M. A. Skorobogatov. 2000. The effects of flow turbulence on the behavior and distribution of fish. J. Ichthyol. 40, S232–S261.
- Post, B., C. Holbrook, E. Miller, C. Norwood, L. Kaczka, and J. Gibbons. 2014. Research and Management of Endangered and Threatened Species in South Carolina: Riverine Movements of Shortnose and Atlantic Sturgeon. South Carolina Department of Natural Resources, Final Report covering July 1, 2010-September 30, 2014. 85 pp.
- Rohde, F.C., R.G. Arndt, J.W. Foltz, and J.M. Quattro. 2009. Freshwater Fishes of South Carolina. University of South Carolina Press, Columbia, South Carolina. 430 pp.
- South Carolina Department of Health and Environmental Control. 2012. Regulation 61-69, Classified Waters. Available at <u>http://www.scdhec.gov/Agency/docs/water-regs/R.61-69.pdf</u> (Accessed on December 8, 2015). 37 pp.
- South Carolina Department of Health and Environmental Control. 2014a. Regulation 61-68, Water Classifications and Standards. Available at <u>http://www.scdhec.gov/Agency/docs/water-regs/R.61-68.pdf</u> (Accessed on December 8, 2015). 68 pp.
- South Carolina Department of Health and Environmental Control. 2014b. State of South Carolina Integrated Report for 2014, Part I: Section 303(d) List of Impaired Waters. Available at <u>https://www.scdhec.gov/HomeAndEnvironment/Docs/tmdl_14-303d.pdf</u> (Accessed on December 14, 2015). 92 pp.
- The Catena Group. 2007. Freshwater mussel surveys of the Savannah River from Augusta to Savannah: South Carolina & Georgia. Prepared for International Paper and the U.S. Fish and Wildlife Service. December 17, 2007. 40 pp.
- Towler, B., J. Turek and A. Haro. 2015. TR-2015-1. Preliminary hydraulic design of a steppool type, nature-like fishway. University of Massachusetts, Amherst Fish Passage Technical Report. 27 pp.
- Turek, J., A. Haro, and B. Towler. 2016. Federal Interagency Nature-like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes. Interagency Technical Memorandum. 47 pp.
- United States Army Corps of Engineers, Mobile District. 2002. Section 206 Preliminary Restoration Plan- Aquatic Ecosystem Restoration Project, Removal of City Mills Dam and Eagle & Phenix Dam, Chattahoochee River, Columbus, Georgia, and Phenix City, Alabama. 32 pp.
- United States Army Corps of Engineers, Savannah District. 2013. The Purpose of Russell Lake and How It's Different. May 29, 2013. Available at <u>http://balancingthebasin.armylive.dodlive.mil/2013/05/29/the-purpose-of-russell-lake-</u> and-how-its-different/. (Accessed on December 2, 2015).

- United States Army Corps of Engineers, Savannah District. 2014a. Final Environmental Assessment New Operating Agreement Between U.S. Army Corps of Engineers, Southeastern Power Administration, and Duke Energy Carolinas, LLC. October 2014. 317 pp. Available at <u>http://www.sas.usace.army.mil/Portals/61/docs/Planning/Plansandreports/Duke/DukeFina</u> <u>lEA14.pdf</u> (Accessed on December 2, 2015).
- United States Army Corps of Engineers, Savannah District. 2014b. Corps to Close Portions of Lock and Dam for Safety Concerns. News Release No. 14-21. May 7, 2014. 1 pp.
- United States Army Corps of Engineers, Savannah District. 2015. Preliminary Draft Finding of No Significant Impact Environmental Assessment New Savannah Bluff Lock and Dam, Project Authorization Change Report, Richmond County, Georgia. Savannah Planning Division, Savannah, Georgia, September 2015. 13 pp.
- United States Army Corps of Engineers, Savannah District. 2016. Draft Finding of No Significant Impact Environmental Assessment New Savannah Bluff Lock and Dam, Project Authorization Change Report, Richmond County, Georgia and Aiken County, South Carolina. Savannah Planning Division, Savannah, Georgia. 9 pp.
- United States Fish and Wildlife Service. 2000. Final Fish and Wildlife Coordination Act Report on New Savannah Bluff Lock and Dam Project Section 216 Disposition Study. Charleston Ecological Services, Charleston, South Carolina. September 2000. 40 pp.
- United States Fish and Wildlife Service. 2016. Fish Passage Engineering Design Criteria. USFWS Northeast Region (R5), Hadley, Massachusetts, January 2016. 114 pp.
- United States Fish and Wildlife Service. 2017. Final Fish and Wildlife Coordination Act Report on New Savannah Bluff Lock and Dam Instream Fishway Project Authorization Change Report, Georgia & South Carolina. Georgia Ecological Services, Athens, Georgia. July 2017. 53 pp.
- United States Fish and Wildlife Service and National Marine Fisheries Service. 2005. Diadromous Fish Restoration Plan for the Middle Savannah River: Strategy and Implementation Schedule. Agency Technical Draft, Charleston Ecological Services, United States Fish and Wildlife Service. August 2005. 27 pp.
- Water Infrastructure Improvements for the Nation (WIIN) Act. 2016. Public Law No: 114-322.
- Williams, J.D., A.E. Bogan, and J.T. Garner. 2008 Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi & Tennessee. The University of Alabama Press, Tuscaloosa, Alabama. 908 pp.
- Wisniewski, J. 2008. Rare mussels and snails of Georgia. Georgia Department of Natural Resources. Available at <u>http://www.georgiawildlife.com/node/2624</u>. September 2008. (Accessed on May 28, 2014).

Appendix D3

✤ April 2019 U.S. Fish and Wildlife Coordination Act Report

United States Department of the Interior

Fish and Wildlife ServiceRG Stephens, Jr. Federal Building355 East Hancock Avenue, Room 320Athens, Georgia 30601April 17, 2019Co

Coastal Sub Office 4980 Wildlife Drive Townsend, Georgia 31331

West Georgia Sub Office P.O. Box 52560 Ft. Benning, Georgia 31995-2560

Colonel Daniel H. Hibner Commander, Savannah District U.S. Army Corps of Engineers 100 West Oglethorpe Avenue Savannah, Georgia 31402

Dear Colonel Hibner:

The U.S. Fish and Wildlife Service (Service) has reviewed the U.S. Army Corps of Engineers (Corps)' February 2019 Draft Integrated Post Authorization Analysis Report (PAAR) and Supplemental Environmental Assessment (SEA), Fish Passage at New Savannah Bluff Lock and Dam (NSBLD), and Draft Finding of No Significant Impact (FONSI), which evaluates proposed changes to the fish passage feature of the Savannah Harbor Expansion Project (SHEP). The SEA supplements the July 2012 Final Environmental Impact Statement (FEIS) for the SHEP. We submit the following comments and recommendations under the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. § 1531 *et seq.*) and the Fish and Wildlife Coordination Act (FWCA) (48 Stat. 401, as amended; 16 U.S.C. § 661 *et seq.*).

Endangered Species Act

The National Oceanographic and Atmospheric Administration (NOAA) should be consulted under the ESA for potential effects to federally listed species in the project area, which are under their jurisdiction.

Fish and Wildlife Coordination Act

Fish and Wildlife Coordination Act Report

Most recently, we provided your agency with a March 21, 2018, Fish and Wildlife Coordination Act Report (FWCAR) for the proposed New Savannah Bluff Lock and Dam Instream Fishway, Richmond County, Georgia and Aiken County, South Carolina, Project Authorization Change (PAC) Report in partial fulfillment of Section 2(b) of the FWCA. The purpose of the PAC Report is to propose changes to both the SHEP and the NSBLD, both federally-authorized projects, which are anticipated to result in a total Federal cost savings. The Tentatively Selected Plan (TSP) proposes de-authorizing the NSBLD, inactivating the lock and dam by cutting off the upper portion of the dam down to the sill and removing the lock structure, and constructing an in-channel rock weir to retain the pool of the NSBLD.

The FWCAR outlines fish and wildlife concerns and planning objectives, describes the Corps' No Action Alternative and the four alternatives, compares project impacts of the alternatives, and provides fish and wildlife conservation measures and recommendations that would address our concerns. As stated in the FWCAR, our preferred action at NSBLD based on the provided documentation and the alternatives presented in the PAC Report is Alternative 2-6, a Fixed Weir Crest with Floodplain Bench.

Draft PAAR, SEA, Draft FONSI

Based on the general information provided by the Corps to date, the Service continues to prefer Alternative 2-6. However, as to if option 2-6A, 2-6B, 2-6C, or 2-6D is the most preferable depends, in part, on the issues below:

- Appendix A- Engineering Appendix (Pages A-31, A-32, A-34 and A-35) suggests the Corps is considering paving the floodplain bench to enhance stability and limit erosion. While we understand the issue, we have concerns regarding the incremental impact pavement may have on water quality, especially if the surface permits vehicle traffic. We encourage the Corps to consider other surface treatments.
- Appendix A- Engineering Appendix (Figures 16 through 20) represents options 2-6A through 2-6D, respectively. We note the straight-line weir structure of 2-6A (Figure 16) differs from the curved rock weirs shown in the other layouts. However, the conceptual drawing for 2-6A in Appendix A-1 Attachment 1 does indicate curved weirs, so we assume the straight line weirs of Figure 16 are modeling simplifications and not a true departure from the conceptual design. Curved/arch rock weirs have a beneficial hydraulic and passage effect, so if the Corps' concept for 2-6A (or options 2-6, in general) now includes straight line weirs, please clarify and provide any supporting information.
- The floodplain benches of options 2-6 have the potential to a) provide additional beneficial passage paths at high flows, or b) strand and cause mortality of fishes when high flows recede. As the Service previously indicated (captured on Page 121 of the Main Report), we do not have sufficient information to evaluate this issue. Given the potential impact on migratory fishes, and especially sturgeon species, we recommend the Corps consider modeling synthetic flood hydrographs through its Hydrologic Engineering Center (HEC) model to estimate the frequency, magnitude and persistence of inundation of the floodplain bench. Additionally, we recommend that the design of the flood bench incorporate measures to reduces likelihood of stranding and is coordinated with the Service and NOAA (e.g. assessing slope and lateral conveyance channels), if this design advances.

State Wildlife Agency Comments Under FWCA

The Service circulated our March 21, 2018, FWCAR, along with the Corps' February 2019 Draft PAAR, SEA, and Draft FONSI, to NOAA and the State wildlife resource agencies (South

Carolina Department of Natural Resources and Georgia Department of Natural Resources) for review and comment. We subsequently received March 28, 2019 comments from the South Carolina Department of Natural Resources (SCDNR). SCDNR concurs with the recommendations presented in the *Fish and Wildlife Conservation Measures and Recommendations* section of the FWCAR and had the following specific comments regarding the Corps' alternatives:

No Action Alternative: SCDNR states that the NAA design needs to ensure that no sturgeon will bypass the entrance channel of the fishway coming downstream. SCDNR also recommends that the proposed sheet pile guide wall at the upstream entrance be replaced with a rock wing wall consisting of large boulders and that the design be modified to include high terrace resting pools to allow sturgeon to successfully move upstream. Without additional data and as currently proposed, SCDNR does not consider this alternative acceptable.

Alternative 1-1: SCDNR has concerns regarding the lack of sufficient information on hydraulics to accurately quantify the upper design flow and conditions at the fishway entrance which may represent a constraint on the availability and effectiveness of fish passage conditions at the site. Because of uncertainties regarding hydraulics at the bypass entrance and the possibility of certain conditions leading to delay or reduced amounts of fish passage of fish approaching on the South Carolina side of the river, SCDNR does not find this alternative acceptable.

Alternative 2-3: SCDNR continues to have concerns about the slope (10%) of the rock ramp on the upstream side of the proposed weir. They state that the Corps should explain in greater detail the basis for their determination that a 10% slope on the upstream side of the weir would not impede fish passage, particularly for large demersal species such as Atlantic Sturgeon. If insufficient data are available to support this determination, SCDNR recommends a shallower slope more closely approximating the original upstream design slope of 3% be implemented. They also have concerns regarding the erosional impacts of this alternative on the gravel bar that is downstream from the NSBLD and strongly supports additional hydrodynamic and sediment transport modeling to fully evaluate potential impacts to the gravel bar and inform any needed modification of the selected alternative to minimize this potential. SCDNR also requests an assessment of habitat above the NSBLD be completed to categorize the available habitats as foraging, spawning, etc. They have strong concerns regarding the loss of known spawning habitat in exchange for unknown benefits. Without additional data and as currently proposed, SCDNR considers this alternative not acceptable.

Alternative 2-6: SCDNR concurs that the incorporation of the floodplain bench may have the benefit of providing enhanced passage along the bankside, providing that the bench is grass-lined to prevent erosion and additional sediment moving into the river system. They note that there may be some concern with fish being stranded during large flooding events as recently noted in the Cape Fear River, North Carolina, but it is unclear whether these mortalities occurred from stranding or lowered dissolved oxygen levels. SCDNR states that arch rapid type designs should be carefully designed to accommodate target diadromous species and has concern regarding the overall design and its efficiency in passing benthic species (specifically sturgeon and Robust Redhorse) based on passage effectiveness at Lock and Dam #1 in the Cape Fear River. They

consider a level of uncertainty still remaining regarding the overall level of effectiveness in passing some target species.

Alternative 2-8: SCDNR agrees with the Service that the flood gate structure presents new hazards and complications to fish passage. Because of the potential for entrapment of sturgeon in the gated bypass, SCDNR does not find this alternative acceptable.

In summary, SCDNR remains concerned regarding the possible erosional impact of any modified fishway design on the gravel bar downstream of the NSBLD due to its role as important spawning habitat for sturgeon species and the Robust Redhorse. They reiterate the recommendation for hydrodynamic and sediment transport modeling to fully evaluate potential impacts to the gravel bar and to inform any needed modification of the selected alternative to minimize this potential. SCDNR states that any selected alternative should affirm that negative impacts to the gravel bar would not occur and that by removing or altering the NSBLD, surgeon would have access to additional spawning habitat. Any selected alternative must assure compatibility with continued availability and viability of the gravel bar.

Additionally, SCDNR reiterates the request for a habitat assessment above the NSBLD to categorize habitats as foraging, spawning, etc. and restates that they have strong concerns regarding the loss of known spawning habitat in exchange for unknown benefits. Due to uncertainties of net gains versus potential loss of sturgeon habitat and spawning grounds and effectiveness of fish passage designs for sturgeon, SCDNR has concerns with any of the proposed alternatives. They need assurances that benefits to all migratory fish species will outweigh any potential impacts incurred as a result of this proposed project; until assurances are provided they cannot concur with the proposed actions. SCDNR requests the opportunity to review and comment on all design documents at each stage of the design process and supports the Service's request for the Corps' development of a fishway operations and maintenance plan in consultation with the natural resource agencies.

Due to the lack of design detail and analyses regarding design at this time, we cannot provide our comments in *complete* fulfillment of 2(b) of the FWCA. We recommend the Corps implement the Service's recommendations in the FWCAR and this correspondence and provide detailed information as the preferred alternative and design progresses for the Service to be able to fulfill our 2(b) duties. The Service is willing to work with the Corps to expeditiously implement any recommendations. If you have any questions, please contact myself at 706-208-7501.

Sincerely, Somed W. (O)

Donald Imm Field Supervisor

cc: T. McCoy, USFWS, Charleston, SCM. Caldwell, USFWS, Charleston, SCB. Wikoff, USFWS, Townsend, GA

4 Page

- B. Towler, USFWS, Hadley, MA
- R. Self, SCDNR, Columbia, SC
- L. Riggin, SCDNR, Charleston, SC
- S. Crowe, SCDNR, Charleston, SC
- B. Post, SCDNR, Charleston, SC
- T. Litts, GDNR-WRD, Social Circle, GA
- E. Betross, GDNR-WRD, Thomson, GA
- J. Fleming, GDNR-WRD, Richmond Hill, GA
- T. Barrett, GDNR-WRD, Richmond Hill, GA
- B. Albanese, GDNR-WRD, Social Circle, GA
- P. Marcinek, GDNR-WRD, Social Circle, GA
- P. Wilber, NOAA, Charleston, SC
- K. Davy, NOAA, Dania Beach, FL
- F. Rohde, NOAA, Beaufort, NC
- T. Cheatwood, NOAA, Beaufort, NC

Appendix D4

- November 2011, National Oceanic and Atmospheric Administration, National Marine Fisheries Service Biological Opinion for the Savannah Harbor Expansion Project
- October 2017, National Oceanic and Atmospheric Administration, National Marine Fisheries Service 2nd Amendment to the Biological Opinion for the Savannah Harbor Expansion Project

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

F/SER31: KBD

NATIONAL MARINE FISHERIES SERVICE Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701-5505 (727) 824-5312; FAX 824-5309 http://sero.nmfs.noaa.gov

NOV 0 4 2011

Colonel Jeffrey M. Hall Commander, Savannah District U.S. Army Corps of Engineers Department of the Army 100 W. Oglethorpe Avenue Savannah, Georgia 31402-0889

Dear Colonel Hall:

NOAA's National Marine Fisheries Service (NMFS) provides the attached final biological opinion (opinion) on species listed under the Endangered Species Act (ESA) of 1973. NMFS is providing the U.S. Army Corps of Engineers (COE) this opinion pursuant to 50 CFR 402.14(h). This document is based on our review of impacts associated with the proposed federal navigational channel dredging activities for the Savannah Harbor Expansion Project (SHEP) to be conducted by the Savannah District COE.

Information concerning the proposed action was obtained by our review of the Biological Assessment (BA), Draft Environmental Impact Statement (DEIS), and Draft General Reevaluation Report (DGRR) for the SHEP in Chatham County, Georgia, and Jasper County, South Carolina. Supplemental reports were also provided by the Savannah District. This opinion concludes that the proposed action is not likely to jeopardize species listed or proposed for listing under the ESA under NMFS purview and provides reasonable and prudent measures, along with their implementing terms and conditions.

The findings presented in the opinion are not intended to act as the Secretary of Commerce's (the Secretary) final approval of this project as required by the Water Resources and Development Act of 1999 (WRDA) Section 101(b)(9), Public Law 106-53. The Secretary's final decision will depend on a determination that the proposed mitigation measures will adequately address the potential environmental impacts of the project. The mitigative measures include the following actions that must be fulfilled in the agreed upon time frames included in the opinion:

1) Finalization of the off-channel rock ramp fish passage design in coordination with NMFS and the other federal and state resource agencies.

- Construction of the fish passage facility at the New Savannah Bluff Lock and Dam to provide access to historical spawning habitat for sturgeon as a mitigation measure.
- 3) Completion of the development and implementation of a comprehensive monitoring and adaptive management plan in coordination with NMFS and the other federal and state resource agencies to help insure the success of all mitigative measures including the fish passage facility.

The no jeopardy conclusion of the opinion is contingent on agreement to implement and maintain all of the mitigative measures.

We appreciate the COE's efforts in working together with NMFS to identify methods and measures to address complex conservation issues that, when implemented, will provide protection for endangered species under NMFS' authority.

We will continue to provide interagency coordination on this project under all our authorities and to work with the COE to finalize the agreed upon protective measures associated with this project. Our primary contact for endangered species issues is Kay Davy. She may be reached by phone at (954) 356-6791 or by e-mail at Kay.Davy@noaa.gov.

Sincerely,

Roy E. Crabtree, Ph.D. Regional Administrator

5

Enclosure

Endangered Species Act – Section 7 Consultation Final Biological Opinion

Action Agency:

Activity:

U.S. Army Corps of Engineers (COE), Savannah District

Deepening of the Savannah Harbor Federal Navigational Channel in association with the Savannah Harbor Expansion Project (NMFS Consultation No. F/SER/2010/05579)

National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NMFS), Southeast Regional Office, Protected Resources Division, St. Petersburg, Florida

Approved By:

Consulting Agency:

Roy E. Crabtree, Ph.D., Regional Administrator NMFS, Southeast Regional Office St. Petersburg, Florida

Date Issued:

NOV 0 4 2011

6

TABLE OF CONTENTS

Intro	oduction	2			
1	CONSULTATION HISTORY	3			
2	DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA	10			
3	SPECIES AND CRITICAL HABITAT OCCURRING IN THE ACTION A	AREA35			
4	ENVIRONMENTAL BASELINE	93			
5	EFFECTS OF THE ACTION				
6	CUMULATIVE EFFECTS	167			
7	JEOPARDY ANALYSIS				
8	CONCLUSION				
9	INCIDENTAL TAKE STATEMENT (ITS)	176			
10	CONSERVATION RECOMMENDATIONS	194			
11	REINITIATION OF CONSULTATION				
12	LITERATURE CITED	199			
APP	APPENDIX A				
APPENDIX B					
APPENDIX C					
APPENDIX D					
APP	APPENDIX E				

Introduction

Section 7(a)(2) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. § 1531 *et seq.*), requires that each federal agency shall ensure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any endangered or threatened species or to result in the destruction or adverse modification of any designated critical habitat of such species. The National Marine Fisheries Service and the U.S. Fish and Wildlife Service (USFWS) share responsibilities for administering the ESA. When the action of a federal agency may affect a species or designated critical habitat protected under the ESA, that agency is required to consult with either NMFS or USFWS, depending on the species and/or critical habitat that may be affected.

Consultations on most listed species and critical habitat in the marine environment are conducted between the action agency and NMFS. Consultation is concluded after NMFS determines that an action is not likely to adversely affect listed species or critical habitat or issues a biological opinion (opinion) that identifies whether a proposed action is likely to jeopardize the continued existence of a listed species, or destroy or adversely modify critical habitat. The opinion states the amount or extent of incidental take of the listed species that may occur, develops reasonable and prudent alternatives (RPAs) if the action is expected to jeopardize the continued existence of the species, and recommends conservation measures to further conserve the species. Notably, no incidental destruction or adverse modification of critical habitat can be authorized, and thus, there are no reasonable and prudent measures, only reasonable and prudent alternatives that must avoid destruction or adverse modification.

This document represents NMFS' opinion based on our review of impacts associated with the proposed federal navigational channel dredging activities for the Savannah Harbor Expansion Project to be conducted by the Savannah District COE. The opinion analyzes project effects on sea turtles (Northwest Atlantic loggerhead distinct population segment [DPS], Kemp's ridley, leatherback, hawksbill, and green), North Atlantic right whales, humpback whales, and shortnose sturgeon. It also represents our conference opinion for the South Atlantic DPS of Atlantic sturgeon, which is proposed for listing under the ESA. Conference is only required where the proposed action "is likely to jeopardize" the proposed species; if the listing is finalized without changes from the proposed rule, the conference opinion can quickly be adopted and made operative and avoid potential delays associated with reinitiation of consultation.

Information for this opinion was provided by the COE, or was obtained from a variety of sources including published and unpublished literature cited herein and other sources of information including the COE Sea Turtle Data Warehouse (http://el.erdc.usace.army.mil/seaturtles/index.cfm; COE 2011).

NMFS serves as a cooperating agency for this project pursuant to the National Environmental Policy Act (NEPA), along with the Environmental Protection Agency (Region IV), the Department of the Interior (acting through the U.S. Fish and Wildlife Service), and the Georgia Ports Authority. NMFS has responsibilities as a consulting agency under the ESA, the Marine Mammal Protection Act (MMPA), and the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) (16 U.S.C. §1801 *et seq.*).

BIOLOGICAL OPINION

1 CONSULTATION HISTORY

This section includes information associated with NMFS' current and past involvement with dredging of the lower Savannah River and entrance channel as it relates to the proposed Savannah Harbor Expansion Project (SHEP).

July 1991: COE publishes Savannah Harbor Deepening Feasibility Report. The project would deepen the inner harbor and entrance channel from -38 feet Mean Low Water (MLW) to -42 feet MLW. The outer entrance channel would be deepened from -40 feet MLW to -44 feet MLW. NMFS concurred with the COE's determination that the proposed 4-foot deepening was not likely to adversely affect threatened and endangered species since the COE would abide by the soon-to-be-issued NMFS 1991 Regional Biological Opinion on South Atlantic hopper dredging for the deepening.

November 25, 1991: NMFS issues a regional biological opinion (RBO), "Dredging of channels in the southeastern United States from North Carolina through Cape Canaveral, Florida, to the COE South Atlantic Division (SAD), which includes the Savannah District."

August 25, 1995: NMFS issues a RBO, "Hopper dredging of channels and beach nourishment activities in the Southeastern United States from North Carolina through Florida East Coast," which supersedes the 1991 RBO.

September 1995: COE prepares a Biological Assessment of Threatened and Endangered Species (BATES) and EIS for the Savannah Harbor Long Term Management Strategy (LTMS), Chatham County, Georgia, and Jasper County, South Carolina, that addresses maintenance dredging of the navigation channel and deposition of dredged sediment material.

September 25, 1997: NMFS issues a RBO, "The continued hopper dredging of channels and borrow areas in the southeastern United States," which supersedes the 1995 RBO. It set an annual documented incidental take for the region of 7 Kemp's ridley, 7 green, 2 hawksbill, and 35 loggerhead sea turtles. It also set an annual documented incidental take of 5 shortnose sturgeon and clarified monitoring requirements for beach nourishment projects. The hopper dredge windows, as established in the 1995 RBO, were incorporated into this RBO, provided the COE: (1) continued to minimize sea turtle takes by refining the turtle deflecting dragheads, (2) tried to schedule hopper dredging

work in the highest risk areas (Canaveral, Brunswick, Savannah, and Kings Bay) during periods when nearshore waters are coolest (after December 15 but well before March), (3) attempted to complete all projects during the cold-water months when possible, and (4) shut down operations when high numbers of turtle takes occur before approaching the incidental take limit for a given species. This is the current opinion authorizing threatened and endangered species take pursuant to COE dredging activities in the SAD.

October 1997: COE assists Georgia Ports Authority (GPA) in development of a Sampling and Analysis Plan for sampling sediments that would be extracted during harbor deepening. The plan was coordinated with all state and federal agencies, including NMFS.

July 28, 1998: A Feasibility Report and Tier I Environmental Impact Statement (EIS) for deepening the Savannah Harbor is generated in accordance with the NEPA. The Tier I EIS was initially drafted and prepared by the GPA, under the authority of Section 203 of the Water Resources Development Act of 1986 (WRDA 86). The proposed harbor improvement would deepen the existing -42 feet MLW deep-draft navigation channel to - 48 feet MLW (preferred alternative). The maximum impact alternative analyzed in the EIS was -50 feet MLW. The DEIS concluded that formal consultation with NMFS Protected Resources Division (PRD) would not be necessary for any species as long as the avoidance and habitat measures proposed in the BATES were implemented.

August 17, 1999: Section 101(b)(9) of WRDA 99, Public Law 106-53 specifies a number of conditions that must be met before SHEP can be constructed. The conditions include the successful completion of the NEPA process, including any necessary consultation under the ESA, the Fish and Wildlife Coordination Act, and the Magnuson-Stevens Act, and the demonstration of compliance with these and other relevant environmental laws. In addition, the Secretaries of the Army, Interior, and Commerce, and the Administrator of the Environmental Protection Agency, must all approve the selected plan and determine that the associated mitigation plan adequately addresses the environmental impacts of the project before it can be approved for construction.

December 22, 1999: COE issues a Record of Decision (ROD) on the Tier I EIS that states the COE Washington-level review determined that the proposed project was not formulated in accordance with applicable COE planning procedures and regulations and that an acceptable mitigation plan had not been determined. Analyses provided in the Tier I EIS only evaluated the potential impacts for a -50 foot MLW channel depth. Additional analyses must be performed in a Tier II EIS to more completely identify and evaluate the potential impacts of alternative depths, develop an acceptable mitigation plan, and conclusively determine the National Economic Development (NED) plan and the cost sharing for the mitigation features.

January 21, 2000: COE hosts an Interagency Fisheries Committee meeting to discuss potential species which could be impacted by SHEP and to review the results of EPA's research on effects of low dissolved oxygen on juvenile shortnose sturgeon. NMFS Habitat Conservation Division (HCD) staff attend.

September 7, 2001: COE requests participation of NMFS as a Federal Cooperating Agency with the development of SHEP pursuant to NEPA. NMFS agrees to participate but states that participation will be limited to matters involving nationally important fishery resources that may be affected by the project, and to matters pertaining to mitigation where trust resources are involved.

September 10, 2002: COE hosts Interagency Fisheries Committee meeting and discusses inclusion of shortnose sturgeon in fisheries models for SHEP. The group identified the lower end of Middle River as a possible habitat for juvenile shortnose sturgeon during the winter. NMFS HCD staff attend.

November 13, 2002: COE hosts SHEP Interagency Fisheries Committee meeting to discuss review of habitat suitability models for various fisheries. Shortnose sturgeon is chosen as a key species for analysis while other species are deleted from analysis. NMFS HCD staff attend.

December 19, 2002: COE hosts SHEP Interagency Fisheries Committee meeting. NMFS HCD and SCDNR identify habitat "areas of concern" for shortnose sturgeon in the lower Middle River. Clarification of the use of the "Hydro model" to determine minimum levels of dissolved oxygen as it relates to fisheries species is discussed. The group decided that 5 percent occurrence values (95% exceedance) should be identified as a measure of the minimum dissolved oxygen levels in the estuary and should be reported every 0.2 miles. The information would not be part of the habitat suitability criteria, but would be additional information to assess the general fishery habitat conditions in the estuary under different flow conditions.

January 28, 2003: COE hosts SHEP Interagency Fisheries Committee meeting and discusses using a pass/fail approach in determining suitable habitat for key species (e.g., shortnose sturgeon). ATM, consulting for the COE, takes on responsibility for describing rationale for habitat criteria to be used to identify suitable habitat for shortnose sturgeon in the Savannah River estuary. NMFS HCD staff attend.

April 21, 2003: COE hosts SHEP Interagency Fisheries Committee meeting and discusses the habitat areas of concern for shortnose sturgeon: juveniles in winter in the lower Middle River; adults in winter in the Savannah River, and juveniles in summer further upstream in the Savannah River. The group agreed it wanted dissolved oxygen data from only a portion of the channel cross-section that would include the deepest cell(s). NMFS PRD staff attend.

July 1, 2003: COE hosts SHEP interagency coordination meeting on wetlands and discusses the effects of salinity increase on marshes and fisheries. NMFS HCD staff attend.

June 16, 2005: COE hosts SHEP Lead and Cooperating Agency meeting. The cooperating agencies (including NMFS) state that the Stakeholders Evaluation Group

(SEG) provides enhanced public input, but cannot make decisions for the federal agencies. The Lead and Cooperating agencies agree that the SEG is advisory to the GPA.

May 31, 2006: COE hosts SHEP Wetlands Interagency Coordination Team Meeting. The group decided to use two levels of sea level rise (25 and 50 cm) over the 50-year project life. Impact analysis parameters were chosen using average historical flows based on 1997 water data and drought flows based on 2001 water data. NMFS HCD staff attend.

June 1, 2006: COE hosts SHEP Interagency Fisheries Committee meeting and discusses the measures developed to define acceptable habitat for key species. The intent is to use the hydraulic and water quality models to identify the amount and location of suitable and unsuitable habitat so that potential impacts of the harbor expansion project could be identified and evaluated. During the meeting there was surprise expressed that the analysis identified areas as unsuitable shortnose sturgeon habitat because of failure to meet salinity criteria. The committee had expected some areas to be unsuitable because of low dissolved oxygen conditions. The COE stated they would re-check how the model determined a cell was unsuitable for sturgeon. NMFS HCD staff attend.

December 15, 2006: COE hosts SHEP Wetlands Interagency Coordination Team meeting. NMFS HCD staff attend and provide comments on FWS' proposal to reroute flow of the Middle River through Rifle Cut, stating that this could drastically increase salinity in the lower Middle River, which could affect the suitability of that habitat for shortnose sturgeon.

January 19, 2007: COE hosts Interagency Water Quality Coordination Team meeting. NMFS-HCD states that the dissolved oxygen injection systems should be designed with an intake velocity of ≤ 0.5 feet per second across the screens to minimize potential impacts to fish and that the system operation should include the ability and a procedure to cease operation if a fish entrainment event occurs.

June 20-21, 2007: COE hosts Interagency Coordination Meeting to review mitigation alternatives and to select appropriate mitigation for SHEP. The group decides to use the existing sea level in basic impact evaluation. The group felt that fish passage at the New Savannah Bluff Lock and Dam would be one method of mitigation for impacts to shortnose sturgeon habitat. The COE explained that although Congress has not funded rehabilitation of the lock and dam, local governments continue to position themselves for the continued existence of the dam. The COE states it would not consider proposing removal as part of this project unless the concept is first discussed with the local governments and an indication that they would not oppose such a proposal is received. NMFS HCD staff recommends that the COE initiate EFH consultation and begin ESA consultation with NOAA.

August 26-28, 2008: COE hosts Alternative Formulation Briefing. NMFS HCD and PRD attend and present a list of potential issues associated with SHEP regarding

potential effects to species protected by the ESA and EFH resources protected under the Magnuson-Stevens Act.

September 12, 2008: SAD submits the South Atlantic Regional Biological Assessment for reinitiation of the RBO. SAD also states that additional information regarding modifications to seasonal hopper dredging activities will be forthcoming.

November 19, 2008: NMFS and SAD hold a conference to discuss modifications to hopper dredging windows and relocation trawling activities during which time SAD presents information and analyses supporting its request to modify the conditions of the existing RBO.

July 16, 2009: NMFS and COE meet to discuss suggested changes to SHEP Monitoring and Adaptive Management Plan.

July 31, 2009: NMFS provides recommendations for inclusion in the SHEP Monitoring and Adaptive Management Plan (Appendix D of the DEIS)

August 12, 2009: NMFS requests the COE use the 50-percentile of maximum bottom salinity parameter and 14.9 ppt salinity as the upper threshold for modeling acceptable juvenile shortnose sturgeon habitat in the winter. The new criteria will be proposed to the Fisheries Interagency Coordination Team for agency-wide approval.

November 12, 2009: NMFS PRD provides comments on proposed SHEP entrance channel extension and alignment and requests additional information on the dredging activities associated with the channel extension.

December 9, 2009: COE responds to NMFS PRD request for additional information and analysis of proposed SHEP entrance channel extension/alignment.

February 4, 2010: NMFS PRD submits additional questions and comments on proposed entrance channel extension/alignment to be addressed in Biological Assessment and DEIS being prepared for SHEP.

April 9, 2010: COE provides a Biological Assessment of Threatened and Endangered Species (BATES) for SHEP to NMFS.

April 28, 2010: NMFS submits e-mail request to COE to review dissolved oxygen data showing current conditions, conditions with the proposed deepening, conditions with deepening and hydrologic modification, and conditions with deepening plus hydrologic modification and dissolved oxygen injection.

May 5, 2010: NMFS provides comments on the need to include removal of the New Savannah Bluff Lock and Dam as a mitigation alternative.

August 10, 2010: Preliminary versions of DEIS and DGRR are provided to cooperating agencies for review.

September 10, 2010: NMFS provides comments on the preliminary DEIS and GRR.

September 30, 2010: NMFS meets with COE to discuss outstanding data requests including the need to see the effects of adding the high 2004 point source loads to the sturgeon habitat models. NMFS questions the suitability of habitat in the Back River due to anecdotal reports of the Back River having areas that may be too shallow to provide habitat to sturgeon.

October 18, 2010: NMFS provides comments to COE after re-initiation of agency review of proposed fish passage at the New Savannah Bluff Lock and Dam as partial mitigation for SHEP. NMFS notifies COE about proposed listing of Atlantic sturgeon in the comments.

November 8, 2010: NMFS provides initial comments on language used in preliminary DEIS for protection of whales. COE partially modifies text before issuance of DEIS.

November 15, 2010: The DEIS and DGRR are released for public/agency review.

November 24, 2010: NMFS notifies the COE of intent to conduct joint ESA and EFH consultation. NMFS also identifies the need for habitat modeling for juvenile shortnose sturgeon to include the revised salinity criteria and provides a list of ten outstanding issues not thoroughly addressed in the DEIS.

November 30, 2010: COE provides a response to NMFS' list of ten outstanding issues.

December 1, 2010: NMFS provides comments on the supplemental information provided in "Evaluation of Juvenile Shortnose Sturgeon Habitat Impacts with Proposed Mitigation Plan," noting that the COE ran the model using August conditions instead of the requested January conditions.

December 6, 2010: COE provides the corrected model runs for January conditions for juvenile shortnose sturgeon.

December 20, 2010: COE provides final agreement to NMFS to implement vessel speed restrictions for the protection of North Atlantic and humpback whales, in vessels associated with dredging.

December 29, 2010: COE provides reports with 2004 point source loading included in the habitat suitability models.

January 13, 2011: NMFS provides comments on the previous sturgeon habitat modeling reports and requests additional modeling runs with corrected information (Middle River sill in place, average dissolved oxygen loading, acreage with deepening only, etc.).

January 25, 2011: NMFS provides joint ESA/EFH comments to COE.

January 26, 2011: COE provides comments on NMFS' request for additional modeling runs.

March 11, 2011: COE provides updated evaluations of habitat impacts to shortnose sturgeon juveniles and adults during winter and summer. Formal consultation between NMFS and the COE begins with the receipt of this information.

April 25-27, 2011: COE hosts a workshop to discuss fish passage designs at the New Savannah Bluff Lock and Dam. NMFS provides comments on dam removal and performance criteria for fish passage.

May 11, 2011: COE provides a proposal to construct an off-channel rock ramp for fish passage at the New Savannah Bluff Lock and Dam, citing that the fish passage design (full-channel rock ramp) recommended by the April 25-27 workshop would not be cost effective.

May 27, 2011: COE provides responses to NMFS questions regarding information on the three proposed designs for fish passage at the New Savannah Bluff Lock and Dam presented in the COE "information paper" of May 11, 2011.

July 1, 2011: NMFS provides draft biological opinion on the Savannah Harbor Expansion Project to the COE.

August 25, 2011: NMFS hosts interagency meeting on-site at New Savannah Bluff Lock and Dam with Dr. Luther Aadland, a noted sturgeon fish passage expert. Dr. Aadland is provided with the COE's design plans for an off-channel rock ramp fish passage at the site.

September 6, 2011: COE meets with NMFS to discuss the draft Reasonable and Prudent Measures and Terms and Conditions provided in the draft biological opinion.

September 12, 2011: Dr. Aadland provides a written report summarizing his review of the COE's design plans for fish passage at the New Savannah Bluff Lock and Dam.

October 7, 2011: COE provides final written comments on the draft biological opinion.

October 21, 2011: COE meets with NMFS to negotiate the Reasonable and Prudent Measures and Terms and Conditions to be included in the final version of the biological opinion.

2 DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA

2.1 Proposed Action

The Savannah District has proposed deepening the federal navigational channel of the Savannah Harbor from the existing depth of -42 feet mean lower low water (MLLW), which has been maintained since 1994 using a 2-foot allowable overdepth and up to 6-feet advance maintenance dredging, as deep as -48 feet. Five incremental deepening alternatives and a "No Action" alternative are evaluated. The No Action alternative is the existing project depth of -42 feet. The U.S. Congress conditionally authorized deepening of the Savannah Harbor up to an additional 6 feet in the Water Resources Development Act of 1999 (Section 101(b)(9)). Authorization is dependent upon the completion of a Tier II EIS, approval of the project by the Secretary of Commerce, Administrator of the Environmental Protection Agency (EPA), Secretary of Interior, Secretary of Army, and a determination by the Secretaries and the Administrator of the EPA that the associated mitigation plan adequately addresses the potential environmental impacts of the project.

According to the DGRR, the Garden City Terminal, located in the Savannah Harbor and operated by the GPA, is the second largest container port on the East Coast and the fourth largest in the Nation. The harbor and deep-draft navigation channel comprise the lower 19.5 miles of the Savannah River and 16.1 miles of channel across the ocean bar to the Atlantic Ocean. The Savannah Harbor currently has the shallowest controlling depth of any major U.S. port. Its depth constraints are similar to the current constraints of the Panama Canal; however, the Panama Canal Expansion Project will be completed by 2014 and will allow passage for vessels up to 50 feet in draft. Information in the DGRR states that since the last authorized deepening to -42 feet MLLW performed in 1994, container ship design and traffic has exceeded projections and in excess of 70 percent of vessels enter the Savannah Harbor are carrying less than their maximum capacity due to draft restrictions, which has resulted in increased shipping costs. Other problems are associated with existing ships experiencing problems with turning capabilities and impaired maneuverability in certain reaches of the inner harbor. It is expected that the severity of problems associated with turning capabilities and overall maneuverability in certain reaches of the inner harbor will increase as vessel size increases.

The COE's development of a NED plan determined that net economic benefits are maximized with the 47-foot depth alternative. Initially, the GPA (as the non-federal sponsor) supported the Maximum Authorized Plan of the 48-foot depth alternative, which was later retracted. The final selected plan will be included in the final EIS and GRR. This opinion will address the 47-foot depth alternative as the maximum depth alternative.

2.1.1 Construction Activities

Brief History of Dredging within the Savannah Harbor

Congress authorized construction of the federal navigation project at Savannah Harbor, which was initially constructed in 1874. In 1896, two jetties were constructed at the mouth of the Savannah River entrance. A submerged offshore breakwater was completed in 1897 to stabilize the inlet and provide a shelter for shipping entering Tybee Roads. Tybee Island is located on the south side of the entrance channel to the Savannah River. The navigation channel of the Savannah River was deepened from 21.5-feet Mean Low Water (MLW) to a depth of 26-feet MLW in 1912 to accommodate larger ships. Depth increases were later made in 1936 to 30-feet MLW and in 1945 to 36-feet MLW. The channel was widened and deepened in 1972 to a depth of 40-feet MLW. In 1994, the authorized depth of the channel was increased to 42-feet MLW. At present, approximately 32.5 miles of navigation channel exist, extending from Savannah Harbor into the Atlantic Ocean.

Proposed Dredging within the Savannah Harbor

All of the project deepening alternatives, -44 feet, -45 feet, -46 feet, -47 feet, and -48 feet, would include dredging from Stations -98+600B ranging to -95+680B (the length of the Entrance Channel Extension varies with each deepening alternative) to 103+000 (Garden City Terminal - River Mile 19.5). The deepening would include the Kings Island Turning Basin and eight berths (Berths 2, 3, 4, 5, 6, 7, 8, and 9) at the Garden City Terminal. Project work would also include widening of three bend wideners and construction of two passing lanes along with extension of the Entrance Channel. By maintaining the existing side slopes of the channel, the proposed deepening alternatives would have a narrower channel at the project depth than currently exists. According to the DEIS, decreasing the channel width by maintaining the existing side slopes at different depths will not adversely impact adjacent marine and estuarine habitat. However, removal of the bottom substrate within the dredging areas would eliminate all benthic resources in those locations. To maintain slope stability, a ratio of 3H:1V would be used in the inner harbor and 5H:1V in the ocean bar channel. Congress authorizes federal navigation channels by specific depth and width. The inherent imprecision in dredging processes varies with the physical conditions, the dredged material characteristics, the channel design (i.e., depths being dredged, side slopes), and the type of dredging equipment (e.g., mechanical, hydraulic, hopper). Due to these variables and the resulting imprecision associated with the dredging activity, COE design, cost estimating, and construction contracting documents recognize that dredging below the Congressionally authorized project dimensions will occur and is necessary to assure the required depth and width as well as cost effective operability. In order to balance project construction requirements against the need to limit dredging and disposal to the minimum required to achieve the designed dimensions, a paid or allowable overdepth of up to 2 feet is incorporated into the project-dredging prism. Material removed from this allowable overdepth is paid under the terms of the dredging contract. Material removed beyond the limits of the allowable overdepth is not paid. Each alternative would include overdepth and advance maintenance dredging (Table 1). Advance maintenance dredging extends the length of time during which authorized channel depths are available. The purpose of

Begin Station	End Station	Authorized	Required Contract
		Advance	Depth (feet
		Maintenance (feet)	MLLW)
Inner Harbor			
112+500	105+500	2.0	32.0
105+500	103+000	2.0	38.0
103+000	102+000	0.0	42.0
102+000	100+000	2.0	44.0
100+000	79+600	2.0	44.0
79+600	70+000	2.0	44.0
70+000	50+000	4.0	46.0
50+000	37+000	4.0	46.0
37+000	35+000	6.0	48.0
35+000	24+000	4.0	46.0
24+000	0+000	2.0	44.0
Port Wentworth TB		0.0	30.0
Argyle Island TB		0.0	30.0
Kings Island TB		8.0	50.0
Marsh Island TB		0	34.0
Fig Island TB		4.0	38.0

advance maintenance dredging is to reduce the frequency of dredging and reduce overall maintenance costs.

Table 1. Present Advance Maintenance Sections.

With the 47-foot alternative, approximately 23.6 million cubic yards (mcy) of sediment removed from Stations 103+000 to 4+000 and the Entrance Channel would be placed in the existing upland confined disposal facilities (CDFs) or placed in the EPA-approved Ocean Dredged Material Disposal Site (ODMDS). The ODMDS was designated by EPA under Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972 (MPRSA), as amended (40 CFR Parts 220 to 228). The COE had originally planned to place a portion of the dredged material in nearshore feeder berms, but the decision was made to instead place all material removed from the Entrance Channel into the ODMDS. Total amount of dredged material that would be removed with the other depth alternatives would be: approximately 10.3 mcy of material with the 44-foot alternative, 14.6 mcy with the 45-foot alternative, 19.0 mcy with the 46-foot alternative, and 28.0 mcy with the 48-foot alternative. The estimated annual volume for operation and maintenance is 7.1 mcy for each of the alternatives. The estimated construction period of the entire project would be approximately three to four years.

The proposed methods of dredging include hydraulic pipeline dredge, hopper dredge, mechanical dredge, or similar equipment. Hopper dredges would predominantly be used within the ocean bar channel (Stations 0+000 to 98+600) of the harbor (Figure 1). The proposed project includes operating under the Terms and Conditions set forth in the 1991 and 1995 RBOs, and the current (1997) South Atlantic Regional Biological Opinion (SARBO), and the CESAD Hopper Dredging Protocol (Appendix E). The COE proposes

that hopper dredge operations would be conducted from December 1 to March 31. Bedlevelers are currently permitted for certain reaches of the upper harbor, with conditions required to minimize turbidity impacts. The project proposes to authorize their use only in the Bar Channel. Furthermore, their use would be restricted to the leveling of high spots in the channel or placement area, where use of a hopper dredge for such work would be expected to result in equal or greater take of endangered species.

The COE has a specific set of specifications for the Savannah District that deal with large whale protection measures. These specifications apply to Savannah Harbor and require a NMFS-approved endangered species observer approved for whale monitoring be onboard each hopper dredge during the time that right whales may be in the area. Savannah District's specifications included:

No incidental take of right whales is authorized. Vessel speeds of no more than 10 knots as set forth in the proposed action shall be used. However, the Contractor shall restrict dredge and attendant vessel speeds to 5 knots or less (or minimum safe speed) during night (sunset to sunrise) operations unless there is no information from the right whale early warning system (RWEWS) or any other observations/information that reveals any right whales within 15 nautical miles of the project area. (NMFS notes that RWEWS flights are not conducted on a regular basis off of Savannah.) If aerial surveys for right whales show no sightings on a particular day, the vessel speeds of no more than 10 knots as set forth in the proposed action shall be used during the following nighttime operations. If a right whale is determined through any means to be in the project area on a particular day, negative results from any other type of survey on that same day shall not serve to cancel that night's restriction of dredge and attendant vessel speeds. For Savannah Harbor, the project area is defined as the Savannah Harbor Entrance Channel (Stations 0+000 to -60+000B), the designated offshore disposal areas shown on the Contract drawings, and transit routes. If right whale occurrence/ distribution information is not available from the RWEWS due to severe weather restrictions, then vessel speeds will be restricted to 5 knots (or minimum safe speed) during night operations. It is currently expected that the RWEWS will be in effect from December through March for Savannah. No aerial survey is required when the RWEWS is not in effect. Nighttime speeds will still be restricted to 5 knots or less (or minimum safe speed) when the RWEWS is not in effect if other information indicates right whales are in the project area. The requirement for nighttime speed restrictions are available from the COR (OP-NN) or the RWEWS on a daily basis. Previous right whale monitoring along the Georgia coast indicates that for Savannah Harbor the Contractor might expect up to 8 nights of reduced speed operations between 1 December and 31 March. For Brunswick Harbor, the Contractor might expect up to 13 nights of reduced speed operations between 1 December and 31 March. Contractor should also expect at least 22 days of additional reduced speed operations between the period of 1 December and 31 March due to weather restricting RWES aerial surveys. During daylight hours, the dredge operator shall take necessary precautions to avoid whales. If whales have been spotted within 15 nautical miles of the project area in the previous 24 hours, then the dredge shall slow down to 5 knots or less (or minimum safe speed) when transiting to and from the dump site during evening hours or during daylight hours when there is limited visibility due to

fog or sea states of greater than Beaufort 3. The hopper dredge shall not get closer than 500 yards to right whales. The speed limits for hopper dredges as set forth in the proposed action would only apply until a new Regional Biological Opinion for hopper dredging is signed, at which time the project would abide by the conditions in the Regional Opinion.

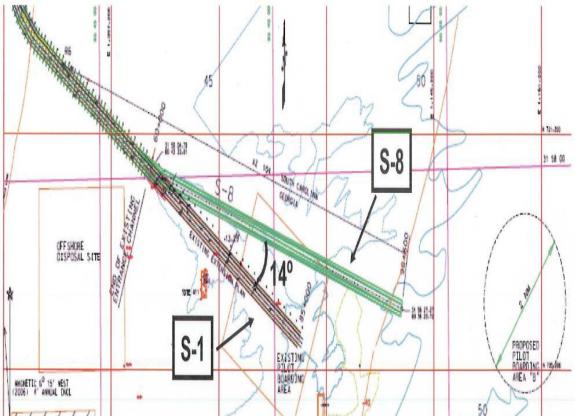


Figure 1. Reconfigured Ocean Bar Channel Alignment. (S-1) Existing Extension Plan, (S-8) Proposed Extension Plan

2.1.2 Flow Re-routing Modification

The deepening of the navigational channel would permit higher salinity water to travel further up the river. The salt water would affect freshwater habitats found within the Savannah National Wildlife Refuge adjacent to the project area along the middle and back river. To address this project effect, the COE developed flow re-routing modification plans that would re-direct freshwater to areas adjacent to (and found within) the refuge with the intent of minimizing the loss of the freshwater tidal marsh. The intent was to identify alterations that could be made in the braided rivers and tidal creeks to reduce salinity levels in critical areas of the estuary. Over 160 different flow re-routing models were conducted to evaluate the effects of each plan. An interagency team comprised of natural resource agency representatives evaluated the models and the COE determined the design that would be most effective at each of the flow re-routing locations. After further evaluation of the options presented by the COE, the interagency team concurred with the COE's approach in August 2006. Ultimately, two plans were

selected for the different deepening scenarios. Plan 6A (Figure 2) was selected for deepening to 45, 46, 47, and 48 feet, while Plan 6B (Figure 3) was selected for the 44-foot deepening alternative.

Both of the plans developed for the different deepening alternatives include construction of a diversion feature and closing of the lower arm at McCoy Cut, filling the Sediment Basin to -3.85 m NGVD (National Geodetic Vertical Datum of 1929), removing the Tide gate and its associated abutments and piers, and closing Rifle Cut. Plan 6a also includes deepening within the upper reaches of the Middle and Back Rivers to -3 m NGVD and -4 m NGVD within McCoy Cut.

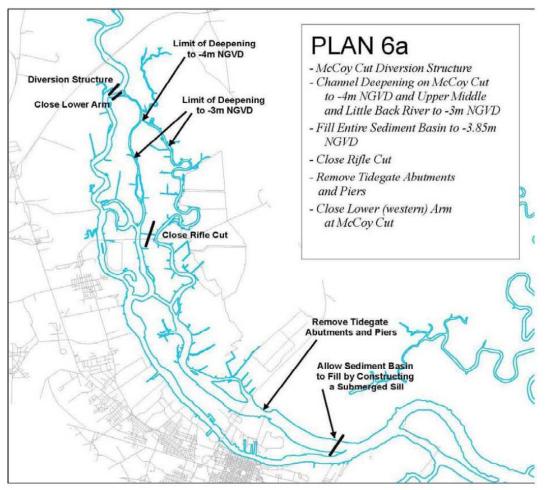


Figure 2. Flow Re-routing Plan 6A for 45-, 46-, 47-, and 48-foot Deepening

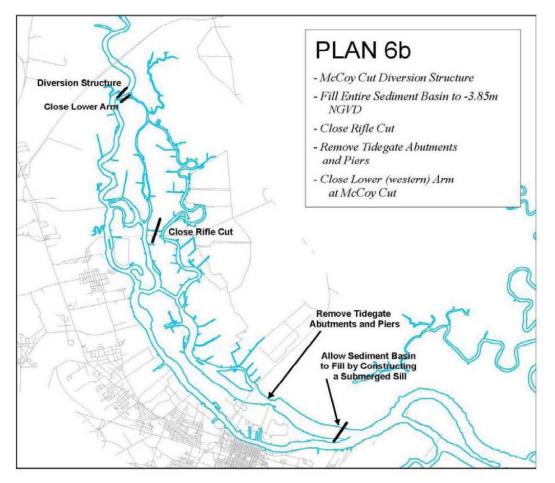


Figure 3. Flow Re-routing Plan for 44-foot Deepening

2.1.3 Dissolved Oxygen Injection

Deepening the navigation channel would adversely impact dissolved oxygen levels in the harbor and can be divided into three issues: (1) as the channel depth increases, the ability of oxygen to reach the river bottom decreases, causing lower average levels of dissolved oxygen at the bottom; (2) as the channel prism enlarges, additional saltwater is moved to the upper portions of the harbor and into the estuary, decreasing the ability of those waters to accept oxygen from the air; and (3) as the channel prism enlarges, the average tidal velocity decreases, reducing the mixing of oxygen throughout the water column. A drop in dissolved oxygen levels typically occurs during summer months at the upper end of tidal rivers in Georgia and South Carolina. This results from the combined effect of the reduced diffusion of oxygen into warm waters and the higher rate of uptake of oxygen from biologic organisms. To address the project impacts the COE has included a feature in the mitigation plan for each depth alternative to minimize that adverse effect.

The COE conducted a demonstration project to investigate whether injection of dissolved oxygen could be a viable method of improving dissolved oxygen levels in the harbor. The COE found that, due to site-specific requirements, a land-based injection system would be the most effective solution and that the use of Speece cones (Figure 4) would be

the most efficient technique to inject oxygen into the water. The systems would be deployed to remove the incremental effects of the channel deepening. Eight to ten Speece cones would be needed to increase dissolved oxygen and would be located at three sites (Figure 5). Cones placed at all three locations—one near Georgia Pacific, and two on the east and west side of Hutchinson Island—would be needed for each channel depth alternative. The systems would be land-based, with water being withdrawn from the river through pipes, then super-saturated with oxygen and returned to the river. The water intake structures would be located at mid-water depths and would include screens to reduce the intake of trash and other suspended solids. The screens would be sized to keep flow velocities from exceeding 0.5 feet per second to minimize entrainment of fish larvae. The intake and discharge would be located along the side of the river and not extend into the authorized navigation channel. Tidal flows and currents would mix the dissolved oxygen in the water column.

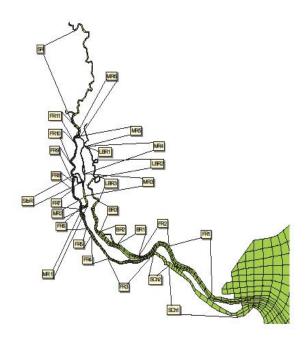

Figure 4. Speece Cones set up as Demonstration Project on the Savannah River

Figure 5. Modeled Locations for Dissolved Oxygen Injection Systems

Modeling of Dissolved Oxygen Injection

Two models were used to evaluate the impacts of the deepening alternatives on the dissolved oxygen regime in Savannah Harbor. The Environmental Fluid Dynamics Code (EFDC) model was used to develop the hydrodynamic data and then linked to the Water Quality Analysis Simulation Program Version 7.0 (WASP7) to obtain the dissolved oxygen data predictions. The study evaluated 26 spatial zones (Figure 6) that extend from Clyo, Georgia (61 miles above Fort Pulaski), to the Atlantic Ocean (17 miles offshore from Fort Pulaski). The 26 zones included 11 zones for Front River (FR), 6 zones for Middle River (MR), 3 zones for Back River (BR), 3 zones for Little Back River (LBR), 2 zones for South Channel (SC), and 1 zone for the Savannah River (SR) above the I-95 Bridge. The South Carolina standards for dissolved oxygen were used to evaluate severity of impacts, because they were the most restrictive at the time of the study (daily average of 5 mg/Liter, with an instantaneous minimum of 4.0 mg/Liter, applied throughout the water column).

Figure 6. Zones used for Dissolved Oxygen Modeling.

As specified by the Water Quality Interagency Coordination Team, the COE conducted its basic dissolved oxygen impact analyses using average summer drought river flow conditions (August 1999). The interagency team also requested the COE evaluate the project's potential effects under other conditions, as sensitivity tests for the input conditions. These additional analyses included average flows in the river (August 1997), natural conditions (i.e., river depths prior to any harbor deepening), 2004 point source loads, and full permitted point source loads. Project impacts to dissolved oxygen were found to be higher under droughts than during average flow conditions.

In general, the models showed that there would be significant upstream shifts of lower dissolved oxygen zones in bottom and surface layers of the estuary as the channel deepening increased in magnitude. The studies also indicated that deteriorations of the lowest dissolved oxygen values along critical cells (the cell with the lowest dissolved oxygen concentration during specified simulation period) of major parts of the estuary increase proportionately to the amount of deepening. The COE's data reflected conditions in the bottom half of the water column (i.e., bottom 3 layers of the 6-layer model), where dissolved oxygen levels are lower.

For the 47-foot channel alternative, a substantial decrease in dissolved oxygen would occur in the critical cells of Front River Zone FR6, FR7, FR8, FR9, FR11, and Middle River Zones MR1 and MR6 as well as Back River Zones BR1, BR2, and BR3. Dissolved oxygen would increase in Lower Back River Zones LBR1 and LBR2.

To mitigate for the low dissolved oxygen, the Speece cones would add dissolved oxygen directly into the estuary. These systems would be operated during conditions of low dissolved oxygen (below 5.0 mg/L average or 4.0 mg/L instantaneous reading) occurring during the summer when dissolved oxygen monitoring indicates the minimum accepted levels had been exceeded (State of South Carolina dissolved oxygen standards of 5.0 mg/L average, but allow 4.0 mg/L instantaneous reading). The number of Speece cones that would be used varies with the deepening alternative selected. The dissolved oxygen levels are higher near the injection site and taper off to lower levels as distance from the site increases. Removing the incremental adverse project effect at a great distance from the injection site would require large amounts of oxygen. A tradeoff results between the amount of oxygen required and the distance from the injection site. The dissolved oxygen system configuration is designed to remove the incremental effect of a deeper channel in 97 percent of the cells in the hydrodynamic model.

2.1.4 Monitoring and Adaptive Management Plan

The COE has proposed development of a comprehensive monitoring and adaptive management plan that would ensure that impacts are not exceeded and that the mitigation plans would function as intended. The multi-phase monitoring program would be conducted during pre-construction, construction, and post-construction, and would include the following features:

- 1. Continuous hydrodynamic and water quality monitoring
- 2. Intense 30-day periods of hydrodynamic and water quality monitoring
- 3. Bathymetric monitoring
- 4. Recalibration of the hydrodynamic and water quality models, if necessary
- 5. Monitoring wetland vegetation
- 6. Monitoring salinity levels in the marshes
- 7. Monitoring shortnose sturgeon and Atlantic sturgeon distribution
- 8. Monitoring fish passage at New Savannah Bluff Lock and Dam
- 9. Monitoring chloride levels at the City of Savannah's water intakes on Abercorn Creek
- 10. Long Term monitoring of hydrodynamic and water quality parameters at select locations

The adaptive management approach would assess the monitoring results and make modifications, if necessary. Multi-agency approval of the adaptive management decisions would be needed before actions would be initiated.

The monitoring plan would be used to evaluate the accuracy of the predicted environmental impacts with the correlative goal of improving the predictive capability of

the models used to identify and quantify project-induced impacts. The second component consists of assessing the effectiveness of the mitigation features with the goal of determining the efficacy of the constructed mitigation feature at reducing impacts. Physical parameters would be monitored within the estuary that describe how the system is functioning with the mitigation in place. Biota would also be monitored to determine the system's biological responses to those parameters. After post-construction monitoring data is available, the updated models would be re-run using the observed river flow conditions. This would provide the basis for the model's predictions for conditions under the observed conditions. Those predictions would be compared to the observed physical parameters to determine the accuracy of the models and the effectiveness of the mitigation features. The third component concerns modification of the project to ensure the levels of environmental effects predicted in the EIS are not exceeded. The goal is to implement whatever modification is needed to the mitigation plan to keep the levels of observed environmental effects within the values predicted in the EIS. Monitoring would continue beyond the length of the full post-construction monitoring program to evaluate the effectiveness of the mitigation feature that was changed. The additional monitoring would ensure that the modification was effective and that the observed environmental effects are then within the values predicted in the EIS. The COE has stated they will coordinate with the resource agencies in further development of the comprehensive and detailed monitoring and adaptive management plan.

2.1.5 Proposed Fish Passage at the New Savannah Bluff Lock and Dam

When the COE's fish habitat models indicated that all of the deepening scenarios would involve the loss of sturgeon habitat and that the loss of sturgeon habitat within the lower Savannah River cannot be replaced, the COE suggested an action that would increase the extent of sturgeon habitat in the Savannah River at the upper range of habitat used by sturgeon. They referred to a previous study, which proposed adding a fish bypass at the lowest dam on the river, the New Savannah Bluff Lock and Dam near Augusta, Georgia.¹ The construction of a fish passageway would open up an additional 20 miles of habitat upstream of the dam to provide access to historical spawning habitat. Fish passage would also benefit American shad and other anadromous fish species, thereby helping those populations. The first design proposed by the COE was a horseshoe-shaped rock ramp. In October 2010, the COE, at NMFS' request, asked for comments on the design and its potential for successful passage of sturgeon. NMFS responded that dam removal was the preferred choice because there would be no risk of it failing to pass sturgeon, and that the proposed fish bypass design was probably not likely to successfully pass sturgeon. The remarks were based on new knowledge of fish passage design and the behavior of sturgeon in regards to fish bypasses. Other resource agencies also voiced their concern with the proposed design. To address these concerns, the COE hosted a fish passage workshop, held April 25-27, 2011, which brought in sturgeon experts to discuss fish

¹ After the fish passage design was developed in 2002, no funds were available for its construction or for the required rehabilitation of the lock and dam. This study followed a previous study in 2000 (Section 216 Disposition Study) where the COE had proposed to recommend to Congress that the New Savannah Bluff Lock and Dam Project be deauthorized and completely removed.

passage design criteria. During the workshop, a matrix was developed that explored design alternatives and provided performance criteria for each alternative. The results indicated that dam removal would be the best option as it had the highest expected passage effectiveness associated with it, but it would also result in loss of the pool, which had been identified as a concern by local governments upstream. The second best alternative proposed would be a full rock ramp built across the existing sill of the dam. The lock would remain operational and the pool would be maintained. The in-channel, full-river rock ramp would be the most natural pathway, as it would not involve a diversion to a side channel. Using the theory that percent of flow through a fish passage facility is roughly equal to the percentage of fish that would pass through, they felt this option would be 90 percent effective in upstream passage and 100 percent in downstream passage efficiency. A separate floodway would be constructed to assist in flood control. The third choice consisted of a hybrid design that would include partial removal of two of the dam's gates and construction of a rock ramp on the upland side of the dam.

Five other alternatives were also discussed that included different levels of effectiveness and offered design challenges that would need to be overcome to obtain successful upstream and downstream passage. Since most fish passage engineers who were invited were unavailable to attend the workshop, the COE proposed to consult their engineers who worked on the fish passage design for the Cape Fear River Lock and Dam (not yet constructed) to review new design criteria for fish passage at the New Savannah Bluff Lock and Dam. The workshop participants determined that the performance criteria for any passage design should be safe and effective passage with negligible chances for harm to fish as a result of interactions with the passage facility or dam.

Based on the input provided by the resource agencies and sturgeon experts, the COE conducted a reassessment of their proposed fish passage design from the November 2010 DEIS. The COE provided NMFS an "Information Paper" on May 11, 2011, discussing their assessment of alternative designs and informed NMFS they intend to include an off-channel rock ramp in the Final EIS. Although not specifically considered at the interagency workshop, the COE considers the off-channel rock ramp to be a variation of the full rock ramp and hybrid rock ramp designs since they would all transport roughly the same volume of water. They differ by their location across the channel's crosssection. The COE's information paper considered the off-channel rock ramp, the full river rock ramp, and the hybrid rock ramp. The COE selected the off-channel rock ramp because it has significantly lower estimated cost to construct and the predicted passage efficiency would be almost as high as with the more expensive designs.

The Off-Channel Rock Ramp (Figure 7) would consist of a rock ramp constructed around the South Carolina side of the dam. This design takes into account the aspects of the workshop's preferred designs and performance criteria discussed at the workshop and in subsequent responses by COE to resource agency questions on the May 11, 2011, Information Paper.

OFF-CHANNEL ROCK RAMP

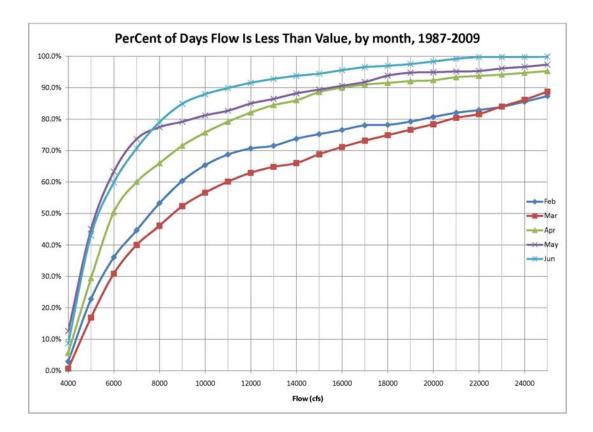
Figure 7. COE-proposed Off-channel Fish By-pass Design at New Savannah Bluff Lock and Dam

The design features consist of:

- 1. A rock ramp to be constructed in South Carolina within excavated uplands along one side of the dam
- 2. All five gates of the dam would remain operational
- 3. Gates 1 and 5 would be structurally modified so they function as lift gates rather than overflow gates
- 4. Allowance of 100 percent of the flow to pass through the fishway up to 8,000 cfs
- 5. Ramp would be sloped up to a minimum crest elevation of EL 109 feet at a 2 percent slope (1:50) on the downstream side and a 20 percent slope (1:5) on the upstream side
- 6. Top crest would be 25 feet wide
- 7. Ramp would provide water depths of at least 3.5 feet.

This design would allow 100 percent of the river flow to pass through the ramp at flows up to 8,000 cfs. When the upper pool exceeds EL 115 feet, anticipated when river flows exceed 8,000 cfs, the gates would be opened to pass the high flows. Gates 1 and 5 would be modified to operate in the same way as gates 2, 3, and 4. A gate opening schedule would be developed to minimize water velocity through the gates. When the flows are less than 8,000 cfs, the gates would be closed. The water elevation and flow

characteristics through the rock ramp under a range of river flows are shown in the following table (Table 2):


Off-Channel Rock Ramp					
Flow (cfs)	Upper Pool Elevation (feet)	Depth of Flow Over Rock Ramp (feet)	Percent of Flow	Velocity at Crest (fps)	
3,100	112.57	3.57	100%	7.53	
3,600	112.87	3.87	100%	7.92	
4,300	113.27	4.27	100%	8.39	
5,000	113.63	4.63	100%	8.82	
6,000	114.13	5.13	100%	9.37	
8,000	115.04	6.04	100%	10.29	
10,000	115*	6*	80%*	10.29*	
12,000	115*	6*	67%*	10.29*	
15,000	115*	6*	53%*	10.29*	
20,000	115*	6*	40%*	10.29*	
25,000	115*	6*	32%*	10.29*	
30,000	115*	6*	27%*	10.29*	

*estimated values

Table 2. Off-Channel Rock Ramp water elevation and flow characteristics

Based on recent average flow rates at the New Savannah Bluff Lock and Dam, the design would accommodate 100 percent of the river flow (i.e., daily river flows would be less than 8,000 cfs) for up to 64 percent of the days of February through June. The period from February to June is critical to sturgeon as this is when the adults are migrating upriver to spawn, and then return downstream following spawning, and the larval sturgeon will be beginning their migration to the lower reaches of the river. The percent of flow through the passage is considered an important determinant in the effectiveness for fish passage. For upstream passage, the proportion of flow coming out of the passage is an attractant for fish to enter the fish passage. Similarly for downstream passage, the proportion of flow can help determine how fish are led by water velocity or passively carried to the upstream fish passage entrance. As it is currently configured, sturgeon are unable to migrate upriver through the lock and dam. It is thought that high submerged sills at the base of the lock and dam prevent bottom-oriented sturgeon from following the attractant flow to reach habitat above the dam. The off-channel rock ramp would be constructed to provide a suitable bottom topography, slope, and substrate, which would simulate the natural river bottom and attractant flow. To maximize the attractant flow it would have a high percentage of days when all or most of the flow would pass through the rock ramp. Figure 8 shows the by-month proportion of days with flows less than given values. In March, the month with the highest flows, there have been, on average, 14 days when 100% of the river flow would flow through the off-channel rock ramp. There have been 7 days when river flow has been between 8,000 cfs and 15,000 cfs and the proportion of flow through the channel would be between 53 and 100%. During only

10 days in March, less than 53% of the river flow would pass through the passage. In the late spring months of May and June, when downstream passage is more critical, the 100 percent flow capacity of the off-channel rock ramp increases to 78 percent of the time.

Figure 8. Percentage of monthly flow at New Savannah Bluff Lock and Dam that meets target value from 1987-2009

A submerged sheet pile wall would be placed at a height of 3 to 4 feet above the river bottom or above the rock ramp. This wall would guide the bottom-oriented sturgeon out of the deep river channel and through the ramp in both upstream and downstream directions. Use of the submerged sheet pile guide walls across most of the channel width will increase the passage performance during days when some flow will pass through the spillway gates. Even if flow through the gates attracts upstream migrating fish toward the base of the dam, the guide wall is intended to lead fish to the fish passage entrance. Similarly, downstream migrating fish will be led toward the upstream entrance to the passage, when some water is spilled through the gates. With this guide wall feature, additional sturgeon should use the rock ramp to move past the lock and dam, and the performance of the ramp would be expected to be higher than just the percent of river flow moving through it. A small amount of dredging would be performed to shape the channel bottom so that the thalweg² flows to the rock ramp. This thalweg feature would also increase the design's expected upstream and downstream passage performance for sturgeon.

The rock ramp would use a 2 percent upstream slope, well within the 4 percent slope design criteria provided by the agencies during the interagency fish passage workshop. The maximum velocities expected on the ramp would vary depending on river flows. They would range from around 7 feet/second at flows of 3,100 cfs to around 10 feet/second at 10,000 cfs. The velocity down the main slope of the off-channel rock ramp would be 1-3 feet/second slower than that predicted for the full-river rock ramp, due to the longer length of the off-channel rock ramp. Incorporating numerous rock boulders to form pools up the rock slope would reduce the typical velocity the sturgeon would have to navigate. With incorporation of the rock boulders to provide areas of low velocity, this design should readily pass sturgeon. The design also includes a small ramp on the upstream end of the passage. Its 1:5 slope is flatter than one recently designed for the Cape Fear River Lock and Dam to pass sturgeon, so it is believed that it should acceptably pass sturgeon downstream at the New Savannah Bluff Lock and Dam. Since construction at the Cape Fear River fish passage has not been completed yet, we cannot assess its effectiveness. Downstream migrating sturgeon do not need to swim against the current, so the slope does not affect the water velocities they would need to contend with, and it is just needed to provide the bottom-oriented fish with a smooth transition into the passage, rather than an abrupt sill.

This design would require the least modification to the existing dam of the three alternatives that the COE considered. None of the gates would need to be removed from the dam; however, the two end gates would need to be modified from a 12-foot height to 15-feet. The present ability of the lock and dam project to reduce flood levels in upstream areas would be retained. The dam itself would not require modification. The lock and its operation would be unaffected. Upstream infrastructure in Augusta and North Augusta should not be impacted since the pool would not need to be lowered, even during construction. The off-channel rock ramp would reduce the work that would need to be performed if funds become available to rehabilitate the lock and dam. However, the funds for rehabilitation of the lock and dam would not be provided by the SHEP. Construction of the rock ramp as a part of SHEP would address Congress' prior requirement for a fish passage design developed in 2002 to be constructed at the New Savannah Bluff Lock and Dam, since it would provide the same function. It would also reduce the cost of the rehabilitation project. The dam would still need to be rehabilitated, to stabilize its structure and ensure its function continues to be provided in the future. The lock and its control house would still require the same amount of rehabilitation.

Lands presently associated with the lock and dam would be needed to construct and operate the rock ramp around the SC end of the dam. Those lands are presently wooded and not used to operate the existing project. They provide structural stability to the dam and serve a limited security function. Those purposes would not be affected by construction and operation of the off-channel rock ramp. Additional lands would also

² A thalweg is defined as a line drawn to join the lowest points along the entire length of a streambed.

need to be acquired to construct the rock ramp and for an access road to the site. Those lands would be acquired as part of the SHEP and not as part of the rehabilitation of the lock and dam. NMFS has included a Reasonable and Prudent Measure with an implementing term and condition as part of the incidental take statement of this opinion requiring that the initiation of COE land acquisition needed for construction of the offchannel rock ramp be completed prior to, or concurrent with, the start of SHEP dredging actions.

The off-channel rock ramp considered in this opinion is a preliminary design and does not include specific design details. The design was intended to meet the criteria set forth by the workshop of safe and effective up-stream and downstream passage with negligible chances for harm to fish as a result of interactions with the passage facility or dam. NMFS sent the COE follow-up questions on details of the off-channel rock ramp and the COEs May 11, 2011 Information Paper. The COE responded on May 27 with considerable additional technical detail but also noted that detailed design work still needs to be done before some specific questions (e.g., 3-d water velocities) can be answered. Some of those answers may affect technical details of the final design (e.g., dimensions of the guide walls, passageway cross-sections). Dr. Luther Aadland, a technical expert on fish passage design for passing sturgeon, was contracted by NMFS to review the COE's design for the off-channel rock ramp. Based on his experience with designing fish passages and successful passage of sturgeon, Dr. Aadland concluded that design modifications to the proposed fish passage would be needed. NMFS has requested that the COE review Dr. Aadland's comments and incorporate the necessary modifications as provided by Dr. Aadland. The COE has stated that they will work with NMFS and other resource agencies (i.e., FWS, SCDNR, and GADNR) to complete the final design of this facility. They have also indicated that they intend to consult with Dr. Aadland and to work with an engineering firm to prepare the final design. The COE will provide a comparison analysis of existing fish passages with similar characteristics to the New Savannah Bluff Lock and Dam fish passage conditions in order to study the effectiveness of the rock ramp design for sturgeon.

The incidental take statement includes terms and conditions that require NMFS' review and validation of the final design and requires timeframes for design completion and construction. The proposed action for this project and incidental take statement of this opinion also include monitoring and adaptive management to help insure the success of all mitigative measures including the fish passage facility.

2.1.6 Sea Turtle Conservation Measures

The COE SAD has a well-established suite of sea turtle conservation measures that are implemented to minimize the incidental take of sea turtles during hopper dredging, under the SARBO. The dredging for SHEP will not be conducted under the SARBO, but rather will be authorized by and subject to the requirements of this biological opinion.

Draghead Deflector

The COE requires the use of sea turtle deflecting dragheads on all hopper-dredging projects where the potential for sea turtle interactions exist. Contractors are required to equip dragheads with rigid sea turtle deflectors which are rigidly attached to the draghead. In order to assure that the turtle deflecting draghead is engineered and installed correctly, the Contractor provides the COE with drawings and calculations for the project depth to be dredged. These submittals are approved by the COE prior to project commencement. The leading edge of the deflector must be designed to have a plowing effect of at least 6-inch depth when the draghead is being operated so that turtles located in front of the draghead are pushed away by the resultant sand wave. The dragtender must have the appropriate instrumentation on board the dredge to assure that the critical "approach angle" is maintained during dredging operations. The design "approach angle" or the angle of lower draghead pipe relative to the average sediment plane is very important to the proper operation of a deflector. Hopper dredge contract specifications require that dredge pumps not be operated when the dragheads are not firmly on the bottom. The pumps must either be shut off or reduced in speed to the point where no suction velocity or vacuum exists while the dredge is turning. Pumping water through the dragheads is not allowed while maneuvering or during travel to/from the disposal area. To assure that these conditions are understood and implemented by the Contractor, the COE requires that the Contractor develop a written operational plan to minimize turtle takes and submit it as part of the Environmental Protection Plan for approval prior to project commencement. In order to assure contractor compliance with all sea turtle protection measures during hopper dredge operations, detailed quality assurance inspections are performed by COE personnel on each hopper dredge contract, as well as after each sea turtle take. Sea turtle deflecting dragheads will be required for this project.

Environmental Windows

To minimize risk of sea turtle incidental takes by dredges, environmental windows were established by NMFS, and further refined by the COE, which restrict dredging to periods when turtles are least abundant or least likely to be affected by dredging. The environmental windows for turtle-safe dredging target the winter months when sea turtle abundance is dramatically reduced. Turtle abundance is greatly reduced at water temperatures below 13°C, and they are typically absent during temperatures below 11°C. The environmental window for the hopper dredging activities within the project area is from December 1 through March 31 of any year.

Inflow/Overflow Screening

In accordance with the Reasonable and Prudent Measures (RPMs) outlined in previous (1995 and 1997) NMFS SARBO's, all SAD hopper dredging contracts require 100 percent inflow screening throughout the duration of each contract. One hundred percent inflow screening is required, and 100 percent overflow screening is recommended, when sea turtle observers are required on hopper dredges in areas and seasons when sea turtles may be present. If conditions disallow 100 percent inflow screening, inflow screening can be reduced, but 100 percent overflow screening is required, and an explanation must be included in the preliminary dredging report.

The water intake ports on the top of the draghead shall be screened with metal elliptical cages, or other suitable means to exclude sea turtles from entering the drag arm. The configuration of inflow and overflow screening is hopper dredge specific, resulting in multiple Contractor configurations to meet COE contract screening requirements. COE hopper dredging contracts require a 4-inch x 4-inch screen mesh size for inflow screening to allow biotic and abiotic debris to be screened and evaluated by endangered species observers before being allowed into the hopper. The same screen mesh size is used for overflow screening. The efficacy of this inflow and overflow screening mechanism depends on the dredge specific configuration. Some configurations are more prone to clogging with debris, thus resulting in reduced monitoring efficiency and coverage. In some cases, clay and debris accumulation in the inflow boxes is so significant that effective observer coverage is not possible and the COE must reduce or replace the inflow screening with 100 percent overflow screening. Depending on the type of debris encountered, overflow screening may become clogged with floating debris and compromise the safety of the vessel. The COE has consulted with the NMFS on a caseby-case basis to address these site specific circumstances. Ample lighting on a hopper dredge is specifically required for the observers on board to provide safe access at night to the inflow boxes and screens

Observers

During hopper dredging operations, observers approved by NMFS for sea turtles, sturgeon, and whales are required to be aboard the hopper dredge to monitor for the presence of the species. The COE will require 100 percent observer coverage (i.e., 24 hour monitoring requiring two observers each monitoring for 12 hours daily) conducted from December 1 to March 31, the dredging window for hopper dredge operations. During transit to and from offshore borrow or placement areas, the observer monitors from the bridge during daylight hours for the presence of protected species, during the period December 1 through March 31. During dredging operations, while dragheads are submerged, the observer continuously monitors the inflow and/or overflow screening for turtles and/or turtle parts. Upon completion of each load cycle, dragheads are monitored as the draghead is lifted from the sea surface and is placed on the saddle in order to assure that sea turtles or turtle body parts that may be impinged within the dragheads are properly documented. Physical inspections of dragheads and inflow and overflow screening/boxes for threatened and endangered species take are performed to the maximum extent practicable. A trained turtle observer will be placed on the hopper dredges to monitor for sea turtles for 100 percent of the period from December 1 to March 31.

Dredging Quality Management Program (Silent Inspector)

The Dredging Quality Management Program is an automated dredge monitoring system comprised of both hardware and software developed by the COE. The COE developed the program as a low cost, repeatable, impartial system for automated dredge monitoring. Currently, it is required for all COE hopper and scow contracts; however, it is not on all Government-owned dredges yet. NMFS will require the COE to use hopper dredges equipped with the appropriate automated dredge monitoring system for this project. The

system integrates various automated systems to digitally record dredging and disposal activities for both government-owned and contract dredges. The system collects and records measurements from shipboard sensors, calculate the dredging activities, and displays this information using standard reports and graphical displays.

On hopper dredges, the program monitors the operating conditions of the dredge in near real time. Once loaded into the program database, graphical displays can be generated to help assure contractor compliance with the draghead operating requirements in order to minimize sea turtle take risk. Visual graphs can be used to display dredging data variables such as draghead elevation, slurry density, and slurry velocity. If a sea turtle take occurs, these data can be used to generate graphs that may help in developing risk assessments to assess what the conditions of the dragheads were during any given load cycle. If a sea turtle take can be correlated to non-compliance with contract specification requirements through the program, it is possible to let the Contractor know of the action so it can be corrected and the risk of taking another turtle minimized.

Dredging shall be suspended upon the taking of more than two turtles in any 24-hour day, the taking of one hawksbill turtle, or one leatherback turtle, or one green turtle, or once three turtles are taken. Dredging operations will not re-commence until coordination between South Atlantic Division and the NMFS has taken place and any remediation requirements are implemented to ensure compliance with the Endangered Species Act.

Relocation Trawling

Relocation trawling for the project is subject to requirements, terms, and conditions for trawl times, handling during trawling, captured sea turtle holding, scientific measurement, take and release time during trawling, injury, flipper tagging, PIT-Tag scanning, and other sampling procedure conditions. There are also PIT-Tag scanning and data submission requirements and handling fibropapillomatose turtle guidelines that must be followed (See Section 9.4). Relocation trawling involves directed take of sea turtles (capture and handling). However, since it also meets the definition of a reasonable and prudent measure (by capturing and relocating turtles that would otherwise be killed in dredges), it will be authorized through this opinion. Further, since it involves take and some of the take may be lethal, the effects of this RPM are evaluated as effects of the proposed action, and in the jeopardy analysis.

2.1.7 Whale Conservation Measures

The COE will require monitoring by endangered species observers with at-sea large whale identification experience to conduct daytime observations for whales between November 1 and April 30. In addition, the COE will restrict the speeds of vessels during offshore transits to reduce the risk of injury and mortality to North Atlantic Right Whales.

To ensure that dredging operations do not adversely affect the North Atlantic right whale and other marine mammals, the COE has a specific set of specifications for the Savannah District that deal with large whale protection measures. These specifications apply to Savannah Harbor and require a NMFS-approved endangered species observer approved for whale monitoring be onboard each hopper dredge during the time that right whales may be in the area. Savannah District's specification language is included below:

No incidental take of right whales is authorized. Vessel speeds of no more than 10 knots as set forth in the proposed action shall be used. However, the Contractor shall restrict dredge and attendant vessel speeds to 5 knots or less (or minimum safe speed) during night (sunset to sunrise) operations unless there is no information from the right whale early warning system (RWEWS) or any other observations/information that reveals any right whales within 15 nautical miles of the project area. (NMFS' notes that RWEWS flights are not conducted on a regular basis off of Savannah.) If aerial surveys for right whales show no sightings on a particular day, the vessel speeds of no more than 10 knots as set forth in the proposed action shall be used during the following nighttime operations. If a right whale is determined through any means to be in the project area on a particular day, negative results from any other type of survey on that same day shall not serve to cancel that night's restriction of dredge and attendant vessel speeds. For Savannah Harbor, the project area is defined as the Savannah Harbor Entrance Channel (Stations 0+000 to -60+000B), the designated offshore disposal areas shown on the Contract drawings, and transit routes. If right whale occurrence/distribution information is not available from the RWEWS due to severe weather restrictions, then vessel speeds will be restricted to 5 knots (or minimum safe speed) during night operations. It is currently expected that the RWEWS will be in effect from December through March for Savannah. No aerial survey is required when the RWEWS is not in effect. Nighttime speeds will still be restricted to 5 knots or less (or minimum safe speed) when the RWEWS is not in effect if other information indicates right whales are in the project area. The requirement for nighttime speed restrictions are available from the COR (OP-NN) or the RWEWS on a daily basis. Previous right whale monitoring along the Georgia coast indicates that for Savannah Harbor the Contractor might expect up to 8 nights of reduced speed operations between 1 December and 31 March. For Brunswick Harbor, the Contractor might expect up to 13 nights of reduced speed operations between 1 December and 31 March. Contractor should also expect at least 22 days of additional reduced speed operations between the period of 1 December and 31 March due to weather restricting RWES aerial surveys. During daylight hours, the dredge operator shall take necessary precautions to avoid whales. If whales have been spotted within 15 nautical miles of the project area in the previous 24 hours, then the dredge shall slow down to 5 knots or less (or minimum safe speed) when transiting to and from the dump site during evening hours or during daylight hours when there is limited visibility due to fog or sea states of greater than Beaufort 3. The hopper dredge shall not get closer than 500 yards to right whales. The speed limits for hopper dredges would only apply until a new Regional Biological Opinion for hopper dredging is signed, at which time the project would abide by the conditions in that new opinion.

The COE has established precautionary collision avoidance measures to be implemented during dredging and sediment placement operations that take place during the time North Atlantic right whales are present in waters offshore of the Savannah Harbor project. These include:

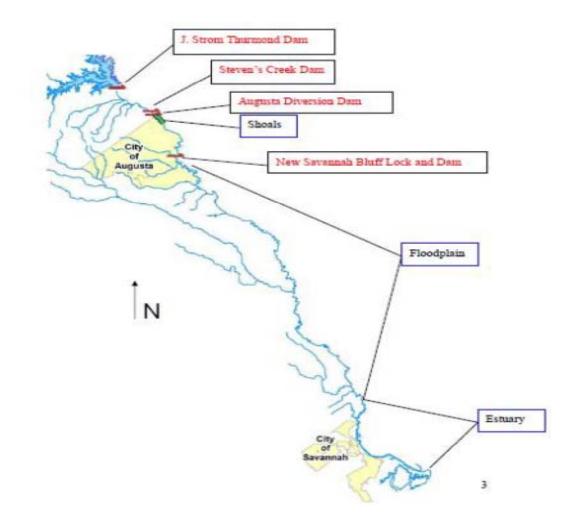
Pre-project briefing

Before the initiation of the project, at the pre-construction/partnering meeting, the COE briefs the Contractor on the presence of the species, and reviews the requirements for right whale protection.

Contractor requirements

Each Contractor will be required to instruct all personnel associated with the dredging/construction project about the possible presence of endangered North Atlantic right whales in the area and the need to avoid collisions. Each Contractor will also be required to brief his personnel concerning the civil and criminal penalties for harming, harassing, or killing species that are protected under the ESA and the MMPA. Dredges and all other disposal and attendant vessels are required to stop, alter course, or otherwise maneuver to avoid approaching the known location of a North Atlantic right whale. The contractor will be required to submit an endangered species watch plan that is adequate to protect North Atlantic right whales from the impacts of the proposed work.

Vessel speed


During transport of dredged material through offshore waters to the disposal site and when returning to the dredge site, dredge vessels and all support vessels will use extreme caution and proceed at a safe speed, no greater than 10 knots, from November 1 through April 30 such that the vessel can take proper and effective action to avoid a collision with a North Atlantic Right Whale or other marine mammal, and can be stopped within a distance appropriate to the prevailing circumstances and conditions. During daylight hours, the dredge operator must take necessary precautions to avoid whales. During evening hours or when there is limited visibility due to fog or sea states of greater than Beaufort 3, the dredge must slow down to no greater than 5 knots when transiting between areas if whales have been spotted by observers or RWEWS within 15 nm (nautical miles) of the vessel's path within the previous 24 hours. Slower vessel speeds can reduce the potential for a vessel strike with a listed species by providing more time for animals to react to a vessel and move out of the way. Slower vessel speeds also reduce the likelihood of a strike resulting in serious injury or mortality.

Observers

Monitoring is required by NMFS-approved endangered species observers with at-sea large whale identification experience to conduct daytime observations for whales between November 1 and April 30. Observers would monitor for the presence of marine mammals from the bridge during daylight hours while transiting to and from the disposal area. Floating weeds, algal mats, Sargassum rafts, clusters of seabirds, and jellyfish are good indicators of the potential presence of sea turtles and marine mammals. Therefore, increased vigilance in watching for sea turtles and marine mammals will be taken where these are present. During daylight hours, the dredge operator must take necessary precautions to avoid whales. The COE will notify the program manager for the whale aerial survey of dredging activities that are likely to take place during calving season, and likely beginning, ending, and duration of the dredging activities.

2.2 Action Area

50 CFR 404.02 defines action area as "all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action." Savannah Harbor is an approximately 32.5-mile federal navigation project located along the Savannah River in southeast Georgia. The Savannah River basin includes portions of North Carolina, South Carolina, and Georgia and flows through the Blue Ridge Mountain, Piedmont, and Coastal Plain provinces. The river constitutes the state boundary between Georgia and South Carolina along its entire length of 313 miles. Freshwater flow is largely controlled by three COE-operated reservoirs (Hartwell, Richard B. Russell, and Clarks Hill – known as J. Strom Thurmond Dam in South Carolina) and the New Savannah Bluff Lock and Dam just south of Augusta, Georgia (Figure 9). Other dams are the Steven's Creek Dam located north of Augusta and the Augusta Diversion Dam. The Augusta Canal is created by the Augusta Diversion Dam and is the nation's only industrial power canal still in use for its original purpose. The Augusta Shoals are located below the Augusta Diversion Dam. The Savannah River begins at the Hartwell Reservoir by the confluence of the Seneca and Tugaloo Rivers. It passes through the port city of Savannah and flows to the Atlantic Ocean. Tidal fluctuations average 6.8 feet at the mouth of the harbor and 7.9 feet at the upper limit of the harbor. Salinity ranges from 0 ppt in the freshwater flow to 35 ppt in the ocean bar channel. Most of the shipping channel is 500 feet wide, with the wider portions of the river ranging from 2,400 feet near the river entrance to 1,000 feet at the Kings Island Turning Basin.

Figure 9. Dams on the Savannah River

The deepening site itself is located within Chatham County, Georgia, and Jasper County, South Carolina. Urban and industrial development extends northwestward along the Georgia side of the river. Lands on the opposite side of the Savannah River in Jasper County, South Carolina are characterized by a system of dikes, canals, and former rice fields constructed in the 18th and 19th centuries. It is dominated by tidal freshwater, brackish, and salt marsh that comprise the Savannah National Wildlife Refuge. A system of eight confined disposal facilities (CDFs), maintained by the COE and provided by the Georgia Department of Transportation (non-federal sponsor), are found along the river bank within South Carolina. Dredged material not suitable for disposal offshore would be placed in the upland CDFs. In the lower Savannah, the river branches into three sections referred to as the Front River, Middle River, and Back River. The Federal Navigational Channel is located within the Front River (Figure 10). A sediment basin is located in the lower portion of the Back River. Small canals (Rifle Cut, McCoy Cut) connect the Front, Middle, and Back Rivers. The mainland areas are separated from the ocean by a line of barrier islands and intervening salt marshes and tidal rivers. The mouth of the Savannah River is located just north of Tybee Island. The action area for the proposed project includes the entrance channel for Savannah and the river channel

from Station -60+000B, the oceanward extent of the Entrance Channel (or Ocean Bar Channel), to the Garden City Terminal at Station 103+000. Additionally, the action area includes several disposal sites including an authorized ocean dredged materials disposal site (ODMDS), and submerged berms located near Tybee Island. The action area includes the New Savannah Bluff Lock and Dam, the river downstream to Savannah, and also the upland area adjacent to the New Savannah Bluff Lock and Dam, within South Carolina, where a fish passage bypass would be constructed as a part of the proposed action.

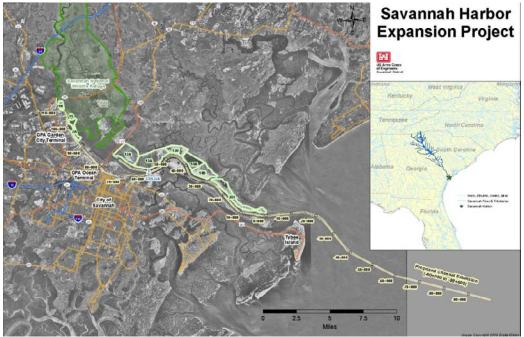


Figure 10. Deepening and Harbor Modification Action Area

3 SPECIES AND CRITICAL HABITAT OCCURRING IN THE ACTION AREA

3.1 SPECIES

The following table lists the endangered (E) and threatened (T) species and DPSs (proposed) under the jurisdiction of NMFS that may occur in the action area:

Common Name	Scientific Name	Status
a		
Sea Turtles		
Hawksbill sea turtle	Eretmochelys imbricata	E
Loggerhead sea turtle		
(Northwest Atlantic Ocean DPS)) Caretta caretta	Т
Green sea turtle	Chelonia mydas	E/T^3

³ Green turtles are listed as threatened except for the Florida and Pacific coast of Mexico breeding populations, which are listed as endangered.

Kemp's ridley sea turtle	Lepidochelys kempii	E
Leatherback sea turtle	Dermochelys coriacea	E
Fish		
Shortnose sturgeon	Acipenser brevirostrum	E
Atlantic sturgeon		
(South Atlantic DPS)	Acipenser oxyrinchus oxyrinchus	E (proposed)
Whales		
North Atlantic right whale	Eubalaena glacialis	Е
Humpback whale	Megaptera novaeangliae	E

NMFS and USFWS issued a final rule designating nine DPS' for loggerhead sea turtles (76 FR 58,868, September 22, 2011; effective October 24, 2011). The Northwest Atlantic DPS (NWA DPS) is the only loggerhead DPS that occurs in the action area. Additionally, On October 16, 2010, NMFS proposed ESA listing for the Atlantic sturgeon (*A. oxyrinchus oxyrinchus*); five DPSs were identified. The Atlantic sturgeon South Atlantic DPS inhabits the Savannah River and is proposed for listing as endangered (75 FR 61904).

3.2 Critical Habitat

There is currently no designated critical habitat in the action area. NMFS is required to designate critical habitat for Atlantic sturgeon at the time of final listing unless not determinable, in which case NMFS must designate critical habitat within one additional year. NMFS intends to propose critical habitat for the loggerhead NWA DPS in future rulemaking as critical habitat was deemed not determinable at the time of the listing.

3.3 Species Not Likely to be Adversely Affected

We have determined that the proposed action being considered in this opinion is not likely to adversely affect leatherback sea turtles, green sea turtles, hawksbill sea turtles, North Atlantic right whales, and humpback whales, and these species are excluded from further analysis and consideration in this opinion. The following discussion summarizes our rationale for this determination.

Leatherback Sea Turtle

Leatherback sea turtles (Figure 11) may be found in the action area, particularly when onshore winds and/or currents push jellyfish, their preferred prey, close to inshore.

Figure 11. Leatherback sea turtle

However, leatherbacks are primarily a pelagic species, preferring deeper waters than those of the action area (the deepest portions of the offshore action area are less than 60feet-deep). Furthermore, in over 30 years of NMFS consultations with the COE on hopper dredging projects carried out in the Savannah Harbor, there has never been a documented take of a leatherback sea turtle by a hopper dredge. Because of this and their very large size (compared to hopper dredge dragheads), pelagic nature (surface and midwater), preference for deeper waters located beyond the project area further offshore, and feeding habits (which make it unlikely they would ever encounter a bottom-hugging hopper dredge draghead), NMFS believes the possibility that they would be adversely affected by a hopper dredge is discountable.

Green Sea Turtle

Green sea turtles (Figure 12) are distributed circumglobally and can be found in the Pacific, Indian, and Atlantic Oceans as well as the Mediterranean Sea (NMFS and USFWS 1991, NMFS and USFWS 2007a). Green sea turtles are primarily herbivorous, feeding on algae and sea grasses, but also occasionally consume jellyfish and sponges. The post-hatchling, pelagic-stage individuals are assumed to be omnivorous, but little data are available.

Figure 12. Green sea turtle

Green sea turtle foraging areas in the southeastern United States include any coastal shallow waters having macroalgae or seagrasses. This includes areas near mainland coastlines, islands, reefs, or shelves, as well as open-ocean surface waters, especially where advection from wind and currents concentrates pelagic organisms (Hirth 1997, NMFS and USFWS 1991). Principal benthic foraging areas in the southeastern United States include Aransas Bay, Matagorda Bay, Laguna Madre, and the Gulf inlets of Texas (Doughty 1984, Hildebrand 1982, Shaver 1994), the Gulf of Mexico off Florida from Yankeetown to Tarpon Springs (Caldwell and Carr 1957, Carr 1984), Florida Bay and the Florida Keys (Schroeder and Foley 1995), the Indian River Lagoon system, Florida (Ehrhart 1983), and the Atlantic Ocean off Florida from Brevard through Broward Counties (Wershoven and Wershoven 1992, Guseman and Ehrhart 1992). Adults of both sexes are presumed to migrate between nesting and foraging habitats along corridors adjacent to coastlines and reefs.

Some of the principal feeding pastures in the western Atlantic Ocean include the upper west coast of Florida and the northwestern coast of the Yucatán Peninsula. Additional important foraging areas in the western Atlantic include the Mosquito Lagoon and Indian River Lagoon systems and nearshore wormrock reefs between Sebastian and Ft. Pierce Inlets in Florida, Florida Bay, the Culebra archipelago and other Puerto Rico coastal waters, the south coast of Cuba, the Caribbean coast of Panama, the Miskito Coast in Nicaragua, and scattered areas along Colombia and Brazil (Hirth 1997). The summer developmental habitat for green turtles also encompasses estuarine and coastal waters from North Carolina to as far north as Long Island Sound (Musick and Limpus 1997).

The vast majority of green sea turtle nesting within the southeastern United States occurs in Florida (Meylan et al. 1995, Johnson and Ehrhart 1994). Green sea turtle nesting in Florida has been increasing since 1989 (Florida Fish and Wildlife Conservation Commission, Florida Marine Research Institute Index Nesting Beach Survey Database). Certain Florida nesting beaches have been designated index beaches. Index beaches were established to standardize data collection methods and effort on key nesting beaches. Since establishment of the index beaches in 1989, the pattern of green turtle nesting shows biennial peaks in abundance with a generally positive trend during the ten years of regular monitoring. This is perhaps due to increased protective legislation throughout the Caribbean (Meylan et al. 1995). Occasional nesting has been documented along the Gulf coast of Florida, at southwest Florida beaches, as well as the beaches on the Florida Panhandle (Meylan et al. 1995). More recently, green turtle nesting occurred on Bald Head Island, North Carolina; just east of the mouth of the Cape Fear River; on Onslow Island; and on Cape Hatteras National Seashore. Increased nesting has also been observed along the Atlantic coast of Florida, on beaches where only loggerhead nesting was observed in the past (Pritchard 1997). Recent modeling by Chaloupka et al. (2007) using data sets of 25 years or more has resulted in an estimate of the Florida nesting stock at the Archie Carr National Wildlife Refuge growing at an annual rate of 13.9 percent, and the Tortuguero, Costa Rica, population growing at 4.9 percent annually.

During the past 30 years of maintenance dredging in the Savannah Harbor Entrance Channel, green sea turtles have not been encountered and no take of green sea turtles has occurred. It is doubtful they would be found in the area due to the lack of preferred habitat (i.e., shallow well-vegetated bottom) and absence of preferred food items (e.g., seagrass, macroalgae). Considering these factors, it is not expected that interactions would occur in the action area; therefore, NMFS believes the possibility that they would be adversely affected is discountable.

Hawksbill Sea Turtle

In the western Atlantic, the largest hawksbill (Figure 13) nesting population occurs on the Yucatán Peninsula of Mexico (Garduño-Andrade et al. 1999). With respect to the United

Figure 13. Hawksbill sea turtle

States, nesting occurs in Puerto Rico, the U.S. Virgin Islands, and along the southeast coast of Florida. Nesting also occurs outside of the United States and its territories, in Antigua, Barbados, Costa Rica, Cuba, and Jamaica (Meylan 1999a). Outside of the nesting areas, hawksbills have been seen off the U.S. Gulf of Mexico states and along the Eastern Seaboard as far north as Massachusetts, although sightings north of Florida are rare (NMFS and USFWS 1993). Hawksbill sea turtles could occasionally be found in the action area. Hawksbills are the most tropical sea turtle species, ranging from approximately 30°N latitude to 30°S latitude. They are closely associated with coral reefs and other hardbottom habitats, but they are also found in other habitats including inlets, bays, and coastal lagoons (NMFS and USFWS 1993). Adult foraging habitat, which may or may not overlap with developmental habitat, is typically coral reefs, although other hardbottom communities and occasionally mangrove-fringed bays may be occupied. Hawksbills show fidelity to their foraging areas over several years (van Dam and Díez 1998). The hawksbill's diet is highly specialized and consists primarily of sponges (Meylan 1999). Other food items, notably corallimorphs and zooanthids, have been documented to be important in some areas of the Caribbean (van Dam and Díez 1997, Mayor et al. 1998, León and Díez 2000). With the frequent trawling of the project area associated with the shrimp fishery, there is no abundance of sponges or other food items available to hawksbill sea turtles.

During the past 30 years of NMFS consultations with the COE on hopper dredging projects carried out in the Savannah Harbor there has never been a documented take of a hawksbill sea turtle by a hopper dredge. Due to hawksbill sea turtles' preferred habitat and diet, it is not expected that interactions would occur in the action area; therefore, NMFS believes the possibility that they would be adversely affected is discountable.

North Atlantic Right Whale

The nearshore waters of northeast Florida and southern Georgia were first identified as a likely calving and nursery area for right whales (Figure 14) in 1984. While sightings off Georgia and Florida include primarily adult females and calves, juveniles and adult males are also commonly observed. Annual right whale migration to and from, and use of, calving grounds off the southeastern U.S. coast, occur from November 1 through April 30. Systematic surveys conducted off the coast of North Carolina during the winters of 2001 and 2002 sighted 8 calves, suggesting that the calving grounds may extend through South Carolina as far north as Cape Fear, North Carolina (Waring et al. 2009).

Figure 14. North Atlantic right whale

Twenty percent of all right whale mortalities observed between 1970 and 1989 were caused by vessel collisions/interactions with right whales. Seven percent of the population exhibit scars indicative of additional, non-lethal vessel interactions (Kraus 1990). So far in 2011, of four deceased right whales encountered, half were associated with rope entanglement, one had multiple skull and vertebral fractures that are consistent with ship strike, and a fourth was found floating offshore with no evidence of entanglement. In January 2011, a live right whale was observed with approximately 14 propeller cuts across its body; it had been observed five days earlier with no injuries. On January 24, 2011, a right whale entered the St. John's River in Florida and proceeded upstream. Its presence for nine hours in the navigational channel resulted in the closure of commercial marine traffic, Navy operations, and COE dredging activities.

The COE has proposed to create a new bar channel extension-alignment would result in a 14 degree offset from the extension's original orientation and/or approach. With respect to the already-established vessel travel corridors in the area, the 14 degree offset for the extension constitutes a negligible correction factor for the Bar Channel, and the new alignment would not introduce any additional variability to the existing approach and departure vectors (i.e., vessel tracks) currently used by ship traffic. The configuration of the new alignment for the entrance channel is roughly oriented perpendicular to the coastline, which is intended to ensure that ships approaching the entrance channel from seaward direction will take the shortest path through coastal waters and lessen the chance of encountering a migrating whale.

NMFS review of the project indicates that the proposed action will not result in increased level of container vessel visits to the area, however due to the nature of the project NMFS is expecting a significant increase in vessel traffic related to dredge activities transiting between the navigational channel and the disposal sites.

As a result of the potential for interactions between hopper dredges and right whales, the 1991 biological opinion for the dredging of channels in the southeastern United States from North Carolina through Cape Canaveral, Florida (NMFS 1991) required observers on board dredges operating from December through March off Georgia and northern Florida to maintain surveys for the occurrence of right whales during transit between channels and disposal areas. Continuation of aerial surveys which had been instituted in Kings Bay, Georgia, was also required. Since January 1994, aerial surveys funded by the COE in association with dredging activities in the Southeast have been amplified through the implementation of the right whale early warning surveys (EWS). These surveys, jointly funded by the COE, NMFS, the Navy, and the Coast Guard, are conducted to identify the occurrence and distribution of right whales in the vicinity of ship channels in the winter breeding area, and to notify nearby vessel operators of whales in their path. However, the aerial surveys conducted off of Savannah are very sporadic, due to a lack of funding to cover the area off Savannah. The regularly-conducted EWS flights off Georgia cover the area from Sapelo Island, which is approximately 35 miles south of Savannah, to Brunswick.

Records of right whale ship strikes (Knowlton and Kraus 2001) and large whale ship strike records (Laist et al. 2001, Jensen and Silber 2003) have been compiled, and all indicate vessel speed is a principal factor in ship strikes. In assessing records in which vessel speed was known, Laist et al. (2001) found "a direct relationship between the occurrence of a whale strike and the speed of the vessel involved in the collision." The authors concluded that most deaths occurred when a vessel was traveling in excess of 14 knots.

NMFS considered whether it is better for a vessel to travel faster through a sensitive area (and thus get through it more quickly), or go slower, increasing the amount of time spent in the sensitive areas (exposure). Vanderlaan and Taggart (2007) attempted to briefly address this question by approximating the probability of a vessel-whale encounter as a function of vessel speed and length of exposure (in time) using a very simplistic random walk model. Their simple model demonstrates that the encounter probability increases slowly with decreasing speed and begins to increase rapidly only at speeds below 3-4 knots (Vanderlaan and Taggart 2007); at these speeds the approximated encounter probability is increasingly more a function of whale movement and decreasingly less a function of vessel movement (i.e. a modeled, randomly-moving whale overtaking or encountering a near-stationary ship). Therefore, a vessel reducing its speed from 24 knots (or any other speed between 24 and 10 knots) to 10 knots would not increase the encounter probability. The encounter probability changes with the number of vessels, and would show different results if this model used multiple whales and various sizes or speeds for the whale and vessel. To ensure that these variables would not increase encounter probability at 10 knots, NMFS independently conducted a sensitivity analysis using a random walk model, and tested the additional variables mentioned above. The outputs of this sensitivity analysis agreed with the findings of the Vanderlaan and Taggart (2007) random walk model. In conclusion, slower vessels do not increase the risk of ship strike simply by transiting through an area for a longer time, unless they were to go 4 knots or less.

Jensen and Silber (2003) identified 292 records of known or probable ship strikes of all large whale species from 1975 to 2002. In 58 of the records, ship speed at the time of collision was known: it ranged from 2 to 51 knots, with an average of 18.1 knots. A majority (79 percent) of ship strikes occurred at speeds of 13 knots or greater. Of the 58 cases where speed was known, 19 (32.8 percent) resulted in serious injury to the whale. The mean vessel speed that resulted in serious injury or death to the whale was 18.6 knots (Jensen and Silber 2003).

Using a total of 64 records of ship strikes in which vessel speed was known, Pace and Silber (2005) tested speed as a predictor of the probability of death or serious injury. The authors concluded that there was strong evidence that the probability of death or serious injury increased rapidly with increasing speed. Specifically, the predicted probability of serious injury or death increased from 45 percent to 75 percent as vessel speed increased from 10 to 14 knots, and exceeded 90 percent at 17 knots. Interpretation of the logistic regression curve used to obtain these probabilities indicates that there is a 100 percent probability of serious injury or death around 25 knots and faster. In a related study,

Vanderlaan and Taggart (2007) analyzed all published historical data on vessels striking large whales. The authors found that the probability of a lethal injury resulting from a strike ranged from 20 percent at 9 knots to 80 percent at 15 knots and 100 percent at 21 knots or more.

Related studies of the occurrence and severity of strikes relative to vessel speed have been conducted for other species and locations. Panigada et al. (2006) concluded that vessel speed restrictions and the relocation of vessel routes in high cetacean density areas would reduce the likelihood of ship strikes of fin whales in the Mediterranean Sea. Speed zones were adopted in Florida in the early 2000s to reduce the numbers of collisions and manatee injuries resulting from collisions with boats. Laist and Shaw (2006) assessed the effectiveness of these speed zones at reducing watercraft-related manatee deaths. Watercraft-related manatee deaths did decline in the areas assessed in the paper, and the authors reported that this decline reflected the fact that well-designed speed restrictions could be effective if properly enforced. They further stated that "reduced speed allows time for animals to detect and avoid oncoming boats, and that similar measures may be useful for other marine mammal species vulnerable to collision impacts with vessels (e.g., North Atlantic right whales)" (Laist and Shaw 2006).

The behavior of whales in the path of approaching ships is uncertain, but in some cases, last-second flight responses may occur. If a whale attempts to avoid an oncoming vessel at the last minute, a burst of speed coupled with a push from the bow wave could mean that mere seconds might determine whether the whale is struck (Laist et al. 2001). A reduction in speed from 18 knots to 10 knots would give whales an additional 8.6 seconds (at a distance of 100 m) to avoid the vessel in this flight response (Laist 2005, unpublished data). In a separate study involving whale behavior, Kite-Powell et al. (2007) developed a model that analyzed ship strike risk with respect to vessel speed and whale avoidance behavior. The authors of the ship strike analysis assert that ship strike risk decreases as speed decreases and the distance that the whale detects the vessel increases. Assuming certain whale behavior, the model suggests that the ship strike risk posed by a conventional ship (e.g., container ship) traveling at 20 to 25 knots can be reduced by 30 percent at a speed of 12 or 14 knots, and by 40 percent at 10 knots, due to the whales' increased ability to detect and avoid approaching vessels. If a whale detects and reacts to an oncoming vessel at a distance of 820 ft (250 m) or greater, it will likely avoid a ship strike, whereas at detection distances less than 328 ft (100 m), the probability of ship strike is almost one hundred percent at speeds of 15 knots or faster. However, research on vessel-whale collisions indicates that of three speeds considered — 10, 12, and 14 knots — adopting a speed limit of 10 knots would be the most beneficial to the recovery of the right whale population. Historically, only a small percentage of ship strikes occurred at 10 knots, and those that did usually resulted in injury rather than death (Laist et al. 2001). Although, it is important to note of the three speeds considered above, while a 10-knot speed restriction is most effective at reducing the risk of ship strikes, it will not eliminate the risk; there is still a 45 percent predicted probability of serious injury or mortality at 10 knots (Pace and Silber 2005).

In summary, NMFS believes that the mandatory dredge-related-vessel speed limit during the right whale migration/calving season of no greater than 10 knots (no greater than 5 knots at night and during periods of limited visibility), will reduce the chance of an inadvertent collision with a right whale by (1) significantly increasing the watch stander(s) reaction time (i.e., the time between when s/he detects the whale and takes action to avoid it), (2) significantly increasing the likelihood of detection of a right whale that may be in, near, or approaching the path of the vessel, and (3) significantly increasing the likelihood that the whale will detect the oncoming vessel and avoid it.

NMFS-approved endangered species observers will be required to be present to watch for marine mammals during all daytime hopper dredging and vessel transits that occur during the right whale migration/calving season. This will further reduce the chances of an inadvertent collision with a right whale by increasing vessel reaction time, whale reaction time, and likelihood of detection of a right whale. Depending on the size of the vessel used, it is estimated there could be 769 to 2,307 hopper dredge trips during the project. During the previous ten years of entrance channel dredging, there were 263 days of dredging. If it is assumed that there were 3 trips per day, as is normally conducted, this would have resulted in 789 trips. Based on the estimated total dredged material to be removed (13,325,513 cubic yards) during this project, there would be approximately 1,439 trips.

Another factor to be considered is the probability of a right whale encounter by vessels associated with dredging activities for this action. During the fiscal year 2011 right whale EWS aerial survey for the Southeast calving grounds and the additional aerial surveys off the coast of Georgia and South Carolina, a total of 164 unique right whales were sighted, including 20 right whale calves. It is believed that about two-thirds of all right whales transiting the area are detected by the EWS (the rest go unseen because they are submerged and not detected). Given the density and numbers of these animals and their irregular distribution within the area designated as critical habitat, it is unlikely that right whales will be adversely impacted by dredge-related vessel transits, given the precautions stipulated for vessel avoidance. Additionally, the configuration of the new alignment for the entrance channel is roughly oriented perpendicular to the coastline, which should help ensure that ships approaching the entrance channel from seaward will take the shortest path through coastal waters and lessen the chance of encountering a whale.

Thus, NMFS concludes that the project's vessel related effects on North Atlantic right whales are discountable based on the rarity of the species and on the implementation of the suite of Whale Conservation measures discussed above.

Humpback Whale

Humpback whales (Figure 15) occur in waters under U.S. jurisdiction throughout the year. Migrations occur annually between their summer and winter ranges. The summer

Figure 15. Humpback whale

range for the Western North Atlantic stock includes the Gulf of Maine, Canadian Maritimes, western Greenland, and the Denmark Strait. All humpback whales feed while on the summer range. The primary winter range includes the Lesser Antilles, the Virgin Islands, Puerto Rico, and the Dominican Republic (NMFS 1991). In general, it is believed that calving and copulation take place on the winter range. Calves are born from December through March and are about 4 meters at birth. Sexually mature females give birth approximately every two to three years. Sexual maturity is reached between 4 and 6 years of age for females and between 7 and 15 years of age for males. Size at maturity is about 12 meters.

Until recently, humpback whales in the Mid- and South Atlantic were considered transients. Few were seen during aerial surveys conducted over a decade ago (Shoop et al. 1982). However, since 1989, sightings of feeding juvenile humpbacks have increased along the coast of Virginia and North Carolina, peaking during the months of January through March in 1991 and 1992 (Swingle et al. 1993). Studies conducted by the Virginia Marine Science Museum (VMSM) indicate that these whales are feeding on, among other things, bay anchovies and menhaden. Researchers theorize that juvenile humpback whales, which are unconstrained by breeding requirements that result in the migration of adults to relatively barren Caribbean waters, may be establishing a winter foraging area in the mid-Atlantic (Mayo, pers. comm., 1993). The lack of sightings south of the VMSM study area is a function of shipboard sighting effort, which was restricted to waters surrounding Virginia Beach, Virginia.

In concert with the increase in whale sightings, strandings of humpback whales have increased between New Jersey and Florida since 1985. The increase in sightings is attributed to population increase and shift in feeding areas to the mid-Atlantic during this season. Strandings were most frequent during the months of September through April in North Carolina and Virginia waters, and were composed primarily of juvenile humpback whales of no more than 11 meters in length (Wiley et al. 1995). Of the 18 humpbacks for which the cause of mortality was determined, six (33 percent) were killed by vessel strikes. An additional humpback had scars and bone fractures indicative of a previous vessel strike that may have contributed to its mortality.

As mentioned in the right whale species status, using a total of 64 records of ship strikes in which vessel speed was known, Pace and Silber (2005) tested speed as a predictor of

the probability of death or serious injury. The authors concluded that there was strong evidence that the probability of death or serious injury increased rapidly with increasing speed. Specifically, the predicted probability of serious injury or death increased from 45 percent to 75 percent as vessel speed increased from 10 to 14 knots, and exceeded 90 percent at 17 knots. Interpretation of the logistic regression curve used to obtain these probabilities indicates that there is a 100 percent probability of serious injury or death around 25 knots and faster.

Panigada et al. (2006) concluded that vessel speed restrictions and the relocation of vessel routes in high cetacean density areas would reduce the likelihood of ship strikes of fin whales in the Mediterranean Sea. The behavior of whales in the path of approaching ships is uncertain, but in some cases, last-second flight responses may occur. If a whale attempts to avoid an oncoming vessel at the last minute, a burst of speed coupled with a push from the bow wave could mean that mere seconds might determine whether the whale is struck (Laist et al. 2001). A reduction in speed from 18 knots to 10 knots would give whales an additional 8.6 seconds (at a distance of 100 m) to avoid the vessel in this flight response (Laist 2005, unpublished data). In a separate study involving whale behavior, Kite-Powell et al. (2007) developed a model that analyzed ship strike risk with respect to vessel speed and whale avoidance behavior.

The authors assert that ship strike risk decreases as speed decreases and the distance that the whale detects the vessel increases. Assuming certain whale behavior, the model suggests that the ship strike risk posed by a conventional ship (e.g., container ship) traveling at 20 to 25 knots can be reduced by 30 percent at a speed of 12 or 14 knots, and by 40 percent at 10 knots, due to the whales' increased ability to detect and avoid approaching vessels. If a whale detects and reacts to an oncoming vessel at a distance of 820 ft (250 m) or greater, it will likely avoid a ship strike, whereas at detection distances less than 328 ft (100 m), the probability of ship strike is almost one hundred percent at speeds of 15 knots or faster.

NMFS believes that Humpback whales transiting the area during the right whale migration will benefit from the mandatory dredge-related-vessel speed limit during the right whale migration/calving season of no greater than 10 knots (no greater than 5 knots at night and during periods of limited visibility), will reduce the chance of an inadvertent collision with a humpback whale by (1) significantly increasing the watch stander(s) reaction time (i.e., the time between when s/he detects the whale and takes action to avoid it), (2) significantly increasing the likelihood of detection of a humpback whale that may be in, near, or approaching the path of the vessel, and (3) significantly increasing the likelihood that the whale will detect the oncoming vessel and avoid it.

As noted above, the COE proposes that hopper dredge operations would only be conducted in the ocean bar channel from December 1 to March 31. Monitoring to avoid vessel strikes after the right whale migration/calving season will be done by the dredge operator and the sea turtle observer between 1 April and 30 November. NMFS concludes that the project's dredge vessel related effects on humpback whales are discountable or insignificant based on implementation of the Whale Conservation Measures discussed above, and for the same reasons they are expected to prevent harm to the North Atlantic right whale.

Summary

For the reasons discussed above, NMFS has determined that hawksbill sea turtles, green sea turtles, leatherback sea turtles, North Atlantic right whales, and humpback whales are not likely to be adversely affected by the proposed action; therefore, these species will not be considered further in this opinion.

3.4 Species Likely to be Adversely Affected

Sea Turtles

The following sea turtle subsections focus primarily on the Atlantic Ocean populations of these species since these are the populations that may be directly affected by the proposed action; as sea turtles are highly migratory, potentially affected species in the action area may make migrations in other areas of the Gulf of Mexico, Atlantic Ocean, and Caribbean Sea. The global status and trends of the loggerhead sea turtle are included in order to provide a basis for our final determination of the effects of the proposed action on the species as listed under the ESA. The following subsections are synopses of the best available information on the life history, distribution, population trends, and current status of the two species of sea turtles that are likely to be adversely affected by one or more components of the proposed action. Additional background information on the status of sea turtle species can be found in a number of published documents, including: Kemp's ridley sea turtle (USFWS and NMFS 1992) and loggerhead sea turtle (NMFS and USFWS 2008) status reviews, stock assessments, and biological reports (NMFS and USFWS 1995, NMFS and USFWS 2007a-e, Marine Turtle Expert Working Group (TEWG) 1998, 2000, 2007, and 2009; NMFS SEFSC 2001 and 2009d, and Conant et al. 2009).

3.4.1 Status of Kemp's Ridley Sea Turtles

The Kemp's ridley (Figure 16) was listed as endangered on December 2, 1970. Internationally, the Kemp's ridley is considered the most endangered sea turtle (Zwinenberg 1977, Groombridge 1982, TEWG 2000). Kemp's ridleys nest primarily at Rancho Nuevo, a stretch of beach in Mexico's Tamaulipas State. This species occurs mainly in coastal areas of the Gulf of Mexico and the northwestern Atlantic Ocean. Occasional individuals reach European waters (Brongersma 1972). Adults of this species are usually confined to the Gulf of Mexico, although adult-sized individuals sometimes are found on the east coast of the United States.

Figure 16. Kemp's ridley sea turtle

Life History and Distribution

The TEWG (1998) estimates age at maturity from 7-15 years. Females return to their nesting beach about every 2 years (TEWG 1998). Nesting occurs from April into July and is essentially limited to the beaches of the western Gulf of Mexico, near Rancho Nuevo in southern Tamaulipas, Mexico. The mean clutch size for Kemp's ridleys is 100 eggs/nest, with an average of 2.5 nests/female/season.

Little is known of the movements of the post-hatchling stage (pelagic stage) within the Gulf of Mexico. Studies have shown the post-hatchling pelagic stage varies from 1-4 or more years, and the benthic immature stage lasts 7-9 years (Schmid and Witzell 1997). Benthic immature Kemp's ridleys have been found along the Eastern Seaboard of the United States and in the Gulf of Mexico. Atlantic benthic immature sea turtles travel northward as the water warms to feed in the productive, coastal waters off Georgia through New England, returning southward with the onset of winter (Lutcavage and Musick 1985, Henwood and Ogren 1987, Ogren 1989). Studies suggest that benthic immature Kemp's ridleys stay in shallow, warm, nearshore waters in the northern Gulf of Mexico until cooling waters force them offshore or south along the Florida coast (Renaud 1995).

Stomach contents of Kemp's ridleys along the lower Texas coast consisted of nearshore crabs and mollusks, as well as fish, shrimp, and other foods considered to be shrimp fishery discards (Shaver 1991). A 2005 dietary study of immature Kemp's ridleys off southwest Florida documented predation on benthic tunicates, a previously undocumented food source for this species (Witzell and Schmid 2005). These pelagic stage Kemp's ridleys presumably feed on the available *Sargassum* and associated infauna or other epipelagic species found in the Gulf of Mexico.

Population Dynamics and Status

Of the seven extant species of sea turtles in the world, the Kemp's ridley has declined to the lowest population level (Pritchard 1969). Most of the population of adult females nest on the Rancho Nuevo beaches (Pritchard 1969). When nesting aggregations at Rancho Nuevo were discovered in 1947, adult female populations were estimated to be in excess of 40,000 individuals (Hildebrand 1963). By the mid-1980s, nesting numbers were below 1,000 (with a low of 702 nests in 1985). However, observations of increased nesting (with 6,277 nests recorded in 2000) suggest that the decline in the ridley population has stopped and the population is now increasing (USFWS 2000). The number of nests observed at Rancho Nuevo and nearby beaches increased at a mean rate

of 11.3 percent per year from 1985 to 1999 (TEWG 2000). These trends are further supported by 2004-2007 nesting data from Mexico. The number of nests over that period has increased from 7,147 in 2004, to 10,099 in 2005, to 12,143 in 2006, and 15,032 during the 2007 nesting season (Gladys Porter Zoo nesting database 2007). In 2008, there were 17,882 nests in Mexico (Gladys Porter Zoo 2008), and nesting in 2009 reached 21,144 (Gladys Porter Zoo 2010). In 2010, nesting declined significantly, to 13,302 (Gladys Porter Zoo 2010) but it is too early to determine if this is a one-time decline or if it is indicative of a change in the trend. Final numbers for 2011were not available at the time of this opinion. However, preliminary information for Kemp's ridley nesting in Mexico indicates there were fewer nests than in 2009, but nesting numbers did rebound from 2010's reduced nesting to over 20,000 (pers. comm. Jaime Peña, Gladys Porter Zoo). A small nesting population is also emerging in the United States, primarily in Texas, rising from 6 nests in 1996 to 128 in 2007, 195 in 2008, and 197 in 2009. Texas nesting then experienced a decline similar to that seen in Mexico for 2010, with 140 nests (National Park Service data,

http://www.nps.gov/pais/naturescience/strp.htm), but nesting rebounded in 2011 with a record 199 nests (National Park Service data,

http://www.nps.gov/pais/naturescience/current-season.htm).

A period of steady increase in benthic immature ridleys has been occurring since 1990 and appears to be due to increased hatchling production and an apparent increase in survival rates of immature sea turtles beginning in 1990. The increased survivorship of immature sea turtles is attributable, in part, to the introduction of TEDs in the United States' and Mexico's shrimping fleets. As demonstrated by nesting increases at the main nesting sites in Mexico, adult ridley numbers have increased over the last decade. The population model used by TEWG (2000) projected that Kemp's ridleys could reach the recovery plan's intermediate recovery goal of 10,000 nesters by the year 2015. Recent calculations of nesting females determined from nest counts show that the population trend is increasing towards that recovery goal, with an estimate of 4,047 nesters in 2006 and 5,500 in 2007 (NMFS 2007f, Gladys Porter Zoo 2007).

Next to loggerheads, Kemp's ridleys are the second most abundant sea turtle in Virginia and Maryland waters, arriving in these areas during May and June (Keinath et al. 1987, Musick and Limpus 1997). The juvenile population of Kemp's ridley sea turtles in Chesapeake Bay is estimated to be 211 to 1,083 sea turtles (Musick and Limpus 1997). These juveniles frequently forage in submerged aquatic grass beds for crabs (Musick and Limpus 1997). Kemp's ridleys consume a variety of crab species, including *Callinectes* spp., *Ovalipes* spp., *Libinia* spp., and *Cancer* spp. Mollusks, shrimp, and fish are consumed less frequently (Bjorndal 1997). Upon leaving Chesapeake Bay in autumn, juvenile Kemp's ridleys migrate down the coast, passing Cape Hatteras in December and January (Musick and Limpus 1997). These larger juveniles are joined there by juveniles of the same size from North Carolina sounds and smaller juveniles from New York and New England to form one of the densest concentrations of Kemp's ridleys outside of the Gulf of Mexico (Musick and Limpus 1997, Epperly et al. 1995a, Epperly et al. 1995b).

Threats

Kemp's ridleys face many of the same threats as other sea turtle species, including destruction of nesting habitat from storm events, natural predators at sea, and oceanic events such as cold-stunning. Although cold-stunning can occur throughout the range of the species, it may be a greater risk for sea turtles that utilize the more northern habitats of Cape Cod Bay and Long Island Sound. For example, in the winter of 1999-2000, there was a major cold-stunning event where 218 Kemp's ridleys, 54 loggerheads, and 5 green sea turtles were found on Cape Cod beaches (R. Prescott, NMFS, pers. comm. 2001). Annual cold-stunning events do not always occur at this magnitude; the extent of episodic major cold-stun events may be associated with numbers of sea turtles utilizing Northeast waters in a given year, oceanographic conditions, and the occurrence of storm events in the late fall. Many cold-stunned sea turtles can survive if found early enough, but cold-stunning events can still represent a significant cause of natural mortality. A complete list of other indirect factors can be found in NMFS SEFSC (2001).

Although changes in the use of shrimp trawls and other trawl gear have helped to reduce mortality of Kemp's ridleys, this species is also affected by other sources of anthropogenic impacts similar to those discussed in previous sections. For example, in the spring of 2000, a total of 5 Kemp's ridley carcasses were recovered from the same North Carolina beaches where 275 loggerhead carcasses were found. Cause of death for most of the sea turtles recovered was unknown, but the mass mortality event was suspected to have been from a large-mesh gillnet fishery operating offshore in the preceding weeks. The 5 Kemp's ridley carcasses that were found are likely to have been only a minimum count of the number of Kemp's ridleys that were killed or seriously injured as a result of the fishery interaction because it is unlikely that all of the carcasses washed ashore.

The impacts of pollution on Kemp's ridley sea turtles, as with all sea turtles, are still poorly understood. There is little data to provide an understanding of how water quality impacts sea turtles. In 2010, there was a massive oil well release in the Gulf of Mexico at British Petroleum's Deepwater Horizon well. Official estimates are that 4.9 million barrels of oil were released into the Gulf, with some experts estimating even higher volumes. At this time the assessment of total direct impact to sea turtles has not been determined. Additionally, the long-term impacts to sea turtles as a result of habitat impacts, prey loss, and subsurface oil particles and oil components broken down through physical, chemical, and biological processes are not known.

There is a large and growing body of literature on past, present, and future impacts of global climate change induced by human activities, i.e., global warming. Some of the likely effects commonly mentioned are sea level rise, increased frequency of severe weather events, and change in air and water temperatures. The Environmental Protection Agency's climate change Web page provides basic background information on these and other measured or anticipated effects (see www.epa.gov/climatechange/index.html). However, the impacts on sea turtles currently cannot, for the most part, be predicted with any degree of certainty.

The Intergovernmental Panel on Climate Change has stated that global climate change is unequivocal (IPCC 2007) and its impacts may be significant to the hatchling sex ratios of Kemp's ridley sea turtles (Wibbels 2003, NMFS and USFWS 2007c). In marine turtles, sex is determined by temperature in the middle third of incubation with female offspring produced at higher temperatures and males at lower temperatures within a thermal tolerance range of 25°-35°C (Ackerman 1997). Increases in global temperature could potentially skew future sex ratios toward a higher numbers of females (NMFS and USFWS 2007c).

The effects from increased temperatures may be exacerbated on developed nesting beaches where shoreline armoring and construction has denuded vegetation. Sea level rise from global climate change (IPCC 2007) is also a potential problem, particularly for areas with low-lying beaches where sand depth is a limiting factor, as the sea may inundate nesting sites and decrease available nesting habitat (Daniels et al. 1993, Fish et al. 2005, Baker et al. 2006). The loss of habitat as a result of climate change could be accelerated due to a combination of other environmental and oceanographic changes such as increased frequency of storms and/or changes in prevailing currents, both of which could lead to increased beach loss via erosion (Antonelis et al. 2006, Baker et al. 2006).

Other changes in the marine ecosystem caused by global climate change (e.g., salinity, oceanic currents, dissolved oxygen levels, nutrient distribution, etc.) could influence the distribution and abundance of phytoplankton, zooplankton, submerged aquatic vegetation, forage fish, etc., which could ultimately affect the primary foraging areas of Kemp's ridley sea turtles.

3.4.2 Summary of Status for Kemp's Ridley Sea Turtles

The only major nesting site for Kemp's ridleys is a single stretch of beach near Rancho Nuevo, Tamaulipas, Mexico (Carr 1963). The number of nests observed at Rancho Nuevo and nearby beaches increased from 1985 to 2009. Nesting has also exceeded 12,000 nests per year from 2004-2009 (Gladys Porter Zoo database). However, in 2010 the nesting declined dramatically compared to the previous few years. Early speculation on the decline may be related to the events of the Deepwater Horizon oil spill. Kemp's ridleys mature at an earlier age (7-15 years) than other chelonids, thus "lag effects" as a result of unknown impacts to the non-breeding life stages would likely have been seen in the increasing nest trend beginning in 1985 (USFWS and NMFS 1992).

The largest contributors to the decline of Kemp's ridleys in the past were commercial and local exploitation, especially poaching of nests at the Rancho Nuevo site, as well as the Gulf of Mexico trawl fisheries. The advent of TED regulations for trawlers and protections for the nesting beaches has allowed the species to begin to recover. Many threats to the future of the species remain, including interactions with fishery gear, marine pollution, foraging habitat destruction, illegal poaching of nests and potential threats to the nesting beaches from such sources as global climate change, development, and tourism pressures.

3.4.3 Status of Northwest Atlantic Ocean DPS of Loggerhead Sea Turtles

The loggerhead sea turtle (Figure 17) was listed as a threatened species throughout its global range on July 28, 1978. It was listed because of direct take, incidental capture in various fisheries, and the alteration and destruction of its habitat. Loggerhead sea turtles inhabit the continental shelves and estuarine environments along the margins of the Atlantic, Pacific, and Indian Oceans. The majority of loggerhead nesting occurs in the Western Atlantic Ocean (south Florida, United States), and the western Indian Ocean (Masirah, Oman); in both locations nesting assemblages have more than 10,000 females nesting each year (NMFS and USFWS 2008). Loggerhead sea turtles are the most abundant species of sea turtle in U.S. waters.

Figure 17. Loggerhead sea turtle

NMFS and USFWS published a final rule designating nine DPSs for loggerhead sea turtles (76 FR 58,868, September 22, 2011; effective October 24, 2011). The DPSs established by this rule include: (1) Northwest Atlantic Ocean (threatened); (2) Northeast Atlantic Ocean (endangered); (3) South Atlantic Ocean (threatened); (4) Mediterranean Sea (endangered); (5) North Pacific Ocean (endangered); (6) South Pacific Ocean (endangered); (7) North Indian Ocean (endangered); (8) Southeast Indo-Pacific Ocean (endangered); and (9) Southwest Indian Ocean (threatened). The NWA DPS is the only one that occurs within the action area and therefore is the only one to be considered in this opinion.

Atlantic Ocean

Within the NWA DPS, most loggerhead sea turtles nest from North Carolina to Florida and along the Gulf coast of Florida. Previous Section 7 analyses have recognized at least five Western Atlantic subpopulations, divided geographically as follows: (1) a northern nesting subpopulation, occurring from North Carolina to Northeast Florida at about 29°N; (2) a South Florida nesting subpopulation, occurring from 29°N on the east coast to Sarasota on the west coast; (3) a Florida Panhandle nesting subpopulation, occurring at Eglin Air Force Base and the beaches near Panama City, Florida; (4) a Yucatán nesting subpopulation, occurring on the Eastern Yucatán Peninsula, Mexico (Márquez 1990 and TEWG 2000); and (5) a Dry Tortugas nesting subpopulation, occurring in the islands of the Dry Tortugas, near Key West, Florida (NMFS 2001b). The recovery plan for the Northwest Atlantic population of loggerhead sea turtles concluded, based on recent advances in genetic analyses, that there is no genetic distinction between loggerheads nesting on adjacent beaches along the Florida Peninsula and that specific boundaries for subpopulations could not be designated based on genetic differences alone. Thus, the plan uses a combination of geographic distribution of nesting densities, geographic separation, and geopolitical boundaries, in addition to genetic differences, to identify recovery units. The recovery units are: (1) the Northern Recovery Unit (Florida/Georgia border north through southern Virginia); (2) the Peninsular Florida Recovery Unit (Florida/Georgia border through Pinellas County, Florida); (3) the Dry Tortugas Recovery Unit (islands located west of Key West, Florida); (4) the Northern Gulf of Mexico Recovery Unit (Franklin County, Florida, through Texas); and (5) the Greater Caribbean Recovery Unit (Mexico through French Guiana, the Bahamas, Lesser Antilles, and Greater Antilles) (NMFS and USFWS 2008). The recovery plan concluded that all recovery units are essential to the recovery of the species. Although the recovery plan was written prior to the listing of the NWA DPS, the recovery units for what was then termed the Northwest Atlantic population apply to the NWA DPS.

Life History and Distribution

Past literature gave an estimated age at maturity of 21-35 years (Frazer and Ehrhart 1985, Frazer et al. 1994) with the benthic immature stage lasting at least 10-25 years. However, based on new data from tag returns, strandings, and nesting surveys, NMFS SEFSC (2001) estimated ages of maturity ranging from 20-38 years and benthic immature stage (sea turtles that have come back to inshore and nearshore waters)—the life stage following the pelagic immature stage—lasting from 14-32 years.

Mating takes place in late March-early June, and eggs are laid throughout the summer, with a mean clutch size of 100-126 eggs in the southeastern United States. Individual females nest multiple times during a nesting season, with a mean of 4.1 nests per individual (Murphy and Hopkins 1984). Nesting migrations for an individual female loggerhead are usually on an interval of 2-3 years, but can vary from 1-7 years (Dodd 1988). Generally, loggerhead sea turtles originating from the Western Atlantic nesting aggregations are believed to lead a pelagic existence in the North Atlantic Gyre for as long as 7-12 years or more. Stranding records indicate that when pelagic immature loggerheads reach 40-60 cm straight-line carapace length they begin to live in coastal inshore and nearshore waters of the continental shelf throughout the U.S. Atlantic and Gulf of Mexico, although some loggerheads may move back and forth between the pelagic and benthic environment (Witzell 2002). Benthic immature loggerheads have been found from Cape Cod, Massachusetts, to southern Texas, and occasionally strand on beaches in northeastern Mexico.

Tagging studies have shown loggerheads that have entered the benthic environment undertake routine migrations along the coast that are limited by seasonal water temperatures. Loggerhead sea turtles occur year-round in offshore waters off North Carolina where water temperature is influenced by the Gulf Stream. As coastal water temperatures warm in the spring, loggerheads begin to immigrate to North Carolina inshore waters (e.g., Pamlico and Core Sounds) and also move up the coast (Epperly et al. 1995a-c), occurring in Virginia foraging areas as early as April and on the most northern foraging grounds in the Gulf of Maine in June. The trend is reversed in the fall as water temperatures cool. The large majority of loggerheads leave the Gulf of Maine by mid-September but some may remain in mid-Atlantic and Northeast areas until late fall. By December loggerheads have emigrated from inshore North Carolina waters and coastal waters to the north to waters offshore of North Carolina, particularly off Cape Hatteras, and waters further south where the influence of the Gulf Stream provides temperatures favorable to sea turtles ($\geq 11^{\circ}$ C) (Epperly et al. 1995a-c). Loggerhead sea turtles are year-round residents of central and south Florida.

Pelagic and benthic juveniles are omnivorous and forage on crabs, mollusks, jellyfish, and vegetation at or near the surface (Dodd 1988). Sub-adult and adult loggerheads are primarily coastal dwelling and typically prey on benthic invertebrates such as mollusks and decapod crustaceans in a variety of habitats.

More recent studies are revealing that the loggerhead's life history is more complex than previously believed. Rather than making discrete developmental shifts from oceanic to neritic environments, research is showing that both adults and (presumed) neritic stage juveniles continue to use the oceanic environment and will move back and forth between the two habitats (Witzell 2002, Blumenthal et al. 2006, Hawkes et al. 2006, McClellan and Read 2007). One of the studies tracked the movements of adult females post-nesting and found a difference in habitat use was related to body size with larger turtles staying in coastal waters and smaller turtles traveling to oceanic waters (Hawkes et al. 2006). A tracking study of large juveniles found that the habitat preferences of this life stage were also diverse with some remaining in neritic waters while others moved off into oceanic waters (McClellan and Read 2007). However, unlike the Hawkes et al. study (2006), there was no significant difference in the body size of turtles that remained in neritic waters versus oceanic waters (McClellan and Read 2007). In either case, the research not only supports the need to revise the life history model for loggerheads but also demonstrates that threats to loggerheads in both the neritic and oceanic environments are likely impacting multiple life stages of this species.

Population Dynamics and Status

A number of stock assessments and similar reviews (TEWG 1998, TEWG 2000, NMFS SEFSC 2001 and 2009d, Heppell et al. 2003, NMFS and USFWS 2008, Conant et al. 2009, TEWG 2009) have examined the stock status of loggerheads in the Atlantic Ocean, but none have been able to develop a reliable estimate of absolute population size.

Numbers of nests and nesting females can vary widely from year to year. However, nesting beach surveys can provide a reliable assessment of trends in the adult female population, due to the strong nest site fidelity of females turtles, as long as such studies are sufficiently long and effort and methods are standardized (see, e.g., NMFS and USFWS 2008). NMFS and USFWS (2008) concluded that the lack of change in two important demographic parameters of loggerheads, remigration interval and clutch frequency, indicate that time series on numbers of nests can provide reliable information on trends in the female population. Recent analysis of available data for the Peninsular Florida Recovery Unit has led to the conclusion that the observed decline in nesting for that unit over the last several years can best be explained by an actual decline in the number of adult female loggerheads in the population (Witherington et al. 2009).

Annual nest totals from beaches within what NMFS and USFWS have defined as the Northern Recovery Unit (NRU) averaged 5,215 nests from 1989-2008, a period of nearcomplete surveys of NRU nesting beaches (GDNR unpublished data, NCWRC unpublished data, SCDNR unpublished data), and represent approximately 1,272 nesting females per year (4.1 nests per female, Murphy and Hopkins 1984). The loggerhead nesting trend from daily beach surveys showed a significant decline of 1.3 percent annually. Nest totals from aerial surveys conducted by SCDNR showed a 1.9 percent annual decline in nesting in South Carolina since 1980. Overall, there is strong statistical data to suggest the NRU has experienced a long-term decline. Data in 2008 has shown improved nesting numbers, but future nesting years will need to be analyzed to determine if a change in trend is occurring. In 2008, 841 loggerhead nests were observed compared to the 10-year average of 715 nests in North Carolina. The number dropped to 276 in 2009, but rose again to 846 in 2010. In South Carolina, 2008 was the seventh highest nesting year on record since 1980, with 4,500 nests, but this did not change the long-term trend line indicating a decline on South Carolina beaches. Then in 2009 nesting dropped to 2183, with an increase to 3,141 in 2010. Georgia beach surveys located a total of 1,648 nests in 2008. This number surpassed the previous statewide record of 1,504 nests in 2003. In 2009, the number of nests declined to 998, and in 2010, a new statewide record was established with 1,760 loggerhead nests. According to analyses by Georgia DNR, the 40-year time-series trend data show an overall decline in nesting, but the shorter comprehensive survey data (20 years) indicate a stable population (SCDNR 2008; GDNR, NCWRC, and SCDNR nesting data located at www.seaturtle.org).

Another consideration that may add to the importance and vulnerability of the NRU is the sex ratio of this subpopulation. NMFS scientists have estimated that the Northern subpopulation produces 65 percent males (NMFS SEFSC 2001). However, research conducted over a limited time frame has found opposing sex ratios (Wyneken et al. 2004), so further information is needed to clarify the issue. Since nesting female loggerhead sea turtles exhibit nest fidelity, the continued existence of the Northern subpopulation is related to the number of female hatchlings that are produced. Producing fewer females will limit the number of subsequent offspring produced by the subpopulation.

The Peninsular Florida Recovery Unit (PFRU) is the largest loggerhead nesting assemblage in the Northwest Atlantic. A near-complete nest census (all beaches including index nesting beaches) undertaken from 1989 to 2007 showed a mean of 64,513 loggerhead nests per year, representing approximately 15,735 nesting females per year (from NMFS and USFWS 2008). The statewide estimated total for 2010, was 73,702 (FWRI nesting database). An analysis of index nesting beach data shows a 26 percent decline in nesting by the PFRU between 1989 and 2008, and a mean annual rate of decline of 1.6 percent despite a large increase in nesting for 2008, to 38,643 nests (Witherington et al. 2009, NMFS and USFWS 2008, FWRI nesting database). In 2009, nesting levels, while still higher than the lows of 2004, 2006, and 2007, dropped below 2008 levels to approximately 32,717 nests, but in 2010 a large increase was seen, with 47,880 nests on the index nesting beaches (FWRI nesting database). The 2010 Florida index nesting number is the largest since 2000. With the addition of data through 2010,

the nesting trend for the proposed NWA DPS of loggerheads became only slightly negative and not statistically different from zero (no trend) (NMFS and USFWS 2010). Nesting at the index nesting beaches in 2011 declined from 2010, but was still the second highest since 2001, at 43,595 nests (FWRI nesting database).

The remaining three recovery units-Dry Tortugas (DTRU), Northern Gulf of Mexico (NGMRU), and Greater Caribbean (GCRU)-are much smaller nesting assemblages but still considered essential to the continued existence of the species. Nesting surveys for the DTRU are conducted as part of Florida's statewide survey program. Survey effort has been relatively stable during the 9-year period from 1995-2004 (although the 2002 year was missed). Nest counts ranged from 168-270, with a mean of 246, but with no detectable trend during this period (Florida Fish and Wildlife Conservation Commission, Florida Marine Research Institute, Statewide Nesting Beach Survey Data, NMFS and USFWS 2008). Nest counts for the NGMRU are focused on index beaches rather than all beaches where nesting occurs. The 12-year dataset (1997-2008) of index nesting beaches in the area shows a significant declining trend of 4.7 percent annually (NMFS and USFWS 2008). Similarly, nesting survey effort has been inconsistent among the GCRU nesting beaches and no trend can be determined for this subpopulation. Zurita et al. (2003) found a statistically significant increase in the number of nests on seven of the beaches on Quintana Roo, Mexico, from 1987-2001, where survey effort was consistent during the period. However, nesting has declined since 2001, and the previously reported increasing trend appears to not have been sustained (NMFS and USFWS 2008).

Determining the meaning of the nesting decline data is confounded by various in-water research that suggests the abundance of neritic juvenile loggerheads is steady or increasing (Ehrhart et al. 2007, M. Bresette, pers. comm. regarding captures at the St. Lucie Power Plant, SCDNR unpublished SEAMAP-SA data, Epperly et al. 2007). Ehrhart et al. (2007) found no significant regression-line trend in the long-term dataset. However, notable increases in recent years and a statistically significant increase in CPUE of 102.4 percent from the 4-year period of 1982-1985 to the 2002-2005 periods were found. Epperly et al. (2007) determined the trends of increasing loggerhead catch rates from all the aforementioned studies in combination provide evidence there has been an increase in neritic juvenile loggerhead abundance in the southeastern United States in the recent past. A study led by the South Carolina Department of Natural Resources found that standardized trawl survey CPUEs for loggerheads from South Carolina to North Florida was 1.5 times higher in summer 2008 than summer 2000. However, even though there were persistent inter-annual increases from 2000-2008, the difference was not statistically significant, likely due to the relatively short time series. Comparison to other datasets from the 1950s through 1990s showed much higher CPUEs in recent years regionally and in the South Atlantic Bight, leading SCDNR to conclude that it is highly improbable that CPUE increases of such magnitude could occur without a real and substantial increase in actual abundance (Arendt et al. 2009). Whether this increase in abundance represents a true population increase among juveniles or merely a shift in spatial occurrence is not clear. NMFS and USFWS (2008), citing Bjorndal et al. 2005, caution about extrapolating localized in-water trends to the broader population and relating localized trends in neritic sites to population trends at nesting beaches. The

apparent overall increase in the abundance of neritic loggerheads in the southeastern United States may be due to increased abundance of the largest Stage III individuals (oceanic/neritic juveniles, historically referred to as small benthic juveniles), which could indicate a relatively large cohort that will recruit to maturity in the near future (TEWG 2009). However, in-water studies throughout the eastern United States also indicate a substantial decrease in the abundance of the smallest Stage III loggerheads, a pattern also corroborated by stranding data (TEWG 2009).

The NMFS Southeast Fishery Science Center has developed a preliminary stage/age demographic model to help determine the estimated impacts of mortality reductions on loggerhead sea turtle population dynamics (NMFS SEFSC 2009). This model does not incorporate existing trends in the data (such as nesting trends) but instead relies on utilizing the available information on the relevant life-history parameters for sea turtles and then predicts future population trajectories based upon model runs using those parameters. Therefore, the model results do not build upon, but instead are complementary to, the trend data obtained through nest counts and other observations. The model uses the range of published information for the various parameters including mortality by stage, stage duration (years in a stage), and fecundity parameters such as eggs per nest, nests per nesting female, hatchling emergence success, sex ratio, and remigration interval. Model runs were done for each individual recovery unit as well as the western North Atlantic population as a whole, and the resulting trajectories were found to be very similar. One of the most robust results from the model was an estimate of the adult female population size for the western North Atlantic in the 2004-2008 time frame. The distribution resulting from the model runs suggest the adult female population size to be likely between approximately 20,000 to 40,000 individuals, with a low likelihood of being up to 70,000 (NMFS SEFSC 2009). A much less robust estimate for total benthic females in the western North Atlantic was also obtained, with a likely range of approximately 30,000-300,000 individuals, up to less than 1 million (NMFS SEFSC 2009).

The results of one set of model runs suggest that the western North Atlantic population is most likely declining, but this result was very sensitive to the choice of the position of the parameters within their range and hypothesized distributions. This example was run to predict the distribution of projected population trajectories for benthic females using a range of starting population numbers from the 30,000 estimated minimum to the greater than the 300,000 likely upper end of the range and declining trajectories were estimated for all of the population estimates. After 10,000 simulation runs of the models using the parameter ranges, 14 percent of the runs resulted in growing populations, while 86 percent resulted in declining populations. While this does not translate to an equivalent statement that there is an 86 percent chance of a declining population, it does illustrate that given the life history parameter information currently thought to comprise the likely range of possibilities, it appears most likely that with no changes to those parameters the population is projected to decline. Additional model runs using the range of values for each life history parameter, the assumption of non-uniform distribution for those parameters, and a 5 percent natural (non-anthropogenic) mortality for the benthic stages resulted in a determination that a 60-70 percent reduction in anthropogenic mortality in

the benthic stages would be needed to bring 50 percent of the model runs to a static (zero growth or decline) or increasing trajectory.

As a result of the large uncertainty in our knowledge of loggerhead life history, at this point predicting the future populations or population trajectories of loggerhead sea turtles with precision is very uncertain. The model results, however, are useful in guiding future research needs to better understand the life history parameters that have the most significant impact in the model. Additionally, the model results provide valuable insights into the likely overall declining status of the species and in the impacts of large-scale changes to various life history parameters (such as mortality rates for given stages) and how they may change the trajectories. The results of the model, in conjunction with analyses conducted on nest count trends (such as Witherington et al. 2009) which have suggested that the population decline is real, provides a strong basis for the conclusion that the western North Atlantic loggerhead population is in decline. NMFS also recently convened a new Turtle Expert Working Group (TEWG) for loggerhead sea turtles that gathered available data and examined the potential causes of the nesting decline and what the decline means in terms of population status. The TEWG ultimately could not determine whether or not decreasing annual numbers of nests among the Western North Atlantic loggerhead subpopulations were due to stochastic processes resulting in fewer nests, a decreasing average reproductive output of the adult females, decreasing numbers of adult females, or a combination of those factors. Past and present mortality factors that could impact current loggerhead nest numbers are many, and it is likely that several factors compound to create the current decline. Regardless of the source of the decline, it is clear that the reduced nesting will result in depressed recruitment to subsequent life stages over the coming decades (TEWG 2009).

Threats

The 5-year status review of loggerhead sea turtles recently completed by NMFS and the USFWS provides a summary of natural as well as anthropogenic threats to loggerhead sea turtles (NMFS and USFWS 2007c). The Loggerhead Recovery Team also undertook a comprehensive evaluation of threats to the species, and described them separately for the terrestrial, neritic, and oceanic zones (NMFS and USFWS 2008). The diversity of sea turtles' life history leaves them susceptible to many natural and human impacts, including impacts while they are on land, in the benthic environment, and in the pelagic environment. Hurricanes are particularly destructive to sea turtle nests. Sand accretion and rainfall that result from these storms, as well as wave action, can appreciably reduce hatchling success. For example, in 1992 all of the eggs over a 90-mile length of coastal Florida were destroyed by storm surges on beaches that were closest to the eye of Hurricane Andrew (Milton et al. 1994). Also, many nests were destroyed during the 2004 and 2005 hurricane seasons. In August 2011, Hurricane Irene side-swiped the U.S. Atlantic sea turtle nesting beaches prior to making landfall farther to the north. Impacts to sea turtle nests and nesting beaches varied from minor to hundreds of nests and the loss of extensive nesting habitat on the various beaches. The damage to turtle nesting was somewhat mitigated by the storm's occurrence late in the nesting season, as many nests had already hatched and the hatchlings had already left the beach. Although no specific

information is available to determine the long-term population impacts of Hurricane Irene, the impact is not expected to be significant.

Other sources of natural mortality include cold-stunning and biotoxin exposure. Coldstunning is not considered a major source of mortality, but cold-stunning of loggerhead turtles has been reported at several locations in the northeast and southeast United States, including the Indian River Lagoon in Florida (Mendonca and Ehrhart 1982, Witherington and Ehrhart 1989) and Texas inshore waters (Hildebrand 1982). Cold-stunning is a phenomenon during which turtles become incapacitated as a result of rapidly dropping water temperatures (Witherington and Ehrhart 1989, Morreale et al. 1992). As temperatures fall below 8°-10°C, turtles may lose their ability to swim and dive, often floating to the surface. The rate of cooling that precipitates cold-stunning appears to be the primary threat, rather than the water temperature itself (Milton and Lutz 2003). Sea turtles that overwinter in inshore waters are most susceptible to cold-stunning because temperature changes are most rapid in shallow water (Witherington and Ehrhart 1989). In January 2010, an unusually large cold-stunning event occurred throughout the southeast United States, with well over 3,000 sea turtles (mostly greens but also hundreds of loggerheads) found cold-stunned. Most were able to be saved, but a few hundred were found dead or died after being discovered in a cold-stunned state.

Anthropogenic factors that impact hatchlings and adult female sea turtles on land or the success of nesting and hatching include: beach erosion, beach armoring and nourishment, artificial lighting, beach cleaning, increased human presence, recreational beach equipment, beach driving, coastal construction and fishing piers, exotic dune and beach vegetation, and poaching. An increase in human presence at some nesting beaches or close to nesting beaches has led to secondary threats such as the introduction of exotic fire ants, feral hogs, dogs, and an increased presence of native species (e.g., raccoons, armadillos, and opossums), which raid and feed on turtle eggs. Although sea turtle nesting beaches are protected along large expanses of the Northwest Atlantic coast (in areas like Merritt Island, Archie Carr, and Hobe Sound National Wildlife Refuges), other areas along these coasts have limited or no protection. Sea turtle nesting and hatching success on unprotected East Florida nesting beaches from Indian River to Broward County, including some high density beaches, are affected by all of the above threats.

Loggerhead sea turtles are affected by a completely different set of anthropogenic threats in the marine environment. These threats include oil and gas exploration, coastal development, marine transportation, marine pollution (which may have a direct impact, or an indirect impact by causing harmful algal blooms), underwater explosions, hopper dredging, offshore artificial lighting, power plant entrainment and/or impingement, entanglement in debris, ingestion of marine debris, marina and dock construction and operation, boat collisions, poaching, and fishery interactions. In 2010, there was a massive oil well release in the Gulf of Mexico at British Petroleum's Deepwater Horizon well. Official estimates are that 4.9 million barrels of oil were released into the Gulf, with some experts estimating much higher volumes. At this time the assessment of total direct impact to sea turtles has not been determined. Additionally, the long-term impacts to sea turtles as a result of habitat impacts, prey loss, and subsurface oil particles and oil

components broken down through physical, chemical, and biological processes are not known. Loggerheads in the pelagic environment are exposed to a series of longline fisheries, which include the highly migratory species' Atlantic pelagic longline fisheries, an Azorean longline fleet, a Spanish longline fleet, and various longline fleets in the Mediterranean Sea (Aguilar et al. 1995, Bolten et al. 1994). Loggerheads in the benthic environment in waters off the coastal United States are exposed to a suite of fisheries in federal and state waters including trawl, purse seine, hook-and-line, gillnet, pound net, longline, and trap fisheries. The sizes and reproductive values of sea turtles taken by fisheries vary significantly, depending on the location and season of the fishery, and sizeselectivity resulting from gear characteristics. Therefore, it is possible for fisheries that interact with fewer, more reproductively valuable turtles to have a greater detrimental effect on the population than one that takes greater numbers of less reproductively valuable turtles if the fishery removes a higher overall reproductive value from the population (Wallace et al. 2008). The Loggerhead Biological Review Team determined that the greatest threats to the Northwest Atlantic DPS of loggerheads result from cumulative fishery bycatch in neritic and oceanic habitats (Conant, et al. 2009). Attaining a more thorough understanding of the characteristics, as well as the quantity, of sea turtle bycatch across all fisheries is of great importance.

There is a large and growing body of literature on past, present, and future impacts of global climate change exacerbated and accelerated by human activities. Some of the likely effects commonly mentioned are sea level rise, increased frequency of severe weather events, and change in air and water temperatures. NOAA's climate information portal provides basic background information on these and other measured or anticipated effects (see http://www.climate.gov).

Impacts on sea turtles currently cannot, for the most part, be predicted with any degree of certainty; however significant impacts to the hatchling sex ratios of loggerhead turtles may result (NMFS and USFWS 2007c). In marine turtles, sex is determined by temperature in the middle third of incubation with female offspring produced at higher temperatures and males at lower temperatures within a thermal tolerance range of 25°-35°C (Ackerman 1997). Increases in global temperature could potentially skew future sex ratios toward higher numbers of females (NMFS and USFWS 2007c). Modeling suggests an increase of 2°C in air temperature would result in a sex ratio of over 80 percent female offspring for loggerheads nesting near Southport, North Carolina. The same increase in air temperatures at nesting beaches in Cape Canaveral, Florida, would result in close to 100 percent female offspring. More ominously, an air temperature increase of 3°C is likely to exceed the thermal threshold of most clutches, leading to death (Hawkes et al. 2007).

Warmer sea surface temperatures have been correlated with an earlier onset of loggerhead nesting in the spring (Weishampel et al. 2004, Hawkes et al. 2007), as well as short inter-nesting intervals (Hays et al. 2002) and shorter nesting season (Pike et al. 2006).

The effects from increased temperatures may be exacerbated on developed nesting beaches where shoreline armoring and construction have denuded vegetation. Erosion control structures could potentially result in the permanent loss of nesting beach habitat or deter nesting females (NRC 1990). Alternatively, nesting females may nest on the seaward side of the erosion control structures, potentially exposing them to repeated tidal overwash (NMFS and USFWS 2007c). Sea level rise from global climate change is also a potential problem for areas with low-lying beaches where sand depth is a limiting factor, as the sea may inundate nesting sites and decrease available nesting habitat (Daniels et al. 1993, Fish et al. 2005, Baker et al. 2006). The loss of habitat as a result of climate change could be accelerated due to a combination of other environmental and oceanographic changes such as an increase in the frequency of storms and/or changes in prevailing currents, both of which could lead to increased beach loss via erosion (Antonelis et al. 2006, Baker et al. 2006).

Other changes in the marine ecosystem caused by global climate change (e.g., salinity, oceanic currents, dissolved oxygen levels, nutrient distribution, etc.) could influence the distribution and abundance of phytoplankton, zooplankton, submerged aquatic vegetation, crustaceans, mollusks, forage fish, etc., which could ultimately affect the primary foraging areas of loggerhead sea turtles.

Actions have been taken to reduce anthropogenic impacts to loggerhead sea turtles from various sources, particularly since the early 1990s. These include lighting ordinances, predation control, and nest relocations to help increase hatchling survival, as well as measures to reduce the mortality of pelagic immatures, benthic immatures, and sexually mature age classes in various fisheries and other marine activities. Recent actions have taken significant steps towards reducing the recurring sources of mortality of sea turtles in the environmental baseline and improving the status of all loggerhead subpopulations. For example, the Turtle Excluder Device (TED) regulation published on February 21, 2003 (68 FR 8456), represents a significant improvement in the baseline effects of trawl fisheries on loggerhead sea turtles, though shrimp trawling is still considered to be one of the largest source of anthropogenic mortality on loggerheads (NMFS SEFSC 2009).

3.4.4 Summary of Status for Loggerhead Sea Turtles

NMFS recognizes five recovery units of loggerhead sea turtles in the western North Atlantic based on genetic studies and management regimes. Cohorts from all of these are known to occur within the action area of this consultation, and together comprise the NWA DPS. Using data up through 2007-2008, no long-term data suggest any of the loggerhead subpopulations throughout the entire North Atlantic were increasing in annual numbers of nests (TEWG 2009). Additionally, using both computation of susceptibility to quasi-extinction and stage-based deterministic modeling to determine the effects of known threats to Northwest Atlantic loggerheads, the Loggerhead Biological Review Team determined that this population is likely to decline in the foreseeable future, driven primarily by the mortality of juvenile and adult loggerheads from fishery bycatch throughout the North Atlantic Ocean. These computations were done for each of the recovery units, and all of them resulted in an expected decline (Conant et al. 2009). However, with the recent increase in nesting, data through 2010 changes the trend for the

PFRU from negative to no trend (slightly negative but not statistically significant) (NMFS and USFWS 2010). Nesting at the index nesting beaches for the PFRU in 2011 declined from 2010, but was still the second highest since 2001, at 43,595 nests (FWRI nesting database). Because of its size, the PFRU may be critical to the survival of the species in the Atlantic Ocean.

All loggerhead subpopulations are faced with a multitude of natural and anthropogenic effects that negatively influence the status of the species. Many anthropogenic effects occur as a result of activities outside of U.S. jurisdiction (i.e., fisheries in international waters).

Sturgeon

3.4.5 Status of Shortnose Sturgeon

Shortnose sturgeon (*Acipenser brevirostrum*) (Figure 18) inhabit large coastal rivers of eastern North America. Although it is considered an anadromous species, shortnose sturgeon distributed in the southern areas of the United States are more properly characterized as "freshwater amphidromous" meaning that they move between fresh and salt water during some part of their life cycle, but not necessarily for spawning. Historically, shortnose

Figure 18. Shortnose sturgeon

sturgeon were found in the coastal rivers along the east coast of North America from the Saint John River in Canada, to perhaps as far south as the Indian River in Florida (Gilbert 1989, Evermann and Bean 1898). In the southern portion of the range, they are currently found in the Altamaha, Ogeechee, and Savannah Rivers in Georgia. They are thought to be extremely rare or possibly extirpated from the St. Johns River in Florida as only a single specimen was found by the Florida Fish and Wildlife Conservation Commission during extensive sampling of the river in 2002/2003. Shortnose sturgeon prefer nearshore marine, estuarine, and riverine habitat of these large river systems. The species is significantly more abundant in some rivers in northern portions of its range than it is in the south. Bycatch in commercial fisheries and increased industrial uses of the nation's large coastal rivers during the 20th century (e.g., hydropower, nuclear power, port dredging) have contributed to the further decline and slow recovery of shortnose sturgeon.

While adult shortnose sturgeon may occasionally be found in marine waters during the summer, they typically are found in more estuarine waters, and in rivers near the saltwater-freshwater interface. There are spawning populations in the Savannah River and Hall et al. (1991) and Collins et al. (1993), using telemetry techniques, identified two distinct spawning locations. However, the status of stocks is poorly understood and

survival of juveniles and recruitment to the adult population has been identified as a potential limiting factor in population growth (Smith et al. 1992). According to historical distribution records much of the spawning and nursery habitat formerly available to sturgeon in the Savannah River is inaccessible (USFWS 2001).

In addition to the distribution of wild (native) shortnose sturgeon in the Savannah River, broodstock are currently held at the University of Florida, Gainesville, and the USFWS Warm Springs Fish Technology Center (Georgia and South Carolina), USGS Conte Research Center (Massachusetts), and Alden Research Lab (Massachusetts). These research facilities conduct a variety of research to investigate sturgeon culture, tagging technology, fish passage, embryonic development, and other biological studies. Shortnose sturgeon of Savannah River origin are also currently being held at several educational facilities for public display including North Carolina Aquarium, Wilmington, North Carolina; North Carolina Zoo Asheboro, North Carolina; and Riverbanks Zoo Columbia, South Carolina. Although, captive shortnose sturgeon may not typically be released into the wild and measures are taken to ensure escapement does not occur. Because wild and cultured shortnose sturgeon share similar genetic, physical, physiological, ecological, and behavioral characteristics, all individuals and components of shortnose sturgeon derived from or by those initially removed from the Savannah River, including populations of natural individuals and hatchery stocks derived from similar populations, are included in the ESA listing of the species.

Listing

Shortnose sturgeon were originally listed as an endangered species by the USFWS on March 11, 1967, under the Endangered Species Preservation Act (32 FR 4001). Shortnose sturgeon continued to meet the listing criteria as "endangered" under subsequent definitions specified in the 1969 Endangered Species Conservation Act and remained on the list with the inauguration of the ESA in 1973. NMFS assumed jurisdiction for shortnose sturgeon from the USFWS in 1974 (39 FR 41370). The shortnose sturgeon currently remains listed as an endangered species throughout all of its range along the east coast of the United States and Canada.

Although the original listing notice did not cite reasons for listing the species, a 1973 Resource Publication issued by the U.S. Department of Interior stated that shortnose sturgeon were "in peril ... gone in most of the rivers of its former range [but] probably not as yet extinct" (USDOI 1973). Pollution and overfishing, including bycatch in the shad fishery, were listed as principal reasons for the species' decline. Anthropogenic factors are likely responsible for the persistently depressed abundance of shortnose sturgeon in southern rivers. Shortnose sturgeon in the southeastern United States are exposed to three or more of the following impacts: harvest (bycatch and poaching), dams, river flow regulation, pollution (e.g., paper mill effluent), or dredging of fresh/saltwater interface reaches.

Range

Geographic distribution of the shortnose sturgeon extends from the Saint John River, New Brunswick, Canada, to the St. Johns River, Florida (Vladykopy and Greeley 1963); the historic extent may have extended as far south as Indian River, Florida (Evermann and Bean 1898, Gilbert 1989). Currently, the distribution of shortnose sturgeon across their range is disjunct, with northern populations separated from southern populations by a distance of about 400 km near their geographic center in Virginia.

Life History

The scientific name for the shortnose sturgeon is *Acipenser brevirostrum: Acipenser* is Latin for sturgeon and *brevirostrum* means short snout. LeSueur originally described the species from a specimen taken from the Delaware River (Dadswell et al. 1984).

The shortnose sturgeon is the smallest of the three sturgeon species that occur in eastern North America: they attain a maximum length of about 120 cm, and a weight of 24 kg (Dadswell et al. 1984). Adults resemble similar-sized juvenile Atlantic sturgeon (*A. oxyrinchus oxyrinchus*) that historically co-occurred in the lower mainstem rivers of major basins along the Atlantic coast. The shortnose sturgeon is distinguished from other North American sturgeons by a wide mouth, absence of a fontanelle, nearly complete absence of postdorsal scutes, and preanal scutes often arranged in a single row (Scott and Crossman 1973, Dadswell et al. 1984). Morphological differences between shortnose and Atlantic sturgeon have been discussed (Bath et al. 1981, Gilbert 1989, Kynard and Horgan 2002, Vecsei and Peterson 2004); most researchers in the field use mouth width versus interorbital width to separate species. Coloration varies but adult shortnose sturgeons are generally dark dorsally and are lighter ventrally, usually white to yellow in color beginning at the row of lateral scutes. All of the fins are pigmented, and the paired fins are outlined in white. There is no external sexual dimorphism in morphology.

Shortnose sturgeon migrate seasonally between upstream freshwater spawning habitat and downstream foraging mesohaline areas within the river based on water temperature, flow and salinity cues. Shortnose sturgeon have generally been described as being anadromous⁴ but freshwater amphidromous⁵ may be a better description for the fish occurring in the southern rivers because they rarely leave their natal rivers or associated estuaries (Kieffer and Kynard 1993).

Spawning migration and cues

Initiation of the upstream movement of shortnose sturgeon to spawn is likely triggered partially by water temperatures above 8°C (Dadswell 1979, Kynard 1997) during late winter/early spring (southern rivers) to mid-to-late spring (northern rivers); specifically occurring in the southern range (North Carolina and south) between late December and March. Southern populations of shortnose sturgeon usually spawn at least 200 km upriver (Kynard 1997) or throughout the fall zone, if they are able to reach it. Spawning areas are usually associated with areas where the substrate is composed of gravel, rubble, cobble, or large rocks (Dadswell 1979, Taubert 1980, Buckley and Kynard 1985a, Kynard 1997), or timber, scoured clay, and gravel (Hall et al. 1991). Water depth and flow are also important parameters for spawning site (Kieffer and Kynard 1996).

⁴ An anadromous fish is defined as a species that lives in the ocean mostly, and breeds in fresh water.
⁵ A freshwater amphidromous species is defined as a species that spawns and remains in freshwater for most of its life cycle but spends some time in saline water.

Spawning sites are characterized by moderate river flows with average bottom velocities between 0.4 and 0.8 m/s (Hall et al. 1991, Kieffer and Kynard 1996, NMFS 1998). Spawning in the southern rivers has been reported at water temperatures of 10.5°C in the Altamaha River (Heidt and Gilbert 1978) and 9°-12°C in the Savannah River (Hall et al. 1991. In the southern portion of the range, adults typically spawn well upriver in the late winter to early spring and spend the rest of the year in the vicinity of the fresh/brackish water interface (Collins and Smith 1993).

Shortnose sturgeon vary in pre-spawning migration patterns that may reflect energetic adaptations to migration distance, river discharge and temperature, and physiological condition of fish (Kieffer and Kynard 1993). The three patterns of migrations are: (1) a rapid, 1-step migration in spring only a few weeks before spawning, (2) a longer, 1-step migration many weeks in late winter and spring before spawning, and (3) a 2-step migration composed of a long fall migration, which places fish near the spawning site for overwintering, then a short migration in spring to spawn.

Following the spring spawning period, adult shortnose sturgeon move rapidly and directly downstream to freshwater reaches of rivers or river reaches that are influenced by tides; as a result, they often inhabit only a few short reaches of a river's entire length (Buckley and Kynard 1985a). Adult shortnose sturgeon are usually located in deeper downstream areas with soft substrate and vegetated bottom areas where their prey are present. Juvenile (non-spawning, sexually immature) shortnose sturgeon generally move lesser distances upstream for the spring and summer seasons and downstream for fall and winter; however, these movements usually occur above the salt/freshwater interface of the rivers they inhabit (Dadswell et al. 1984, Hall et al. 1991).

Age and Growth

Dadswell et al. (1984) reviewed shortnose sturgeon growth throughout the latitudinal range. Growth of all juveniles is rapid, attaining lengths of 14-30 cm during the first year. Fish in the southern portion of the range grow the fastest, but do not reach the larger size of fish in the northern part of the range that continue to grow throughout life. This phenomenon may be related to different bioenergetic styles of southern and northern shortnose sturgeon, but sufficient data are not available for conclusions. The land-locked shortnose sturgeon population located upstream of Holyoke Dam at river km 140 of the Connecticut River has the slowest growth rate of any surveyed (Taubert 1980); growth rates of the other land-locked population in Lakes Marion and Moultrie are not available for comparison. The slower growth rate of this land-locked population suggests bioenergetic consequences to foraging in freshwater habitat and advantages associated with foraging in the lower river or fresh/saltwater interface.

Length at maturity (45-55 cm FL) is similar throughout the latitudinal range of shortnose sturgeon, but growth rate, maximum age, and maximum size vary with latitude. Fish in the southern areas grow more rapidly and mature at younger ages but attain smaller maximum sizes than those in the north (Dadswell et al. 1984). Maximum age of shortnose sturgeon in the northern portion of the species' range is greater than the southern portion of the species' range (Gilbert 1989). The maximum age reported for a

shortnose sturgeon in the Saint John River in New Brunswick is 67 years (for a female), 40 years for the Kennebec River, 37 years for the Hudson River, 34 years in the Connecticut River, 20 years in the Pee Dee River, and 10 years in the Altamaha River (Gilbert 1989 using data presented in Dadswell et al. 1984).

Shortnose sturgeon also exhibit sexually dimorphic growth patterns across latitude: males mature at 2-3 years in Georgia, 3-5 years in South Carolina, and 10-11 years in the Saint John River, Canada; females mature at 4-5 years in Georgia, 7-10 years in the Hudson River, and 12-18 years in the Saint John River. Males begin to spawn 1-2 years after reaching sexual maturity and spawn every other year and perhaps annually in some rivers (Dadswell 1979, Kieffer and Kynard 1996, NMFS 1998). Age at first spawning for females is about approximately 5 years post-maturation (Dadswell 1979) with spawning occurring about every three years although spawning intervals may be as infrequent as every 5 years for some females (Dadswell 1979). Female shortnose sturgeon apparently grow larger than and outlive males (Dadswell et al. 1984, Gilbert 1989, COSEWIC 2005). Fecundity of shortnose sturgeon ranges between approximately 30,000-200,000 eggs per female (Gilbert 1989).

Shortnose sturgeon eggs are darkly colored, usually dark brown, black, or olive gray (Dadswell 1979, Hoff et al. 1988, Kynard 1997). Dadswell (1979) reported egg size from 3.00-3.20 mm in diameter. Eggs are negatively buoyant and not adhesive when first spawned; special protuberances on the egg membrane that maximize surface area available for attachment develop within a few minutes after water exposure (Dadswell et al. 1984). Once attached, the highly adhesive and demersal eggs adhere to the river substrate (Dadswell et al. 1984, Kynard 1997). Substrates commonly used by spawning shortnose sturgeon include gravel, rubble, large rock, sand, logs, and cobble (Dadswell 1979, Taubert 1980, Kieffer and Kynard 1996, Kynard 1997). Development of fertilized eggs is directly related to water temperature (Wang et al. 1985, Hardy and Litvak 2004).

At hatching, shortnose sturgeon are blackish-colored, 7-11 mm long, and resemble tadpoles (Buckley and Kynard 1981, Dadswell et al. 1984). Hatchlings have a large yolk-sac, poorly developed eyes, mouth, and fins, and are capable of only "swim-up and drift" swimming behavior (Richmond and Kynard 1995). They are ill-equipped to survive as free-swimming fish in the open river. In the laboratory, 1- to 8-day old shortnose sturgeon were photonegative, actively sought cover under any available material, often forming dense aggregations with other larvae, and swam along the bottom until cover was found (Richmond and Kynard 1995). Sheltering in dark substrate (i.e., in the crevasse of rocks/cobble at the spawning site) may enhance survival at this vulnerable life stage by allowing for some protection from predators (Richmond and Kynard 1995). Litvak observed that from a few days after hatching, they exhibit shoaling behavior, forming tight, well-spaced schools, and swim against the current; this shoaling behavior only exists when there is a flow (COSEWIC 2005).

Within 9-12 days, shortnose sturgeon absorb the yolk-sac and develop into larvae with a length of about 15 mm TL (Buckley and Kynard 1981). They experience a rapid change in sensory, feeding and locomotor systems (Bemis and Grande 1992). At this stage, the

larvae have well-developed eyes. Fins begin to develop allowing for swimming behavior that is more typical of juvenile and adult sturgeon, and larvae begin to feed exogenously. In the wild, these larvae are often found in the deepest water, usually within the channel (Taubert and Dadswell 1980, Bath et al. 1981, Kieffer and Kynard 1993). They also have a mouth with teeth which may aid in specialized larval feeding (Taubert and Dadswell 1980); the teeth are later absorbed during the juvenile phase. At about 15mm TL, larval coloration begins to resemble that of an adult with darker dorsal pigmentation and lighter lateral and ventral coloration (Taubert and Dadswell 1980). In the lab, larvae could become lighter or darker, corresponding with changes in light intensity (Buckley and Kynard 1981, Richmond and Kynard 1995, Kynard and Horgan 2002).

Research indicates that yearlings are the primary migratory stage (Kynard 1997), while juveniles (3-10 year olds) reside near the saltwater/freshwater interface in most rivers (Dadswell 1979, Pottle and Dadswell 1979, Dovel et al. 1992, Hall et al. 1991, Flournoy et al. 1992, Weber 1996). Juveniles regularly move throughout the saline portions (0-16 ppt) of the salt wedge during summer (Pottle and Dadswell 1979, Weber 1996) and are more active when water temperatures are cooler (<16°C) (Weber 1996). Juveniles have been found congregating in deeper sand/mud substrate in depths of 10-14 m (Hall et al. 1991). Due to their low tolerance for high temperatures, warm summer temperatures (above 28°C) may severely limit available juvenile rearing habitat in some rivers in the southeastern United States. Juveniles in the Altamaha and Ogeechee Rivers have been found in a single area with cool and deep water (Flournoy et al. 1992, Rogers and Weber 1995, Weber 1996). Telemetry studies have identified nursery habitats for juveniles, a primary example being just inside the mouth of the Middle River branch of the lower Savannah River, and near the Kings Island Turning Basin.

Little is known about young-of-the-year (YOY) behavior and movements in the wild but shortnose sturgeon at this age are believed to remain in channel areas within freshwater habitats upstream of the salt wedge for about one year (Dadswell et al. 1984, Kynard 1997). Residence of YOY in freshwater is supported by several studies on cultured shortnose sturgeon. Jenkins et al. (1993) found that salinity tolerances of young shortnose sturgeon improve with age; individuals 76 days old suffered 100 percent mortality in a 96-hour test at salinities \geq 15 ppt while those 330 days old tolerated salinities as high as 20 ppt for 18 hours but experienced 100 percent mortality at 30 ppt. Jarvis et al. (2001) demonstrated that 16-month old juveniles grew best at 0 percent salinity and poorest at 20 percent salinity. Lastly, Ziegeweid et al. (2008b) demonstrated that salinity and temperature interact, affecting survival of YOY shortnose sturgeon. As salinity and temperature increased, survival decreased; however, as body size increased, individuals were better able to tolerate higher temperatures and salinities (Ziegeweid et al. 2008b).

Juveniles in the Saint John, Hudson, and Savannah Rivers use deep channels over sand and mud substrate for foraging and resting (Pottle and Dadswell 1979, Hall et al. 1991, Dovel et al. 1992). In most rivers, juveniles age one and older join adults and show similar spatio-temporal patterns of habitat use (Kynard 1997). In the upper segment of the Connecticut River, where some juveniles and adults are always in freshwater, there was no macrohabitat segregation by age as both adults and juveniles used the same river reaches (Savoy 1991, Seibel 1993). In the Southeast, juveniles age one and older make seasonal migrations like adults, moving upriver during warmer months where they shelter in deep holes, before returning to the fresh/salt water interface when temperatures cool (Flournoy et al. 1992, Collins et al. 2002). Conversely, juveniles of this age in the Saint John River, Canada, preferred different habitat than adults. Dadswell (1979) reported these juveniles prefer freshwater habitats until they reach about 45 cm TL or age eight.

Researchers have noted that some shortnose sturgeon appear to aggregate with the same individuals within season and from year to year. Dadswell (1979) first observed these groupings in gillnet capture data on the Saint John River, Canada. Individuals that were recaptured were caught with the same group as in the original capture effort and often in the same order. The probability that pairs of fish would be recaptured together and removed from the gillnet in the same order by chance is extremely low (Dadswell, 1979). Decades later, students from Litvak's lab working on the Saint John River observed the same phenomenon (COSEWIC 2005).

Foraging

Adult shortnose sturgeon typically leave the spawning grounds soon after spawning and move rapidly to downstream feeding areas in the spring (Dadswell et al. 1984, Buckley and Kynard 1985a, Kieffer and Kynard 1993, O'Herron et al. 1993, Collins and Smith 1993). Kieffer and Kynard (1993) reported that post-spawning migrations were correlated with increasing spring water temperature and river discharge. Shortnose sturgeon are benthic carnivores throughout their life who locate prey by using their barbels as tactile receptors and vacuuming either the substrate or plant surfaces with their protuberant mouth (Dadswell et al. 1984, Gilbert 1989). Shortnose sturgeon feed opportunistically on benthic insects, crustaceans, mollusks, and polychaetes (Dadswell et al. 1984). Studies of gut contents show that the diet of adult shortnose sturgeon typically consists of small bivalves, gastropods, polychaetes, and even small benthic fish (McCleave et al. 1977, Dadswell 1979, Marchette and Smiley 1982, Dadswell et al. 1984, Gilbert 1989, Moser and Ross 1995, Kynard et al. 2000, Collins et al. 2002), and they have also been observed feeding off plant surfaces and may take fish bait (Collins et al. 2002). Some reports indicate that female adult shortnose sturgeon have been found to feed throughout the year; however, Dadswell (1979) found that females ceased feeding nearly eight months before spawning. Conversely, males continue to feed throughout the fall and winter as long as they are located in saline waters (Dadswell et al. 1984). Dadswell (1979) documented individuals of both sexes actively feeding immediately after spawning. Limited observations indicate that feeding occurs primarily at night (Dadswell et al. 1984, Gilbert 1989). Juveniles feed indiscriminately, often ingesting large amounts of mud, stone, and plant material along with prey items (Dadswell 1979, Carlson and Simpson 1987). Because substrate type strongly affects composition of benthic prey, both juvenile and adult shortnose sturgeon primarily forage over sandy-mud bottoms, which support benthic invertebrates (Carlson and Simpson 1987, Kynard 1997).

In the southern part of their range, shortnose sturgeon are known to forage widely throughout the estuary during the winter, fall, and spring (Collins and Smith 1993, Weber

et al. 1998). During the hotter months of summer, foraging may taper off or cease as shortnose sturgeon take refuge from high water temperatures by congregating in cool, deep areas of rivers (Flournoy et al. 1992, Rogers and Weber 1994, Rogers and Weber 1995, Weber 1996). During winter months, adults in southern rivers spend much of their time in the slower moving waters downstream near the salt-wedge and forage widely throughout the estuary (Collins and Smith 1993, Weber et al. 1999). Older juveniles likely inhabit the same areas as adults, but younger juveniles primarily remain in freshwater habitats perhaps due to low salinity tolerances (Jenkins et al. 1993, Jarvis et al. 2001).

Hatchery fish

Approximately 97,483 hatchery-reared shortnose sturgeon were stocked into the Savannah River between 1985-1992. Few of the shortnose sturgeon released were tagged and fewer retained their tags. Tagged shortnose sturgeon stocked and released into the Savannah River have been captured in rivers adjacent to the Savannah in both South Carolina and Georgia. Beginning in 1995, shortnose stocked in the Savannah River were found in the Ogeechee River and were found to comprise 7.4 percent of the entire adult population between 1997 and 2000 (Smith et al. 2002). Likewise, 10.6 percent of the adults captured in the Edisto River between 1995 and 2000 were identifiable as fish stocked into the Savannah River (Smith et al. 2002). Given that only about 19 percent of the shortnose sturgeon stocked into the Savannah River were tagged coupled with low tag retention, it is likely that the stocked fish comprised a much larger part of these riverine populations. Shortnose sturgeon bearing tags indicating they were stocked into the Savannah River have also been detected in the Cooper River (M. Collins, SCDNR, pers. comm. 2008) and the Winyah Bay System (about 300 km to the north) in South Carolina. The emigration from the Savannah River may suggest the fish were released at an age too late to imprint on the Savannah River.

3.4.6 Population Structure and Characteristics: Riverine Populations and Metapopulations

Riverine Populations

The majority of shortnose sturgeon remain in their natal river or estuary throughout their lives, compared to other sturgeon species that migrate into marine waters to forage. The lack of marine movements by most adult shortnose sturgeon suggests that the recolonization rate of rivers from where they have been extirpated would be slow (Kynard 1997). Individuals that are infrequently captured in coastal waters could represent emigrants that colonize new rivers and maintain gene flow among populations. Previously most available information on marine captures indicated a greater incidence of marine emigrants in the north compared to the south (Kynard 1997); however, recent information indicates that coastal migrations also occur in the southeast. Because shortnose sturgeon populations in the northeast United States are generally larger than southern populations, there may be a relationship between population size and number of marine emigrants (Kynard 1997). Within natal rivers and estuaries, shortnose sturgeon populations have limited movements and show a high degree of site fidelity.

Sturgeon have been known to recolonize rivers, albeit slowly or after stocking of hatchery-reared fish. A period of greater than 100 years has been hypothesized for Atlantic sturgeon to recolonize a neighboring river (Secor and Waldman 1999).

Fragmentation of habitat via man-made barriers (i.e., dams) results in artificially isolated and range-constricted populations. Fragmentation is relatively easy to accomplish in rivers; a single damming event can isolate adjacent river segments and obstruct avenues of fish dispersal (Schlosser and Angermeier 1995). Fragmentation of rivers by dams further biases colonization rates by blocking upstream movement. Small isolated populations are more susceptible to extinction (both absolute and functional), and amphidromous species, such as sturgeon, are the first fish to subside (Poddubny and Galat 1995).

Population Sizes

While historical population estimates for shortnose sturgeon are not available, fishery accounts indicate sturgeon were previously abundant in many river systems along the U.S. Atlantic coast.

North American sturgeon populations existed in enormous abundance prior to the 1880s based on both anecdotal observations (e.g., Catesby 1734) and historical catch data (e.g., McDonald 1887, Smith and Clugston 1997). In many Atlantic coast river basins, intensive exploitation of diadromous fish spawning migrations began to occur in the late 18th century: sturgeon caviar fisheries in mid-Atlantic states emerged rapidly in the 1870s (Cobb 1900) as processing and transportation improved. Because caviar was the principal marketable product, large females were targeted primarily using large mesh leaded gillnets that were drifted ahead of skiffs (Secor 2002).

Because all sturgeon along the Atlantic coast were called "common sturgeon" in the commercial catch statistics, it is difficult to estimate historic abundance of shortnose sturgeon as these records included both Atlantic and shortnose sturgeon until 1973 when the shortnose sturgeon was listed under the ESA (Murawski and Pacheco 1977). Consequently, the relative importance of the two species cannot be accurately ascertained from fisheries statistics. The Atlantic sturgeon, being of considerably greater maximum size, likely comprised the greatest percentage of the total weight of the overall catch. Statistical information on quantities of sturgeon harvested commercially first appeared in 1880; landings quickly peaked in 1890.

The current status of the shortnose sturgeon is mixed. Trends in abundance and population demographics vary by riverine populations. It is difficult to ascertain trends in abundance of shortnose sturgeon at a riverine scale, as few long-term data sets exist. Many historical records indicate only sporadic sightings, not abundance estimates. Direct comparison of available data sets to investigate abundance trends at a riverine scale can be misleading due to differences in survey methodologies and data analysis.

Although comprehensive population estimates are available for only a few rivers, most major river systems in the southeast United States are known to be inhabited by shortnose

River/Estuary		Source	
Albemarle Sound, NC	Anecdotal	Moser et al. 1998	
Chowan, NC	Juvenile specimen collected	1881	
Roanoke, NC	Adult collected	1998	
Pamlico Sound, NC	Anecdotal	Moser et al. 1998	
Neuse. NC	Anecdotal	Moser et al. 1998	
Black, NC	Adult at river mouth	1991	
Cape Fear, NC	Adults	Moser and Ross, 1989, 1993, 1995	
Waccamaw, SC	Adults	SCDNR	
Pee Dee, SC	Adults	SCDNR	
Black, SC	Adults	SCDNR	
Sampit, SC	Adults	SCDNR	
Winyah Bay, SC	Adults	SCDNR	
Wateree, SC	Adults	SCDNR	
Congaree, SC	Adults	SCDNR	
Ashley, SC	Unknown		
Edisto, SC	Adults and Juveniles	SCDNR	
Ashepoo, SC	Adults	SCDNR	
Combahee, SC	Unknown		
Savannah, GA	Adults, Juveniles	SCDNR	
Ogeechee, GA	Adults	GADNR/UGS	
Altamaha, GA	Adults, Juvenile, Eggs	UGS	
Satilla, GA	Adults	GADNR	
St. Mary's, GA	Adults	GADNR	
St. Johns, FL	Adult collected	FFWC	

sturgeon, as depicted in Table 2. It is difficult to obtain a population estimate as it requires expensive multi-year survey of netting in order to appropriately assess population size within statistical parameters.

Table 2. List of rivers in the southeast United States known to support shortnosesturgeon. These rivers collectively comprise the Southern metapopulation ofshortnose sturgeon.

Differentiation of Riverine Populations and Metapopulations

Since the 1998 shortnose sturgeon recovery plan identified 19 distinct shortnose sturgeon populations based on natal rivers, significantly more field data on straying rates to adjacent rivers has been collected, and several genetic studies (nDNA and mtDNA) have determined that coastal migrations and effective movement (i.e., movement with spawning) are occurring between adjacent rivers in some areas, particularly in the Gulf of Maine and the southeast United States. Despite sometimes extensive coastal movements, both field (tagging) and laboratory studies [indirect gene flow estimates from mtDNA (i.e., < 2 individuals per generation), genetic distance, and assignment results from nDNA] conclude that greater mixing of riverine populations occur in areas where the distance between rivers mouths is relatively close (Wirgin et al. 2000, King et al. 2001, Waldman et al. 2002, Wirgin et al. 2005, Wirgin et al. 2009), such as between the Ogeechee and Altamaha Rivers, Georgia.

To determine if inter-riverine movement was effective, King et al. examined gene flow estimates between individual riverine populations of shortnose sturgeon to determine variation. Gene flow estimates are effective metric of reproductive effectiveness as they are based on the legacy of many generations (Wirgin et al. 2009). Greater than 30 reports indicate that most, if not all, shortnose sturgeon riverine populations are statistically different (P <0.05) based on allelic/haplotype frequencies, and AMOVA and F_{ST} (and mtDNA equivalent) statistical tests using both mtDNA and nDNA genetic markers. That is, while shortnose sturgeon tagged in one river may later be recaptured in another, it is likely that the individuals are not spawning in those non-natal rivers, as gene flow is known to be low between riverine populations. Adult shortnose sturgeon are known to return to their natal rivers to spawn. Gene diversity estimates for shortnose sturgeon have been shown to be moderately high in both mtDNA (Quattro et al. 2002, Wirgin et al. 2000, Wirgin et al. 2005) and nDNA (King et al. in prep.) genomes, suggesting that dispersal is a very important factor in maintaining high levels of genetic diversity in populations within a metapopulation. Thus, although some shortnose sturgeon move between rivers, genetic analyses indicate that much of this movement is not effective.

Ample evidence exists indicating significant levels of genetic diversity are present in the shortnose sturgeon genome. Characterization of genetic differentiation (haplotype frequency) and estimates of gene flow (genetic distance) provide a quantitative measure to investigate population structure across the range of the shortnose sturgeon and reproductive connectiveness. By identifying zones of genetic discontinuity across the range, researchers have identified great genetic differentiation that indicates high degrees of reproductive isolation into at least three groupings (i.e., metapopulations). Both haplotype frequencies and the genetic distances between populations indicate population structure for shortnose sturgeon within their geographic range (Grunwald et al. 2002 and 2007, King et al. 2001, Wirgin et al. 2002, Waldman et al. 2002, Walsh et al. 2001, Wirgin et al. 2002, Notably, sturgeons are polyploid (the nucleus has 4 to 6 times the haploid number of chromosome sets), and so determining their evolutionary relatedness is challenging as the degree to which the nuclear genome exhibits disomic (having one or more chromosomes present in two copies) inheritance is unknown.

Three zones of genetic discontinuity translate into discrete functional groupings known as metapopulations (Wirgin et al. 2009; Figure. 19). Although some additional shallower patterns of discontinuity in the nDNA phenotypic variation were also identified in one grouping (labeled as the "Virginian Providence" in Figure. 19), data are lacking to conclude if this grouping is a single metapopulation or three distinct evolutionary lineages (King et al. in prep.). The presence of these demographically distinct zones of genetic discontinuity is consistent with the findings of researchers assessing behavioral patterns of shortnose sturgeon.

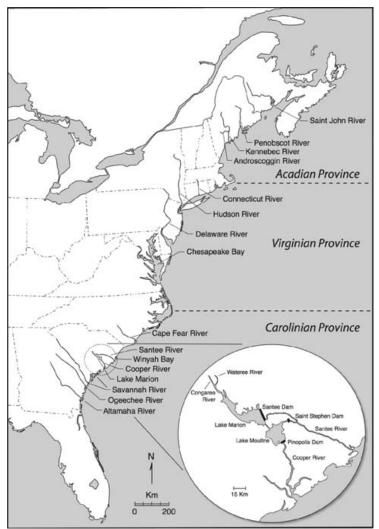


Figure 19. The North American Atlantic coast depicting three shortnose sturgeon metapopulations based on mtDNA control region sequence analysis. Figure from Wirgin et al. 2009.

Similar patterns of differentiation in the genomes among three metapopulations were found when 11 microsatellite DNA loci in 561 shortnose sturgeon from 17 geographic collections/rivers were surveyed to identify populations and phylogeographic structuring; notably the data were limited to include only YOY and spawning adults to reduce classification error by excluding migrating sub-adults (T. King, USGS, pers. comm.). Not only is the degree of congruence between the genetic variation qualitatively detectable, a strong quantitative relationship (r = 0.83, P<0.00012) exists between populations within a metapopulation, as supported by a Mandel analysis comparing the mtDNA F_{ST} values and nDNA ϕ_{PT} pair-wise distance for the 14 shortnose sturgeon collections used by Wirgin et al. (2009). Wirgin et al. (2009) proposed that the relatively shallow genetic differences among rivers within the Southern metapopulation, as compared to the Northern metapopulation(s), may result from one of a combination of two scenarios: (1) the movement of hatchery-reared individuals of Savannah River origin into non-natal rivers and their natural reproduction there led to significant alteration and homogenization of haplotype patterns and frequencies; or (2) shortnose sturgeon within the southern metapopulation may naturally migrate to adjoining rivers more than northern.

Comparing results from the most recent and best available genetics data from 14 collections surveyed for patterns in both mtDNA (Wirgin et al. 2009) and nDNA (King et al. in prep.) variation, all indications are that the variation detected in the mtDNA control regions and at 11 polysomic DNA markers is highly phylographically congruent. Pairwise distance matrices also supported structure into three major metapopulations. Network mapping of genetic sequences reveal that each metapopulation exists very much in reproductive isolation with the most similarity among adjacent populations located within a larger metapopulation.

The Savannah River population of shortnose sturgeon, together with the other populations inhabiting rivers in the southeast United States, constitute the Southern metapopulation of shortnose sturgeon. Of the four known spawning populations present in the Southern metapopulation of shortnose sturgeon, only the Pee Dee, Savannah, and Altamaha populations are viable and self-sustaining, having sufficient numbers and successful reproduction to maintain the population without immigration or human interaction. The Santee-Cooper population is not self-sustaining. The Altamaha and Savannah Rivers support the only populations numbering in the hundreds within the Southern metapopulation. If any of these populations become extirpated, recolonization would likely require a long period of time (cf. Atlantic sturgeon estimated to take 100 years) and be further hindered by the lack of local recruits.

3.4.7 Ecology of Metapopulations

A metapopulation is a population of populations (Levins 1969) in which distinct populations occupy separate patches of habitat separated by unoccupied areas. All patchy populations are not necessarily metapopulations (Hanski and Simberloff 1997). The amount and effectiveness of movement separates a metapopulation from a single large, patch population. Low rates of connectivity through dispersal, with little to no effective movement, allow individual populations to remain distinct as the rate of migration between local populations is low enough not to have an impact on local dynamics or evolutionary lineages and distinguishes a metapopulation from a patchy population (Harrison 1991). On the other hand, high rates of connectivity via dispersal lead to the unification of the population and genetic lineages and results in a patchy population. Each metapopulation cycles in relative independence of other metapopulations. A metapopulation can go extinct as a consequence of demographic stochasticity (fluctuations in population size due to random demographic events); the smaller the metapopulation (or population), the more prone it is to extinction. Anthropogenic impacts acting on top of demographic stochasticity further increase the risk of extinction.

Not all species form metapopulations and metapopulation structure varies among species. A metapopulation may have many small satellite populations surrounding a large source population: the satellite populations rely on the source for recruits as they are too small

and fluctuate too much to maintain themselves indefinitely. Elimination of the source population from this metapopulation usually results in the eventual extinction of the smaller satellite populations. Collectively metapopulations, or populations, constitute a species.

It is not unusual for lotic fishes to form metapopulations within coastal habitats. Separation into metapopulations is expected from sturgeon, and other anadromous fishes, given their likely stepping-stone sequential model of recolonization of northern rivers following post-Pleistocene deglaciation (Waldman et al. 2002).

3.4.8 (Meta)Population Stability, Viability, and Persistence

Populations of long-lived species tend to decline more rapidly and take much longer to recover than more productive species (Musick 1999). Because sturgeon are long-lived and slow-growing, stock productivity is relatively low. Although sturgeon employ the teleostean strategy of profligate spawning, with shortnose fecundity ranging between 27 and 208 thousand eggs per female, spawners within the action area are blocked from accessing appropriate spawning habitat above the dams.

Despite the longevity of sturgeon, the viability of sturgeon populations is highly sensitive to increases in juvenile mortality that result in chronic reductions in the number of subadults that recruit into the adult, breeding population (Anders et al. 2002, Gross et al. 2002, Secor et al. 2002). This relationship caused Secor et al. (2002) to conclude that sturgeon populations can be grouped into two demographic categories: populations that have reliable (albeit periodic) natural recruitment, and those that do not. The shortnose sturgeon populations without reliable natural recruitment are at risk of becoming critically endangered, extinct in the wild, or completely extinct.

Several authors have also demonstrated that sturgeon populations generally, and shortnose sturgeon populations in particular, are much more sensitive to adult mortality than other species of fish (Boreman 1997, Gross et al. 2002, Secor et al. 2002). These authors concluded that sturgeon populations cannot survive fishing-related mortalities that exceed five percent of an adult spawning run and they are vulnerable to declines and local extinction if juveniles die from fishing-related mortalities.

Using elasticity analysis, Gross et al. (2002) found that population growth in sturgeon is: (1) most sensitive to YOY and juvenile survival [on an age-specific basis]; (2) about equally sensitive to survival in the entire juvenile state and the entire adult stage; and (3) least sensitive to annual adult fecundity. The elasticity analysis by Gross et al. (2002) indicated that habitat improvements to increase survival of YOY, or any age-class within the juvenile life stage will make strong contributions to population growth. Conversely, habitat improvements that increase only fecundity or survival of a specific age-class, such as increased feeding opportunities for certain adults, will provide less of an increase in population growth (Gross et al. 2002).

Because a metapopulation is a population of populations, the stability, viability and persistence of individual populations affects the persistence and viability of the greater

metapopulation. The loss of any population will result in: (1) a long-term gap in the range of the species; (2) loss of reproducing individuals; (3) loss of genetic biodiversity; (4) potential loss of unique haplotypes; (5) potential loss of adaptive traits; (6) reduction in total number; and (7) potential for loss of population source of recruits. In turn, the loss of populations will negatively impact the persistence and viability of both the metapopulation and the species as a whole.

Metapopulation persistence depends on the balance of extinction and colonization in a static environment (Hanski 1999). Models and empirical observations suggest that very small populations are relatively likely to become extinct (Soule 1986, Lande 1988, Simberloff 1988, Thomas 1990, Kindvall and Alhlen 1992), and many local populations in remnant habitat fragments will remain small. Under the assumption that the environment does not change greatly, many empirical studies have shown that the expected lifetime of a population increases with its current size (Williamson 1981, Diamond 1984). However, for rare and declining species, Thomas (1994) argues that: (1) extinction is usually the deterministic consequence of the local environment becoming unsuitable (through habitat loss or modification, introduction of a predator, etc.); (2) that the local environment usually remains unsuitable following local extinction, so extinctions only rarely generate empty patches of suitable habitat; and (3) that colonization usually follows improvement of the local environment for a particular species. Therefore, if habitat remains suitable following local extirpation, recolonization via immigrants into now-empty habitat may replace at least some of those losses (Thomas 1994). However, if the cause of extinction is a deterministic population response to unsuitable conditions, the local habitat is likely to remain unsuitable after extinction and be unavailable for recolonization (Thomas 1994). Therefore, recolonization is dependent upon both immigration and habitat suitability.

It has been established that the relationship between migration rate and population size strongly affect the dynamics of a metapopulation (Saether et al. 1998). In non-territorial animals, like the sturgeon, emigration of recruits is positively density-dependent. That is, larger populations have more emigration. Density-dependent migration strongly influences both the establishment and rescue effects in the local dynamics of metapopulations (Saether et al. 1998). In contrast, the dispersal rate decreases with increasing density in many territorial mammals (see examples in Diffendorfer1998).

The distribution of populations within a metapopulation is determined by habitat availability. Commonly the habitat within the geographic range of a metapopulation can be divided into suitable and unsuitable parts. In heterogeneous landscapes, persistence of a population is determined by dispersal ability as animals must traverse unsuitable habitat when moving between patches of suitable habitat. Usually, dispersal rates are determined by observed movement of tagged individuals. Generally, more individuals move short distances while a few individuals move longer distances. The probability of recolonization within a metapopulation decreases with increasing distances from existing local populations (Hanski 1999). Regional persistence of a species is dependent on the existence of a metapopulation. Hence, elimination of much of the metapopulation increases the probability of regional extinction of the species. Persistence of a metapopulation depends on probability of recolonization (Hanski and Simberloff 1997) and dictates the viability of populations and, in turn, the metapopulation. Immigrants must be present, within dispersal distance of available appropriate habitat. If appropriate habitat is not available, immigrants may disperse into the area but will not survive. If local immigrants disperse into the patch and appropriate habitat is available, then inter-population emigration can rescue a population from extinction (called the rescue effect). If nearby recruits are scarce and the linear distance to the nearest reproducing population exceeds normal dispersal rates, immigration will not occur regardless of habitat availability. Regional stability of the metapopulation is strengthened as individuals disperse to recolonize empty patches with appropriate habitat.

The status of the Southern metapopulation of shortnose sturgeon is mixed. The Altamaha River supports the largest known population with successful self-sustaining recruitment. Spawning is also occurring in the Savannah River, the Cooper River, the Congaree River, and the Great Pee Dee River. The Savannah River is facing many environmental stressors and the current spawning is limited to a small area. While active spawning is occurring in South Carolina's Winyah Bay complex (Black, Sampit, Pee Dee and Waccamaw Rivers) the population status is unknown. Status of the other riverine populations supporting the Southern metapopulation is unknown due to limited survey, with capture in some rivers limited to less than five specimens.

The persistence of a species is dependent on the existence of metapopulations. The three metapopulations of shortnose sturgeon should not be considered collectively but as individual units of management. Each of these three shortnose sturgeon metapopulations is reproductively isolated from the other and therefore, constitutes an evolutionary (and likely an adaptively) significant lineage. The loss of any metapopulation would result in the loss of evolutionarily significant biodiversity and would result in a significant gap(s) in the species' range. Loss of the Southern shortnose sturgeon metapopulation would result in the loss of the southern half of the species' range (i.e., no known reproduction south of the Delaware River). Loss of the Mid-Atlantic metapopulation (Virginian Province) would create a conspicuous discontinuity in the range of the species from the Hudson River to the northern extent of the Southern metapopulation. The Northern metapopulation constitutes the northernmost portion of the U.S. range. Loss of this metapopulation would result in a significant gap in the range that would serve to isolate the shortnose sturgeon residing in Canada from the remainder of the species' range in the United States. The loss of any metapopulation would result in a decrease in spatial range, biodiversity, unique haplotypes, adaptations to climate change, and gene plasticity. Loss of unique haplotypes that may carry geographic specific adaptations would lead to a loss of genetic plasticity and, in turn, decrease adaptability. Two metapopulations would be more vulnerable to recover from stochastic events than three; the loss of any metapopulation would increase species' vulnerability to stochastic events.

Threats

As noted in the shortnose sturgeon recovery plan, habitat degradation or loss (resulting from dams, bridge construction, channel dredging, and pollutant discharges), and mortality (from impingement on cooling water intake screens, dredging, and incidental capture in other fisheries) are principal threats to the species' survival.

A shortnose sturgeon population segment will remain listed as long as there is: 1) present or threatened destruction, modification, or curtailment of its habitat or range; 2) overutilization for commercial, recreational, scientific or educational purposes; 3) disease or predation; 4) inadequate existing regulatory mechanisms; or 5) other natural or anthropogenic factors affecting their continued existence (ESA, 1973).

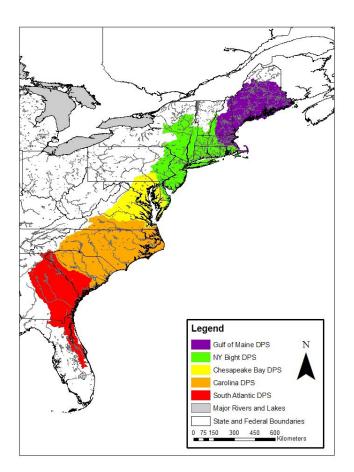
Summary of Status of Shortnose Sturgeon

The shortnose sturgeon is a freshwater amphidromous fish inhabiting large coastal rivers along the eastern seaboard of North America from the Saint John River in New Brunswick, Canada, south to the St. Johns River in Florida. Clinal differences in growth and behavior are obvious for shortnose sturgeon: fish in the north grow slower but reach larger size, timing of spawning migration is earlier in the south, etc. Genetic analysis has indicated that population structure occurs across the range of shortnose sturgeon: at least two or perhaps three metapopulations of shortnose sturgeon exist. Within a metapopulation, individual populations interact at some level via movement, but not effectively (i.e., reproduction). Shortnose sturgeon from North Carolina south through Florida are part of a single metapopulation, the Southern (or, "Carolinian Province") metapopulation. There are markedly fewer shortnose sturgeon in the southern United States compared to the north. No recent population trend data exist.

3.4.9 Status of the Atlantic Sturgeon

Listing

Five separate distinct population segments (DPS) of the Atlantic sturgeon (A. oxyrinchus oxyrinchus) (Figure 20) were proposed for ESA listing by NMFS on October 6, 2010: from north to south these DPS groupings are the Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic (75 FR 61872 and 61904) (Figure 21). The South Atlantic DPS is estimated to number less than 6 percent of its historical population size (ASSRT 2007), with all river populations except the Altamaha estimated to be less than 1 percent of historical abundance. Prior to 1890, Secor (2002) estimated there were 8,000 adult spawning females in South Carolina and 11,000 adult spawning females in Georgia. Currently, there are an estimated 343 spawning adults in the Altamaha and less than 300 spawning adults (total of both sexes) in each of the other major river systems occupied by the DPS, whose freshwater range occurs in the watersheds of the ACE Basin in South Carolina to the St. Johns River, Florida. The South Atlantic DPS was proposed for listing as endangered under the ESA as a result of a combination of habitat curtailment and alteration, overutilization in commercial fisheries, and inadequacy of regulatory mechanisms in ameliorating these threats and impacts. This represents NMFS' conference opinion on the South Atlantic DPS of Atlantic sturgeon.


Figure 20. Atlantic sturgeon

Range

The range of the South Atlantic DPS includes fish that spawn in the watersheds from the Ashepoo, Combahee, and Edisto Rivers (ACE Basin) in South Carolina, southward to the Satilla River in Georgia (Table 3). Sturgeon are still found within the St. Johns River in Florida, but this river is now believed to only serve as a nursery. The marine range of Atlantic sturgeon from the South Atlantic DPS extends from the Bay of Fundy, Canada, to the St. Johns River, Florida. While sturgeon are commonly captured 40 miles offshore (D. Fox, DSU, pers. comm.), the offshore range of Atlantic sturgeon is best investigated through fishery bycatch records that record data by depth rather than distance offshore. The vast majority of Atlantic sturgeon are recorded as bycatch out to 500 fathoms.

River/Estuary	Reproduction	Source
Ashepoo River, SC	Uncertain,	NMFS 2010
Combahee River, SC	Spawning, YOY	NMFS 2010
Edisto River, SC	Spawning, YOY	NMFS 2010
Savannah River, GA/SC	Spawning, YOY	NMFS 2010
Ogeechee River, GA	Spawning, YOY	NMFS 2010
Altamaha River, GA	Spawning, YOY	NMFS 2010
Satilla River, GA	Spawning, YOY	NMFS 2010
St. Johns River, FL	Uncertain	NMFS 2010

 Table 3. List of rivers in the southeast United States known to support Atlantic sturgeon that comprise the South Atlantic Distinct Population Segment.

Figure 21. Map depicting the five Distinct Population Segments (DPSs) of Atlantic sturgeon: Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic.

Life History

The scientific name for Atlantic sturgeon is *Acipenser oxyrinchus oxyrinchus*: *Acipenser* is Latin for sturgeon and *oxyrinchus* means sharp nose. Mitchell originally described the species from a New York specimen in 1815.

Although specifics vary across latitude, the general life history pattern of Atlantic sturgeon is that of a long-lived, late maturing, estuarine dependent, anadromous species. Atlantic sturgeon reach lengths up to 4.3 m and weigh over 363 kg. Atlantic sturgeon have been aged to 60 years (Mangin 1964); however, this should be taken as an approximation, as the only age validation study conducted to date shows variations of ± 5 years (Stevenson and Secor 1999). Scott and Crossman (1973) report maximum age for the species as 30. Juvenile Atlantic sturgeon often resemble adult shortnose sturgeon; the species are sympatric. Atlantic sturgeon are distinguished by armor-like plates (scutes) and the presence of two sets of barbels below their long, sharply V-shaped snout, located in a transverse line midway between the end of the snout and the anterior edge of the protruding mouth. Coloration varies but adult Atlantic sturgeon are generally dark

bluish-black in color dorsally and lighter ventrally (white or yellow in color below lateral scutes).

Sturgeon are omnivorous benthic feeders (feed off the bottom) and filter quantities of mud along with their food. Adult sturgeon diets include mollusks, gastropods, amphipods, isopods, and fish. Juvenile sturgeon feed on aquatic insects and other invertebrates (ASSRT 2007). A recent investigation by Collins et al. (2006) indicated that sub-adult Atlantic sturgeon in both the Edisto and Savannah Rivers foraged mostly on invertebrates with a high percentage of amphipods and polychaetes. Although prey and foraging habitat overlap, Atlantic and shortnose sturgeon are not thought to compete for the same food items, as Atlantic sturgeon diet is more generalized comprised of invertebrates, and shortnose sturgeon having a more specialized diet of amphipods (Collins et al. 2006). In marine waters, Atlantic sturgeon feed on mollusks, polychaete worms, gastropods, shrimps, amphipods, isopods, and small fish (Scott and Crossman 1973). The presence of food in the stomachs of large (>1.25 m FL) Atlantic sturgeon captured in the Edisto and Savannah Rivers demonstrates that these fish do not fast while in freshwater as previously believed (Collins et al. 2006).

Atlantic sturgeon migrate seasonally between upstream freshwater spawning habitat, estuarine nursery habitat, and marine foraging habitat. Atlantic sturgeon likely do not spawn every year. Multiple studies have shown that spawning intervals range from 1–5 years for males (Smith 1985, Collins et al. 2000a, Caron et al. 2002) and 2–5 years for females (Vladykov and Greeley 1963, Van Eenennaam et al. 1996, Stevenson and Secor 1999). Sexual maturity varies across latitude, with faster growth and earlier age at maturation in southern rivers compared to northern. Atlantic sturgeon mature in South Carolina at 5–19 years (Smith et al. 1982), in the Hudson River at 11–21 years (Young et al. 1988), and in the Saint Lawrence River at 22–34 years (Scott and Crossman 1973). Thirty-nine adult Atlantic sturgeon were sexed in the Combahee and Edisto Rivers, South Carolina: females ranged between 180-234 cm TL and were aged 15-20 years; males ranged between 139-195 cm TL and were aged 7-15 years (Collins et al. 2000b).

To spawn, adult Atlantic sturgeon move from the sea to the estuary as the river water temperatures warm. This occurs earlier in southern rivers than in northern rivers. Atlantic sturgeon are known to return to their natal river to spawn as indicated from both tagging records (Collins et al. 2000b, K. Hattala, NYSDEC, pers. comm.) and the relatively low rates of gene flow indicated by population genetics studies (King et al. 2001, Waldman et al. 2002). During non-spawning years, adults use marine waters either year-round or seasonally (Bain 1997) and do not migrate upstream to the spawning areas.

Upstream migration to the spawning grounds is cued primarily by water temperature and velocity and therefore fish in the southern portion of the range migrate earlier than those to the north (Smith 1985, Kieffer and Kynard 1993). In Georgia and South Carolina, this begins in February or March (Collins et al. 2000b). Males commence upstream migration to the spawning sites when waters reach around 6°C (Smith et al. 1982, Dovel and Berggren 1983, Smith 1985) with females following a few weeks later when water temperatures are closer to 12°C or 13°C (Dovel and Berggren 1983, Smith 1985, Collins

et al. 2000b). In some rivers, predominantly in the south, a fall spawning migration may also occur (Rogers and Weber 1995, Moser et al. 1998) with running ripe males found August through October and spent females captured in late September and October (Collins et al. 2000a).

Atlantic sturgeon spawning behavior is also gender specific. Spawning females do not migrate upstream together as a group; rather, individual females make rapid spawning migrations upstream and quickly depart the area following spawning (Bain 1997). Spawning males appear to move upstream on incoming tides and then remain stationary for several hours (Dovel and Berggren 1983), meander back and forth across the channel remaining in water depth greater than 7.6 m, and usually arrive on the spawning grounds before any of the females have arrived and leave after the last female has spawned (Bain 1997). Presumably, this provides an opportunity for a single male to fertilize eggs of multiple females.

Spawning is believed to occur in flowing water between the salt front of estuaries and the fall line of large rivers, upstream to at least rkm 100, where optimal flows are 46–76 cm/s and depths are 11–27 m (Scott and Crossman 1973, Bain et al. 2000). Sturgeon eggs are highly adhesive and are deposited on the benthos, usually on hard substrates such as cobble (Gilbert 1989, Smith and Clugston 1997). Fecundity of female Atlantic sturgeon has been correlated with age and body size, with observed egg production ranging from 400,000 to 4 million eggs per spawning year (Smith et al. 1982, Van Eenennaam et al. 1996). The average age at which 50 percent of the maximum lifetime egg production is achieved is estimated to be 29 years (Boreman 1997).

Atlantic sturgeon eggs must be spawned upstream of the salt front due to their low tolerance for saline environments (Van Eenennaam et al. 1996). Atlantic sturgeon eggs have a low salt tolerance, with mortality documented at salinities as low as 5 to 10 ppt (McEnroe and Check 1985, Jenkins et al. 1993). After spawning, most studies indicate adult Atlantic sturgeon migrate to salt water (Vladykov and Greeley 1963), with downestuary migrations occurring up to several months (Bain 1997), likely initiated by a combination of increased flow and temperature (Kieffer and Kynard 1993).

Eggs hatch approximately 94-140 hrs after fertilization and, once hatched, larvae assume a demersal existence (Smith et al. 1980). The yolksac larval stage is completed in about 8–12 days. Newly hatched larvae are active swimmers and, once the yolk sac is absorbed, the larvae exhibit benthic behavior (Smith et al. 1980) and initiate downstream movement (Kynard and Horgan 2002). Downstream larval migration is diel; larvae move only at night and use benthic structure (e.g., gravel matrix) as refuge during the day (Kynard and Horgan 2002). As the larvae mature, downstream movement occurs during both day and night. Larvae transition into the juvenile phase as they continue to move downstream into brackish waters, developing salinity tolerance with maturity. Juveniles eventually become residents in estuarine waters for months to years before migrating to open ocean as subadults (Dovel and Berggren 1983, ASSRT 2007, Schueller and Peterson 2010). Juvenile Atlantic sturgeon eventually join adults in the upper estuarine habitat where they frequently congregate around the saltwater interface. Both of these life stages may travel short distances upstream and downstream throughout the summer and fall, and during late winter and spring spawning periods (Greene et al. 2009), between fresh and brackish waters, influenced by changes in water temperature (Van Den Avyle 1984) as they seek the cooler waters and avoid shallow areas with the highest water temperature (Bain 1997). These estuarine habitats are important for juveniles as they serve as a nursery area by providing abundant foraging opportunities, and thermal and salinity refuges while undergoing rapid growth. Some juveniles will take up residency in non-natal rivers that lack active spawning sites (Bain 1997). Residency time of these young Atlantic sturgeon in the estuarine areas varies between one (Secor et al. 2000b), three (Schueller and Peterson 2010), and six (Smith 1985) years before commencing outmigration to sea. Outmigration of adults from the estuaries out to the sea is cued by water temperature and velocity. Adult Atlantic sturgeon will then reside in the marine habitat during the nonspawning season and forage extensively. Coastal migrations by adult Atlantic sturgeon are extensive and are known to occur over sand and gravel substrate (Greene et al. 2009). Atlantic sturgeon remain in the marine habitat until the waters begin to warm, at which time developing adults migrate back to their rivers.

Few diet studies have been conducted on the Atlantic sturgeon. A recent investigation by Collins et al. (2006) indicated that sub-adult Atlantic sturgeon in both the Edisto and Savannah Rivers foraged mostly on invertebrates, with a high percentage of amphipods and polychaetes. In marine waters, Atlantic sturgeon feed on mollusks, polychaete worms, gastropods, shrimps, amphipods, isopods, and small fish (Scott and Crossman 1973). The presence of food in the stomachs of large Atlantic sturgeon sampled in freshwater river systems demonstrates that fish do not fast while in freshwater, as previously believed (Collins et al. 2006).

Distinct Population Segment Viability

The viability of sturgeon population growth is particularly sensitive to mortality, given their long lived, slow growing, and relatively low stock productivity. Because a DPS is a group of populations, the stability, viability, and persistence of individual populations affects the persistence and viability of the larger DPS. The loss of any population within a DPS will result in: (1) a long-term gap in the range of the DPS that is unlikely to be recolonized; (2) loss of reproducing individuals; (3) loss of genetic biodiversity; (4) potential loss of unique haplotypes; (5) potential loss of adaptive traits; and (6) reduction in total number. The loss of a population will negatively impact the persistence and viability of the DPS as a whole, as fewer than two individuals per generation spawn outside their natal rivers (Secor and Waldman 1999). The persistence of individual populations, and in turn the DPS, depends on successful spawning and rearing within the freshwater habitat, the immigration into marine habitats to grow, and then the return of adults to natal rivers to spawn.

The riverine spawning habitat of the South Atlantic population segment occurs within the South Atlantic Coastal Plain eco-region. TNC describes the South Atlantic Coastal Plain eco-region as fall-line sandhills to rolling longleaf pine uplands to wet pine flatwoods;

from small streams to large river systems to rich estuaries; from isolated depression wetlands to Carolina bays to the Okefenokee Swamp. Other ecological systems in the eco-region include maritime forests on barrier islands, pitcher plant seepage bogs and Altamaha grit (sandstone) outcrops. The primary threats to biological diversity in the South Atlantic Coastal Plain listed by TNC are intensive silvicultural practices, including conversion of natural forests to highly managed pine monocultures and the clear-cutting of bottomland hardwood forests. Changes in water quality and quantity, caused by hydrologic alterations (impoundments, groundwater withdrawal, and ditching), and point and nonpoint pollution, are threatening the aquatic systems. Development is a growing threat, especially in coastal areas. Agricultural conversion, fire regime alteration, and the introduction of nonnative species are additional threats to the eco-region's diversity. The South Atlantic DPS' spawning rivers, located in the South Atlantic Coastal Plain, are primarily of two types: brownwater (with headwaters north of the Fall Line, silt-laden) and blackwater (with headwaters in the coastal plain, stained by tannic acids). Therefore, the eco-region delineations support that the physical and chemical properties of the Atlantic sturgeon spawning rivers utilized by the South Atlantic DPSs are unique to the population segment. Since reproductive isolation accounts for the discreteness of each population segment, the South Atlantic population segment of Atlantic sturgeon are "significant" as defined in the DPS policy given that the spawning rivers for each population segment occur in a unique ecological setting. The loss of the South Atlantic population segment of Atlantic sturgeon would create a significant gap in the range of the taxon.

The concept of a viable population able to adapt to changing environmental conditions is critical to Atlantic sturgeon, and the low population numbers of every river population in the South Atlantic DPS puts them in danger of extinction throughout their range; none of the populations are large or stable enough to provide with any level of certainty for continued existence of Atlantic sturgeon in this part of its range. The South Atlantic DPS is estimated to number less than 6 percent of its historical population size (ASSRT, 2007), with all river populations except the Altamaha estimated to be less than 1 percent of historical abundance. Prior to 1890, Secor (2002) estimated there were 8,000 adult spawning females in South Carolina and 11,000 adult spawning females in Georgia. Currently, there are an estimated 343 spawning adults in the Altamaha and less than 300 spawning adults (total of both sexes) in each of the other major river systems occupied by the DPS, whose freshwater range occurs in the watersheds of the ACE Basin in South Carolina to the St. Johns River, Florida.

Their late age at maturity provides more opportunities for individual Atlantic sturgeon to be removed from the population before reproducing. While a long life-span allows multiple opportunities to contribute to future generations, it also increases the timeframe over which exposure to the multitude of threats facing the South Atlantic DPS can occur. These threats include the loss, reduction, and degradation of habitat resulting from dams, dredging, and changes in water quality parameters (such as depth, temperature, velocity, and dissolved oxygen).

Threats

Atlantic sturgeon throughout the South Atlantic DPS are exposed to a variety of habitat threats including: restricted access to riverine habitat; large portions of degraded habitat, which may result in high levels of tissue contamination and water quality standards that are below fish health standards; and/or poor quality of some benthic habitat. Without substantial mitigation and management to improve the habitat and water quality of these systems, Atlantic sturgeon subpopulations will likely continue to be depressed until suitable habitat and water quality conditions are achieved. This is evident in southern streams that are suspected to no longer support reproducing Atlantic sturgeon subpopulations, such as the St. Mary's and St. Johns rivers. Although these rivers are at the southern range of the species, the degradation of habitat via dredging and water pollution likely prohibit Atlantic sturgeon from recolonizing these systems. The recovery of Atlantic sturgeon along the Atlantic Coast, especially in areas where habitat and water quality is severely degraded, will require improvements in the following areas: 1) elimination of barriers to spawning habitat either through dam removal, breaching, or installation of successful fish passage facilities; 2) operation of water control structures to provide flows compatible with Atlantic sturgeon use in the lower portions of rivers (especially during the spawning season); 3) imposition of restrictions on dredging, including seasonal restrictions and avoidance of spawning/nursery habitat; and 4) mitigation of water quality parameters that are restricting sturgeon use of a river (i.e., dissolved oxygen). Additional data regarding sturgeon use of riverine and estuarine environments is needed.

The Atlantic sturgeon recovery team (SRT) evaluated the status of Atlantic sturgeon using the five-factor analysis described in section 4(a)(1) of the ESA. The SRT identified 15 stressors within these five factors and summarized their impacts on Atlantic sturgeon using a semi-quantitative extinction risk analysis (ERA), similar to that used by other status review reports (e.g. *Acropora*). Of the stressors evaluated, bycatch mortality, water quality, lack of adequate state and/or Federal regulatory mechanisms, and dredging activities were identified as the most significant threats to the viability of Atlantic sturgeon populations.

A review of the literature and potential threats to South Atlantic DPS revealed that dredging, water quality, and commercial bycatch were ranked as the greatest threats to the South Atlantic DPS - receiving ERA scores of 3 or moderate risk (<50% chance of becoming endangered over the next 20 years). While the median value associated with the risk for the DPS was moderate and did not meet the threshold of >50% chance of becoming endangered, the team recognized that three of the eight historic subpopulations are likely extirpated and data is lacking for many of the other subpopulations. As a result, the SRT determined that available science was insufficient to allow a full assessment of these subpopulations within the South Atlantic DPS.

Summary of the Status of Atlantic Sturgeon

The Atlantic sturgeon is an anadromous species inhabiting large coastal rivers along the Eastern seaboard of North America from the Saint John River in New Brunswick, Canada south to the St. Johns River in Florida. Clinal differences in growth and behavior are

obvious for Atlantic sturgeon: fish in the north grow slower, but reach larger size; timing of spawning migration is earlier in the south; etc. Genetic analysis has indicated that population structure occurs across the range of Atlantic sturgeon. Atlantic sturgeon between the Ashepoo, Combahee, and Edisto Rivers (ACE Basin) in South Carolina, southward to the Satilla River in Georgia, constitute the South Atlantic DPS that was proposed for ESA listing as endangered (75 FR 61904). The marine range of the Atlantic sturgeon South Atlantic DPS extends from the Bay of Fundy, Canada, to the St. Johns River, Florida.

3.4.10 Sturgeon Habitat Use and Requirements

Shortnose and Atlantic sturgeon habitat requirements are ontogenetic and clinal: water temperature, dissolved oxygen concentration, and water depth requirements change as they mature and vary across latitudes. Shortnose and Atlantic sturgeon require appropriate habitat throughout their life cycle. Atlantic sturgeon are anadromous and shortnose sturgeon are freshwater amphidromous, which means they differ mostly in their use of salt water habitat: while both shortnose and Atlantic sturgeon utilize freshwater systems extensively, only adult Atlantic sturgeon extensively utilize saltwater habitat, compared to shortnose sturgeon who rarely leave natal rivers/estuaries. Adult Atlantic sturgeon are generally present in southern rivers between February and October; they outmigrate and reside in the ocean during winter months and later return to spawn in their natal rivers. In contrast, shortnose sturgeon remain in the river's estuary (Buckley and Kynard 1985b, Kieffer and Kynard 1993); a few have been known to occasionally migrate short distances to a nearby river.

In free-flowing rivers, adults of both species migrate annually between upstream spawning areas and then downstream to estuarine areas. Within the project area, the New Savannah Bluff Lock and Dam blocks access to the majority of historical sturgeon spawning habitat. Apart from the spawning period, both species spend most of the time moving between fresh and brackish water areas to forage, or avoid high water temperatures.

Winter/Spawning

Water temperature cues sturgeon to initiate upstream movement to spawning sites. Therefore, upstream migration to spawning sites is earlier for sturgeon in southern rivers compared to the north. Both shortnose and Atlantic sturgeon spawning usually occurs during February and March in southern rivers. Because it is energetically expensive to migrate, non-mature and most non-spawning adults do not move upstream to spawn, rather they remain downstream year-round.

Male Atlantic sturgeon generally initiate upstream movement when waters reach about 6°C (Smith et al 1982, Dovel and Berggren 1983, Smith 1985) with females following when water temperatures are closer to 12°C or 13°C (Dovel and Berggren 1983, Smith 1985, Collins et al. 2000b). Atlantic sturgeon spawn in waters where temperatures range between 13°-26°C (Huff 1975, Smith 1985, Bain et al. 2000, Caron et al. 2002). Water

depth at spawning sites varies greatly and is dependent upon available depth range. Atlantic sturgeon have been reported to spawn in water depths from 3 to 27 m (Scott and Crossman 1973, Bain et al. 2000, Collins et al. 2000b, Caron et al. 2002). Benthic substrate at spawning sites must be hard bottom for successful egg attachment and incubation: these materials include silt-free boulder, bedrock, and cobble-gravel. These hard substrates often occur in the rapids complex with flowing water at velocities between 0.46 to 0.76 m/s. Ripe Atlantic sturgeon and shortnose sturgeon have also been found in the fall, indicating they may have a fall spawning run as indicated by histological examination of gonadal biopsies and directed upriver movements (Collins et al. 2000a).

Shortnose sturgeon have been documented to spawn when water temperatures range from $9^{\circ}-15^{\circ}C$ (Dadswell 1979, Taubert 1980, Kynard 1997, Collins et al. 2000a). Spawning sites have been found to consist of moderate river flows with average bottom velocities between 0.3 - 1.2 m/s (Buckley and Kynard 1985b, Hall et al. 1991, Kieffer and Kynard 1996, NMFS 1998). Water velocity is critical for sturgeon spawning; slow flow allows eggs to clump together while higher velocities may prevent eggs from adhering to the substrate (Taubert and Dadswell 1980, Buckley and Kynard 1985a, Kynard 1997). In populations that have free access to the total length of a river, shortnose sturgeon spawning areas are often located at the farthest accessible upstream reach of the river (Kynard 1997).

Shortnose and Atlantic sturgeon spawning usually occurs over gravel, rubble, and/or cobble or large rocks (Dadswell 1979, Taubert 1980, Buckley and Kynard 1985a, Kynard 1997), or timber, scoured clay and gravel (Hall et al. 1991). Shortnose sturgeon spawning sites have also been characterized as deep, scoured channels with hard substrates for eggs to adhere (Collins et al. 2000a). These sturgeon spawning areas are seemingly discrete, as fish return to specific areas over consecutive years (Kieffer and Kynard 1993).

Following spawning, downstream migration is quicker for spent shortnose sturgeon than spent Atlantic sturgeon. Shortnose move rapidly to downstream feeding areas (Dadswell et al. 1984, Buckley and Kynard 1985a, Kieffer and Kynard 1993, O'Herron et al. 1993, Collins and Smith 1993), while Atlantic sturgeon migration may occur over several months (Bain 1997). Kieffer and Kynard (1993) reported that post-spawning migrations of shortnose sturgeon were correlated with increasing spring water temperature and river discharge.

Few data are available describing the migratory pathways of shortnose and Atlantic sturgeon, as most data describe periodicity of sturgeon movement upstream or downstream but fail to describe habitat parameters such as depth or water temperature. Dovel and Berggren (1983) report migrating Atlantic sturgeon in depths greater than 7.6 meters. Migratory pathways of white sturgeon (*A. transmontanus*) are better described. Phylogenetically, shortnose sturgeon are very similar to white sturgeon (Birstein and Bernis 1997). Water depth is known to be a major factor to determine white sturgeon migratory pathways.

It has been noted that shortnose sturgeon will labor to migrate upstream during spawning season but will eventually abandon the migration and resorb eggs. Kynard (1998) noted the condition of shortnose sturgeon in shallow rapids as having severely worn and bleeding ventral scutes. Water depth is so important for spawning white sturgeon that it was identified as a primary constituent element of the Kootenai white sturgeon critical habitat (73 FR 39506, July 9, 2008).

Spring

Newly hatched sturgeon continue to migrate downstream in the spring to riverine rearing/nursery habitats where they join older juveniles. These young sturgeon require nursery habitats to grow and escape predation. Concentration areas of shortnose sturgeon are occupied year-round by mixed age individuals (Kynard et al. 2000). In both freshwater and estuarine environments, juvenile Atlantic sturgeon are widely dispersed (Schueller and Peterson 2010). Shortnose sturgeon larvae and juveniles have been reported from, and may prefer, deep river channels (Richmond and Kynard 1995) above the salt wedge. Bath et al. (1981) reported larvae occurring at depths of 9.1 - 9.8 m (29.9 - 32.1 feet) where water temperatures were 15.0 - 24.5 °C (59 - 76.1 °F), in salinities of approximately 0 - 22 parts per thousand (ppt).

Studies on the salinity exposure for shortnose sturgeon juveniles indicated that tolerance to increased salinity improved with age. Fish 76 days old experienced 100 percent mortality in a 96-hour test when exposed to salinities >15 ppt while 330-day-old fish tolerated salinities as high as 20 ppt for a duration of 18 hours but exhibited 100 percent mortality at 30 ppt. There is a large amount of variation in the salinity tolerance of juvenile Atlantic sturgeon, individual studies have observed salinity ranges between 0-16 ppt (Greene et al 2009). Younger fish were also more susceptible to low dissolved oxygen concentrations than older fish. In a 6-hour test, fish 64 days old exhibited 86 percent mortality when exposed to dissolved oxygen concentrations of 2.5 mg/liter. However, sturgeon >100 days old were able to tolerate concentrations of 2.5 mg/liter with <20 percent mortality (Jenkins 1993).

Adult shortnose sturgeon prefer lower salinity than pure seawater, typically in the range of 30 - 31 ppt (Holland and Yelverton 1973; Dadswell et al 1984). In areas where shortnose sturgeon occur with the Atlantic sturgeon, the two species apparently segregate the habitat according to salinity preferences, with Atlantic sturgeon preferring more saline areas. Gilbert (1990) suggested that though the shortnose sturgeon is capable of entering the open ocean, it is hesitant to do so. This factor may be the single largest consideration limiting extensive coastal migrations of this species.

Following spawning, both shortnose and Atlantic sturgeon begin foraging. Specific diet items of the shortnose and Atlantic sturgeon were discussed previously (Sections 3.4.3 and 3.4.4, respectively). Both species rely on sandy substrate that supports benthic invertebrates. Foraging occurs over three seasons that vary across latitude, apparently determined by extremes in water temperature and the need to reduce energetic expenditure. Kynard et al. (2000) found distinct seasonal shifts reflected in both foraging

activity and habitat change, with change in water temperature. Sturgeon will forage when water temperatures are optimal and find resting habitat when water temperatures become extreme. Therefore, in southern rivers sturgeon are foraging in the fall, winter, and spring and resting in the summer; and in the north they are foraging in spring, summer, and fall.

Shortnose sturgeon in Massachusetts distinctly shifted from summer foraging to fall/wintering resting (Kynard et al. 2000). To minimize energetic expenditure during the extreme cool winter water temperatures, shortnose sturgeon were not actively foraging and selected deep, slow water to minimize swimming while holding position (Kynard et al. 2000). Within southern rivers, that includes the Project area, shortnose sturgeon are known to forage widely throughout the estuary during the fall, winter, and spring (Collins and Smith 1993, Weber et al. 1999), and then significantly reduce or cease foraging completely in the summer as they take refuge from high water temperatures by congregating in cool, deep areas of the river (Flourney et al. 1992, Rogers and Weber 1994, Rogers and Weber 1995, Weber 1996). Both water depth and current velocity have been found to be important in selecting these resting areas, as both Atlantic and shortnose sturgeon have been found to select deeper, slow water during their periods of resting.

Summer

The fresh-brackish water interface area serves as the summer habitat for juvenile Atlantic sturgeon and all ages of shortnose sturgeon in the Southeast (Hall et al. 1991, Flourney et al. 1992, Smith et al. 1992, McCord 1998, Collins et al. 2000b). Juvenile shortnose sturgeon regularly move throughout the saline portions (0-16 ppt) of the salt wedge during summer (Pottle and Dadswell 1979, Weber 1996) and are more active when water temperatures are cooler (<16°C) (Weber 1996). Juveniles have been found congregating in deeper sand/mud substrate in depths of 10-14 m (Hall et al. 1991). As mentioned above, studies on the salinity exposure for shortnose sturgeon juveniles indicated that tolerance to increased salinity improved with age. Fish 76 days old experienced 100 percent mortality in a 96-hour test when exposed to salinities >15 ppt while 330-day-old fish tolerated salinities as high as 20 ppt for a duration of 18 hours but exhibited 100 percent mortality at 30 ppt (Jenkins 1993). Adult shortnose sturgeon prefer lower salinity than pure seawater, typically in the range of 23 - 30 ppt (Collins et al. 2001). Adult Atlantic sturgeon in South Carolina were found to utilize a wide variety of habitats in the summer, with salinities ranging between 0 and 28 ppt, dissolved oxygen between 3.4-8.3 mg/Liter, water temperatures as high as 33.1°C, and in substrates including fine mud, sand, pebbles and shell hash (Collins et al. 2000b). Adult Atlantic sturgeon were located through the summer in depths between 1.5 -13.0 m; however, in nearly all cases fish were in the greatest depth available in the immediate area (Collins et al. 2000b).

Considerable work has been conducted on temperature tolerances of sturgeon (Kynard 1997, Campbell and Goodman 2004, Van Eenennaam et al. 2005, Ziegweid et al. 2008). In recent work on critical thermal maximum, Ziegweid et al. (2008b) demonstrated hatchery–raised YOY shortnose sturgeon can tolerate between 28°-31°C. Kynard (1997) also notes empirical temperatures of 28°-30°C in summer months created unsuitable shortnose sturgeon habitat. Atlantic sturgeon experience lower survival when water

temperatures exceed 28°C (Niklitshek and Secor 2005). Summer water temperatures in southern estuaries commonly approach, and sometimes exceed, the maximum tolerable levels identified in the laboratory.

Temperatures in excess of 28°C are considered to have sub-lethal effects on Atlantic sturgeon (Niklitschek and Secor 2005). This low tolerance to temperature and low oxygen is of particular concern during the first two summers when juvenile Atlantic sturgeon are restricted to lower saline waters and are unable to seek out thermal refuge in deeper waters (Secor and Gunderson 1998, Niklitschek 2001, Niklitschek and Secor 2005). Juveniles have been reported in depths between 2-37 m, and water temperatures between 0.5°-27°C (Greene 2009). Summer habitats of Atlantic sturgeon in the Altamaha River were typically in the mid-channel where water temperatures varied between 25.4°-29.5°C (Peterson et al. 2006).

Because warm water holds less dissolved oxygen, high water temperatures coupled with low dissolved oxygen concentrations are known to have synergistic effects and lead to mortality of both shortnose and Atlantic sturgeon; this affects southern populations to a greater extent than those to the north, particularly in the summer months (Collins et al. 2000b). Effects of low dissolved oxygen vary with sturgeon age. Shortnose sturgeon less than 78 days old had 80 percent mortality when exposed to dissolved oxygen at 2.5 mg/Liter and 18-38 percent mortality at 3.0 mg/Liter. Slightly older fish experienced minimal mortality at nominal levels >2.5 mg/Liter; mortality at 2.0 mg/Liter increased to 24-38 percent. Young-of-the-year shortnose sturgeon experienced 96 percent mortality rate within 4 hours after exposure to dissolved oxygen levels ranging from 2.2 mg/Liter to 3.1 mg/Liter (Campbell and Goodman 2004). Bioenergetic and behavioral responses indicate that habitat for YOY (~30 to 200 days old) becomes unavailable with less than 60 percent saturation (Secor and Niklitschek 2001); this occurs at summertime temperatures of 22°-27°C with dissolved oxygen of 4.3-4.7 mg/Liter. Although tolerance for low dissolved oxygen increased with age, Flourney et al. (1992) reported physiological stress to adult sturgeon during periods of high water temperature and low dissolved oxygen levels.

Sensitivity of sturgeon and other fishes to temperature, oxygen, and their interaction has been evaluated experimentally through respirometry. Critical oxygen concentration is determined by melding the metabolic response curve to required dissolved oxygen concentration: oxygen levels below that point will constrain metabolism, growth, and swimming activity. As basal metabolism of fishes increases with water temperature, the critical concentration becomes higher and demand outpaces availability. At very low oxygen concentrations, metabolism decreases rapidly and the fish dies; this is termed threshold concentration. Both critical and threshold concentrations are substantially higher for sturgeons in comparison to freshwater fishes.

In comparison to other fishes, sturgeon are more sensitive to low dissolved oxygen conditions. Sturgeons have limited behavioral and physiological capacity to respond to hypoxia (multiple references reviewed and cited by Secor and Niklitschek 2001 and 2003). Their basal metabolism, growth, consumption, and survival are all very sensitive

to changes in oxygen levels, which may indicate their relatively poor ability to oxyregulate (EPA 2003). In summer, the coupling of low dissolved oxygen and water temperatures greater than 20°C amplify the effect of hypoxia on sturgeon and other fishes due to a temperature-oxygen habitat squeeze (Coutant 1987). Sturgeon often seek the temperatures they prefer in deeper waters, but those deeper waters may also occasionally have dissolved oxygen levels below the minimum required. In these instances, sturgeon may avoid the unsuitable areas and may be forced to occupy constricted habitats.

Jenkins et al. (1993) examined environmental tolerance of dissolved oxygen on shortnose sturgeon and found that younger fish were differentially susceptible to low oxygen levels in comparison to older juveniles. Shortnose sturgeon older than 77 days experienced minimal mortality at nominal levels >2.5 mg/Liter; mortality at 2.0 mg/Liter increased to 24-38 percent. Dissolved oxygen at 3.0 mg/Liter resulted in 18-38 percent mortality of fish less than 78 days old, increasing to 80 percent at 2.5 mg/Liter.

More rigorous testing using YOY shortnose sturgeon (77-134 days old) coupling temperature and dissolved oxygen values also found a high degree of sensitivity to low dissolved oxygen in acute tests at low salinities (Campbell and Goodman 2004). YOY shortnose sturgeon exposed to dissolved oxygen levels ranging from 2.2 mg/Liter to 3.1 mg/Liter experienced a mortality rate of 96 percent within 4 hours of exposure. Seventy-seven day old shortnose sturgeon had an estimated median lethal concentration (LC₅₀) at 2.7 mg/Liter at 25°C (Campbell and Goodman 2004); an LC₅₀ of 2.2 mg/Liter was found for fish 104 and 134 days old at temperatures of 21.8° to 26.4°C. One-hundred-day-old fish exposed to 29°C were most sensitive to low dissolved oxygen, yielding a LC₅₀ of 3.1 mg/Liter (Campbell and Goodman 2004).

Niklitschek (2001) observed poor survival of both shortnose and Atlantic sturgeon at dissolved oxygen concentrations of 40 percent versus 70 percent saturation, with the effects being conditional on temperature. The proportion of energy allocated to growth also decreased as dissolved oxygen concentration varied from normal. Bioenergetic and behavioral responses indicate that habitat for YOY (~30 to 200 days old) becomes unavailable with less than 60 percent saturation (Secor and Niklitschek 2001); this occurs at summertime temperatures of 22°-27°C with dissolved oxygen of 4.3-4.7 mg/Liter.

Laboratory experiments with YOY cultured shortnose sturgeon indicated thermal tolerances were significantly altered by temperature (Ziegeweid et al. 2008b). Fish activity increased with temperature, and at about 5°-6°C prior to lethal endpoint, fish began frantically swimming around the tank, then lost equilibrium as activity level decreased dramatically, and at about 0.3°C before lethal endpoint, most fish were completely incapacitated (Ziegeweid et al. 2008a).

Sub-lethal effects of low dissolved oxygen include impacted growth, metabolism, and foraging; a concurrent increase in water temperature amplifies effects of low dissolved oxygen. Laboratory results indicate that at water temperatures of 20°C and 40 percent saturation (i.e., 3.3 mg/Liter), effects to shortnose sturgeon included a reduction in growth by about 30 percent; a reduction in consumption by about 28 percent, and a

reduction in routine metabolism by about 20 percent (Niklitschek 2001). While keeping saturation constant at 40 percent and increasing temperature to 27°C (corresponding to 2.9 mg/Liter), growth was further reduced by 69 percent, consumption by 45 percent, and routine metabolism by 21 percent (Niklitschek 2001). Because the Niklitschek (2001) investigation reported routine rather than basal metabolism, estimates of critical concentrations are not available. In a separate laboratory study using Atlantic sturgeon, Secor and Gunderson (1998) reported about a 3-fold reduction in growth rate due to hypoxia at 26° compared to 19°C.

Beyond metabolic response, sturgeons undertake other physiological and behavioral responses to hypoxia. Signs of stress observed in shortnose sturgeon exposed to low dissolved oxygen included reduced swimming and feeding activity, coupled with increased ventilation frequency (Campbell and Goodman 2004). Niklitschek (2001) observed that egestion levels for Atlantic and shortnose sturgeon juveniles increased significantly under hypoxia, indicating that consumed food was incompletely digested. Behavioral studies indicate that Atlantic and shortnose sturgeon are quite sensitive to ambient conditions of oxygen and temperature. In choice experiments, juvenile sturgeons consistently selected normoxic over hypoxic conditions (Niklitschek 2001). Beyond escape or avoidance, sturgeons respond to hypoxia through increased ventilation, increased surfacing (to ventilate relatively oxygen-rich surficial water), and decreased swimming and routine metabolism (Nonnette et al. 1993, Crocker and Cech 1997, Secor and Gunderson 1998, Niklitschek 2001).

NMFS has identified and established safe environmental limits for capturing and handling sturgeon species (Kahn and Mohead 2010) and recommends that Atlantic and shortnose sturgeon not be captured or handled when dissolved oxygen concentrations are below 4.5mg/Liter or when water temperatures exceed 28°C.

To compensate for these habitat conditions, shortnose sturgeon throughout the Southeast are known to take refuge by congregating in cool, deep areas of rivers as water temperatures increase (i.e., 22°-27°C) through the summer (Flournoy et al. 1992, Rogers and Weber 1994, Rogers and Weber 1995, Weber 1996, DeVries 2006). These warm summer water temperatures severely limit available juvenile rearing habitat; juveniles in the Altamaha and Ogeechee Rivers have been found in a single area with cool and deep water (Flournoy et al. 1992, Rogers and Weber 1994, Rogers and Weber 1995, Weber 1996). Shortnose sturgeon will stay in these refugia areas until water temperatures begin to cool in the fall. All captures of shortnose sturgeon in the Altamaha River when water temperature exceeded 27°C were in areas deeper than the surrounding river stretches. with a maximum depth of 12.8 m (DeVries 2006). Similar behavior has been found in the Savannah River (Collins et al. 2001) and Ogeechee River (Weber 1996). The essential nature of this deep water habitat sought by sturgeon is further illustrated by patterns of capture during summer for shortnose sturgeon in the Altamaha (Flourney et al. 1992), Savannah (Hall et al. 1999), and the Edisto (Collins unpublished data) Rivers where juvenile shortnose sturgeon have been captured only in the vicinity of the saltfreshwater interface and in the deeper water.

Juvenile Atlantic sturgeon in the Cape Fear River have also been found to seek cooler refugia in the summer months (Moser and Ross 1995). McCord (1998) associated drastically reduced growth rates of juvenile Atlantic sturgeon during periods of warm water temperature to severe stress. Absence of such refugia habitat, especially in southern populations, has been attributed to high juvenile mortality and extirpation of some shortnose sturgeon populations (Collins and Smith 1993, Rogers and Weber 1994, Rogers and Weber 1995, Collins et al. 2000a). The early juvenile life stage is often found to be the most sensitive life stage of sturgeon, as it is spatially limited to habitat within estuaries (Munro et al. 2007).

Fall/Winter Foraging

Shortnose sturgeon subadults (3-10 year olds) occur at the saltwater/freshwater interface in most rivers during the winter (Dadswell 1979, Pottle and Dadswell 1979, Dovel et al. 1992, Hall et al. 1991, Flournoy et al. 1992, Weber 1996). Older juveniles likely inhabit the same areas as adults, but younger juveniles primarily remain in freshwater habitat, perhaps due to low salinity tolerance (Jenkins et al. 1993, Jarvis et al. 2001). Juvenile shortnose sturgeon were captured during winter in the Savannah River in water temperatures between 12.8°-21.1°C (Collins et al. 2000a) and in water depths between 6.1-13.4 m (Collins et al. 2000a).

Shortnose sturgeon forage widely throughout the estuary during the winter (Collins and Smith 1993, Weber et al. 1999). In the Altamaha River, just south of the action area, shortnose sturgeon were found year-round in presumed foraging areas comprised of sandy substrate at water depth of 3 to 7.6 m (Devries 2006). Foraging sturgeon (both shortnose and Atlantic) were targeted in the Savannah River at two locations: both locations were downstream of a deep hole (rkm 31.4 and 40.7) that is used for resting by sturgeon. Depth of the sampled sites ranged between 16.7-27.5 ft (Collins et al. 2006). Similarly in the Edisto River, depth in shortnose sturgeon foraging area ranged between 14.7-20.9 ft seasonally (Collins et al. 2006).

During fall, large juveniles and adult Atlantic sturgeon migrate out to sea. Outmigration of river-resident juvenile Atlantic sturgeon older than age 1 may be influenced by density dependence with younger cohorts (Schueller and Peterson 2010). These younger fish are salinity intolerant and are unable to seek alternative foraging habitats; on the other hand, older juveniles have no such constraints but may prefer the relatively predator-free environments of brackish estuaries as long as food resources are not limited (Schueller and Peterson 2010).

All adult Atlantic sturgeon moved out of the Combahee and Edisto Rivers during October through November (Collins et al. 2000b). In the spring, reproductively developing Atlantic sturgeon will return to spawn (mostly March in the Southeast) in their natal rivers and take up residence at the same sites utilized the previous year (Collins et al. 2000b).

4 ENVIRONMENTAL BASELINE

By regulation, environmental baselines for opinions include the past and present impacts of all state, federal, or private actions and other human activities in the action area, the anticipated impacts of all proposed federal projects in the action area that have already undergone formal or early Section 7 consultation, and the impact of state or private actions that are contemporaneous with the consultation in process (50 CFR 402.02).

This section contains a description of the effects of past and ongoing human activities leading to the current status of the species, their habitat, and the ecosystem, within the action area. The environmental baseline is a snapshot of the factors affecting the species and includes federal, state, tribal, local, and private actions already affecting the species, or that will occur contemporaneously with the consultation in progress. Unrelated, future federal actions affecting the same species in the action area that have completed formal or informal consultation are also part of the environmental baseline, as are implemented and ongoing federal and other actions within the action area that may benefit listed species.

The proposed action occurs in the Atlantic Ocean, Savannah Harbor Entrance Channel, and the navigational channel of the Savannah River. The following analysis examines actions that may affect these species' environment specifically within this defined action area. The environmental baseline for this opinion includes the effects of several activities affecting the survival and recovery of ESA-listed sea turtle species, shortnose sturgeon, and Atlantic sturgeon (proposed for listing as endangered) in the action area. The activities that shape the environmental baseline in the action area of this consultation are primarily vessel operations and dredging.

4.1 Status and Distribution of Shortnose Sturgeon in the Action Area

The shortnose sturgeon inhabiting the Savannah River have been studied by, among others, Hall et al. (1991) and Collins et al. (1993). Hall et al. (1991) and Collins et al. (1993) used telemetry techniques to identify maximum upriver positions of shortnose sturgeon during the spawning season. In the Savannah River, these locations were between river kilometer 179 and river kilometer 278. Spawning locations have not been verified by collection of eggs. Historically, shortnose sturgeon likely utilized the entire Savannah River downriver of the fall line where the Clarks Hill Dam is now located upstream of the Augusta Shoals, in Augusta, Georgia, and above the New Savannah Bluff Lock and Dam. New and on-going research by the South Carolina Department of Natural Resources (Bill Post, pers. comm. 2011) and by The Nature Conservancy (Wrona et al. 2011, in prep.) also provide updated information on tracking of shortnose sturgeon in the lower Savannah River project area, which indicates sturgeon are currently using the project area in its existing (pre-project) state.

Shoals located below the New Savannah Bluff Lock and Dam currently serve as spawning habitat for the shortnose sturgeon (Wrona et al. 2011, in prep.). Spawning migrations are likely triggered by water temperatures above 8°C occurring in late winter/early spring, primarily during February and March. Spawning lasts for about three

weeks and ends when temperatures reach 12° to 15°C. Subsequent downstream migration post-spawning is rapid and direct, usually occurring from March to May. Females likely do not spawn every year. It is believed that the shortnose sturgeon within the action area do not interbreed with fish from any other population.

It is likely that the total number of shortnose sturgeon within the action area is greatly decreased from historic accounts. The previous abundance estimate for the project area had the population at 1,000 to 3,000 fish in the Savannah River (B. Post, SCDNR, 2003). A low catch rate of juveniles in 1999-2000 sampling indicated that natural recruitment was quite low in the Savannah River. In the southeastern United States low recruitment is often thought to be caused by poor water quality in the nursery habitat located at the fresh water/salt water interface (Collins et al. 2001). The Shortnose Sturgeon Status Review Team, in an ongoing review of the status of the species (to be completed in 2011), estimated the Savannah River population to be between 1,500 to 2,000 adults (S. Bolden, pers. comm.). Males were most abundant (3.5:1) in the available estimates for the Savannah River (Collins and Smith 1997). Sex ratio on the spawning ground may favor males, although spawning females are less mobile making them less susceptible to gillnet gear, which may skew estimates (Kieffer and Kynard in review-B). The size of the Savannah River population puts it at greater risk of extinction than larger populations occurring elsewhere (McElhaney et al. 2000) due to several processes. These processes include: (1) deterministic density effects including depensation (Allee effect) and increased predation; (2) inbreeding resulting in loss of diversity and accumulation of deleterious mutations; and (3) increased susceptibility to catastrophic events.

Within the project area, shortnose sturgeon are present in the lowest reaches of the Savannah River up to the first obstruction (Figure 22) located at the New Savannah Bluff Lock and Dam at river mile 187.5. The entire life cycle of the shortnose sturgeon population occurs within the action area: adults grow, mature, and forage in the area and migrate upstream to spawning habitat, but since passage is not possible they can only go as far as the base of the dam. The COE attempted two fish passage events at New Savannah Bluff Lock and Dam by increasing flows from J. Strom Thurmond to overtop the spill gates during the spawning season. This method of fish passage proved ineffective for shortnose sturgeon. The cold water released from Thurmond Dam may have cooled the water at the dam to the point where fish were no longer induced to spawn. Also, it is doubtful that shortnose sturgeon were able to negotiate the 8-foot-high support walls at the bottom of the dam. The lock and dam was constructed in 1937 to aid commercial navigation and was last used for commercial shipping in 1979. It is currently operated by the City of Augusta. As a requirement of the City of Augusta's lease, the COE requires them to lock fish through the dam twice a week during the spring spawning season. Some limited transmitter studies have been conducted to determine if sturgeon are successfully locked through (like shad and herring), but apparently there is no movement of sturgeon through the lock. The COE made a draft recommendation in the Section 216 Disposition Study of 2000 to remove the structure, but public outcry associated with the potential loss of the impounded pool occurring upriver resulted in Congress declaring in an amendment to the Section 216 Disposition Study that the dam would be repaired and may be turned over to a local government to maintain. The work

has not received funding, so the facility has not been rehabilitated. It has been operated to pass some migratory anadromous fish species, but it is thought that sturgeon are not able to pass because they are unable to overcome the vertical obstacles located at the base of the lock and dam.

Figure 22. New Savannah Bluff Lock and Dam

When they are not migrating, shortnose sturgeon are found residing in the lower reaches of the Savannah River, congregating near the freshwater/saltwater interface or mixing zone. The location of the interface is positioned upriver immediately above the area to be deepened, but within areas that would be modified by flow rerouting. Historically, the interface was previously located much closer to the mouth of the river, but with the successive dredging events and deepening of the river channel, the interface has shifted further upriver. Each deepening event has further compressed the available habitat of the shortnose sturgeon. In 2001, Collins et al. reported that habitat within the Kings Island Turning Basin, once used by juvenile sturgeon, as reported by Hall et al. in 1991, no longer supported juvenile shortnose sturgeon, probably due to the harbor modifications that occurred after the earlier study that resulted in higher salinity and caused the juveniles to avoid the area.

Within the project area, the Savannah River is divided into three interconnected sections: the Back River, Middle River, and Front River. The Back River is located adjacent to the boundary with South Carolina and borders much of the Savannah National Wildlife Refuge. The Back River depths are primarily shallow with most less than 10 feet deep; however, the sediment basin area has been reported to be much deeper. The Sediment Basin and the tide gate are located at the lower end of the Back River where it joins the Front River near river mile 11. As a part of the COE's proposed flow re-routing modification, the Sediment Basin would be allowed to fill in. The COE has proposed to place a submerged sill at the lower end of the basin to aid in the process of filling-in.

With the anticipated filling of the Sediment Basin, the depth there could become much shallower and may become too shallow for large sturgeon to pass through. Both upper portions of the Back River and the Middle River join the Front River in an area referenced as McCoy Cut. The lower arm of McCoy cut would be closed with the flow re-routing modifications under Plan 6A. Partial dredging of the upper reaches of the Back River and Middle River would also be conducted with Plan 6A. The lower end of the Middle River empties into the Front River just above the Kings Island Turning Basin. Other than having one area with a deep hole, most of the Middle River is less than 10 feet deep. The Front River depths vary depending on the depths needed to maintain the shipping channel. Throughout the project area up to the Kings Island Turning Basin near river mile 19.5, the depths are 42 feet with the Kings Island Turning Basin having depths up to 50 feet. Upriver from this turning basin, the depths are maintained at 36 feet to river mile 19.9 and then 30 feet to river mile 21.3 at the Port Wentworth Turning Basin. Beyond this point, the authorized channel is 9 feet deep, although it has not been maintained since 1978.

Juvenile and adult shortnose sturgeon use the estuarine areas in the lower Savannah River as a foraging area throughout the year. This unique habitat is only found within the estuary surrounding the freshwater/saltwater interface. Adult sturgeon can tolerate higher salinities than juveniles and have been found in the lowest reaches of the Savannah River in salinities up to 21.5 ppt. Research has indicated that juvenile shortnose sturgeon can be found during the year within the area from river mile 19.3 to 29.5 (river kilometers 31.2 to 47.5), and adult sturgeon from river mile 3.4 to 29.5 (river kilometers 5.5 to 47.5), respectively (Figure 22 and 23). Collins et al. (2001) found juvenile shortnose sturgeon in temperatures of 19.4° to 28.9°C and salinities of 0.1 to 17.6 ppt within depths between 2.1 and 14.9 meters. Adult shortnose sturgeon were found in temperatures of 7.5° to 29.8°C in salinities ranging from 0.1 to 21.5 ppt and depths between 1.5 and 16.7 meters.

Even though tolerance increases with age, juvenile shortnose sturgeon are stressed by reduced dissolved oxygen levels and even moderate salinities (Jenkins et al. 1993). Significant mortality was noted for fish approximately 2.5 months old when held in salinities as low as 11 ppt. Additionally, fish of that age began dying at dissolved oxygen levels of 3.0 mg/Liter and below. In the Savannah Harbor, juveniles were not captured in salinities greater than 14.9 ppt (although a telemetered fish was located very briefly in 17 ppt) or dissolved oxygen levels less than 4.0 mg/Liter. Field observations noted high stress at temperatures greater than 27°C.

Collins et al. (2001) noted that during warm months both adults and juveniles were concentrated in a very small (less than 1.5 kilometer) section of the river and especially seemed to prefer the area within the river kilometer 46.5 to 47.5 segment. During cool months, adults and juveniles used the area just below Houlihan Bridge (at river kilometer 34.3) down to the confluence of Front and Middle rivers (river kilometer 31.3), and during the coldest period they especially used the area at this confluence and up into the Middle River. During 1999 through 2000, shortnose sturgeon consistently utilized a 7.9-meter-deep hole in the Middle River near the confluence with the Front River. Recent and on-going telemetry studies confirm that this area is still being heavily utilized for

resting by adult and large juvenile shortnose sturgeon. Water quality data suggest that an existing low sill between this hole and the Front River may minimize salinity fluctuations associated with the tidal cycle. Adults were less concentrated than juveniles during winter. Adults were found in the Front River and appeared to wander extensively in the Middle River but were not found in the Back River. Recent and on-going telemetry studies conducted by the South Carolina Department of Natural Resources and The Nature Conservancy have found adult shortnose sturgeon using the middle part of the Back River near Rifle Cut, which connects the Back River to the Middle River.

In the southern part of their range, shortnose sturgeon are known to take refuge from high water temperatures in the summer by congregating in cool, deep areas of rivers (Flournoy et al. 1992, Rogers and Weber 1994, Rogers and Weber 1995, Weber 1996) and then forage widely throughout the estuary during the winter (Collins and Smith 1993, Weber et al. 1999). Seasonal movements of adults have been documented in the Savannah River. Shortnose sturgeon range widely during cooler winter months, and aggregate and become relatively sedentary during summer. Summer water temperatures in southern estuaries commonly approach, and sometimes exceed, the maximum tolerable levels identified in the laboratory for early juvenile shortnose sturgeon (Jenkins et al., 1993). Observations indicate that sturgeon seek relatively deep, cool holes, possibly to avoid warm temperatures and low dissolved oxygen. A second deep hole occurs upstream of the project area. It is 6.5 meters deep and is located at river mile 29.5 (river kilometer 47.5), just north of the confluence with Abercorn Creek. This location is also frequently used by sturgeon, especially during the summer and early fall, and tracking results have found individuals resting there over several hours to days (Collins et al. 2001). It is characterized as being a deep area located at a sharp bend in the river, adjacent to a large sand bar. It is unknown why this area is preferred, but it may be due to the synergistic effects of salinity, dissolved oxygen, and temperature.

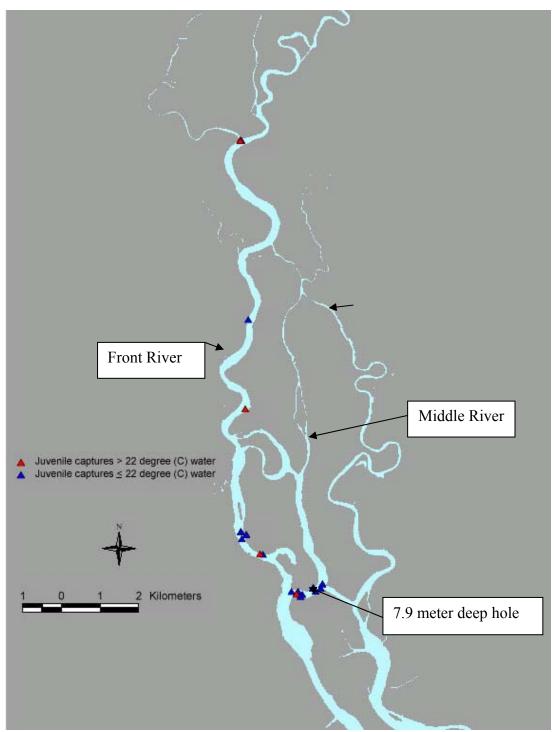


Figure 22. Locations where juvenile shortnose sturgeon have been found in the lower Savannah River.

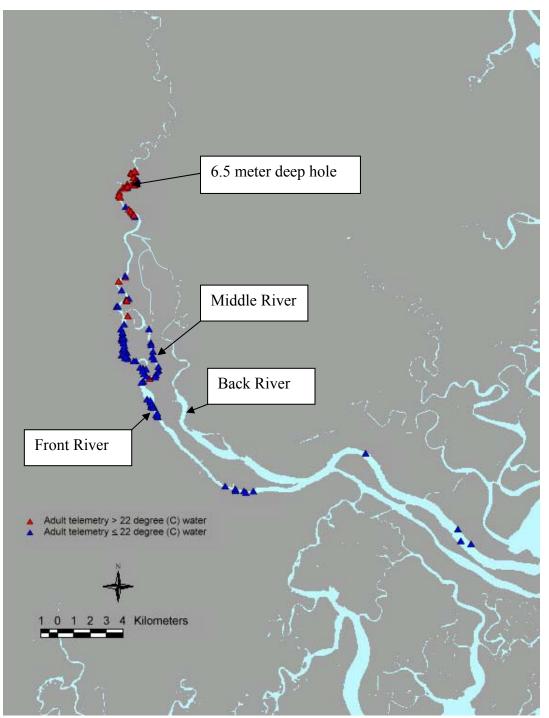


Figure 23. Locations where adult shortnose sturgeon have been found in the lower Savannah River

4.2 Status and Distribution of Atlantic Sturgeon in the Action Area

The Savannah River supports a reproducing subpopulation of Atlantic sturgeon (Collins and Smith 1997). According to NOAA's-National Ocean Service, 70 Atlantic sturgeon have been captured since 1999 (J. Carter, NOS, supplemental data 2006). Twenty-two of these fish have been YOY (< 410 mm TL). A running ripe male was captured at the base of the New Savannah Bluff Lock and Dam during the late summer of 1997, which supports the hypothesis that spawning occurs there in the fall. While spawning has been confirmed in the Savannah River, no spawning sites have been verified (Collins and Smith 1997). The fresh–brackish water interface area serves as the summer nursery habitat for Atlantic sturgeon (Smith et al. 1993, McCord 1998).

It is thought that overharvesting of sturgeon in the 1890s led to the dramatic decline in the population, and poor water quality since then has not been conducive to recovery. Secor and Gunderson (1998) showed that juvenile Atlantic sturgeon are less tolerant of summer-time hypoxia than juveniles of other estuarine species. The recent extirpations and severe population depressions of these species in the South is probably not coincidental; mortalities related to the synergistic effects of low dissolved oxygen levels and high summer temperatures would tend to affect southern populations to a greater extent than those further north.

Prior to the collapse of the fishery in the late 1800s, the sturgeon fishery was the third largest fishery in Georgia. Secor (2002) estimated from U.S. Fish Commission landing reports that approximately 11,000 spawning females were likely present prior to 1890. While fishing occurred in the Savannah River, the sturgeon fishery was mainly centered on the Altamaha River, and in more recent years, peak landings were recorded in 1982 (13,000 lbs). Based on juvenile presence and abundance, the Altamaha seems to currently support one of the healthiest Atlantic sturgeon subpopulations in the Southeast (D. Petersen, UGA, pers. comm. 2006). Atlantic sturgeon are also present in the Ogeechee River, which is interconnected to the Savannah River at its lowest reaches; however, the absence of age-1 fish during some years and the unbalanced age structure suggests that the subpopulation is highly stressed (Rogers and Weber 1995). Spawning adults have been collected in recent years from the Satilla River (Waldman et al. 1996). Recent sampling of the St. Mary's River located sturgeon (D. Petersen, UGA, pers. comm. 2011), which changes previous reports by Rogers et al. (1994) that the subpopulation may be extirpated. In Georgia, Atlantic sturgeon are believed to spawn in the Savannah, Ogeechee, Altamaha, and Satilla rivers.

Previous studies in the nearby Ogeechee River have shown the continued persistence of Atlantic sturgeon in this river, as indicated by the capture of age +1 fish. Sampling efforts (including 1991-1994, 1997, and 1998) to collect age-1 sturgeon as part of the Savannah River genetics study suggest that juvenile abundance is rare, with high interannual variability, indicating spawning or recruitment failure. However, the Army's Environmental and Natural Resources Division (AENRD) at Fort Stewart, Georgia, which borders the Ogeechee River, collected 17 sturgeon in 2003 considered to be YOY (less than 30 cm TL) and an additional 137 fish in 2004, using a 30 m x 2 m experimental gillnet (3.8, 7.7, 12.7, 15.2, 17.8 cm stretched mesh). Most of these fish were juveniles; however, nine of these fish measured less than 41 cm TL and were considered YOY. In 2003, 17 sturgeon captured in this survey were also considered YOY (reported as less than 30 cm TL). The AENRD survey provides the most recent captures of YOY in the Ogeechee.

4.3. Factors Affecting Sturgeon in the Action Area

4.3.1 General

In recent years, NMFS has undertaken several ESA Section 7 consultations to address the effects of federal actions on sturgeon in the Savannah River (Table 4). Because Atlantic sturgeon are not listed, there are no consultation records.

Date	Project		
4/17/2003	Discharges from J. Strom Thurmond Dam		
5/28-2003	FWS grant to GADNR CRD for marine fisheries surveys		
7/03/2003	Chatham County dock construction for water ferry		
12/07/2004	GPA Berth 8 construction		
12/30/2004	COE advance maintenance dredging Savannah Entrance		
	Channel		
02/05/2005	Amendment 6 to Shrimp Fishery FMP		
08/02/2005	GDOT repair of Back River bridge-Chatham County		
03/12/2007	Savannah Economic Development Authority- North Port		
	Project		
08/02/2007	Southern LNG & Elba Express Elba III project		
12/10/2007	NPS/FHA repair of Fort Pulaski bridge		
08/05/2008	Southern Nuclear – Vogtle Electric Plant license renewal		
01/12/2009	GDOT replacement of Back River bridge-Chatham County		
01/28/2009	Drought Contingency Plan Savannah River		
03/16/2009	SAD Non-capture relocation trawling demo project		
07/15/2009	Bank stabilization at Cockspur Island Lighthouse		
11/06/2009	Fall/Winter Flow Reduction- Savannah River (Thurmond		
	Reservoir)		

Table 4. Summary of ESA Section 7 consultations for sturgeon conducted in theSavannah River 2002-2010.

Through an ESA Section 6 cooperative agreement with Georgia and South Carolina, NMFS has supported numerous research projects within the project area to investigate the life history of the shortnose and Atlantic sturgeon.

Through issuance of ESA Section 10(a)(1)(A) permits, scientific and enhancement studies are conducted by researchers on captive shortnose sturgeon maintained at various quarantined research facilities. Researchers employed by USFWS, USGS, the University of Florida, and one private facility, are currently authorized to study captive shortnose sturgeon. These captive individuals are periodically conditioned and spawned and the

resulting gametes and progeny are used for scientific studies, such as cryogenics, disease transmission, nutrition, genetics, toxicology, fish passage, and fish culture techniques. Between 1985-1992, 97,483 shortnose sturgeon raised at Bears Bluff National Fish Hatchery were released into the Savannah River. The hatchery-produced individuals were stocked at various ages, locations, and across all seasons. The total estimated number of shortnose sturgeon stocked is great; most were stocked as larvae and early juveniles. Only 18,210 individuals were large enough to be tagged in some fashion. Survival of the very young sturgeon was probably low but unknown. Population estimates of adult shortnose sturgeon pre- and post-stocking suggest that the numbers had increased substantially, but many tags were shed, few fish were marked, and these estimates were never published as statistical assumptions were violated and the estimates were biased (but biased similarly). Some believe the stocking event was successful; however, without information on the survivability and emigration of both the wild and stocked fish, impacts and effects of the stocking event cannot be assessed. A few of the fish that retained their tags have been found in other rivers, suggesting they emigrated and may have been released at an age too late to imprint on the Savannah River. Straying of these hatchery-raised shortnose sturgeon into other rivers was confirmed with the capture of a tagged adult in the Ogeechee River (D. Peterson, University of Georgia, pers. comm.).

There are currently 17 Section 10(a)(1)(A) scientific research permits issued to study shortnose sturgeon in the rivers of the United States. Some of the studies are near, or within, the project area (Table 5). Each permit approves sampling methodology and authorizes incidental take. Two of the ESA Section 10 permits allowing take of shortnose sturgeon include the Savannah River. Ongoing research involves collection of shortnose sturgeon from the Savannah River for ageing, and to attempt to generate an additional population estimate. Tagging and telemetry is occurring to identify upstream spawning location and the effects of reduced flow on spawning habitat. Incidental mortality of a total of twenty-seven shortnose sturgeon is currently permitted through research permits. The specific stressors to fish subject to NMFS-issued ESA permit conditions are capture in nets; handling and restraint during examinations; tagging using PIT, internal, and external tags; tissue sampling; anesthetizing; laparoscopy; blood sampling; and gonad biopsy.

Permit No.	Location	Authorized Take	Objectives and Research Activities	
<u>1420</u> University of Georgia Expires: 9/30/09	Altamaha River, GA	1,000 adult/juv. (2 lethal), 100 ELS	1) <u>Population Dynamics</u> ; 2) <u>Habitat</u> ; 3) <u>Genetics</u> ; and 4) <u>Contaminants</u> : Capture, handle, weigh, measure, PIT tag, transmitter tag, tissue sample, anesthetize, conduct laparoscopy, blood collection, fin ray section, collect ELS	
<u>10037</u> University of Georgia Expires: 4/30/2013	Ogeechee River, GA	150 adult/juv (2 lethal), 40 ELS1) <u>Population Dynamics;</u> 2) <u>Habitat;</u> 3) <u>Genetics;</u> & 4) <u>Contaminants:</u> Capture, handle, measure, weigh, PIT tag, tissue sample, fin-ray section, anesthetize, laparoscopy, blood collection, radio tag, collect ELS		
10115 University of Georgia Expires 08/3/2013	Satilla & St. Mary's GA & FL	85 adult/juv 20 ELS	1) <u>Presence /Absence:</u> 2) <u>Genetics:</u> Capture, handle, measure, weigh, PIT tag, tissue sample, collect ELS	
1447SouthCarolinaDNRExpires:2/28/2012	South Carolina Rivers	100 adult/juv. (2 lethal), 100 ELS	1) <u>River Survey</u> ; 2) <u>Genetics</u> ; and 3) <u>Diet</u> : Capture, handle, measure, weigh, PIT and DART tag, transmitter tag, anesthetize, tissue sample, gastric lavage, collect ELS	
1505SouthCarolinaDNRExpires:5/15/2011	South. Carolina Rivers	98 adult/juv. (2 lethal), 200 ELS	1) <u>River Survey</u> ; 2) <u>Genetics</u> ; and 3) <u>Contaminants</u> ; and 4) <u>Diet</u> : Capture, handle, measure, weigh, PIT and DART tag, transmitter tag, anesthetize, laparoscopy, blood collection, tissue sample, gastric lavage, collect ELS	

Table 5. Current shortnose sturgeon research permits authorized for research activities utilizing wild fish under ESA Section 10 (a)(1)(A) permits in, or near, the project area.

NMFS finalized the Recovery Plan for the shortnose sturgeon in 1998 as required by ESA Section 4 with the following recovery objective:

"to recover shortnose sturgeon populations to levels of abundance at which they no longer require protection under the ESA, and for each population segment, the minimum population size will be large enough to maintain genetic diversity and avoid extinction."

The Recovery Plan identified 19 discrete populations of shortnose sturgeon and determined the Savannah River population to be discrete (NMFS 1998). The 1998 shortnose sturgeon Recovery Plan also identified four main recovery actions: establish

listing criteria for shortnose sturgeon population segments; protect shortnose sturgeon and their habitats; rehabilitate shortnose sturgeon populations and habitats; and implement recovery tasks. To rehabilitate shortnose sturgeon habitats and population segments, the Recovery Plan specifically calls for actions to restore access to habitats, spawning habitat and conditions, and foraging habitat.

In 2007, NMFS initiated a shortnose sturgeon status review pursuant to ESA Section 4; a draft status review report has been peer-reviewed and is expected to be finalized during 2011. Once completed, NMFS will then consider if the current listing is appropriate. NMFS would propose any changes through the federal rule-making process outlined in 50 CFR 424. Once the shortnose sturgeon status review is complete, NMFS intends to designate a new recovery team and initiate a revision of the 1998 shortnose sturgeon recovery plan.

4.3.2 Commercial and Recreational Fisheries

Directed harvest of sturgeon is currently prohibited; however, sturgeon are taken incidentally in anadromous fisheries occurring within Georgia and South Carolina that deploy nets, and are likely targeted by poachers throughout their range (Dadswell 1979, Dovel et al. 1992, Collins et al. 1996). Impacts from poaching are unknown.

State Fisheries

During 1989-1991, the commercial shad gillnet fishery's bycatch included more endangered shortnose sturgeon than juvenile Atlantic sturgeon, which is considered unusual. The incidental capture of sturgeons in the Georgia and South Carolina gillnet fishery for American shad (*Alosa sapidissima*) and the trawl fishery for penaeid shrimp (*Penaeus* spp.) was summarized by Collins et al. (1996): the commercial shad fishery was active from approximately mid-January through mid-April along the South Atlantic coast; sturgeon captured in the shad gillnet fishery were primarily adults and accounted for 52 percent of Atlantic sturgeon bycatch and the shrimp trawl fisheries accounted for 39 percent. Collins et al. (1996) reported that two commercial fishermen collected 14 fish over the period of 1990-1992, averaging seven Atlantic sturgeon/fisher/year. It seems that Atlantic sturgeon abundance within the Savannah River is extremely low, as evident from low bycatch and reported captures over the last 15 years. Thus, bycatch may be an issue if abundance is low and fishing effort is high.

Entanglement of sturgeon in gillnets can result in injury and mortality, reduced fecundity, and delayed or aborted spawning migrations of sturgeon (Moser and Ross 1993 and 1995, Weber 1996, Collins et al. 2000a, Moser et al. 2000). In the Savannah River, adults were common in the bycatch from the lowest point in the river at which gillnet fishing was allowed (about river kilometer 43) up to river kilometer 278 (the uppermost of several sturgeon spawning areas), as reported by Collins and Smith (1993). Bycatch of sturgeon in the river was as high as 102 fish/fisher/yr, and immediate bycatch mortality of sturgeon for this gear type was 16 percent, with another 20 percent of fish being injured (Collins et al. 1996). In addition to such accidental mortality, intentional mortality of shortnose sturgeon captured in the shad fishery has been known to occur (McCord 1998).

Mandatory reporting of sturgeon bycatch was initiated in 2000 by the Atlantic States Marine Fisheries Commission; a summary of self-reported shortnose sturgeon bycatch in the Savannah River via the South Carolina shad gillnet fishery is presented in Table 6. In most cases, shortnose sturgeon captured as bycatch of the shad gillnet fishery are returned to the river unharmed; survival is expected to be greater early in the shad season when waters are cooler. These numbers should be considered a minimum estimate because fishers tend to greatly under-report bycatch, especially of endangered species. The possession of a commercial shad license permits the fishing of 10 nets; however, on average a licensee usually has 4-5 nets (B. Post, SCDNR, pers. comm.). Nets are usually 5 ½-inch stretch mesh and may not exceed 600 feet in length. No net may be set within 600 feet of any gillnet previously set.

Directed fisheries for sturgeon no longer occur, and incidental marine and estuarine hook-and-line fisheries have little impact, but sturgeons (especially juvenile and subadult Atlantics) do occur in the by-catch of trawl fisheries in South Carolina and Georgia, especially the inshore/nearshore segment of the penaeid shrimp trawl fishery during cool months. During the period from 1973 to 1975, commercial shrimp trawlers caught a total of 1,111 sturgeon off North Carolina, South Carolina, and Georgia (Keiser 1976). The report did not identify whether they were shortnose or Atlantic sturgeon. The shrimp trawl fishery produced 39 percent of 97 reported recaptures of Atlantic sturgeon tagged in a Georgia study conducted before use of turtle excluder devices became mandatory (Collins et al. 1996). Use of turtle excluder devices is thought, but not proven, to reduce by-catch of sturgeons.

Year	Shortnose sturgeon	Atlantic sturgeon
2009	21	15
2008	12	2
2007	16	6
2006	N/A	3
2005	7	0
2004	23	0
2003	1	3
2002	26	4
2001	N/A	N/A
2000	4	5

Table 6. Summary of self-reported effort and incidental bycatch of shortnose and Atlantic sturgeon by commercial shad gillnet fishery in the Savannah River as reported to the Atlantic States Marine Fisheries Commission by South Carolina. Mandatory reporting began in 2000. There are no data to separate total number of sturgeon into unique and recaptured individuals.

4.3.3 Dams

The Savannah River is segmented by several dams (USFWS et al. 2001) that adversely impact fish populations through: (1) the blockage and/or impairment of required

migration patterns of anadromous and diadromous species; (2) river ecosystem fragmentation; and (3) instream flow modifications that alter natural, seasonal hydrological conditions and river morphology. Habitat accessibility and location of dams throughout the Southeast river basins are inseparably linked; fish passage at one facility determines the passage potential at other dams. Access to traditional spawning grounds is now blocked by a series of six dams on the Savannah River. The construction of these dams and reservoirs has converted or blocked access to approximately half of 384 miles of historical anadromous fish spawning and nursery habitat. A major portion of high quality anadromous fish spawning habitat (rapids complex: boulder, bedrock, cobble and gravel substrate) that was once available has been blocked or inundated by large reservoirs above the Augusta Diversion Dam, which is located approximately 20 miles above the New Savannah Bluff Lock and Dam. The majority of the habitat that is no longer accessible was the most heavily used. It is estimated that 90 to 95 percent of the quality spawning habitat for rapids-dependent anadromous species has been lost. The New Savannah Bluff Lock and Dam currently impedes shortnose sturgeon from accessing important habitat areas. It is the first impediment encountered by all anadromous fish species migrating between estuarine/marine coastal waters into freshwater habitats of the Savannah River. The New Savannah Bluff Lock and Dam is an inactive navigation dam that precludes sturgeon access to valuable spawning habitat upstream at the Augusta Shoals, which is located just below the Augusta Diversion Dam (Figure 24). The COE has proposed construction of a fish passage bypass facility at the dam as mitigation for the effects of the deepening in the lower Savannah River. Establishing fish passage at the New Savannah Bluff Lock and Dam would enhance spawning potential at sites located upstream of this structure.

Establishing fish passage at the New Savannah Bluff Lock and Dam should also trigger the construction of fish passage at dams located upriver. In 1994, the USFWS, NMFS, SCDNR, and the GADNR completed development of a plan to restore access to a portion of historical anadromous fish spawning habitat in the Savannah River. The plan was filed by the FWS on behalf of the resource agencies in 1994, and was adopted by the Federal Energy Regulatory Commission (FERC) as a Comprehensive Plan pursuant to Section 10(a)(2) of the Federal Power Act. The plan is a guide for resource agency efforts and would restore access to approximately 35 miles of spawning and maturation habitat. The plan includes the following elements: (1) reliable passage of anadromous fish at the New Savannah Bluff Lock and Dam; (2) the design and implementation of an upstream fish passage mechanism and safe downstream (out-migrant) passage at the Augusta Diversion Dam; (3) the design and implementation of an upstream fish passage mechanism and safe downstream (out-migrant) passage at the Stevens Creek Dam; and (4) improvement of poor dissolved oxygen releases from the J. Strom Thurmond Dam during the summer months. Three of the four elements of the plan to restore access to the 35 miles of the Savannah River between the New Savannah Bluff Lock and Dam and the J. Strom Thurmond Dam are in place. In 2004, the NMFS and USFWS sent the FERC a joint prescription for fish passage at the Augusta Diversion Dam as well as minimum flow requirements necessary over the Augusta Shoals in regards to the proposed relicensing of the Diversion Dam. When FERC issued the license for the Stevens Creek Hydropower Project in 1995, it reserved authority for the USFWS to prescribe a fishway

at that project once upstream passage was achieved at the Augusta Diversion Dam. Plans are in place to provide fish passage at the Augusta Diversion Dam and the Stevens Creek Hydroelectric Project when fish passage is achieved at the New Savannah Bluff Lock and Dam. Once fish passage is installed at the Augusta Diversion Dam, sturgeon would be able to pass above the dam and then pass back downstream into the Augusta Canal. If sturgeon entered the canal, they would have to pass through hydroelectric facilities to reenter the Savannah River. NMFS is working with the Augusta Canal to implement measures that will keep sturgeon out of the canal once fish passage at the dams has been established.

Figure 24. Augusta Diversion Dam and Shoals

Dams and their operations are also the cause of major instream flow alteration in the Southeast (USFWS et al. 2001). Hill (1996) identified the following impacts of altered flow to anadromous fishes by dams: (1) altered dissolved oxygen concentrations and temperature; (2) artificial destratification; (3) water withdrawal; (4) changed sediment load and channel morphology; (5) accelerated eutrophication and change in nutrient cycling; and (6) contamination of water and sediment. Activities associated with dam maintenance, such as dredging and minor excavations along the shore, can release silt and other fine river sediments that can be deposited in nearby spawning habitat. Dams may reduce the viability of sturgeon populations by removing free-flowing river habitat. Seasonal deterioration of water quality can be severe enough to kill fish in deep storage reservoirs that receive high nutrient loadings from the surrounding watershed (Cochnauer 1983). Important secondary effects of altered flow and temperature regimes include decreases in water quality, particularly in the reservoir part of river segments, and changes in physical habitat suitability, particularly in the free-flowing part of river segments. The most commonly reported factor influencing year-class strength of sturgeon species is flow during the spawning and incubation period (Jager et al. 2002). Water temperature is another environmental factor that explains year-to-year variation in recruitment (Counihan et al. in press).

4.3.4 Water Quantity and Quality

Water Quantity

The headwaters for the project area originate in the Blue Ridge Mountains of North Carolina, pass through Georgia, and drain into the Atlantic Ocean through the Savannah River. Water flow is regulated by the COE through dams at Lake Hartwell, Lake Richard B. Russell and Clarks Hill Lake (known as J. Strom Thurmond Lake in South Carolina). Flow in the Savannah River is primarily controlled by releases from J. Strom Thurmond Dam. The gates at the New Savannah Bluff Lock and Dam are controlled remotely at the Thurmond Reservoir. Two nuclear sites—Plant Vogtle in Georgia and the U.S. Department of Energy's Savannah River Site in South Carolina-withdraw water for their facilities. The Vogtle Electric Generating Plant consists of two nuclear reactors and currently uses up to 64 million gallons per day (mgd) of water from the Savannah River to generate power. In March 2008, the Southern Nuclear Operating Company applied to the Nuclear Regulatory Commission for a license to build two additional nuclear reactors at the plant, increasing the potential water usage to 80 mgd. Numerous other large facilities positioned along the river also withdraw water for industrial uses. Up to 100 mgd (379,000 cubic meters per day) of Savannah River water may be withdrawn to support the growth of South Carolina communities located outside of the Savannah River basin, such as Greenville and Beaufort County (Spencer and Muzekari 2002). While Georgia has laws restricting interbasin transfers of water, South Carolina has vet to adopt stream flow protections and does not regulate surface water withdrawals (Rusert and Cummings 2004).

The Savannah National Wildlife Refuge (NWR), located adjacent to the project area in the coastal zone, receives freshwater from the river to seasonally flood wetlands to create, protect, and manage migratory waterfowl and shorebird habitat. Water flow directly affects water level management at the NWR; managed habitats are dependent upon adequate freshwater for maintaining vegetative diversity.

The State of Georgia designates the beneficial uses of the freshwaters within the project area as primary and secondary contact recreation, drinking water supply after conventional treatment in accordance with requirements, fishing, indigenous aquatic community habitat, and industrial and agricultural uses. The city of Savannah has a water intake in Abercorn Creek, located just upstream from the project site, primarily as a water supply for the city's municipal and industrial water uses. It has a 62.5 million gallon per day (mgd) capacity, but presently operates at around 30 mgd. Several industries located along the lower Savannah River also withdraw water for industrial uses. The Savannah Electric and Power Company is the largest industrial permittee and had a maximum daily withdrawal of 267.0 mgd (reported in year 2000) at its Port Wentworth facility.

Water Quality

In October 2006, the EPA finalized a TMDL for Savannah Harbor and concluded that the Savannah River cannot withstand the introduction of anthropogenic, oxygen-demanding substances and still provide acceptable habitat for critical aquatic life that reside in the reaches of the river (EPA 2006). The finding meant that South Carolina and Georgia would have to revise their permits for point source discharges in those reaches as they expired and came up for renewal. As part of its analysis, EPA evaluated the dissolved oxygen requirements for several fish species and for natural conditions of the river. At that time, the applicable dissolved oxygen site-specific criteria for the Savannah Harbor, as established by Georgia, was a minimum instantaneous dissolved oxygen criteria of no less than 3.0 mg/Liter in June, July, August, September, and October; no less than 3.5 mg/Liter in May and November; and no less than 4.0 mg/Liter in December, January, February, March, and April. However, Georgia revised its dissolved oxygen standard for the Savannah Harbor in 2009 and it now requires a daily average of no less than 5.0 mg/Liter throughout the year, with an instantaneous minimum of 4.0 mg/Liter throughout the water column. The new standard matches the South Carolina standard for waters of the same use classification and applies throughout the water column.

The lower Savannah River is heavily industrialized, and nursery habitat for many species of fish in the lower river has been significantly impacted by diminished water quality and channelization. Contaminants in the Savannah River include those from both municipal (city of Savannah) and industrial effluents. The area adjacent to the Port is especially heavily developed by a wide variety of industries. Other contaminants arise from two nuclear facilities farther upriver; nuclear isotopes have been detected in the sediment downriver in the estuary. Point source discharges and compounds associated with discharges contribute to poor water quality and may also impact the health of adult sturgeon. Poor water quality can have substantial deleterious effects on aquatic life, including production of acute lesions, growth retardation, and reproductive impairment (Cooper 1989, Sindermann 1994). Ultimately, toxins introduced to the water column become associated with the benthos and can be particularly harmful to benthic organisms like sturgeon (Varanasi 1992). Available data suggest that early life stages of fish are more susceptible to environmental and pollutant stress than older life stages (Rosenthal and Alderdice 1976).

Elevated levels of environmental contaminants, including chlorinated hydrocarbons, in several fish species are associated with reproductive impairment (Cameron et al. 1992, Longwell et al. 1992), reduced egg viability (von Westernhagen et al. 1981, Hansen 1985, Mac and Edsall 1991), and reduced survival of larval fish (Berlin et al. 1981, Giesy et al. 1986). Several characteristics of shortnose sturgeon (i.e., long lifespan, extended residence in estuarine habitats, benthic predator) predispose the species to long-term and repeated exposure to environmental contamination and potential bioaccumulation of heavy metals and other toxicants (Dadswell 1979). Chemicals and metals such as chlordane, DDE, DDT, dieldrin, PCBs, cadmium, mercury, and selenium settle to the

river bottom and are later consumed by benthic feeders such as sturgeon or macroinvertebrates, and then work their way into the food web. Some of these compounds may affect physiological processes and impede a fish's ability to withstand stress, while simultaneously increasing the stress of the surrounding environment by reducing dissolved oxygen, altering pH, and altering other physical properties of the waterbody. Exposure to sufficient concentrations of these chemicals can cause lethal and sub-lethal effects such as: behavioral alterations, deformities, reduced growth, reduced fecundity, and reduced egg viability (USFWS 1993, Ruelle and Keenlyne 1993).

To address concerns about the potential for contaminants in the project area, sediment core samples were collected and examined for sediment physical and chemical properties. The sampling area covered the entire area proposed for harbor deepening, extending from deep water in the ocean to the Kings Island Turning Basin (Station 103+000). Parameters investigated included metals, PCBs, PAHs, petroleum hydrocarbons, phenols, pesticides, dioxin congeners, cyanide, organotins, and nutrients. The evaluation found that most of the sediments provided no reason for concern over potential contaminantrelated impacts associated with the proposed dredging and dredged sediment placement. However, three potential issues were identified. One issue involved sediments near the old RACON Tower site, which were first sampled in 1997 during a comprehensive survey of the harbor. Subsequent sampling conducted in 2005 revealed that sediments at that location do not pose a potential for contaminant-related environmental impacts. The second issue pertained mostly to whether the sediment chemistry data for pesticides, PAHs and phenols, especially achieved detection limits, were adequate for comparison to screening criteria. That issue was also addressed during the 2005 sampling. The confirmatory sampling within the channel revealed there are no potential sediment contaminant concerns related to pesticides, PAHs, phenols, or metals other than cadmium. The final issue involved the concentration and distribution of cadmium within the new work sediments. Sampling was conducted in 2005 to address this issue. Cadmium was found to occur naturally in unusually high levels within Miocene clays that would be excavated during the SHEP dredging. Evaluation of the laboratory results could not rule out the potential for adverse impacts from sediments with elevated cadmium levels in some reaches of the channel. However, the location of the elevated cadmium levels is down river from known sturgeon habitat and should not present a concern for sturgeon. A more detailed discussion on the cadmium sediments is in Section 5.2.3.

Secor (1995) noted a correlation between low abundances of sturgeon during this century and decreasing water quality caused by increased nutrient loading and increased spatial and temporal frequency of hypoxic conditions. Based on the known effects of dissolved oxygen, temperature, and salinity during the critical summer months, a safe threshold for suitable habitat for shortnose sturgeon appears to be approximately 4.0 mg/Liter in the bottom meter of the water column when temperatures exceed 26°C, and 3.5 mg/Liter when they do not exceed that temperature threshold. The habitat suitability criteria used in modeling shortnose sturgeon habitat in the action area before and after the proposed action are presented in Table 7.

Life Stage	Adults	Adults	Juveniles
Time of Year	Winter	Summer	Winter
Salinity	<= 25 ppt	<= 10 ppt	<= 14.9 ppt
D.O.	10 %	Same	Same
Exceedance			
Dissolved	3.5 mg/Liter	4.0 mg/Liter	3.5 mg/Liter
Oxygen			
D.O.	5 %	Same	Same
Exceedance			
Dissolved	3.0 mg/Liter	3.0 mg/Liter	3.0 mg/Liter
Oxygen			
D.O.	1 %	Same	Same
Exceedance			
Dissolved	2.0 mg/Liter	2.0 mg/Liter	2.0 mg/Liter
Oxygen			
Temperature	Normal January	Normal August	Normal January
River Flow	Normal January	Normal August	Normal January
Location –	Bottom layer	Same	Same
depth			
Location –	Where	Same	Same
width	Hydrodynamic		
	Model is 3 cells		
	wide, use		
	deepest cell;		
	where >3 cells		
	wide, use		
	deepest 2 cells		

 Table 7. Summary of Shortnose sturgeon habitat suitability criteria in the

 Savannah River Estuary

4.3.5 Dredging

Dredging of navigation channels can adversely affect shortnose and Atlantic sturgeon due to their benthic nature. The Savannah River is home to one of the busiest ports on the Atlantic Coast and is maintenance dredged regularly up to the Garden City Terminal. A seasonal restriction on dredging operations has been imposed from March 16–May 31 to protect striped bass in the Savannah River. This spring closure likely benefits sturgeon as well (M. Collins, SCDNR, pers. comm. 1998).

Seasonal restrictions (hopper dredging "windows") are also placed on hopper dredging conducted offshore of Savannah Harbor in the shipping channel to protect sea turtles. Hopper dredges can also lethally harm sturgeon directly by entraining sturgeon in dredge drag arms and impeller pumps. Mechanical dredges have also been documented to kill shortnose, Atlantic, and Gulf sturgeon. Environmental impacts of dredging include the direct removal/ burial of organisms; turbidity/siltation effects; contaminant resuspension; noise/disturbance; alterations to hydrodynamic regime and physical habitat; and actual loss of riparian habitat (Chytalo 1996; Winger et al. 2000). According to Smith and Clugston (1997), dredging and filling impact important habitat features of Atlantic sturgeon as they disturb benthic fauna, eliminate deep holes, and alter rock substrates. To reduce the impacts of dredging on anadromous fish species, most of the Atlantic states impose work restrictions during sensitive time periods (spawning, migration, feeding) when anadromous fish are present. Reduced dissolved oxygen levels and upriver movement of the salt wedge may result from channel deepening. Potential impacts from hydraulic dredge operations may be avoided by imposing work restrictions during sensitive time periods (i.e., spawning, migration, feeding) when sturgeon are most vulnerable to mortalities from dredging activity.

Dredging operations may impact sturgeon by destroying benthic feeding areas, disrupting spawning migrations, and re-suspending fine sediments in spawning habitat sediments that cover required substrate. Because shortnose sturgeon are benthic omnivores, the modification of the benthos could affect the quality, quantity, and availability of sturgeon prey species. During the study conducted by Hall et al. in 1985-1992, juvenile shortnose sturgeon were found to be concentrated in the Kings Island Turning Basin (river mile 18.7). No juvenile stages were found in that area during a study conducted later in 1999-2000 (Collins et al. 2001). Collins et al. surmised that the harbor modifications (e.g., harbor deepening from 38 to 42 feet) occurring after 1992 changed the hydrographic conditions and caused the fish to move from the area. The low catch rate of juveniles in the 1999-2000 study indicated that natural recruitment was quite low in the Savannah River. In the southeastern United States, low recruitment is often thought to be caused by poor water quality in the nursery habitat located at the fresh water/salt water interface (Collins et al. 2001).

Dredging Methods and Associated Impacts

Hopper dredges are used within known sturgeon habitat throughout the proposed project area, including the ocean bar channels. In the South Atlantic region, only 9 incidental takes have occurred during hopper dredging operations, all of which were Atlantic sturgeon. Considering that Atlantic sturgeon primarily lead a marine existence, with the exception of their spawning migration, and hopper dredges are often operated in ocean bar channels or offshore borrow areas, it is likely that the risk of entrainment by hopper dredges is higher for Atlantic sturgeon than shortnose sturgeon. It is often less economical to use a hopper dredge in upstream environments, where shortnose sturgeon predominantly spend their time. The unit of dredging effort with respect to hopper dredging in shortnose sturgeon habitat is less than Atlantic sturgeon habitat and; thus, the risk of shortnose sturgeon take with a hopper dredge is likely less than to Atlantic sturgeon in the South Atlantic region. The current best estimate (Collins et al. 2001, Collins et al. 2002) is that adult shortnose sturgeon can be expected throughout the year somewhere within the area from River Mile 3.4 to 29.5 (river kilometers 5.5 to 47.5) and juvenile sturgeon from River Mile 19.3 to 29.5 (river kilometers 31.2 to 47.5), respectively. Therefore, impacts from hopper dredges may occur if hopper dredges were used upstream of River Mile 3 (roughly Station 16+000). There have been no documented takes of shortnose sturgeon in the Savannah Harbor by dredge operations. Shortnose sturgeon are not likely to be present near the river's mouth (downstream of

Station 16+000) and in the entrance channel (from Station 0+000 to -98+600B); therefore, impacts to shortnose sturgeon from hopper dredges working in that portion of the channel are not anticipated to occur.

The use of the "turtle deflecting draghead" on hopper dredges reduces the potential for take of benthic oriented species (i.e., sea turtles and sturgeon) by creating a sand wave in front of the draghead that pushes animals out of the way that are at risk of entrainment. Though the use of the "turtle deflecting draghead" likely reduces potential risk of sturgeon entrainment based on the understanding of its operating conditions, takes can still occur due to dragtender operator error, uneven bottom contours, or difficult dredging conditions. Few studies exist that evaluate entrainment risk relative to sturgeon behavior, size class, life cycle, etc., though effects of entrainment on adult fish are presumed low (Dickerson et al. 2004).

Although the potential for significant numbers of adult and juvenile sturgeon being hit by a hydraulic cutterhead dredge is fairly low; five shortnose sturgeon takes have been documented. Adult and juvenile sturgeon are believed to be very mobile, even when occupying resting areas during the summer months (deep holes and other deep areas). However, the eggs and larvae of sturgeon are not as mobile, but most of those life stages occur over 100 river miles upstream from where hydraulic dredges are proposed for use in the project area. Therefore, no impacts to sturgeon eggs or larvae are expected with the project work in the harbor.

Though rare, documented incidental take of shortnose and Atlantic sturgeon by mechanical dredges have also been reported. Clamshell dredges operate by dropping an open bucket into the water column which plunges to the bottom where the bucket closes, ascends, and discards the dredged material into a scow or barge. Since 1990, dredging operations throughout the North Atlantic, South Atlantic, and Gulf waters have resulted in a total of three sturgeon (one shortnose and two Atlantic) being reported as captured by clamshell dredge operations. Of the three documented captures by a clamshell, one occurred in the South Atlantic region on December 3, 2000 while performing work for the Wilmington Harbor deepening project in the Cape Fear River, North Carolina. Though this sturgeon was cited in various reports as a lethal incidental take, the endangered species incident report prepared by Coastwise Consulting indicated that the "bucket brought up an Atlantic Sturgeon entangled in a net. The specimen was decomposing." Assuming that the specimen was killed by entanglement in a net prior to being captured by the bucket, this documented "take" can be discounted. Detailed information is not available for the other two mechanical dredge takes. Given the mobility of sturgeon, the lack of a suction field from mechanical dredging, and the small area of active dredging by a bucket during each load, the likelihood of mechanical dredging to incidentally take sturgeon species is small. Furthermore, compared to other hydraulic dredging techniques, mechanical dredging is often recommended by NMFS as the preferred dredging technique for minimizing incidental take of sea turtles and sturgeon. Though clamshell dredge operations have reported capture of larger sturgeon (adult/juvenile), it is unlikely that clamshell dredging operation would impact small

juvenile and larval sturgeon since there is no suction field generated by mechanical dredges.

4.3.6 Ship Strike

Commercial traffic can have an adverse effect on sturgeon through propeller and ship strike damage. Ship strikes pose a particular threat to sturgeon within shipping channels. Sturgeon are benthic feeders and spend most of their time on the bottom. Large vessels that transit shipping channels typically draft close to the bottom of the channel, thereby posing a threat to sturgeon. Multiple suspected ship strikes have been reported in rivers in the Mid-Atlantic States. A large number of the mortalities observed in these rivers from potential ship strikes have been of large adult Atlantic sturgeon. Between 2005 and 2008, a total of 28 Atlantic sturgeon mortalities were reported in the Delaware Estuary. Sixty-one percent of the mortalities reported were of adult size and 50 percent of the mortalities resulted from apparent vessel strikes (Brown and Murphy 2010). Analysis of the location and type of injury indicated that the encounters were most likely due to propeller strikes and not bow strikes. Vessels transit the Delaware Estuary through a shipping channel that extends 121 river miles from the mouth of Delaware Bay to near Bordentown, New Jersey. The relatively long distance vessels need to travel from the sea through the estuary to reach the ports is unusual as most of the other major Atlantic Coast ports, including Savannah Harbor, are located much closer to the sea. It is thought that the long distance that vessels transit through the Delaware Estuary allow for a greater chance of vessel interaction with sturgeon (Brown and Murphy 2010).

The James River, Virginia is similar to the Delaware River in that commercial vessels transit long distances (over 80 river miles) through a narrow channel to reach the ports. During 2005, five sturgeon were reported to have been struck by commercial vessels within the James River. Additionally, an average of one strike per five years has been reported in the Cape Fear River, North Carolina. No vessel strikes to sturgeon have ever been reported occurring in the Savannah River, which has a shipping channel that is shorter and wider than the aforementioned channels. The chance of a ship strike within the Savannah River is low as the populations of sturgeon are small, the distance from the mouth of the harbor to the port is short (less than 19 miles), and the channel is also wide, ranging from 500 to 2400 feet. In addition, according to the COE, there will be fewer (but larger) vessels entering the Savannah Harbor, which should decrease the chance of encounters with sturgeon. Therefore, NMFS believes that the chances of ship strikes to sturgeon that may result from the project is discountable because of the short shipping channel distance through the estuary combined with there being a small population of sturgeon, and a lower number of vessel transits. Also, while ships are transiting the estuary, the wide channel will allow highly mobile sturgeon to safely avoid ship traffic.

4.3.7 Climate Change/Sea Level Rise

Long-term observations confirm that climate is changing at a rapid rate. Over the 20^{th} century, the average annual U.S. air temperature has risen by almost 0.6°C (1°F) and

precipitation has increased nationally by 5-10 percent, mostly due to an increase in heavy downpours (NAST 2000). These trends are most apparent over the past few decades.

Climate model projections exhibit a wide range of plausible scenarios for both temperature and precipitation over the next century. Both of the principal climate models used by the National Assessment Synthesis Team (NAST) project warming in the Southeast by the 2090s, but at different rates (NAST 2000): the Canadian model scenario shows the southeast United States experiencing a high degree of warming, which translates into lower soil moisture as higher temperatures increase evaporation; the Hadley model scenario projects less warming and a significant increase in precipitation (about 20 percent). The scenarios examined, which assume no major interventions to reduce continued growth of world greenhouse gases (GHG), indicate that temperatures in the United States will rise by about $3^{\circ}-5^{\circ}C$ ($5^{\circ0}-9^{\circ}F$) on average in the next 100 years which is more than the projected global increase (NAST 2000). A warming of about $0.2^{\circ}C$ per decade is projected for the next two decades over a range of emission scenarios (IPCC 2007). This temperature increase will very likely be associated with more extreme precipitation and faster evaporation of water, leading to greater frequency of both very wet and very dry conditions.

Sea-level rise (SLR) is one of the more certain consequences of climate change; it has already had significant impacts on coastal areas and these impacts are likely to increase. Since 1852 when the first topographic maps of the Southeast region were prepared, high tidal flood elevations have increased approximately 12 inches. During the 20th century, global sea level has increased between 15 and 20 cm (NAST 2000). Analysts attribute the coastal forest decline in the Southeast to salt water intrusion associated with sea level rise. Coastal forest losses will be even more severe if sea-level rise accelerates as is expected as a result of global warming.

Between 1985 and 1995, more than 32,000 acres of coastal salt marsh were lost in the southeastern United States due to a combination of human development activities, SLR, natural subsidence, and erosion (NAST 2000). Sea level is predicted to increase by 30-100 cm by 2100 (IPCC 2007). The vulnerability of tidal wetlands to accelerated SLR depends on geologic factors, such as tectonic uplift and glacial isostatic adjustment, which buffer shorelines from SLR, and subsidence, which accelerates it. Tide range also effects marsh vulnerability, as macro- (>4 m) and meso-tidal (2-4 m) marshes are less susceptible to SLR than micro-tidal (<2 m) marshes (Stevenson and Kearney in press). In some coastal areas, rising sea level may result in tidal marsh submergence (Moorehead and Brinson 1995) and habitat migration, as salt marshes transgress landward and replace tidal freshwater and brackish marshes (Park et al. 1991). Flood and erosion damage stemming from SLR rise coupled with storm surges are very likely to increase in coastal communities. Simulation modeling predicts that a 52-cm increase in SLR will lead to a decline in tidal marsh area and delivery of ecosystem services along the Georgia coast during this century (Craft et al. 2008): a 20 percent reduction in salt marsh, along with a small increase in tidal freshwater marsh (+2 percent), and a larger increase in brackish marsh (+10 percent). The decline in salt marsh is attributed to submergence and replacement by tidal flats and estuarine open water (Craft et al. 2008). Regionally, the

areas most vulnerable to future sea level change are those with low relief that are already experiencing rapid erosion rates, such as the Southeast and Gulf Coast (NAST 2000).

Many ecosystems are highly vulnerable to the projected rate and magnitude of climate change. While it is possible that some species will adapt to changes in climate by shifting their ranges, the degree of adaptation that may occur will likely be limited by human and geographic barriers and the presence of invasive non-native species. Losses in local biodiversity are likely to accelerate towards the end of the 21st century.

It is difficult to assess the potential effects of climate change over the next few decades on coastal and marine resources, especially as climate variability is a dominant factor in shaping coastal and marine systems. The effects of future change will vary greatly in diverse coastal regions for the United States. Warming is very likely to continue in the United States during the next 25 to 50 years regardless of reduction in GHGs, due to emissions that have already occurred (NAST 2000). It is very likely that the magnitude and frequency of ecosystem changes will continue to increase in the next 25 to 50 years. and it is possible that they will accelerate. Climate change can cause or exacerbate direct stress on ecosystems through high temperatures, a reduction in water availability, and altered frequency of extreme events and severe storms. Water temperatures in streams and rivers are likely to increase as the climate warms and are very likely to have both direct and indirect effects on aquatic ecosystems. Changes in temperature will be most evident during low flow periods when they are of greatest concern (NAST 2000). In some marine and freshwater systems, shifts in geographic ranges and changes in algal, plankton, and fish abundance are associated with high confidence with rising water temperatures, as well as related changes in ice cover, salinity, oxygen levels, and circulation (IPCC 2007).

A warmer and drier climate will reduce stream flows and increase water temperatures. Expected consequences would be a decrease in the amount of dissolved oxygen in surface waters and an increase in the concentration of nutrients and toxic chemicals due to reduced flushing rate (Murdoch et al. 2000). Because many rivers are already under a great deal of stress due to excessive water withdrawal or land development, and this stress may be exacerbated by changes in climate, anticipating and planning adaptive strategies may be critical (Hulme 2005). A warmer, wetter climate could ameliorate poor water quality conditions in places where human-caused concentrations of nutrients and pollutants currently degrade water quality (Murdoch et al. 2000). Increases in water temperature and changes in seasonal patterns of runoff will very likely disturb fish habitat and affect recreational uses of lakes, streams, and wetlands. Surface water resources in the Southeast are intensively managed with dams and channels and almost all are affected by human activities; in some systems water quality is either below recommended levels or nearly so. A global analysis of the potential effects of climate change on river basins indicates that due to changes in discharge and water stress, the area of large river basins in need of reactive or proactive management interventions in response to climate change will be much higher for basins impacted by dams than for basins with free-flowing rivers (Palmer et al. 2008). Human-induced disturbances also influence coastal and marine systems, often reducing the ability of the systems to adapt so that systems that might

ordinarily be capable of responding to variability and change are less able to do so. Because stresses on water quality are associated with many activities, the impacts of the existing stresses are likely to be exacerbated by climate change. Within 50 years, river basins that are impacted by dams or by extensive development will experience greater changes in discharge and water stress than unimpacted, free-flowing rivers (Palmer et al. 2008).

4.3.8 Drought

Large-scale factors impacting riverine water quality and quantity that likely exacerbate habitat threats to shortnose and Atlantic sturgeon include drought, and intra- and interstate water allocation. Since 2007, the southeastern United States has experienced several years of drought. During this time, Georgia and South Carolina experienced drought conditions that ranged from moderate to extreme. From 2006 until mid-2009, Georgia experienced the worst drought in its history. Between November 2007 and November 2008, 50 to 100 percent of the state of Georgia experienced some level of drought ranging in intensity from "abnormally dry" to "exceptional," based on the drought intensity categories used by the U.S. Drought Monitor (NIDIS 2008). Meanwhile water allocation issues are increasing with population growth; a precedent may also be set by a United States Supreme Court decision in a case between Georgia, Alabama, and Florida and between North Carolina and South Carolina over water transfers out of the river basins found in these states (Chapman 2008, McMaster 2007).

Abnormally low stream flow can restrict access to habitat areas, reduce thermal refugia, and exacerbate water quality issues such as high temperature, low dissolved oxygen, and elevated nutrient and contaminant levels. Further reduction in flow would likely disrupt spawning cues, and upstream migration may occur earlier; a disparity between prey availability and demand by larvae could ensue. NMFS believes that reduced flow down the rivers coupled with rising sea level will push the salt wedge further upriver and likely result in constricting available shortnose sturgeon foraging habitat. Data from gauging stations indicate that periods when river flows are inadequate to protect the riverine environment from salt water intrusion are becoming more frequent. Human-induced modifications to free-flowing rivers also influence coastal and marine systems, often reducing the ability of the system to adapt to natural variability and change.

Drought and water allocation issues and their associated impacts on water quality will likely work synergistically with climate change impacts. While debated, researchers anticipate: (1) the frequency and intensity of droughts and floods will change across the Nation; (2) a warming of about 0.2°C per decade; and (3) a rise in sea level (NAST 2000). A warmer and drier climate will reduce stream flows and increase water temperature, resulting in a decrease of dissolved oxygen and an increase in the concentration of nutrients and toxic chemicals due to reduced flushing. Sea level is expected to continue rising: during the 20th century global sea level has increased 15 to 20 cm, and between 1985 and 1995 more than 32,000 acres of coastal salt marsh was lost in the southeastern United States due to a combination of human development activities, sea level rise, natural subsidence and erosion. Rising sea level will likely drive the salt

wedge further upstream, possibly affecting the survival of drifting larvae and constricting available foraging habitat.

Maintenance of adequate flow in spawning areas is especially crucial to the survival of sturgeon. Studies on larval dispersal patterns compared behavior of larvae collected from Connecticut River to those spawned from Savannah River stock. All post-yolk-sac larvae made some downstream movement as yolk-sac larvae (observed more often in the Savannah River stock), dispersal downstream was more closely associated with the post yolk-sac larval stage. Dispersal rates differed as fish from the Connecticut River peaked on days 7–12 after hatching while Savannah River individuals had a longer dispersal with multiple, prolonged peaks, and a low level of downstream movement that continued for the entire larval and early juvenile period.

4.3.9 Impingement and Entrainment

Rates of impingement and entrainment are not known, but the death of one telemetered adult in the intake structure of a factory in the Port of Savannah has been documented. Larvae have been recorded from the intake canals at the Savannah River Site, a federal nuclear facility.

4.3.10 Conservation and Recovery Actions Benefiting Sturgeon

Many measures have been implemented to protect the sturgeon in the Savannah River estuary. Over-fishing, related to targeted fishing of sturgeon has been eliminated as a causative factor in the decline of the Savannah River sturgeon population. Since its ESA listing in 1967, it has been illegal to kill or possess shortnose sturgeon. In 1998, the Atlantic States Marine Fisheries Commission (ASMFC) instituted a coast-wide moratorium on the harvest of Atlantic sturgeon, which is to remain in effect until there are at least 20 protected age classes in each spawning stock (anticipated to take up to 40 or more years). NMFS followed the ASMFC moratorium with a similar moratorium for federal waters. Sturgeon that are caught incidentally as by-catch in shrimp trawls are to be released alive. The phasing out of the traditional method of catching American shad (gillnets in a coastal intercept fishery) has greatly reduced the number of sturgeon inadvertently caught by shad fisherman. In turn, this has greatly reduced the interruption of sturgeon migrations in the late winter and early fall.

Point source discharges in the Savannah River are regulated under the NPDES program by the Georgia DNR-EPD in coordination with the EPA. Since the NPDES is a federally-mandated program, all permits issued under the program are subject to review per the provisions of the ESA. The EPA established a total maximum daily load (TMDL) for the Savannah River to improve dissolved oxygen conditions in the Savannah Harbor. The TMDL requires a reduction in oxygen demanding substances (over time, as the various NPDES permits come up for renewal) in point source discharges. This impacts NPDES permit holders in the Augusta, Georgia, area as well, since their waste loads contribute to the dissolved oxygen deficiencies in Savannah Harbor.

4.3.11 Summary and Synthesis of Environmental Baseline for Sturgeon

In summary, juvenile and adult shortnose and Atlantic sturgeon occupy habitats likely to be affected by the proposed harbor deepening. Research shows that sturgeon likely move through all areas of a river system but often remain in important resting and feeding aggregations for extended time periods (Kieffer and Kynard 1993). The demersal nature of these fish makes them vulnerable to bottom water quality degradation (i.e., increased salinity and decreased dissolved oxygen) and the adults, because they may be found in the areas undergoing dredging, may be subject to direct mortality from dredging operations and ship strikes. The survival of juveniles and recruitment to the adult population has been identified as a potential limiting factor in population growth (Smith et al. 1992). Deterioration of water quality (especially dissolved oxygen) appears to be degrading the nursery function of these summer refugia, possibly creating a recruitment bottleneck (Collins et al. 2000a). However, spawning failure also contributed to recruitment limitation. The degradation of habitat due to dredging has been indicated as being detrimental to sturgeon in the Savannah River (Collins et al. 2001). The low catch rate of juveniles in the previous and on-going studies suggests that natural recruitment is low. In the Southeast, this is generally attributed to poor water quality in the nursery habitat surrounding the fresh/brackish water interface area (Collins et al. 2001).

4.4 Status and Distribution of Sea Turtles in the Action Area

Sea turtle species occurring in the project area that may be adversely affected by the proposed action are Kemp's ridley and loggerhead sea turtles. Sea turtles found in the immediate project area may travel widely throughout the Atlantic, Gulf of Mexico, and Caribbean Sea, and individuals found in the action area can potentially be affected by activities anywhere within this wide range. These impacts outside of the action area are discussed and incorporated as part of the overall status of the species as detailed in Section 3 above. The following environmental baseline includes past and ongoing human activities in the action area that relate to the status of the species.

All of these species are highly migratory. The same individuals found in the action area may migrate into offshore waters and thus be impacted by activities occurring there; therefore, the species' statuses in the action area are considered to be the same as their range-wide statuses and supported by the species accounts in Section 3.

4.4.1 Factors Affecting Sea Turtles in the Action Area

As stated in Section 2.2 ("Action Area"), the proposed project is located off Georgia, within the Savannah Harbor, and within the extension of the Entrance Channel. The following analysis examines actions that may affect these species' environment specifically within the defined action area.

4.4.1.1 Federal Actions

In recent years, NMFS has undertaken several ESA Section 7 consultations to address the effects of federally-permitted fisheries and other federal actions on threatened and endangered sea turtle species, and when appropriate, has authorized the incidental taking of these species (Appendix A). The term "take" is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct. Each of those consultations sought to develop ways of reducing the probability of adverse effects of the action on sea turtles. Similarly, NMFS has undertaken recovery actions under the ESA that are addressing the problem of take of sea turtles in the fishing and shipping industries and other activities such as COE dredging operations. The summary below of anticipated sources of incidental take of sea turtles includes only those federal actions in or near the action area that have already concluded or are currently undergoing formal Section 7 consultation.

Dredging

The construction and maintenance of federal navigation channels has been identified as a source of sea turtle mortality. Hopper dredges move relatively rapidly (compared to sea turtle swimming speeds) and can entrain and kill sea turtles as the drag arm of the moving dredge overtakes the slower moving sea turtle. The COE has biological opinions from NMFS covering hopper dredging in the Atlantic and Gulf of Mexico. Along the Atlantic coast of the southeastern United States (North Carolina through Florida), NMFS estimates that annual observed injury or mortality of sea turtles from hopper dredging may total 35 loggerheads, 7 greens, 7 Kemp's ridleys, and 2 hawksbills (NMFS 1997a).

ESA Permits

The ESA allows the issuance of permits to take ESA-listed species for the purposes of scientific research (Section 10(a)(1)(a)). In addition, the ESA allows for NMFS and individual states to enter into cooperative agreements developed under Section 6 of the ESA, to assist in recovery actions of listed species. Prior to issuance of these authorizations, the proposal must be reviewed for compliance with Section 7 of the ESA.

Sea turtles are the focus of research activities authorized by a Section 10 permit under the ESA. Authorized activities range from photographing, weighing, and tagging sea turtles incidentally taken in fisheries, blood sampling, tissue sampling (biopsy), and performing laparoscopy on intentionally captured turtles. The number of authorized takes varies widely depending on the research and species involved, but may involve the taking of hundreds of turtles annually. Most takes authorized under these permits are expected to be non-lethal. As of January 2009, there were 10 active scientific research permits directed toward sea turtles. Before any research permit is issued, the proposal must be reviewed under the permit regulations (i.e., must show a benefit to the species). In addition, since issuance of the permit is a federal activity, issuance of the permit by NMFS must also be reviewed for compliance with Section 7 of the ESA to ensure that issuance of the permit does not result in jeopardy to the species.

4.4.1.2 Federally-Managed Fisheries Effects on Sea Turtles

Threatened and endangered sea turtles are adversely affected by several types of fishing gears used throughout the action area. Gillnet, longline, vertical hook-and-line gear, trawl gear, and pot/trap fisheries have all been documented as interacting with sea turtles. Available information suggests sea turtles can be captured in any of these gear types when the operation of the gear overlaps with the distribution of sea turtles. For all fisheries for which there is a fishery management plan (FMP), or for which any federal action is taken to manage that fishery, impacts have been evaluated under Section 7. Formal Section 7 consultation conducted on the following fisheries, occurring at least in part within the action area, were found likely to adversely affect threatened and endangered sea turtles: coastal migratory pelagics, dolphin-wahoo, South Atlantic snapper-grouper, Southeast shrimp, and Atlantic HMS fisheries (i.e., swordfish, tuna, shark, and billfish). An Incidental Take Statement (ITS) has been issued for the take of sea turtles in each of these fisheries.

The FMP for the dolphin/wahoo fishery was approved in December 2003. NMFS conducted a formal Section 7 consultation to consider the effects of implementation of the FMP on sea turtles. The biological opinion concluded that loggerhead, leatherback, hawksbill, green, and Kemp's ridley sea turtles may be adversely affected by operation of the fishery. However, the proposed action was not expected to jeopardize the continued existence of any of these species. An ITS has been provided.

A Section 7 consultation on the South Atlantic snapper-grouper fishery (NMFS 2006) has also been completed by NMFS. The fishery uses spear and powerhead, pots (i.e., traps), longline, and vertical hook-and-line gear. The opinion determined that only longline and vertical hook-and-line gear is likely to adversely affect green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles. The consultation concluded the proposed action was not likely to jeopardize the continued existence of any of these species, and an ITS was provided.

The Southeast shrimp trawl fishery affects more sea turtles than all other activities combined (NRC 1990). On December 2, 2002, NMFS completed the opinion for shrimp trawling in the southeastern United States under proposed revisions to the TED regulations (68 FR 8456, February 21, 2003). This opinion determined that the shrimp trawl fishery under the revised TED regulations would not jeopardize the continued existence of any sea turtle species. This determination was based, in part, on the opinion's analysis that shows the revised TED regulations are expected to reduce shrimp trawl related mortality by 94 percent for loggerheads and 97 percent for leatherbacks.

Atlantic pelagic longline fisheries targeting swordfish and tuna are also known to incidentally capture large numbers of loggerhead and leatherback sea turtles. The fishery mainly interacts with leatherback sea turtles and pelagic juvenile loggerhead sea turtles, thus, younger, smaller loggerhead sea turtles than the other fisheries described in this environmental baseline.

NMFS reinitiated consultation in 2004 on the pelagic longline component of this fishery as a result of exceeded incidental take levels for loggerheads and leatherbacks (NMFS 2004b). The resulting opinion (i.e., NMFS 2004b) stated the long-term continued operation of this sector of the fishery was likely to jeopardize the continued existence of leatherback sea turtles, but RPAs were implemented allowing for the continued authorization of the pelagic longline fishing that would not jeopardize leatherback sea turtles.

On July 6, 2004, NMFS published a final rule to implement management measures to reduce bycatch and bycatch mortality of Atlantic sea turtles in the Atlantic pelagic longline fishery (69 FR 40734). The management measures include mandatory circle hook and bait requirements, and mandatory possession and use of sea turtle release equipment to reduce bycatch mortality. The rulemaking, based on the results of the 3-year Northeast Distant Closed Area research experiment and other available sea turtle bycatch reduction studies, is expected to have significant benefits to endangered and threatened sea turtles by reducing mortality attributed to this fishery.

NMFS completed a Section 7 consultation on the continued authorization of Migratory Species (HMS) Atlantic shark fisheries. The commercial sector uses bottom longline and gillnet gear, while the recreational sector only uses hook-and-line gear. To protect declining shark stocks, the proposed action seeks to greatly reduce the fishing effort in the commercial component of the fishery. These reductions are likely to greatly reduce the interactions between the commercial component of the fishery and sea turtles. The opinion concluded that green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles may be adversely affected by operation of the fishery; however, the proposed action was not expected to jeopardize the continued existence of any of these species, and an ITS was provided.

NMFS completed a Section 7 consultation on the continued authorization of the coastal migratory pelagic resources fishery in the Gulf of Mexico and South Atlantic (NMFS 2007a). In the Gulf of Mexico and South Atlantic, commercial fishermen target king and Spanish mackerel with hook-and-line (i.e., handline, rod-and-reel, and bandit), gillnet, and cast net gears. Recreational fishermen use only rod-and-reel. Run-around gillnets are still the primary gear used to harvest Spanish mackerel, but the fishery is relatively small because Spanish mackerel are typically more concentrated in state waters where gillnet gear is prohibited. The 2007 opinion concluded that green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles may be adversely affected only by the gillnet component of the fishery. The continued authorization of the fishery was not expected to jeopardize the continued existence of any of these species and an ITS was provided.

4.4.1.3 State or Private Actions

Vessel Traffic

Commercial traffic and recreational pursuits can have an adverse effect on sea turtles through propeller and boat strike damage. Private vessels participate in high-speed marine events concentrated in the southeastern United States and are a particular threat to sea turtles, and occasionally to marine mammals as well. The magnitude of these marine events is not currently known. NMFS and the USCG (which permits these events) have consulted on some of these events in Florida, but a complete analysis has not been completed. Formal consultation is currently undergoing on the USCG Seventh District's marine events permitting program. NMFS has also consulted with other agencies, such as MMS and FERC, on vessel transit interactions with listed species.

The Sea Turtle Stranding and Salvage Network (STSSN) includes many records of vessel interaction with sea turtles. However, it was not possible to determine in many cases whether the vessel strike occurred before or after the turtle's death. Stranding information does not indicate where a potential mortality event (e.g., vessel strike) occurred, as a turtle could have been injured/killed at one location and then drifted with currents (i.e., generally northward with the Gulf Stream on the East Coast) for a considerable distance before coming ashore. The extent of the impact on sea turtles in the action area is not known at this time.

State Fisheries

Commercial state fisheries are located in the nearshore habitat areas that comprise the action area. Recreational fishing from private vessels also occurs in the area. Observations of state recreational fisheries have shown that loggerhead sea turtles are known to bite baited hooks and frequently ingest the hooks. Hooked turtles have been reported by the public fishing from boats, piers, and beach, banks, and jetties and from commercial fishermen fishing for reef fish and for sharks with both single rigs and bottom longlines (NMFS 2001b). Additionally, lost fishing gear such as line cut after snagging on rocks, or discarded hooks and line, can also pose an entanglement threat to sea turtles in the area. A detailed summary of the known impacts of hook-and-line incidental captures to loggerhead sea turtles can be found in the TEWG reports (1998; 2000). In August of 2007, NMFS issued a regulation (72 FR 43176, August 3, 2007) to require any fishing vessels subject to the jurisdiction of the United States to take observers upon NMFS' request. The purpose of this measure is to learn more about sea turtle interactions with fishing operations, to evaluate existing measures to reduce sea turtle takes, and to determine whether additional measures to address prohibited sea turtle takes may be necessary.

4.4.1.4 Other Potential Sources of Impacts in the Environmental Baseline

A number of activities that may indirectly affect listed species in the action area of this consultation include ocean dumping and disposal, aquaculture, anthropogenic marine debris, and acoustic impacts. The impacts from these activities are difficult to measure.

Where possible, conservation actions are being implemented to monitor or study impacts from these sources.

Marine Pollution

Sources of pollutants along the Atlantic coastal regions include atmospheric loading of pollutants such as PCBs, stormwater runoff from coastal towns, cities and villages, runoff into rivers emptying into the bays, groundwater and other discharges, and river input and runoff. Nutrient loading from land-based sources, such as coastal community discharges, is known to stimulate plankton blooms in closed or semi-closed estuarine systems. The effects on larger embayments are unknown. Although pathological effects of oil spills have been documented in laboratory studies of marine mammals and sea turtles (Vargo et al. 1986), the impacts of many other anthropogenic toxins have not been investigated. Issues of marine debris are also a concern for sea turtles as they have been known to ingest or become entangled in various forms of marine debris.

Acoustic Impacts

Acoustic impacts can include temporary or permanent injury, habitat exclusion, habituation, and disruption of other normal behavior patterns. NMFS and the U.S. Navy are working cooperatively to assess military acoustic impacts (e.g., mid-range sonar) along the east coast of the United States (i.e., primarily North Carolina through Florida). Although focused on marine mammals, sea turtles may benefit from increased research on acoustics and reduction in noise levels.

Climate Change

Climate change at normal rates (thousands of years) was not historically a problem for sea turtles species since they have shown unusual persistence over a scale of millions of years. However, there is a 90 percent probability that warming of Earth's atmosphere since 1750 is due to human activities resulting in atmospheric increases in carbon dioxide, methane, and nitrous oxide (IPCC 2007). All reptiles including sea turtles have a tremendous dependence on their thermal environment for regulating physiological processes and for driving behavioral adaptations (Spotila et al. 1996). In the case of sea turtles, where many other habitat modifications are documented (beach development, loss of foraging habitat, etc.), the prospects for accentuated synergistic impacts on survival of the species may be even more important in the long-term. Atmospheric warming creates habitat alteration which may change sex ratios, reproductive periodicity, marine habitats, or prev resources such as crabs and other invertebrates. It may increase hurricane activity leading to an increase in debris in nearshore and offshore waters, resulting in increase in entanglement, ingestion, or drowning. Atmospheric warming may change convergence zones, currents and other oceanographic features that are relevant to various sea turtles' life stages.

4.4.1.5 Conservation and Recovery Actions Benefiting Sea Turtles

Under Section 6 of the ESA, NMFS may enter into cooperative research and conservation agreements with states to assist in recovery actions of listed species. NMFS currently has

a Section 6 agreement with the State of North Carolina. Prior to issuance of these agreements, the proposal must be reviewed for compliance with Section 7 of the ESA.

NMFS and cooperating states have established an extensive network of Sea Turtle Stranding and Salvage Network (STSSN) participants along the Atlantic and Gulf of Mexico coasts that not only collect data on dead sea turtles, but also rescue and rehabilitate any live stranded sea turtles.

Other Actions

A revised recovery plan for the loggerhead sea turtle was completed December 8, 2008 (NMFS and USFWS 2008). The recovery plan for the Kemp's ridley sea turtle is in the process of being updated. Recovery teams comprised of sea turtle experts have been convened and are currently working towards revising these plans based upon the latest and best available information. Five-year status reviews have recently been completed for green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles. These reviews were conducted to comply with the ESA mandate for periodic status evaluation of listed species to ensure that their threatened or endangered listing status remains accurate. Each review determined that no delisting or reclassification of a species status (i.e., threatened or endangered) was warranted at this time. However, further review of species data for the green, hawksbill, leatherback, and loggerhead sea turtles was recommended, to evaluate whether distinct population segments (DPS) should be established for these species (NMFS and USFWS 2007a-e). NMFS has also been active in public outreach efforts to educate fishermen regarding sea turtle handling and resuscitation techniques. There is also an extensive network of STSSN participants along the Atlantic and Gulf of Mexico coasts that not only collect data on Dead Sea turtles, but also rescue and rehabilitate any live stranded sea turtles.

4.4.1.6 Summary and Synthesis of Environmental Baseline for Sea Turtles

In summary, several factors adversely affect sea turtles in the action area. These factors are ongoing and are expected to occur contemporaneously with the proposed action. Fisheries in the action area likely had the greatest adverse impacts on sea turtles in the mid to late 80s, when effort in most fisheries was near or at peak levels. With the decline of the health of managed species and economic pressure on the shrimp fishery, effort since that time has generally been declining. Impacts associated with fisheries have been reduced through the Section 7 consultation process and regulations implementing effective bycatch reduction strategies. However, interactions with commercial and recreational fishing gear are still ongoing and are expected to occur contemporaneously with the proposed action. Other environmental impacts including effects of vessel operations, additional military activities, dredging, permits allowing take under the ESA, private vessel traffic, and marine pollution have also had and continue to have adverse effects on sea turtles in the action area in the past, but to a lesser degree of magnitude.

5 EFFECTS OF THE ACTION

In this section of the opinion, we assess the effects of the proposed action on loggerhead sea turtles, Kemp's ridley sea turtles, shortnose sturgeon, and Atlantic sturgeon within the action area. The analysis in this section forms the foundation for our jeopardy analysis in Section 7.0. A jeopardy determination is reached if we would reasonably expect the proposed action to cause reductions in numbers, reproduction, or distribution that would appreciably reduce listed species' likelihood of surviving and recovering in the wild.

The proposed deepening is likely to adversely affect sturgeon and sea turtles. Impacts may include direct, short-term impacts from dredging and disposal operations to more long-term impacts caused by loss of habitat and habitat degradation. Although all dredging and sediment placement activities would be conducted well-below sturgeon spawning areas and downstream of juvenile/adult habitat near the freshwater interface, the effects of the activities will directly impact the habitat of sturgeon and their prey, and reduce the amount of habitat in which sturgeon can perform essential biological functions, such as feeding and maturing. The harbor deepening will impact both adult and juvenile shortnose sturgeon habitat in the upper harbor estuary due to increases in salinity levels and decreases in dissolved oxygen concentrations. Juvenile and adult sturgeon are dependent upon this unique estuarine habitat found near the freshwater/saltwater interface for foraging and resting. Offshore dredging of the Entrance Channel and disposal activities will affect sea turtles and adult Atlantic sturgeon. Restoration of access to spawning habitat at the Augusta Shoals with properly designed fish passage at New Savannah Bluff Lock and Dam would reduce the ongoing adverse effects of the dam's impedance of access to spawning habitat, improving spawning and recruitment success for both sturgeon species.

5.1 Effects of the Action on Sea Turtles

5.1.1 Dredging

The potential for adverse effects of dredging operations on sea turtles has been previously assessed by NMFS (NMFS 1991, 1995, 1997a, 1997b, 2003b) in the various versions of the SARBO and the 2003 (revised in 2005 and 2007) Gulf of Mexico RBO. Additionally, the COE has recently prepared a comprehensive analysis of data from Gulf and Atlantic hopper dredging projects to identify factors affecting sea turtle take rates (Dickerson et al. 2007). Furthermore, the COE maintains an on-line Sea Turtle Data Warehouse (USACE 2010) with historical records of dredging projects and turtle interactions. These are the primary sources, discussed further below, for our analysis of dredging effects on sea turtles.

Mechanical (Clamshell/Bucket Dredges) and/or Cutterhead Dredging

The project may affect sea turtles by injury or death as a result of interactions with equipment or materials used during dredging; however, NMFS believes the chance of injury or death from interactions with clamshell and/or hydraulic dredging equipment is discountable as these species are highly mobile and are likely to avoid the areas during

construction. NMFS has received very few reported sea turtle takes associated with these dredging methods. In the South Atlantic region two sea turtles have been taken by a clamshell dredge over the past 20 years, the most recent of which occurred on May 19, 2011, at Cape Canaveral, Florida, which routinely has very high local turtle abundance. Due to the infrequency of interactions with these gear types, NMFS believes that the likelihood of sea turtles being taken by a hydraulic cutterhead or a clamshell dredge is discountable.

Hopper Dredging

Hopper dredging was implicated in the mortality of South Atlantic endangered and threatened sea turtles as early as the late 1970s and in NMFS' opinions issued in 1979, 1980, and others leading to the RBO issued in 1991. This determination was repeated in the 1995 and 1997 SARBOs (NMFS 1995, 1997a, 1997b). The measures established in consecutive RBOs (NMFS 1991, 1995, 1997a) to avoid and minimize sea turtle interactions during hopper dredging operations permitted by the COE in the southeastern United States are included in this project, with the exception of modifications to dredge timing (i.e., "dredging window") and conditions of/requirements for capture-type relocation trawling.

To date, use of hopper dredges in COE activities in northeast Florida and Georgia has been limited under the 1997 RBO to operating between December 1 through April 15, except in emergency situations, due to the presumption that the potential for lethal and injurious take of sea turtles by hopper dredges would be lower during winter periods of lower seasonal abundance. However, recent data analysis of hopper dredging projects from 1995-2008 by the COE indicates that documented sea turtle take rates in projects from Georgia and the east coast of Florida are lower (on both a turtles-taken-per-project basis and turtles-taken-per-day basis) during May through November (when hopper dredging is discouraged) than during December through April, which is the NMFSrecommended dredging window. Turtles are typically more abundant during the warm summer months but may not spend large amounts of time on or in the bottom sediments and may need to surface more often to breathe due to increased activity. Turtles resting on or in bottom sediments are more vulnerable to dredge entrainment than turtles swimming in the water column above the draghead. Although increased numbers of sea turtles are known to be encountered between June and September (peak nesting season), they may be less vulnerable to entrainment because of their biological requirements (e.g., reproductive activities, reduced feeding, increased metabolism), mandating them to spend more time in the upper water column. Given this evidence and rationale, hopper dredging conducted during December 1 through March 31 may result in more takes than during the summer dredging.

To calculate the expected rates of turtle entrainment in hopper dredging for this project, NMFS consulted the Sea Turtle Data Warehouse (USACE 2011) to find the most applicable historic dredging information for the Savannah Harbor Entrance Channel.

Savannah Harbor Entrance Channel

From 2000 through 2010 (Table 8), maintenance dredging of the Savannah Harbor Entrance Channel generated approximately 7,306,635 cubic yards of material. During the same time period 10 sea turtles were taken in hopper dredges during these maintenance events. This equates to a catch per unit effort (CPUE) of 0.0000013 turtles per cubic yard dredged.

YEAR	QUANTITY OF DREDGED MATERIAL (CUBIC YARDS)	TURTLE TAKES	RELOCATION TRAWLING
2000	1,279,900	2 (1 loggerhead; 1	N
		Kemp's)	
2001	1,117,900	2 loggerhead	Ν
2002	446,850	2 loggerhead	Ν
2003	635,163	0	Ν
2004	620,642	0	Ν
2005	888,100	0	Ν
2006	88,194	4 (3 Kemp's; 1	Ν
		loggerhead)	
2007	973,463	0	Y
2008	484,607	0	Ν
2009	261,780	0	N
2010	510,036	0	N
TOTAL	7,306,635	10	-

Table 8. Dredged material removed and sea turtle takes during dredging of theSavannah Harbor Entrance Channel, 2000-2010 (USACE Sea Turtle DataWarehouse 2011).

Using the CPUE we can calculate the number of sea turtles expected to be adversely affected by hopper dredging activities during the proposed action by multiplying the estimated amount of material to be dredged by the CPUE. The proposed project has an estimated 13,325,513 cubic yards of material that would be dredged from the Ocean Bar Channel (Table 9); therefore, we estimate that 17 turtles (10 loggerhead and 7 Kemp's ridley sea turtles based on species composition reported in previous Savannah Harbor dredging projects) will be observed (and counted) by onboard protected species observers as lethally taken during the course of the proposed hopper dredging in the Savannah Harbor Entrance Channel. This estimate is based on the use of only hopper dredges for the entire project and represents only the sea turtle mortalities *detected* by onboard observers.

NMFS-approved observers monitor dredged material inflow and overflow screening baskets on many hopper dredging projects, and observers will be required to monitor the proposed action. Dredged material screening, however, is only partially effective, and observed takes likely provide only partial estimates of total sea turtle mortality. NMFS believes that some turtles killed by hopper dredges go undetected because body parts are

forced through the sampling screens by water pressure and are buried in the dredged material, or animals are crushed or killed but their bodies or body parts are not entrained by the suction and so the takes may go unnoticed. The only mortalities that are noticed and documented are those where body parts float, are large enough to be caught in the screens, and can be identified as sea turtle parts. Body parts that are forced through the 4-inch (or greater) inflow screens by the suction-pump pressure and that do not float are very unlikely to be observed, since they will sink to the bottom of the hopper and not be detected by the overflow screening. Unobserved takes are not documented, thus, observed takes may under-represent actual lethal takes. It is not known how many turtles are killed but unobserved. Because of this, in the Gulf of Mexico Regional Biological Opinion (NMFS 2003b), in making its jeopardy analysis, NMFS estimated that up to one out of two impacted turtles may go undetected (i.e., that observed take constituted only about 50 percent of total take). That estimate was based on region-wide (overall Gulf of Mexico) hopper dredging projects including navigation channel dredging and sand borrow area dredging for beach renourishment projects, year-round, including seasonal windows when no observers are required, times when 100 percent coverage is required, and times when only 50 percent observer coverage is required (i.e., at sand borrow sites). The proposed December 1 through March 31 dredging of the Savannah Harbor Entrance Channel will include 100 percent observer coverage for the duration of work. Since the 100 percent observer coverage that will be required for the proposed dredging action is twice as intensive (and theoretically, twice as effective) as the 50 percent observer coverage requirement of the 2003 Gulf of Mexico Regional Biological Opinion, NMFS believes that a significantly greater number of turtles will be detected with 100 percent observer coverage than with just 50 percent observer coverage (i.e., one of two turtles), but that a significant number of turtle parts will still pass through the screens undetected. In NMFS' January 7, 2009, Mayport ship channel hopper dredging biological opinion to the U.S. Navy, under similar circumstances to the proposed action (i.e., it also required 100 percent observer coverage year-round), NMFS estimated that approximately 66 percent (two out of three entrained turtles or turtle parts) would be observed/documented by shipboard protected species observers. More recently, NMFS' biological opinion to the COE's Galveston District on the Freeport Harbor navigation channel widening and deepening project (also with 100 percent observer coverage) again anticipated that approximately 66 percent of entrained turtles would be detected. Now, similarly, NMFS estimates that observers on the proposed project will detect approximately two of every three turtles entrained. This estimate is based on the use of 100 percent observer coverage, the best available empirical evidence, years of hopper dredging experience and observer reports, and the commonality of the 100 percent observer requirement with previous dredging consultations under similar conditions. This opinion estimates that observers will detect and record approximately 66.6% of total mortality (i.e., two of every three turtles killed by the dredge will be detected, observed, and tallied by onboard observers), resulting in an additional estimated 6 loggerheads and 4 Kemp's ridleys taken, but not detected, for a total of 27 sea turtles taken.

As with previous NMFS biological opinions on hopper dredging, our subsequent jeopardy analysis is necessarily based on our knowledge (in this case, our best estimate) of the total number of turtles that will be lethally taken, which includes those that are

killed but not observed. Our best estimate of turtles lethally taken will be the sum of the observed and unobserved takes, i.e., those observed and documented by onboard protected species observers, plus those unobserved, undocumented lethal takes (because the turtles/turtle parts were either not entrained, or were entrained but were not seen/counted by onboard protected species observers). For example, the 2003 Gulf of Mexico Regional Biological Opinion on hopper dredging estimated that 80 loggerhead sea turtles would be killed by hopper dredges each year, but that only 40 would be detected by onboard observers.

Our ITS, is based on observed takes, not only because observed mortality gives us an estimate of unobserved mortality, but because observed, documented take numbers serve as triggers for some of the reasonable and prudent measures, and for potential reinitiation of consultation if actual observed takes exceed the anticipated/authorized number of observed takes. Furthermore, our ITS level of anticipated/authorized lethal takes is based on the implementation of relocation trawling, since it is an integral and important part of the proposed action. Without the implementation of relocation trawling, mortalities resulting from hopper dredge activities could be higher.

Station	Total by Station in Cubic Yards
-98+600B to -60+000B	4,212,500
-60+000B to -57+000B	401,409
-57+000B to -53+500B	469,252
-53+500B to -40+000B	1,959,186
-40+000B to -30+000B	1,573,800
-30+000B to -20+000B	1,628,379
-20+000B to -10+000B	1,594,871
-10+000B to -0+000B	1,110,713
0+000B to 4+000B	375,403
TOTAL	13,325,513

Table 9. Estimated New Work Sediment by Reach for the Outer Harbor (Ocean Bar Channel)

A very few turtles (over the years, a fraction of a percent) survive entrainment in hopper dredges, usually smaller juveniles that are sucked through the pumps without being dismembered or badly injured. Often they will appear uninjured only to die days later of unknown internal injuries, while in rehabilitation. Experience has shown that the vast majority of hopper-dredge impacted turtles are immediately crushed or dismembered by the violent forces they are subjected to during entrainment. Therefore, we are conservatively predicting that all takes by hopper dredges will be lethal.

In addition to the initial project impacts, an estimated 1,181,000 cubic yards of material would be removed during annual maintenance dredging of the Entrance Channel; annual maintenance dredging events are covered under the 1997 SARBO, which is currently under reinitiation.

5.1.2 Modified Bed-leveling Activities

Bed-leveling is often associated with hopper dredging (and other types of dredging) operations, and may be utilized in this project. Bed-leveling "dredges" do not use suction; they redistribute sediments, rather than removing them. Plows, I-beams, or other seabed-leveling mechanical dredging devices are often used for cleanup operations, i.e., to lower high spots left in channel bottoms and dredged material deposition areas by hopper dredges or other type dredges. Leveling devices typically weigh about 30 to 50 tons, are fixed with cables to a derrick mounted on a barge pushed or pulled by a tugboat at about one to two knots. Some evidence indicates that bed leveling devices may be responsible for occasional sea turtle mortalities (NMFS 2003e). Sea turtles may be crushed as the leveling device passes over a turtle which fails to move or is not pushed out of the way by the sediment "wave" generated by and pushed ahead of the device. Sea turtles in Georgia waters may have been crushed and killed in 2003 by bed-leveling which commenced after the hopper dredge finished its work associated with the Brunswick Harbor Entrance Channel dredging. The local sea turtle stranding network reported documented stranded crushed sea turtles in the area where the bed-leveler dredge was working, within days after the dredge was in the area. Brunswick Harbor is also one of the sites where sea turtles captured by relocation trawlers sometimes show evidence of brumating (over-wintering) in the muddy channel bottom, which could explain why, if sea turtles were in fact crushed by bed-leveler type dredges (there is no proof, but it is the most likely explanation), they failed to react quickly enough to avoid the bed-leveler. Bed-leveler use at other dredging operations has not resulted in observed or documented sea turtle mortalities; therefore, the best available evidence points to occasional potential interactions to brumating sea turtles at Brunswick. All things considered, the use of bed-levelers is probably preferable (less likely to result in sea turtle interactions) to the use of hopper dredges for cleanup operations, since turtles foraging, resting, or brumating on irregular bottoms are probably more likely to be entrained by suction dragheads than crushed by bed-levelers, because: (1) sea turtle deflector dragheads are less effective on uneven bottoms; (2) hopper dredges move considerably faster than bed-leveler "dredges;" and (3) bed-levelers do not use suction.

The project proposes to authorize their use only in the Bar Channel. Furthermore, their use would be restricted to the leveling of high spots in the channel or placement area, where the use of a hopper dredge for such work would be expected to result in equal or greater take of endangered species. Proposed modifications (i.e., integrated deflector configurations) to traditional bed-levelers are expected to reduce their unknown (but thought to be insignificant) potential to impact non-brumating sea turtles. NMFS believes it is unlikely that turtles may be adversely affected by potential bed-leveling activities during "high-spot cleanup" during the proposed action. However, if injurious or lethal bed-leveler interactions appear to have occurred, based on reports of stranded turtles, they shall be immediately reported to NMFS. Any such takes shall not be counted against the total lethal takes allowed by the Incidental Take Statement of this opinion. In addition, unobserved takes have already been accounted for in our total take estimates (see RPMs, Term and Condition No. 6), as discussed in the preceding section (5.1.1).

5.1.3 Relocation Trawling

The function and purpose of capture relocation trawling is to capture sea turtles that may be in the dredge's path. By reducing the sea turtle density immediately in front of the dredge's suction dragheads, the potential for draghead-turtle interactions is reduced. The relocation trawler typically pulls two standard (60-foot headrope) shrimp trawl nets, as close as safely possible in front of the advancing hopper dredge. The trawler also continues sweeping the area to be dredged (channels or borrow areas) even while the hopper dredge is not actively dredging, e.g., when it is enroute to the ODMDS or pumpout station. Relocation trawling has been successful at temporarily displacing Kemp's ridley, loggerhead, leatherback, and green sea turtles from channels in the Atlantic Ocean and Gulf of Mexico during periods when hopper dredging was imminent or ongoing (Dickerson et al. 2007). Historically, relocation trawling has been used to reduce turtle take by capturing the turtle in a modified shrimp net, bringing it onboard the trawler, and transporting it approximately 3-5 miles from the dredging where it is released into the ocean. Dickerson et al. (2007) analyzed historical data for COE dredging projects in the Atlantic Ocean and Gulf of Mexico and concluded that relocation trawling is effective at reducing the rate of sea turtle entrainment by hopper dredges. Dickerson et al. (2007) also found that the effectiveness of relocation trawling was increased: (1) when the trawling was initiated at the beginning or early in the project, and (2) by the intensity of trawling effort (i.e., more time trawling per hour). Dickerson (pers. comm. 2008) noted that when a relocation trawler is used – whether or not turtles are actually captured – the incidence of lethal sea turtle take by hopper dredges decreases. Dickerson concluded that the action of the trawl gear on the bottom results in stimulating turtles off the bottom and into the water column, where they are no longer likely to be impacted by the suction draghead of a hopper dredge. The effects of relocation trawling on sea turtles will be further discussed below.

Effects of Recapturing of Sea Turtles during Relocation Trawling

Some sea turtles captured during relocation trawling operations return to the dredge site and subsequently are recaptured. For example, sea turtle relocation studies by Standora et al. (1993) at Canaveral Channel, Florida, relocated 34 turtles to six release sites of varying distances north and south of the channel. Ten turtles returned from southern release sites, and seven from northern sites, suggesting that there was no significant difference between directions. The observed return times from the southern release sites suggested a direct correlation between relocation distance and likelihood of return or length of return time to the channel. No correlation was observed between the northern release sites and the time or likelihood of return. The study found that relocation of turtles to the site 70 km (43 miles) south of the channel would result in a return time of over 30 days.

Over a 7-day period in February 2002, REMSA, a private company contracted to conduct relocation trawling, captured, tagged, and relocated 69 turtles (55 loggerheads and 14 greens) from Canaveral Channel, Florida, with no recaptures; turtles were relocated a minimum of 3 to 4 miles away (T. Bargo, REMSA, pers. comm. to Eric Hawk, NMFS

SER, June 2, 2003). Twenty-four hour per day relocation trawling conducted by REMSA at Aransas Pass Entrance Channel (Corpus Christi Ship Channel) from April 15, 2003, to July 7, 2003, resulted in the relocation of 71 turtles (56 loggerheads, 15 Kemp's ridleys, and 1 leatherback) between 1.5 and 5 miles from the dredge site, with 3 recaptures, all loggerheads (T. Bargo, REMSA, pers. comm. to Eric Hawk, NMFS SER, July 24, 2003). One turtle released on June 14, 2003, approximately 1.5 miles from the dredge site, was recaptured four days later at the dredge site; another turtle captured June 9, 2003, and released about 3 miles from the dredge site was recaptured nine days later at the dredge site. Subsequent releases occurred five miles away. Of these 68 subsequent capture/releases, one turtle released on June 22, 2003, was recaptured 13 days later (REMSA Final Report, Sea Turtle Relocation Trawling, Aransas Pass, Texas, April-July 2003) at the dredge site. Over 15 days of dredging and associated turtle relocation trawling conducted between July 9 and 23, 2010, for the construction of 35 miles of oilbarrier sand-berms at Hewes Point, Chandeleur Islands, Louisiana, resulted in 194 sea turtle trawl-captures and relocations (185 loggerheads, 8 Kemp's ridleys, and 1 green), with 11 turtles recaptured (all loggerheads) at the sand borrow site after being relocated at least 3 miles away from the dredge site (L. Brown, COE, pers. comm. via e-mail to E. Hawk, NMFS, February 22, 2011). Table 10 below compares the various recapture rates for relocation trawling. More recently, from April 11-June 11, 2011, at the Longboat Key beach nourishment project, 23 sea turtles were captured and relocated (20 loggerheads, two Kemp's, and one green). One, a large, sexually-mature male loggerhead, was captured at the borrow site (and relocated) three times, released each time at least 3-5 miles away from the capture site, each time in a different compass direction from the borrow site. The last time, the turtle was released with a satellite transmitter attached (E. Hawk, NMFS, pers. comm. June 13, 2011).

Number of Turtles Released/Relocated	Relocation Distance from dredge site	Number of Turtles Recaptured	Recapture Timing	Citation
34	43 miles (Southern release site)	10	> 30 days	Standora et al. (1993)
69	Minimum 3-4 miles	0	N/A	T. Bargo, REMSA, pers. comm. to Eric Hawk, NMFS SER, June 2, 2003
71	1.5-5 miles	3	4-13 days	REMSA Final Report, Sea Turtle Relocation Trawling, Aransas Pass, Texas, April- July 2003
194	Minimum 3 miles	11	15 days	L. Brown, COE, pers. comm. via e- mail to E. Hawk, NMFS, February 22, 2011

Table 10.	Comparison	of Recapture I	Rates for 1	Relocation	Trawling
-----------	------------	----------------	-------------	-------------------	----------

The capture and handling of sea turtles can result in raised levels of stressor hormones, and can cause some discomfort during tagging procedures; based on past observations obtained during similar research trawls for turtles, these physiological effects are expected to dissipate within a day (Stabenau and Vietti 1999). During the course of 1,600 days of relocation trawling at Wilmington, North Carolina; Kings Bay and Savannah, Georgia; Pensacola, Florida; and Sabine Pass, Galveston, Freeport, Matagorda Pass, and Corpus Christi, Texas, Coastwise Consulting, Inc., successfully captured, tagged, and released over 770 loggerhead, Kemp's ridley, green, and hawksbill, and leatherback sea turtles (C. Slay, Coastwise Consulting, pers. comm. via e-mail to E. Hawk, NMFS, January 25, 2007). Only one leatherback mortality was documented and attributed to illegal artificial reef material deployed within a designated borrow area (the trawl net that captured the leatherback got entangled on the reef material and the trawler was unable to haul its nets timely (within 42 minutes, as required by the GRBO); the turtle drowned before the net was able to be freed and brought to the surface). On the Atlantic coast, REMSA also successfully tagged and relocated over 140 turtles in the last several years, most notably, 69 turtles (55 loggerheads and 14 greens) in a 7-day period at Canaveral Channel in October 2002, with no significant injuries. Other sea turtle relocation contractors (R. Metzger in 2001; C. Oravetz in 2002) have also successfully and non-injuriously trawl-captured and released sea turtles out of the path of oncoming hopper dredges. In the Gulf of Mexico, REMSA captured, tagged, and relocated 71 turtles at Aransas Pass, Texas, with no apparent long-term ill effects to the turtles. Three injured turtles captured were transported to University of Texas Marine Science Institute rehabilitation facilities for treatment (two had old, non-trawl related injuries or wounds; the third turtle may have sustained an injury to its flipper, apparently from the door chain of the trawl, during capture). Three of the 71 captures were recaptures and were released around 1.5, 3, and 5 miles, respectively, from the dredge site; none exhibited any evidence their capture, tag, release, and subsequent recapture, was in any way detrimental (T. Bargo, REMSA, pers. comm. to E. Hawk, NMFS, June 2, 2003. Given that sea turtle recaptures are relatively infrequent, and recaptures that do occur typically happen several days to weeks after initial capture, cumulative adverse effects from recapture are not expected.

Relocation Trawl Tow-Time Effects on Sea Turtles

The Gulf and South Atlantic Fisheries Development Foundation's August 31, 1998, "Alternatives to TEDs: Final Report" study presents data on 641 South Atlantic shallow trawl tows (only one tow was in water over 27.4 m), all conducted under restricted tow times (55 minutes during April through October and 75 minutes from November through March), and 584 Gulf of Mexico nearshore trawl tows conducted under the same tow-time restrictions of 55 and 75 minutes. Offshore effort in the Gulf of Mexico consisted of 581 non-time restricted tows, which averaged 7.8 hours per tow.

All totaled, 323 turtle observations were documented: 293 in the nearshore (timerestricted) South Atlantic efforts, and 30 in the Gulf efforts (24 in nearshore timerestricted tows and 6 in offshore time-unrestricted tows). Of the 293 South Atlantic turtles (219 loggerhead, 68 Kemp's ridley, 5 green, and 1 leatherback), only 274 were used in the analyses (201 loggerhead, 67 Kemp's ridley, 5 green, and 1 leatherback) because 12 escaped from the nets after being seen and 7 were caught in try nets. Of the 274 South Atlantic turtles captured using restricted tow times, only 5 loggerheads and 1 Kemp's ridley died because of the interaction, a 2.2 percent fatality rate (6 divided by 274).

For the Gulf efforts, 30 turtle observations/interactions (24 nearshore and 6 offshore) were recorded but just 26 turtles were included in the study's CPUE analysis (21 in nearshore and 5 in offshore), since some may have been previously dead (i.e., non-trawl-related). These 26 captures (8 loggerhead, 16 Kemp's ridley, and 2 green) resulted in three mortalities (1 loggerhead nearshore, 1 loggerhead, and 1 green offshore). The nearshore restricted tow-time mortality rate was 1 of 21 nearshore captures, or 4.8 percent; the offshore non-restricted tow-time mortality rate was 2 of 5 offshore captures, or 40 percent. The latter figure is unsurprising, given the long, unrestricted tow times.

For purposes of our effects of relocation trawling analysis, we excluded all the offshore tows and mortalities because they occurred under prolonged, non-restricted tow times which are not comparable to time-restricted relocation trawling methods. This leaves 1,225 time-restricted tows (584 in the nearshore Gulf of Mexico + 641 in the nearshore South Atlantic), resulting in 295 trawl-captured turtles (274 [South Atlantic nearshore]+ 21 [Gulf of Mexico nearshore]) resulting in seven mortalities (six in the South Atlantic and one in the Gulf of Mexico), i.e., 2.4 percent of the interactions (295 divided by 7) resulted in death. However, it must be remembered that the COE-authorized relocation trawling tow time limit for conservation trawling in association with hopper dredging is much more conservative (in terms of allowable tow times) than the above study which used 55- and 75-minute allowable tow times. Those trawl tow times greatly exceed currently allowed trawl tow times. The COE hopper dredging/relocation trawling protocol established by the COE's South Atlantic Division limits allowable tow times to 30 minutes or less, which results in significantly lower sea turtle mortalities than 2.4 percent, as discussed below.

Since 1991, the COE has documented more than 65 hopper-dredging projects in the South Atlantic and Gulf of Mexico where a trawler was used as part of the project, consisting of thousands of individual tows of relocation trawling nets. In addition, the COE has also conducted or permitted abundance assessments and/or project-specific relocation trawling of sea turtles in navigation channels and sand borrow areas in the Southeast and Gulf of Mexico using commercial shrimp vessels equipped with otter trawls (Sea Turtle Warehouse Data; D. Dickerson 2007). On eight occasions a turtle has been lethally or injuriously taken by a relocation trawler (six in the Gulf of Mexico and two in the South Atlantic) over the same 20-year period (COE Sea Turtle Warehouse; pers. comm.. T. Jordan, COE, to E. Hawk, NMFS, May 23, 2011). Some of these incidents are described below.

Rarely, properly conducted relocation trawling can result in accidental sea turtle deaths, as the following examples illustrate. Henwood noted that trawl-captured loggerhead sea turtles died on several occasions during handling on deck during winter trawling in Canaveral Channel in the early 1980s, after short (approximately 30 minutes) tow times.

However, Henwood (T. Henwood, pers. comm. to E. Hawk, December 6, 2002) also noted that a significant number of the loggerheads captured at Canaveral during winter months appeared to be physically stressed and in "bad shape" compared to loggerheads captured in the summer months from the same site that appeared much healthier and robust.

In November 2002, during relocation trawling conducted in York Spit, Virginia, a Kemp's ridley sea turtle was likely struck by one of the heavy trawl doors or it may have been struck and killed by another vessel shortly before trawl net capture. The hopper dredge was not working in the area at the time (T. Bargo, pers. comms. and e-mails to E. Hawk, December 6 and 9, 2002). Additionally, during relocation trawling conducted off Destin, Florida, on December 2, 2006, a leatherback turtle was captured and killed. However, this mortality by drowning occurred after the trawler encountered and entangled its trawl net on a large section of uncharted bottom debris, and was unable to retrieve it from the bottom for several hours (C. Slay, pers. comms. and e-mails to E. Hawk, December 4, 2006; see also Dickerson et al. 2007). Over 15 days of dredging and associated turtle relocation trawling conducted between July 9 and 23, 2010, for the construction of 35 miles of oil-barrier sand-berms at Hewes Point, Chandeleur Islands, Louisiana, 194 sea turtles were trawl-captured, with 3 mortalities in 584 thirty-minute tows, or a 1.5 percent mortality rate (R. Crabtree, NMFS, letter to COE, dated January 14, 2011). NMFS considers that this rate is unusually high, given the last two decades of relocation trawling experience. The reason for the unusually high level of relocation trawler turtle mortalities associated with the berm project is unknown. At Mayport Channel dredging in April 2011, a green turtle was drowned when it entangled in an improperly designed non-capture trawl net (non-capture trawl nets have typical tow times of 3-4 hours).

The National Research Council (NRC) report "Decline of the Sea Turtles: Causes and Prevention" (NRC 1990) suggested that limiting tow durations to 40 minutes in summer and 60 minutes in winter would yield sea turtle survival rates that approximate those required for the approval of new TED designs, i.e., 97 percent. The NRC report also concluded that mortality of turtles caught in shrimp trawls increases markedly for tow times greater than 60 minutes. Current NMFS TED regulations allow, under very specific circumstances, for shrimpers with no mechanical-advantage trawl retrieval devices on board, to be exempt from TED requirements if they limit tow times to 55 minutes during April through October and 75 minutes from November through March. The presumption is that these tow time limits will result in turtle survivability comparable to having TEDs installed.

Current NMFS SER opinions typically limit tow times for relocation trawling to 42 minutes or less, measured from the time the trawl doors enter the water when setting the net to the time the trawl doors exit the water during haulback ("doors in – doors out"). This approximates 30 minutes of bottom-trawling time. As previously stated, the COE limits authorized relocation trawling time in association with hopper dredging and its limit is at least as conservative (in terms of allowable tow times) as NMFS'; the COE's current hopper dredging/relocation trawling protocol limits capture-trawling relocation tow times to 30 minutes or less, doors in to doors out. Overall, the significantly reduced tow times used by relocation trawling contractors, compared to those used during the 1998 studies on the effects of unrestricted, 55-minute, and 75-minute tow times leads NMFS to conclude that current relocation trawling mortalities occur (and will continue to occur) at a much lower rate than 2.4 percent. Recent relocation trawling data bears this out strikingly: from October 1, 2006, to June 14, 2011, COE dredging projects relocated 1,216 turtles in the Gulf of Mexico and South Atlantic. There were 5 documented mortalities during those relocation events, or 0.4 percent overall (COE Sea Turtle Data Warehouse, queried June 14, 2011).

Total Impact of Relocation Trawling on Sea Turtles

NMFS believes that properly conducted and supervised relocation trawling (i.e., observing NMFS-recommended trawl speed and tow-time limits, and taking adequate precautions to release captured animals) and tagging is unlikely to result in adverse effects (i.e., injury or death) to sea turtles. As discussed above, NMFS estimates that, overall, sea turtle trawling and relocation efforts will result in considerably less than 0.5 percent mortality of captured turtles, with any mortalities that do occur being primarily due to the turtles being previously stressed or diseased or struck by trawl doors or suffering accidents on deck during codend retrieval and handling. On the other hand, hopper dredge entrainments invariably result in injury, and are almost always fatal.

Even though relocation trawling involves the capture and collection of sea turtles, it has constituted a legitimate RPM in past NMFS biological opinions on hopper dredging because it reduces the level of almost certain injury and mortality of sea turtles by hopper dredges, and it allows the sea turtles captured non-injuriously by trawl to be relocated out of the path of the dredges. Without relocation trawling, the number of sea turtles mortalities resulting from hopper dredging would likely be significantly greater than the estimated number discussed above and specified in the ITS. The Consultation Handbook (for Procedures for Conducting Consultation and Conference Activities under Section 7 of the Endangered Species Act, U.S. Fish and Wildlife Service and National Marine Fisheries Service, March 1998) expressly authorizes such directed take as an RPM at pages 4-54. Therefore, NMFS will in this section evaluate the expected number of sea turtles collected or captured during required relocation trawling, so that these numbers can be included in the evaluation of whether the proposed action will jeopardize the continued existence of the species.

The number of sea turtles collected or captured by trawlers in association with hopper dredging projects varies considerably by project area, amount of effort, and time of year. Additionally, sea turtle distribution can be very patchy, resulting in significant differences in number of turtle captures by relocation trawler, and in some areas, one

species may dominate the captures. For example, Canaveral, Florida, is known for its abundance of green turtles; Calcasieu, Louisiana, for its almost exclusive capture of Kemp's ridleys; Brunswick, Georgia, and Mississippi-River Gulf Outlet, Louisiana, captures are predominantly loggerheads (E. Hawk, NMFS, pers. comm., June 13, 2011).

Since October 2011, of the 1,216 turtle captures by relocation trawler, the majority (1,145) occurred in the Gulf of Mexico, while 71 occurred in the South Atlantic (COE Sea Turtle Data Warehouse, June 14, 2011 data). Dickerson et al. (2007) evaluated the effectiveness of relocation trawling for reducing incidental take of sea turtles by analyzing incidental take recorded in endangered species observer reports, relocation trawling reports, and hopper dredging project reports from 1995 through 2006. From 1995 through 2006, 319 hopper dredging projects throughout the Gulf of Mexico (n = 128) and Atlantic Ocean (n = 191) used endangered species monitoring and a total of 358 dredging-related sea turtle takes were reported (Regions: Gulf=147 sea turtles; Atlantic = 211 sea turtles). During the 70 projects with relocation trawling efforts, 1,239 sea turtles were relocated (Regions: Gulf=844; Atlantic=395). Loggerhead is the predominant species for both dredge take and relocation trawling take of sea turtles. Kemp's ridleys rank second. Green turtles have been captured in trawls only during December through March in the Gulf of Mexico. Although 2 hawksbills and 6 leatherbacks were relocated during 1995-2006, neither of these species has ever been killed by a dredge. However, during the Destin-Ft. Walton Beach, Florida, beach nourishment project in December 2006, one leatherback was drowned accidentally when the relocation trawl net in which it was captured got entangled in bottom debris (it took the crew several hours before they were able to free the net and lift it to the surface) (Dickerson et al. 2007).

Based on these data, Dickerson et al. (2007) calculated the average CPUE for dredging projects within the South Atlantic as 1.19 sea turtles per project. This does not account for the volume of sediment dredged during each project. Dickerson et al. (2007) then compared the CPUE of takes per dredge day between dredging periods with and without relocation trawling to evaluate the effectiveness of relocation efforts for reducing incidental take of sea turtles. For projects utilizing relocation trawling, the lowest overall CPUE (0.0222 takes/dredge day) was seen when relocation began at the onset of dredging and continued throughout the entire dredging project. The next lowest take rates were found for projects that either initiated relocation trawling prior to the start of dredging (0.0667 takes/dredge day) or early in the first third of the dredging project (0.0642 takes/dredge day) and continued relocation throughout the remaining dredging project. Smallest reductions in take rates were seen when relocation trawling was initiated either late (during second third) (0.1070 takes/dredge day) or very late (during last third) (0.1808 takes/dredge day) in the dredging project (Dickerson et al. 2007). Table 11 below summarizes the varying CPUE of takes per dredge in relation to when relocation trawling is initiated during a dredge project.

CPUE of takes per dredge day	Initiation of Relocation Trawling
0.0222 takes/dredge day	at onset of dredging and continued throughout the entire dredging project
0.0667 takes/dredge day	Prior to the start of dredging and continued throughout the entire dredging project
0.0642 takes/dredge day	early in the first third of the dredging project and continued throughout the entire dredging project
0.1070 takes/dredge day	during second third of dredging project
0.1808 takes/dredge day	during last third of dredging project

Table 11. CPUE of takes per dredge day in relation to when relocation trawling is initiated during a dredge project.

Dickerson et al. (2007) concluded that relocation trawling is an effective management option for reducing incidental take of sea turtles during hopper dredging in some locations, provided aggressive trawling effort is initiated either at the onset of dredging or early in the project. It is reasonable to assume that, for the proposed action analyzed in this opinion, in the absence of relocation trawling the number of sea turtle mortalities would increase, but predicting a precise number would be problematic due to the fact that the COE has not been consistent in using relocation trawling as a standard practice for the maintenance dredging of the Savannah Harbor Entrance Channel.

The number of sea turtles captured by relocation trawlers does not directly translate into potential mortalities by hopper dredges in the absence of relocation trawling, due to the differences in footprint between the two gear types. The spread of a relocation trawler's net is much greater than the width of a hopper dredge's dragheads; therefore, the trawler will encounter a significantly greater number of sea turtles. Non-injurious takes may be expected with the implementation of relocation trawling. Review of the only relocation data available for the Savannah Harbor where a take occurred, indicates that 159 tows conducted over 7 days (March 28-April 4, 2006) resulted in the take of 1 Kemp's ridley sea turtle. From this, we estimate that during the 121 days of the December 1 to March 31 hopper dredging window (which is the only time period ("window") when hopper dredging is normally allowed by the COE, in accordance with the COE South Atlantic Division's hopper dredging protocol, and is the time frame proposed by the COE for hopper dredging for the currently proposed action), relocation trawling may result in the non-lethal take of up to 17 turtles (of non-specific genera) each year (121 divided by 7 =17.3). The relocation trawling may result in sea turtle capture, but this type of take is not expected to be injurious or lethal due to the short duration of the tow times (15 to 30 minutes per tow; not more than 42 minutes) and required safe-handling procedures. It cannot be ruled out that injury or mortality could occur, but such events are rare. As previously explained, based on past experience, NMFS estimates that, overall, sea turtle trawling and relocation efforts will result in considerably less than 0.5 percent mortality of captured turtles, primarily due to their being previously stressed or diseased, or if struck by trawl doors, or from accidents occurring during handling in the water and on deck. Over the last 5.5 years, mortality associated with relocation trawling in the Gulf of Mexico and South Atlantic has averaged 0.4 percent.

Flipper Tagging

Flipper tagging of captured turtles is not expected to have any detrimental effects on captured animals. Tagging prior to release will help NMFS learn more about the habits and identity of trawl-captured animals after they are released, and if they are recaptured they will enable improvements in relocation trawling design to further reduce the effect of the hopper dredging activities. External and internal flipper tagging (e.g., with Inconel and PIT tags) is not considered a dangerous procedure by the sea turtle research community, is routinely done by thousands of volunteers in the United States and abroad, and can be safely accomplished with minimal training. NMFS knows of no instance where flipper tagging has resulted in mortality or serious injury to a trawl-captured sea turtle. Such an occurrence would be extremely unlikely because the technique of applying a flipper tag is minimally traumatic and relatively non-invasive; in addition, these tags are attached using sterile techniques. Important growth, life history, and migratory behavior data may be obtained from turtles captured and subsequently relocated. Therefore, these turtles should not be released without tagging (and prior scanning for pre-existing tags).

Genetic Sampling

Analysis of genetic samples may provide information on sea turtle populations such as life history, nesting beach identification, and distribution/stock overlap. This may ultimately lead to enhanced sea turtle protection measures. Tissue sampling is performed to determine the genetic origins of captured sea turtles, and learn more about turtle nesting beach/population origins. This is important information because some populations, e.g., the northern subpopulation of loggerheads nesting in the Southeast Region (i.e., the proposed endangered Northwest Atlantic loggerhead DPS), may be declining. For all tissue sample collections, a sterile 4- to 6-mm punch sampler is used. Researchers who examined turtles caught two to three weeks after sample collection noted that the sample collection site was almost completely healed (Witzell, pers. comm.). NMFS does not expect that the collection of a tissue sample from each captured turtle will cause any additional stress or discomfort to the turtle beyond that experienced during capture, collection of measurements, and tagging. Tissue sampling procedures are specified in the Terms and Conditions of this opinion.

Dredged Material Disposal

NMFS believes the proposed dredged material (approximately 13.3 mcy) disposal activities over the 3-4 year life of the project are not likely to adversely affect sea turtles. Sea turtles may be attracted to ODMDS sites, to forage on the bycatch that may be occasionally found in the dredged material being dumped. As such, turtles could be potentially impacted by the sediments being discharged overhead. However, NMFS has never received a report of an injury to a sea turtle resulting from burial in, or impacts from, hopper-dredge-released sediments, neither from inshore or offshore disposal sites, anywhere the COE conducts dredged material disposal operations. Sea turtles are highly mobile and apparently are able to avoid a descending sediment plume discharged at the surface by a hopper dredge opening its hopper doors, or pumping its sediment load over the side. Even if temporarily enveloped in a sediment plume, NMFS believes the possibility of injury, or burial of normal, healthy sea turtles by dredged material (i.e.,

sand and silt) disposal, is discountable or its effects insignificant. NMFS believes that foraging habitat for sea turtles is not likely a limiting factor in the action area, and thus the loss of potential sand bottom foraging habitat adjacent to, or on the surface of, the disposal areas (compared to remaining foraging habitat) from burial by dredged material sediments will have insignificant effects on sea turtles. The risk of injury to sea turtles from collisions with dredge-related vessels is also considered discountable, considering the species' mobility and the slow speed of the hopper dredge vessels and associated barges and scows.

5.1.4 Deepening of Harbor Entrance Channel

Hopper dredges can lethally harm sturgeon by entraining them in dredge drag arms and impeller pumps. The use of the "turtle deflecting draghead" on hopper dredges reduces the potential for take of benthic oriented species (i.e., sea turtles and sturgeon) by creating a sand wave in front of the draghead and pushing animals out of the way that are otherwise at risk of entrainment. However, a review of hopper dredging activity since 2000 in the Savannah Harbor Entrance Channel, approximately 7,306,635 cubic yards of material has been dredged with documented incidental takes of Atlantic sturgeon (n=2) occurring during 2007 and 2009. In addition, eleven Atlantic sturgeon were taken during 2006-2007 in relocation trawling and released alive. The amount of material to be dredged (13,325,513 cubic yards) is slightly less than two times greater than that dredged since 2000. Based on this information and the anticipated amount of dredging, NMFS believes that four Atlantic sturgeon will be killed as a result of hopper dredging and up to 20 will be taken in relocation trawls but released alive.

Considering that Atlantic sturgeon primarily lead a marine existence, with the exception of their spawning migration, and hopper dredges are often operated in ocean bar channels or offshore borrow areas, it is likely that the risk of entrainment by hopper dredges is higher for Atlantic sturgeon than shortnose sturgeon. To date, no shortnose sturgeon have been taken by hopper dredges working in the Savannah Harbor Entrance Channel. Shortnose sturgeon have a low tolerance for fully marine water and are not expected to be in locations where hopper dredging will occur; therefore, impacts to shortnose sturgeon from hopper dredges are not anticipated to occur.

The potential for adult and juvenile sturgeon being hit by a hydraulic cutterhead dredge is low. Even when occupying resting areas, adult and juvenile sturgeon are believed to be very mobile and would not be expected to be impacted by cutterhead dredges. There have been rare, documented incidental takes of shortnose and Atlantic sturgeon by mechanical (clamshell) dredges, with one occurring in the South Atlantic region (Wilmington Harbor). However, given the mobility of sturgeon, the lack of a suction field from mechanical dredging, and the small action area when dredging by a bucket, the likelihood that mechanical dredging will incidentally take sturgeon species is small. It is also unlikely that clamshell dredging operation would impact small juvenile and larval sturgeon since there is no suction field generated.

5.2 Project Effects within the Inner Harbor

Development of Sturgeon Habitat Criteria

The COE applied hydrodynamic and water quality models to assess potential impacts associated with the project (primarily within the estuary). Development and approval of the models was initiated in 1999 and completed in 2005. As the models were being developed, the COE consulted with natural resource agencies to determine the type of information to be evaluated. During meetings held in 2001, the Fisheries Interagency Coordination Team provided guidance on fisheries issues and developed a conservative set of parameters for modeling habitat suitability for the endangered shortnose sturgeon. The Fisheries Interagency Coordination Team determined the conditions which the water quality and hydrodynamic models would use to identify acceptable and unacceptable habitat. The Team defined suitable habitat for shortnose sturgeon during January when dissolved oxygen was not less than 3.5 mg/Liter for more than 10 percent of the time, not less than 3.0 mg/Liter for 5 percent of the time, and not less than 2.0 mg/Liter for more than 1 percent of the time. For August conditions, the Team defined suitable habitat for adult shortnose sturgeon when dissolved oxygen was not less than 4.0 mg/Liter for more than 10 percent of the time, not less than 3.0 mg/Liter for 5 percent of the time, and not less than 2.0 mg/Liter for more than 1 percent of the time. River flow rates and time of year were also specified for the modeling. The median (or 50th percentile) river flows of the long-term conditions of the river were used to model the average conditions (Table 12). Drought conditions were also modeled in sensitivity analyses for comparison with average conditions.

While the models were designed with criteria developed primarily for shortnose sturgeon, it is assumed that habitat identified as suitable for shortnose sturgeon will also be suitable for Atlantic sturgeon. Because Atlantic sturgeon have a much higher tolerance of salinity and therefore a wider range of habitat, this assumption would be protective of Atlantic sturgeon. They are routinely found not only in riverine and estuarine habitats, but also offshore in marine waters while migrating along the East Coast.

Life Stage	Simulation Period	Freshwater Flow Conditions	Habitat Criteria
Shortnose sturgeon Adult	January	50%-tile of Long Term	Suitable habitat when DO >= 3.5 mg/Liter at 90% (10th %ile), >=3.0 at 95% (5th %ile), and >=2.0 at 99% (1 %ile) Suitable habitat when max salinity <= 25 ppt
Shortnose sturgeon Adult	August	50%-tile of Long Term	Suitable habitat when DO >= 4.0 mg/Liter at 90% (10th %ile), >=3.0 at 95% (5th %ile), and >=2.0 at 99% (1 %ile) Suitable habitat when max salinity <= 10 ppt
Shortnose sturgeon Juvenile	January	50%-tile of Long Term	Suitable habitat when DO >= 3.5 mg/Liter at 90% (10th %ile), >=3.0 at 95% (5th %ile), and >=2.0 at 99% (1 %ile) Suitable habitat when 50% exceedance of the max salinity <= 14.9 ppt

 Table 12. Habitat Suitability Criteria for Adult and Juvenile Shortnose Sturgeon

 Developed by the Fisheries Interagency Coordination Team.

Once modeling criteria were selected, the tools were applied and the modeling was performed. The models' calibrations were approved by an interagency team including members of EPA Region 4, the USGS, the US Army Corps of Engineers' Engineering Research and Development Center (ERDC), the South Carolina Department of Health and Environmental Control (DHEC), and the Georgia Department of Natural Resources (GADNR) (NMFS was not a member of this team).

Environmental Fluid Dynamic Computer Code (EFDC) model runs were used to predict hydrodynamic model salinity outputs and the Water Quality Analysis Simulation Program (WASP) model was used to predict dissolved oxygen levels. The Post-Processor Habitat Analysis Module combined the output from the EFDC and WASP models to determine habitat suitability based on criteria for each life stage and time of year. The EFDC hydrodynamics model was originally developed at the Virginia Institute of Marine Science and is maintained by TetraTech under contract to the EPA. The model uses a finite difference solution scheme and a sigma-stretched vertical grid. The water quality model (WASP) was originally developed in 1983 and includes the time-varying processes of advection, dispersion, point and diffuse mass loading, and boundary exchange. Both the water column and the underlying benthos can be included. These models are available to the public through the Total Maximum Daily Load (TMDL) Modeling Toolbox maintained by EPA Region 4 and are considered by the EPA to be the best way to model for these parameters. TetraTech applied the models to the Savannah River estuary and developed an enhanced grid which extends 61 miles upriver and 17 miles oceanward of the harbor entrance. Point source loads in the Savannah Harbor were also used in the model simulations for shortnose sturgeon habitat (Table 13).

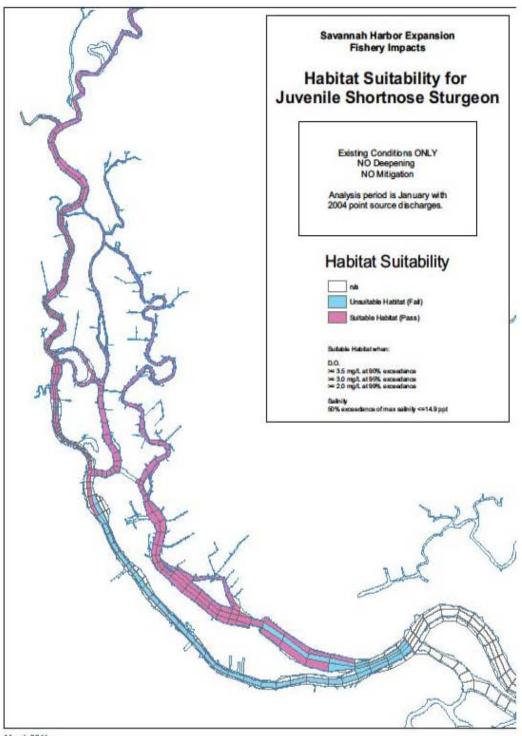
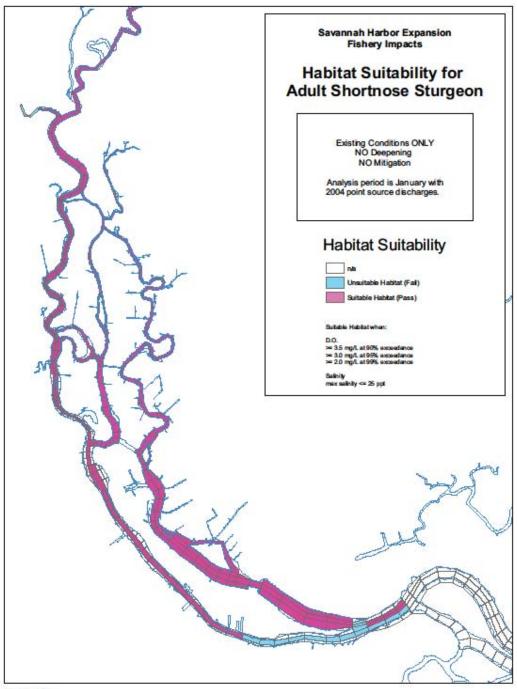

Facility	May-October 2004 Loads (lbs/day)	May-October 1999 Loads (lbs/day)	January 2004 Loads (lbs/day)
Beaufort-Jasper Water & Sewer Authority	13.0	25.0	19.1
Georgia-Pacific	5,873.0	3,810.5	7599.5
Weyerhaeuser Co., Port Wentworth	6,797.0	809.9	10,142.9
Garden City Water Pollution Control Plant	32.0	122.0	346.5
Savannah Water Pollution Control Plant Travis Field	27.0	129.0	254.1
Savannah Water Pollution Control Plant President Street	1,489.0	4,399.0	3,915.1
International Paper Co.	143,448.0	86,669.8	102,170.9
TOTAL	157,679.0	95,965.2	124,448.1

 Table 13. Point source loads in Savannah Harbor (CBODu lbs/day) – January 2004
 January 2004

 loads were used in model simulations.
 Image: CBODu lbs/day in the second s


Different life stages of sturgeon have specific requirements for particular dissolved oxygen levels and tolerance for salinity; when these tolerances are exceeded they will not feed or survive. Benthic-dwelling sturgeon occupy the bottom layer of the water column that is most susceptible to low dissolved oxygen and it is also where the higher salinities are found. In addition, sturgeon often find the temperatures they prefer in these deeper waters that consequently may have undesirable dissolved oxygen or salinity levels. The requirements for classifying habitat as suitable for shortnose sturgeon must consider all of these parameters. Habitat suitability maps showing the areas of suitable and unsuitable habitat, based on salinity and dissolved oxygen criteria for adult and juvenile shortnose sturgeon were prepared for each deepening scenario during winter and summer conditions. Figures 25, 26, and 27 show the existing conditions during the winter for juvenile shortnose sturgeon within the estuarine environment located in the lower Savannah River and during the winter and summer for adult shortnose sturgeon. Habitat criteria for juvenile shortnose sturgeon during the summer was not identified by the Team and therefore not modeled. It is thought that the Team believed most juvenile sturgeon would be found well upriver from the project area, beyond the effects of the deepening during the summer.

The COE's original models used all of the habitat criteria first identified by the Team, but NMFS later adjusted the habitat suitability criteria for salinity ranges tolerated by juvenile shortnose sturgeon. This was done to reflect better agreement between the models and field observations of captured juvenile shortnose sturgeon. In general, NMFS accepted the modeled habitats for shortnose sturgeon to be representative of field observations. There were a few small discrepancies, particularly noted for adult shortnose sturgeon during August conditions, and these are noted later in this section.

March 2011

Figure 25. Model of Existing Conditions for Juvenile Shortnose Sturgeon (Winter Conditions).

March 2011

Figure 26. Model of Existing Conditions for Adult Shortnose Sturgeon (Winter Conditions).

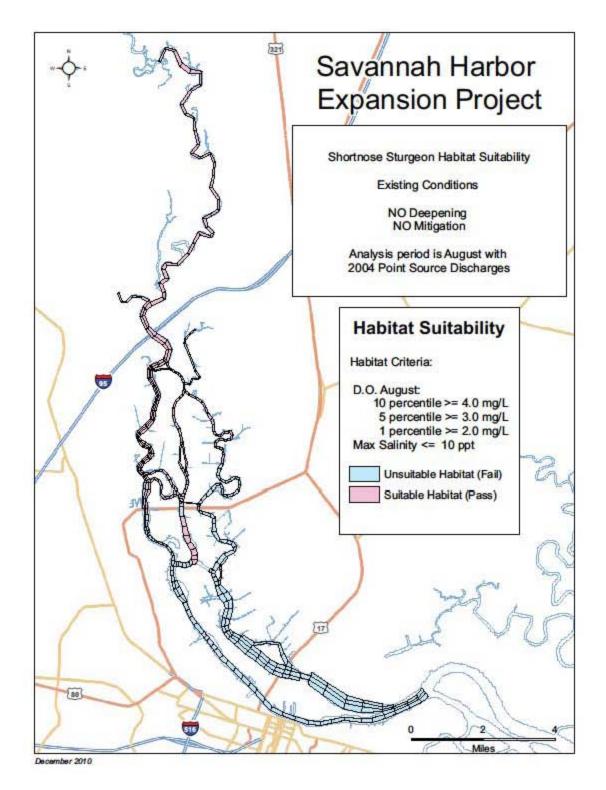


Figure 27. Model of Existing Conditions for Adult Shortnose Sturgeon (Summer Conditions).

Effects of Freshwater Flow Re-routing Modification

The COE used the hydrodynamic and water quality models to evaluate ways to reduce impacts associated with increased salinity and low dissolved oxygen expected to result from the proposed action. A freshwater flow re-rerouting plan (i.e., Plan 6A/6B - described in Section 2.1.2) was developed for each depth alternative that minimized impacts to freshwater tidal wetlands, which the USFWS had identified as being most at risk from this project. The hydrodynamic-related impacts for shortnose sturgeon habitat predicted from the various alternatives are summarized in Table 14. The impacts are related to the diversion of freshwater flow to the Back River to protect freshwater tidal wetlands. The diversion of the freshwater away from the Front River would result in salinity increases in the Front River and lower Middle River, in areas identified as shortnose sturgeon habitat.

Each incremental depth increase would result in larger impacts to sturgeon habitat as more habitat is lost due to salinity increases. There would be a loss of sturgeon habitat with all of the deepening alternatives, except for the 44-foot deepening for adult shortnose sturgeon during August. The losses would be greater during the winter because juvenile sturgeon would be found further down in the estuary foraging and resting in areas of the Front River and lower Middle River directly adjacent to where the deepening would occur. During the winter, adult sturgeon would be found within the areas to be deepened (i.e., lower Front River) or in adjacent areas within the Front River and lower Middle River. During the summer, sturgeon would primarily be located higher in the estuarine environment above the area to be deepened, so there would be less impact to their summer habitat from the deepening and also from the re-routing of freshwater associated with the hydrological modifications. Modeling indicated that without the flow re-routing modifications the salinity increases in the Front River would be less.

It is expected that, as the salt wedge moves further upriver due to the deepening, the estuarine habitat will be transformed from a slightly brackish environment to one with higher salinity. With the transition from lower salinities to higher salinities, the estuarine species (vegetation and benthos) currently found in the area will shift further upriver. Plants will die off and be replaced by more salt-tolerant species. Organisms unable to adapt to the higher salinities will relocate upriver to areas with salinity levels similar to those of their former habitat or will die and be replaced by species with higher salinity tolerance. While the actual deepening will only take a few months to complete, the total transformation of the estuarine vegetation and benthic organisms affected by the deepening may take several months to a few years. NMFS expects a very gradual transformation of the new foraging habitat to occur as the prev species of sturgeon colonize the new areas. This transition will temporarily affect the carrying capacity of the river to support sturgeon, as the amount of foraging habitat will be limited during this time. It is thought that once the estuarine environment has stabilized to the new, higher salinity, the carrying capacity of the river to support sturgeon will return to a pre-project state. It is expected that sturgeon will adjust their behavior and use the new areas for foraging once the appropriate prey species have become established. During this transition, sturgeon will become stressed due to lack of sufficient foraging habitat and weak individuals will be harmed.

Habitat Loss (-)	<u>44-Foot</u> (Plan 6B)	<u>45-Foot</u> (Plan 6A)	<u>46-Foot</u> (Plan 6A)	<u>47-Foot</u> (Plan 6A)	<u>48-Foot</u> (Plan 6A)
Shortnose	-3.9%	- 4.6 %	-6.2 %	-6.9%	-8.4 %
sturgeon	(-153.0	(-179.0	(-240.0	(-266.0	(-326.0
adult	acres)	acres)	acres)	acres)	acres)
(January)					
Shortnose	0.2 %	- 0.1 %	- 3.7 %	-5.6 %	- 6.8 %
sturgeon	2.0 acres	(- 1.0	(-50.0	(-76.0	(-93.0 acres)
adult		acres)	acres)	acres)	
(August)					
Shortnose	-6.7 %	-7.0 %	-7.3 %	- 7.6 %	- 11.5 %
sturgeon	(-220.0	(-231.0	(-238.0	(-251.0	(-376.0
juvenile	acres)	acres)	acres)	acres)	acres)
(January)					

Table 14. Summary of Hydrodynamic-related Impacts with Flow Re-routing Plans6A/6B.

Injection of Dissolved Oxygen as Mitigation

Studies conducted by EPA as part of its 2006 TMDL assessment for Savannah Harbor indicated that construction of the existing project (42-foot channel, turning basins, Sediment Basin, etc.) has impacted the dissolved oxygen regime. The hydrodynamic models estimated that the dissolved oxygen concentration in Savannah Harbor is 1 mg/Liter lower because of deepening that has occurred since the baseline year and condition (i.e., 1854 and a 12-foot controlling depth). The COE's models have shown that water quality will be impacted by higher salinity and lower predicted dissolved oxygen associated with the deepening. In general, the models showed that there would be upstream shifts of lower dissolved oxygen zones in bottom and surface layers of the estuary as the channel deepening increased in magnitude. Analysis of the effects of adding dissolved oxygen to the river shows the most benefit occurs within the Back River. The studies also indicated that deteriorations of the lowest dissolved oxygen values along critical cells⁶ (the cell with the lowest dissolved oxygen concentration during specified simulation period) of major parts of the estuary increase proportionately to the amount of deepening. The COE's data reflected conditions in the bottom half of the water column (i.e., bottom 3 layers of the 6-layer model), where dissolved oxygen levels are lower. Using the selected flow re-routing plans (Plan 6A or 6B), the water quality model was evaluated to determine the best placement of the dissolved oxygen injection systems (i.e., Speece cones) described in Section 2.1.3.

Table 15 summarizes the effects of injecting dissolved oxygen into the estuary during the summer. According to the models, new areas, not previously available to sturgeon during the summer because of low dissolved oxygen, would become suitable habitat with the

⁶ A thorough description of the COE's use of critical cells is included in Section 5 of the DEIS "Environmental Consequences of the Proposed Action."

injection of dissolved oxygen. These areas are shown as gain in the table below and on the habitat suitability maps. The injection of dissolved oxygen would also be conducted only during the summer when the combination of higher temperatures and low dissolved oxygen can be detrimental to fish.

Habitat	44-foot	45-foot	46-foot	47-foot	48-foot
Gain	(Plan 6B)	(Plan 6A)	(Plan 6A)	(Plan 6A)	(Plan 6A)
Shortnose sturgeon adult (August)	5.84% 80.0 acres	6.86% 94.0 acres	3.28% 45.0 acres	2.33% 32.0 acres	-0.07% -1.0 acres

Table 15. Summary of Hydrodynamic-related Modifications with Mitigation(Dissolved Oxygen Injection).

Juvenile shortnose sturgeon habitat

According to the COE's models of project effects on suitable habitat, the juvenile shortnose sturgeon life stage would have the largest proportional amount of habitat lost with all of the deepening scenarios. Acreage loss (as shown in Table 14) would range from 220 to 376 acres, or 6.7 to 11.5 percent of the available habitat as calculated by the COE models for the incremental deepening from 44 to 48 feet. The acreage loss for the COE's preferred deepening alternative (47 feet) would be 251 acres or 7.6 percent of the available habitat as predicted by the COE models (Figure 28). The loss of suitable habitat in the Front River could also affect juvenile sturgeons' ability to access the lower Middle River deep hole via the Front River. Research has not indicated that juvenile sturgeon would use an alternate route through the estuary (i.e., moving down from the upper Middle River) to access the preferred habitat located at the deep hole in the lower Middle River. There has also been no evidence of juvenile sturgeon using the Back River, although it is indicated as suitable habitat in the model of existing habitat. It is also not known whether juvenile shortnose sturgeon would alter their normal activity to travel higher in the water column to avoid the undesirable high salinities in the bottom layer of the salt wedge in the Front River after the deepening. Since the area that would be lost also occurs in a highly industrialized area with heavy vessel traffic, sturgeon may not be inclined to seek the lower salinity in the upper water column in order to travel within the Front River. It is also important to note that with the 47-foot deepening scenario, additional side cells of the model, which would include the entire width of the Front River (including the side slopes) becomes unsuitable habitat, essentially blocking any pathway to downstream habitat that could be utilized by juvenile shortnose sturgeon. There is much uncertainty associated with the sturgeon habitat models due to the numerous factors involved in calculating predicted change in the habitat. However, it is expected that juvenile shortnose sturgeon will probably abandon this area of the Front River, just as they did when the salinity increased in the Kings Island Turning Basin, which is located just downriver of this area and was formerly utilized by juvenile shortnose until it was deepened in 1994. Hall et al. (1991) detected juvenile shortnose in the Kings Island Turning Basin during their research, but they were not detected later by Collins et al. during their 1999-2000 study. The model of existing habitat indicates that there is suitable habitat within the Kings Island Turning Basin, but it is believed that high salinity in the deeper basin may prevent young juvenile sturgeon from using the area.

The juvenile stages of shortnose sturgeon have the most constricted range of habitat in the estuarine areas of the Savannah River due to their low tolerance of high salinities. The deepening would allow salinity to increase upriver to levels which juvenile shortnose sturgeon cannot tolerate causing further constriction of their habitat, particularly affecting foraging habitat in the Front River and preferred resting habitat in the lower Middle River. The COE, working in concert with the resource agencies, was unable to identify any mitigation measures that would compensate for the unavoidable loss of this unique foraging and resting habitat found in the estuarine environment of the Savannah River. As stated above, it is expected that environmental conditions currently found in the estuarine portions of the river that are utilized by juvenile shortnose sturgeon for foraging and resting will shift upriver over a period of several months to years.

Juvenile Atlantic sturgeon habitat

While there was no modeling of Atlantic sturgeon habitat conducted, due to the proposed listing of Atlantic sturgeon occurring after the COE had concluded all of its data analyses prior to the listing, it is generally believed that suitable habitat as determined for juvenile shortnose sturgeon would also be suitable for juvenile Atlantic sturgeon. Information provided by Vladykov and Greeley (1963) indicates that habitat requirements for juvenile Atlantic sturgeon would overlap with those of juvenile shortnose sturgeon when they migrate to the salt water interface. Juvenile Atlantic sturgeon are residents in estuarine waters for months to years before migrating to open ocean as subadults (Holland and Yelverton, 1973; Dovel and Berggen 1983, Waldman et al. 1996a, Dadswell 2006, ASSRT 2007, Schueller and Peterson 2010). Therefore, it expected that juvenile Atlantic sturgeon will likely be affected by the same loss of estuarine habitat in the lower river as juvenile shortnose sturgeon.

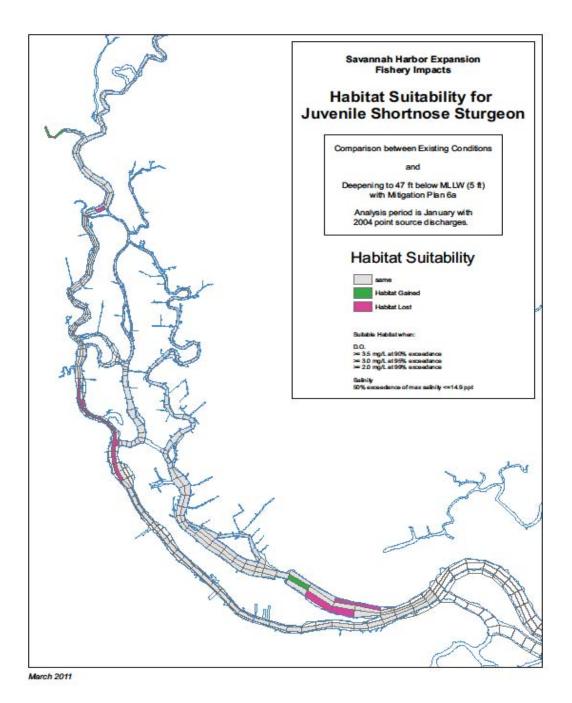
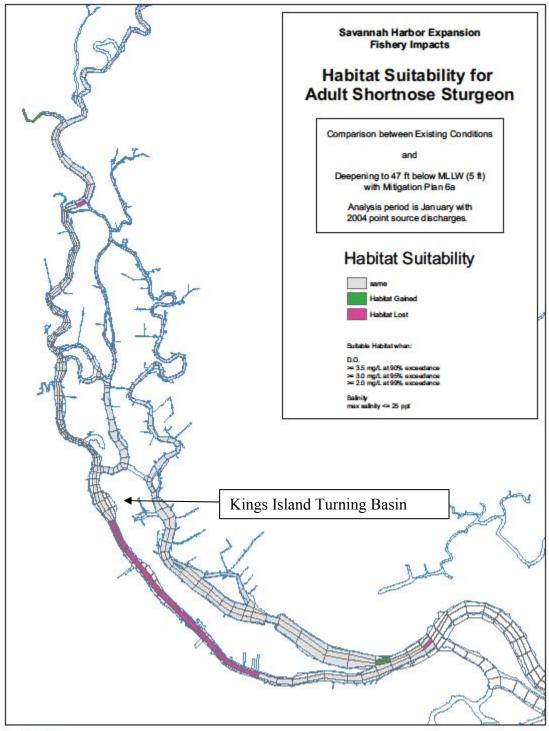



Figure 28. Model of Juvenile Shortnose Sturgeon Habitat during January with the 47-foot Deepening Alternative. Foraging habitat would be lost in the Front River. Habitat lost in the lower Back River has not been documented as being used by juvenile shortnose. Previous research by SCDNR has documented that the lower Middle River is regularly used by shortnose sturgeon. The peak of use appears to be during the late fall, winter, and spring, but a few fish have also been observed there during the summer.

March 2011

Figure 29. Model of Adult Shortnose Sturgeon Habitat during January with the 47foot Deepening Alternative.

Adult shortnose sturgeon habitat during winter

Adult shortnose sturgeon would also have a large amount of habitat loss with all of the deepening scenarios. The loss of foraging habitat in the Front River would increase with each depth scenario. Acreage loss, as calculated by the COE models, would range from 160 to 326 acres, or a loss of 4.1 to 8.4 percent of the available habitat, with the incremental deepenings from 44 to 48 feet. The loss of habitat with the COE's preferred deepening alternative (47 feet) would be 266 acres or 6.9 percent loss. The loss of habitat within the Front River would occur up to the location of the Kings Island Turning Basin (Figure 29). The loss of this estuarine habitat would prohibit access to the lower Back River from the Front River, as the area having high salinity would be significantly lengthened. It is thought adult sturgeon may tolerate very brief exposure to high salinities, but not conditions of prolonged exposure such as would be needed to traverse several miles of the lower Front River to reach the lower Back River. Research has not indicated that adult sturgeon would use an alternate route (i.e., traveling down from the upper Back River) to access deep-water habitat at the lower end of Back River. New data indicates that fish have been tracked using Rifle Cut, which connects the Middle River and Back River to access the lower Back River; however, this corridor will no longer be possible after Rifle Cut is closed as a part of the freshwater flow re-routing modifications being implemented to protect freshwater marsh within the Savannah National Wildlife Refuge. As with juvenile shortnose sturgeon, it is also not known whether adult shortnose sturgeon would alter their normal activity to travel higher in the water column to avoid the undesirable high salinities in the bottom layer of the Front River after the deepening. Telemetry tracking has not indicated that sturgeon would travel extensive distances in the upper half of the water column.

While much of the lower Front River estuarine habitat may be lost to sturgeon, research from tracking of shortnose sturgeon performed after the issuance of the DEIS in November 2010 indicates that there is new evidence that adult shortnose sturgeon may use the shallow upper Middle River, which has an average depth of less than 6 feet MLLW, to access the deeper areas in the lower Middle River (Wrona et al. 2011 unpublished data). This is an important discovery, because it could indicate that sturgeon would be able to continue using the deep hole in the lower Middle River as a refuge from high temperature waters. Because of the lack of information documenting sturgeon using the Back River for foraging or resting habitat, NMFS is uncertain whether sturgeon will use these areas even though the areas may possess the appropriate habitat characteristics as defined by the Interagency Fisheries Habitat Committee. According to bathymetry data provided by the COE, the upper Back River contains shallow habitat ranging from 1.8 to 10 feet MLLW. Sturgeon are known to prefer deeper water depths within estuaries, so they may be avoiding use of the area because it does not have the attributes that are preferred by sturgeon. However, during spring tides and upstream flood conditions (due to rain) the Back River may become much deeper. Recent surveys have indicated portions of the upper Back River include depths to 18 feet during these conditions. The irregular or inconsistent nature of the area with its depth (and possibly salinity) extremes may make it unsuitable for sturgeon prey. In the absence of suitable prey, sturgeon would be less likely to use the area for foraging. It is important to note

that Atlantic sturgeon, because of their larger body size, may be even more unlikely to use the Back River as habitat when the area is undergoing lower than normal tides or drought conditions. Adult Atlantic sturgeon, which can reach lengths greater than 4 feet, need sufficient water depths for migrating. While the modeling indicates all of the Back River is suitable habitat in all of the deepening scenarios, the fact that there is very little evidence that adult sturgeon actually use the area for foraging or resting suggests that the area should be considered lower priority in evaluating habitat needs of sturgeon. The few new accounts of sturgeon being detected in the Back River are showing limited movement beyond the area immediately adjacent to Rifle Cut. The tracking of these fish is ongoing and SCDNR will be providing data as it is collected (Bill Post, SCDNR, pers. comm.).

Preliminary assessment of new tracking results of shortnose sturgeon obtained by SCDNR in the Middle River are showing that fish reside in preferred locations for extended amounts of time. The new telemetry work, which began in November 2010, has shown that some fish stayed in the vicinity of the Middle River deep hole over a 65-day time period (or until the data was retrieved in January 2011), often moving back and forth within the area over a 1.5-mile radius but always returning to the deep hole. Sturgeon also showed a preference for an area in the Front River located approximately halfway between the confluence with the lower Middle River and Steamboat Creek. Fish remained in the vicinity of the tracking receiver for up to 38 days. This new data provides additional support to the previous data, obtained during 1999-2000, on the importance of the Front River and lower Middle River to both juvenile and adult phases of shortnose sturgeon.

Adult Atlantic sturgeon habitat

While there was no modeling of adult Atlantic sturgeon habitat conducted, due to the proposed listing of Atlantic sturgeon occurring after the COE had concluded all of its data analyses, it is generally believed that suitable habitat as determined for adult shortnose sturgeon would also be suitable for adult Atlantic sturgeon. Adult Atlantic sturgeon are able to tolerate a much wider range of salinity, so habitat that is unsuitable for adult shortnose sturgeon, due to salinity changes, may still be suitable for adult Atlantic sturgeon during the winter and summer. However, they would likely be affected by the lower dissolved oxygen in the same way that adult shortnose sturgeon would be affected. Both adult and juvenile Atlantic sturgeon frequently congregate around the saltwater interface. They may travel short distances upstream and downstream throughout the summer and fall, and during late winter and spring spawning periods (Greene et al. 2009), between fresh and brackish waters influenced by changes in water temperature (Van Den Avyle 1984) as they seek the cooler waters and avoid shallow areas with the highest water temperature (Bain 1997). Outmigration of adults from the estuaries out to the sea is cued by water temperature and velocity. Adult Atlantic sturgeon reside in the marine habitat during the non-spawning season and forage extensively until the waters begin to warm at which time adults migrate back to their rivers to spawn.

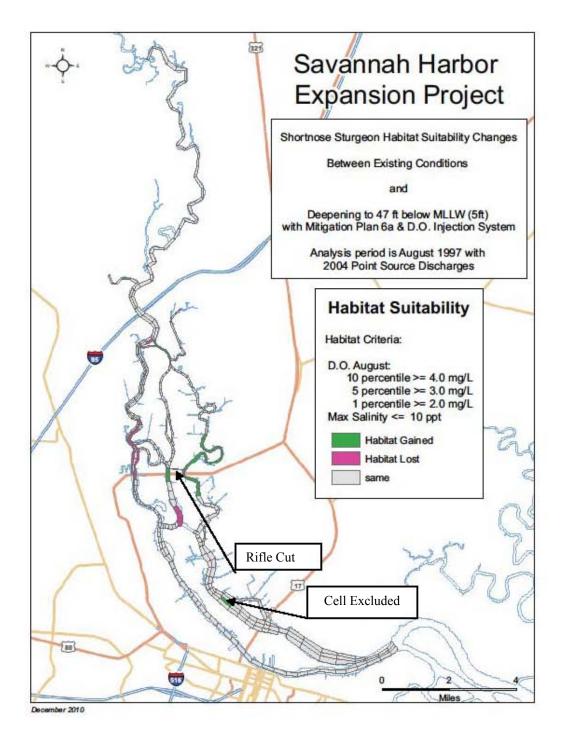


Figure 30. Model of Adult Shortnose Sturgeon Habitat during the Summer with the 47-foot deepening.

Adult shortnose sturgeon habitat during summer conditions

According to the COE's models of summer conditions, there would be a net gain of suitable habitat for adult shortnose sturgeon with all of the deepening scenarios due to the injection of dissolved oxygen. The COE had calculated acreage gain would range from 245 to 24 acres, or a gain of 17.8 to 1.7 percent of habitat, for the incremental deepenings from 44 to 48 feet. However, when NMFS calculated the acreage change, we found there would be a gain of 80 acres, or 5.84 percent with the 44-feet deepening, and a range of 94 to -1 acres, or 6.86 to -0.07 percent of habitat change for the incremental deepenings from 45 to 48 feet. NMFS also found that a single, isolated cell (indicated as gain) within the lower Back River should be excluded from the total acreage gain since it would be completely surrounded by unsuitable habitat.

The cause of the gain (primarily occurring in the Back River) is associated with the placement of dissolved oxygen injection system (Speece cones) within the lower Front River and lower Back River on Hutchinson Island. The gain of suitable habitat would occur in areas not previously identified as suitable for sturgeon. The system is described in Section 2.1.3 and the modeling of the dissolved oxygen injection is described below. The system is designed to mitigate for dissolved oxygen impacts within the harbor. Additional cones are needed for each of the incremental deepenings. The 47-feet deepening would require the use of 10 Speece cones that would add approximately 40,000 pounds of dissolved oxygen per day. The system would operate during the summer months when dissolved oxygen values are usually the lowest. The injection of dissolved oxygen does not affect the loss of habitat in the upper Front River. It does result in a gain within the Back River, (Figure 30) but adult sturgeon have not been documented using this area during the summer. The habitat suitability models show significant gains of suitable habitat in the Back River near Rifle Cut, but with the closure of Rifle Cut, it is unknown whether sturgeon will have access to the area indicated as gained habitat.

5.2.1 Effects of Disturbances during Construction

Turbidity, associated with the disturbance of sediments from construction activities in relation to the flow re-routing modifications (Plan 6A or 6B), would occur within shortnose sturgeon habitat. Dredging activities in the upper Middle and Back River, located less than a kilometer from McCoy Cut, could result in disturbances to sturgeon located within these areas. In addition, the activities associated with the closing of the western arm of McCov Cut and the construction of a diversion structure (e.g., sheet pile driving, placement of rip rap) in the Front River at McCoy Cut could disturb sturgeon and cause them to avoid these areas. During the summer and early fall, sturgeon appear to be concentrated in the Savannah River above the project area in a deep hole located upstream of the lower entrance to Abercorn Creek and in an area located just below the Abercorn Creek confluence. However, during the late fall through winter, they are found in the area of the proposed diversion structure moving between the deep hole and foraging areas in the Front River and Middle River. In order to minimize impacts to sturgeon, it is important that the construction activities such as those associated with the construction of the diversion structure are conducted while sturgeon are less likely to be found in the area. The impacts to sturgeon would be minimized by conducting

construction of the diversion structure while most sturgeon are congregated upstream of the construction area between May 15 and November 1.

Within the lower Front River, the dredging associated with the project deepening will occur up to the Kings Island Turning Basin. In addition, there will be construction activity within Kings Island Turning Basin as it is widened to accommodate larger ships. These areas are located downstream from juvenile shortnose sturgeon foraging habitat, but are within documented habitat used by adult shortnose sturgeon primarily during the winter. The potential for interruption of the movement of sturgeon through the project due to increased turbidity associated with the dredging is an issue of concern. It is important that the construction activities use best management practices.

While sedimentation and turbidity could be elevated during dredging actions, the effects are expected to be localized and temporary. Studies performed by Dr. D.F. Hayes in 1986 on a hydraulic cutterhead dredge operating in Savannah Harbor indicated that average suspended sediment concentrations within 1,600 feet of the dredge were generally raised less than 200 mg/Liter in the lower water column and less than 100 mg/Liter and 50 mg/Liter in the middle and upper water column, respectively. More recent data indicate that present-day dredging operations are conducted in ways that do not increase suspended sediment concentrations to such a degree. The Savannah River has a naturally high suspended sediment load which during storm events increase well beyond the 200 mg/Liter increase created by a hydraulic dredge.

5.2.2 Effects of Dredging on Sturgeon Prey

The deepening within the inner harbor will result in impacts to shortnose sturgeon foraging habitat and the foraging base found there. This directly impacts the entire Savannah River population of shortnose sturgeon that is believed to reside only within the action area. While initial loss of benthic resources within the transitional areas are likely to occur, a quick recovery is expected (Van Dolah et al. 1979, Van Dolah et al. 1984, and Clarke and Miller-Way 1992) within 6 months to two years (Bonsdorff 1980, Ray 1997). Previous benthic studies in Savannah Harbor, conducted just prior to annual maintenance dredging, have shown primarily healthy benthic communities both inside and outside the navigation channel. Average abundance and biomass were found to be higher inside the channel compared to locations outside the channel, with the exception of silt-sand substrates. Areas with soft mud bottoms and oligohaline or mesohaline salinities recovered quickly, likely due to the dominance of opportunistic species assemblages (e.g., Streblospio benedicti, Capitella capitata, Polydora ligni) (Ray 1997). Recovery in dredged sites occurs by four basic mechanisms: remnant (undredged) materials in the sites, slumping of materials with their resident fauna into the site, adult immigration, and larval settlement. Remnant materials-sediments missed during the dredging operation-act as sources of "seed" populations to colonize recently defaunated sediments. Adult immigration can occur as organisms burrow laterally throughout the sediments, drift with currents and tides, or actively seek out recently defaunated sediments (Ray 1997). Likewise, materials slumping or falling into the site from channel slopes provide organisms for colonization (Kaplan et al. 1975).

The colonization of prey species into the transitional areas after the deepening has been completed is contingent on there being suitable water quality conditions and bottom substrates for these organisms to survive. However, while prey may be available, it will be of no benefit to shortnose sturgeon if the area has become unsuitable habitat for shortnose sturgeon due to higher salinity, or if access to the foraging habitat is no longer possible due to isolation of the foraging habitat related to the flow re-routing modifications, as may occur with the closing of Rifle Cut.

Dial-Cordy and Associates (2010) conducted a study for the COE to identify the bottom substrates in the Front River between Middle River and Interstate 95. This is the transitional area where the saltwater/freshwater interface will be shifting as a result of the deepening. The study found the bottom substrate to be primarily sand, which they considered to be acceptable habitat capable of supporting benthic populations. The study did not sample for benthic organisms.

Cadmium-laden Sediment Removal

The dredging and subsequent removal of cadmium-laden sediments could negatively influence water quality and affect potential prey species consumed by shortnose sturgeon. Contaminated sediments may be present within the areas where adult shortnose sturgeon forage. Sediment sampling and analysis were performed and the conclusions from that evaluation were that the only sediment contaminant of concern for this project is naturally-occurring cadmium found in Miocene clays.

The sediments containing cadmium would be dredged and/or exposed during construction. The highest concentrations of cadmium (average 21.45 mg/kg) are found between Stations 16+000 and 45+000 (river mile 3.0 to 8.5) and medium concentrations (average 6.67 mg/kg) are found between Stations 45+000 to 94+000 (river mile 8.5 to 17.8). Initially, dredging of the navigation channel may expose sturgeon prey/food species to cadmium. If prey/food species uptake cadmium from Stations 16+000 to 45+000, then it could adversely affect the adult shortnose sturgeon. Several factors could influence the degree to which cadmium might move from channel bottom sediment to benthos to the aquatic food chain. Important related questions that need to be answered are: (1) Do the Miocene clays with elevated cadmium levels support benthic organisms?, and (2) If so, would these benthic organisms growing in the Miocene clays with the elevated cadmium levels bioaccumulate cadmium and pass it through the food chain?

To address these questions, EA Engineering, Science, and Technology (EA 2008) conducted a benthic community assessment of the river bottom both inside and outside of the channel. They found a substantial benthic community within the channel bottom. In addition, they found that the coarse sand/gravel/clay substrate was used by benthic organisms, although they were unable to determine to what extent benthic organisms might burrow into the clay. They found that the substantial presence of benthic organisms within the channel maintenance sediments indicates that the impact of maintenance dredging is temporary. Although EA found that the clay substrate does support benthic organisms, this substrate presently comprises less than 28 percent of the channel bottom between Stations +16+000 and +60+000. This finding indicates that

benthic organisms residing in exposed Miocene clays should present a relatively small fraction of the benthic organisms within the channel ecosystem. Potential contaminant impacts associated with exposed high cadmium sediments within a deepened channel would be minimal, primarily because sediment cadmium was found to be unavailable and bioaccumulation tests found cadmium uptake below levels of concern. The essentially anoxic state of the channel sediments should preclude significant movement of cadmium to the environment.

5.2.3 Effects of Proposed Fish Passage at the New Savannah Bluff Lock and Dam

The New Savannah Bluff Lock and Dam at the city of Augusta (rkm 299) is located just a few kilometers below impassible rapids, denying sturgeon access to 7 percent of historically available habitat up to the Augusta Diversion Dam (NMFS and USFWS 1998). The New Savannah Bluff Lock and Dam has five vertical spillway gates that could allow passage for anadromous fish during the normal spawning season flows in the Savannah River. Under normal spring flows when the gates are open, the headpond and tailwater elevations are often at the same level, and fish may pass upstream over the submerged weirs at each gate opening. Limited passage studies at the New Savannah Bluff Lock and Dam have documented significant passage by American shad, river herring, and striped bass for many years, but have not indicated passage by shortnose sturgeon. A study conducted by The Nature Conservancy in 2006 indicated significant numbers of shortnose sturgeon are present at the base of the New Savannah Bluff Lock and Dam during the late winter-spring spawning period. Congressional Acts (Water Resources Development Act of 2000, P.L. 106-541, and the Omnibus Appropriations Act 2001, P.L. 106-554) authorized the Savannah District COE to repair and rehabilitate the New Savannah Bluff Lock and Dam and to transfer the project to the City of North Augusta and Aiken County, South Carolina. The COE commissioned a study to investigate terms for transfer of ownership of the New Savannah Bluff Lock and Dam. The previous study identified and investigated fish passage configurations that would pass many species, including sturgeon.

A recent interagency fish passage workshop held by the COE investigated new alternative fish passage designs and made recommendations for a fish passage design based on performance criteria that would result in safe and effective passage of sturgeon upstream and downstream. NMFS and the workshop participants believed fish passage success criteria should be to provide for safe and effective upstream and downstream passage, where "safe" means negligible chances for harm to fish as a result of interactions with the passage facility or dam, and "effective" refers to the percentage of fish migrating up to and attempting to use the passage facility, that actually succeed in that attempt. Following the workshop, the COE reviewed the designs to determine the engineering specifications that would be needed, along with overall cost for construction, and developed an additional fish passage design alternative that would be less costly; an off-channel rock ramp (described in Section 2.1.5) that they will include in the FEIS.

NMFS has included development of a detailed *Plan for Safe and Effective Fish Passage* as a Term and Condition of this opinion, to ensure the passage facilities will provide the

passage benefits upon which this opinion's conclusions are based. The Plan will be developed by the COE in consultation with NMFS, FWS, SCDNR, and GADNR. The Plan will require input of fish passage engineers and sturgeon experts working with COE on the final design and to ensure the effectiveness of the off-channel rock ramp. The Plan will also include a timetable for completion of construction of the off-channel rock ramp. Methodologies included in a separate monitoring and adaptive management plan will help determine if there are problems with the ramp and how they can be corrected. Development of these plans should commence within six months of the COE receiving all environmental approvals to implement the project. NMFS will review the final design to validate that it is anticipated to meet the performance requirements of this opinion.

Passage Effectiveness

Even though the final design details of the proposed off-channel rock ramp are not known, NMFS believes that the conceptual design can be meaningfully analyzed to assess its likely safety and effectiveness for passing sturgeon. The Plan and other terms and conditions included in this opinion will help ensure that the actual design and construction of the fish passage achieve the estimated success criteria. In their May 11, 2011, Information Paper, the COE estimated that the off-channel rock ramp would "provide 75% performance of upstream shortnose sturgeon passage and 85% performance of downstream passage." Those estimates were based on input from the participants in the April 2011 workshop in Augusta stating that fish passage performance generally matches the percent of river flow through the passage structure. This design would accommodate 100 percent of the river flow for 64 percent of the time during the months of February through June. The primary concern for failed upstream passage would be fish that swim past the rock ramp and up to the dam. Until the river nears flood stage, the predominant flow would still be though the rock ramp. Therefore, fish like shortnose sturgeon that follow the bottom contours and the predominant flow should use the off-channel rock ramp. The inclusion of the guide wall and the thalweg dredging in the design should further strengthen that effect. The COE stated that since vertical sills exist at both the downstream and upstream faces of the dam, no shortnose sturgeon are expected to move through the gates on the dam.

NMFS agrees with the COE's assessment of the likely effectiveness of the proposed offchannel rock ramp. NMFS also agrees that no upstream passage through the spill gates is expected. Traditional fish ladder designs are not effective at passing sturgeon. In recent years, there has been an emphasis on development of nature-like fishways, including rock ramp designs like the COE's proposal, particularly at low-head dams like the New Savannah Bluff Lock and Dam and with sturgeon as particular target species (Aadland 2010). The proposed off-channel rock ramp is sized and sloped appropriately for shortnose and Atlantic sturgeon. Inclusion of large boulders reduces overall water velocity through the fishway and also produces localized areas of low velocity where fish may rest between upstream bursts of movement. The rock ramp itself may have appropriate characteristics for some fish to spawn in it, as has been documented with lake sturgeon (Aadland 2010). NMFS agrees that the frequency of days when all or most of the river flow will pass through the fishway is likely a good proxy for the ability of sturgeon that are attempting to pass upstream or downstream to find and successfully pass through the rock ramp. NMFS further agrees that the guide wall and thalweg design features are likely to further improve the likelihood of fish reaching the entrance to the fish passage, rather than be attracted to the base of the dam. Thus, NMFS believes that the COE's estimates of 75% upstream passage effectiveness is reasonable based on the current preliminary design for the off-channel rock ramp.

Failure of downstream passage is of much greater concern. If fish upstream of the dam are subsequently unable to return downstream, either because they are trapped above the dam or because they are injured in passing through the facility or the dam, then the loss of those individual spawners and/or their spawning output (i.e., larval fish) negates any benefit of having passed the fish to better spawning habitat. The inclusion of the guide wall and thalweg features are likely to lead many fish, either passively or behaviorally, to the upstream entrance to the rock ramp, even when water is being spilled through the dam. The majority of the flow will go through the rock ramp, especially later in the spring when downstream migration occurs. However, the COE's downstream passage effectiveness estimate (85%) implies that 15% of fish do not successfully navigate downstream through the rock ramp. For adult sturgeon, NMFS believes that, even if fish initially fail to find the upstream entrance to the rock ramp, they will eventually return downstream. Likewise, adult fish searching for passage downstream will eventually find the rock ramp. The navigation lock, although it has high, downward-leading sills, is another route of exit. Finally, when the spill gates on the dam are opened, sturgeon can be spilled through the gates into the tailrace. Larval fish, if they are carried past the entrance to the rock ramp and over the guide wall, are not likely to navigate back to the ramp or through the navigation lock. Thus, passage through the spill gates is the only way downstream for larval fish that initially fail to find the rock ramp. The frequency of spilling is directly associated with the primary presumed reason for failure to navigate the rock ramp, high overall river flows. Therefore, any larval fish that are carried past the guide wall are likely to pass quickly through the spill gates. Also, NMFS believes that the actual percentage of juvenile sturgeon going over the four foot wall and hence possibly passing through the flood gates may be less than the COE's 15% estimate. Studies with Savannah River shortnose sturgeon embryos and larvae indicate that during downstream movement they stay near the bottom hiding in the rocks and swimming at heights no greater than 117 cm which is slightly less than four feet (Parker and Kynard, 2005). The COE's proposed height for the guide wall is three or four feet. Therefore, NMFS believes the COE's estimate of a minimum of 85% downstream passage effectiveness is a reasonable expectation of performance for the proposed off-channel rock ramp.

Passage Safety

NMFS believes that the proposed off-channel rock ramp will be safe for sturgeon. That is, fish attempting to pass upstream or downstream through the rock ramp are unlikely to experience risk of significant injury. Although artificial, the velocities, grades, and structures in the rock ramp as proposed are designed to accommodate sturgeon and to be similar to conditions in natural spawning areas, such as the Augusta Shoals. Spawning fish may experience minor injuries or abrasions in natural circumstances as they navigate shoals or rapids; NMFS believes fish navigating the off-channel rock ramp would be exposed to no more risk than in navigating a natural, low rapids.

During the April 2011 passage workshop, NMFS and the sturgeon experts in attendance expressed concern about mortality of juvenile and adult sturgeon that do not use the rock ramp on downstream migration and are subsequently passed through the gates of the dam. The COE provided NMFS with additional information in their May 27, 2011, communication on additional details of the off-channel rock ramp design, addressing this issue. The configuration of the dam, spill gates, and tailwater height makes the risk of serious injury or mortality of both juvenile and adult sturgeon to be negligible as a result of passing through the gates during downstream migration. There is a concrete sill extending approximately 70 feet downstream of the gates, 10 feet lower than the gate sill. At the time gates begin to be used (which is the time that would pose the greatest risk of injury or mortality for sturgeon and other fish), water will be approximately 13 feet deep on the apron and 3 feet higher than the bottom of the gate sills. Any fish passing through the gates will therefore not experience any physical drop. Fish would be subjected to brief high velocities and a maximum 12 foot pressure differential (based on the difference in head height upstream and downstream of the dam). Fish would enter a standing pool of water that is roughly 13 feet deep and not be exposed to any significant risk of contact injury, such as a fall onto a hard surface or even the air-water interface. At higher river flow rates and after the gates have been opened, the tailwater will rise, reducing the head and pressure difference between the upstream and downstream sides of the dam, and reducing velocity through the spill gates. Thus, when river flows are highest, and the chances for sturgeon passing through the gates are highest, the potentially injurious hydrodynamic forces are the least.

Mortalities of fish from passing over a spillway have several causes: shearing effects, disorientation, abrasion against spillway surfaces, turbulence in the stilling basin at the base of the dam, sudden variations in velocity and pressure as the fish hits the water, and physical impact against energy dissipaters. Experiments have shown that significant damage occurs (with injuries to gills, eyes, and internal organs) when the impact velocity of the fish on the water surface in the downstream pool exceeds 16 m/s, whatever its size (Bell and Delacy 1972). Passage through a spillway under free-fall conditions is less hazardous for small fish compared to large ones as their terminal velocity is less than the critical velocity (Larinier 2001). A column of water reaches the critical velocity for fish after a drop of 13 m (Larinier 2001); beyond this limit, injuries may become significant and mortality will increase rapidly in proportion to the drop (100% mortality for a drop of 50-60 m). The maximum head differential at the facility would be 12 feet (about 0.36 atmospheres), with the fish being subjected to 17 feet/ sec maximum velocities, both of which are dramatically lower than the injury and mortality thresholds indicated by Bell and Delacy (1972) and Larinier (2001).

Schedule for Construction of Fish Passage

Under the COE's current schedule, any benefits derived from sturgeon passage will not be realized until at least 4 years after the start of project construction, as that is the proposed time frame for construction of the passage facility. The constriction of habitat in the lower Savannah River adds further urgency to fish passage implementation to restore access to habitat upstream that contains high quality spawning habitat and additional foraging habitat. In order to reduce additional adverse impacts associated with delay of construction of the fish passage, NMFS has included a requirement that the land acquisition process for the fish passage will be initiated prior to or concurrently with project dredging of the entrance channel. This would allow fish passage construction to begin prior to or concurrently with project deepening of the inner harbor. NMFS has also added a Term and Condition that contains a minor change in the construction of the diversion structure that will minimize the impacts of that construction.

After construction of the fish passage, monitoring would need to be conducted to assess the effectiveness of the design in passing sturgeon upstream and downstream. Details of the proposed monitoring should be clearly stated within the Monitoring and Adaptive Management Plan to be developed by the COE in coordination with the resource agencies. NMFS has included a requirement that the COE would coordinate with NMFS and the other federal and state resource agencies in the final development of the Plan within 6 months of the COE receiving all environmental approvals to implement the project. NMFS would have final review of the Plan.

Overall Impacts of Fish Passage

Once fish passage is implemented at the New Savannah Bluff Lock and Dam, both shortnose and Atlantic sturgeon will have free upstream passage to the Augusta Diversion Dam. NMFS believes that vitally important spawning habitat is available in the Savannah River upriver from the New Savannah Bluff Lock and Dam to the Augusta Diversion Dam, and that the species will likely expand their geographic range to reoccupy these formerly available habitats. The passage of fish past the New Savannah Bluff Lock and Dam will add 20 miles of additional spawning habitat and may lead to an increase in spawning activity. This could also reduce the adverse effects of loss of juvenile habitat in the lower river because they will be spawned further up the river, thus giving them more time and distance to mature and forage before reaching the lower river and the salt wedge which will be further up river as a result of the deepening.

As indicated in Section 5.2.1, the proposed deepening will result in a loss of juvenile shortnose and Atlantic sturgeon foraging and refuge habitat and will result in a loss of current adult shortnose sturgeon foraging and refuge habitat as a result of upriver movement of the salt wedge. During past dredging activities (Kings Bay turning basin) sturgeon moved further upriver and established new foraging and refuge areas. Based on this, NMFS expects that sturgeon will again find suitable habitat upriver. However, without fish passage this will cause a constriction of their range in the river and cause young fish to encounter higher salinities with less time to mature. The overall effect of the construction of the off-channel rock ramp is expected to add an additional 20 miles of spawning habitat which may lead to an increase in spawning and a possible increase in spawning success. Although fish passage will not replace the lost foraging and refuge habitat in the lower river, it will increase the sturgeons' range within the river and add an additional 20 miles for juvenile sturgeon to forage and mature prior to reaching the salt wedge in the lower river. More mature juvenile sturgeon are better able to tolerate higher salinities.

5.2.4 Summary of Effects to Sturgeon

Atlantic sturgeon will be adversely affected by direct interactions with dredges and relocation trawling in the Savannah Harbor Entrance Channel. Atlantic sturgeon may be encountered by hopper dredges, but relocation trawling should limit these encounters. The relocation trawling would result in nonlethal take as sturgeon are released alive. NMFS expects that 4 Atlantic sturgeon will be killed as a result of interactions with the dredge and 20 will be captured during relocation trawling. Shortnose sturgeon are not expected to be found in the offshore areas where hopper dredges will be operating, so no take should occur. No take is anticipated by dredging within the river channel as hopper dredges will not be used within the river channel.

Water quality will be affected by the changes in water flows through the lower Savannah River related to the freshwater flow re-routing modification and by the deepening. Analysis of the best available information indicates that salinities will increase and dissolved oxygen will decrease, adversely affecting important foraging and resting habitat for sturgeon. It is expected that 251 acres of habitat important to juvenile shortnose and Atlantic sturgeon will be lost, which represents 7.6% of their current estuarine habitat in the lower river. It is also expected that 266 acres of habitat important to adult and sub-adult shortnose sturgeon will be lost, which represents 6.9% of their current estuarine habitat in the lower river. Adult and sub-adult Atlantic sturgeon are more salt tolerant and forage mainly in the Atlantic Ocean so the habitat loss will have insignificant effects on them. Surveys conducted by the COE indicate that substrate suitable for the prey species preferred by shortnose and juvenile Atlantic sturgeon is found in the section of the Front River immediately upriver from the lost estuarine foraging habitat. The COE surveys did not establish whether these areas support sturgeon prey species, but NMFS believes that this upriver habitat may eventually be colonized by prey species as the habitat equalizes to the higher salinities resulting from the upriver movement of the salt wedge. To compensate for the lost foraging habitat, sturgeon will be forced to shift foraging efforts into new areas, once suitable prey become available, or to intensify their foraging in the remaining suitable habitats, if sufficient prey remains there. To the extent that sturgeon and the ecosystem are capable of making these responses, the overall impacts of lost foraging habitat may eventually be reduced.

Analysis of the best available information indicates that all juveniles of both species of sturgeon (no estimates of these populations are available) and all adult shortnose sturgeon (estimated at 2000) in the Savannah River will be affected by the deepening. The loss of foraging area mentioned above will reduce the amount of prey available to juveniles, making successful foraging more difficult. This reduction in prey and reduction in foraging success will result in slower growth rates and reduced fitness of juvenile sturgeon. Reduced fitness can also lead to disease and mortality. Adult shortnose sturgeon will also face a reduction in foraging success which will lead to reduced fitness. Reduced fitness in adult shortnose sturgeon can lead to disease and mortality, lower

fecundity in females, and a reduction in the energy required to make spawning runs, thereby, causing a lowering of reproductive success. There is no reliable way to quantify the actual numbers of juvenile shortnose and Atlantic sturgeon or adult shortnose sturgeon that will manifest these effects. Therefore, monitoring of habitat will be used to determine the extent of the effects to these species and to determine the need to reinitiate consultation. The terms and conditions of the incidental take statement issued with this opinion include monitoring of habitat effects.

Monitoring will include ensuring that habitat effects predicted by the COEs modeling are not greater than expected. The monitoring will also be used to determine if prey species do colonize upriver habitats and how long it takes for such colonization to occur. Lastly, monitoring will determine if the sturgeon are using new habitat areas including those that we expect to eventually be newly colonized by prey species. If monitoring indicates that these predictions are not accurate and that the effects of the action are greater than expected, taking action through the adaptive management process will be required.

6 CUMULATIVE EFFECTS

Cumulative effects are the effects of future state, local, or private activities that are reasonably certain to occur within the action area considered in this biological opinion. Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to Section 7 of the ESA.

Within the action area, major future changes are not anticipated in ongoing human activities described in the environmental baseline. The present human uses of the action area, such as commercial shipping, boating, and fishing, are expected to continue at the present levels of intensity in the near future as are their associated risks of injury or mortality to sea turtles and shortnose sturgeon posed by incidental capture by fishermen, vessel collisions, marine debris, chemical discharges, and man-made noises.

Sea Turtles

Beachfront development, lighting, and beach erosion control are all ongoing activities along the southeastern coast of the United States. These activities potentially reduce or degrade sea turtle nesting habitats or interfere with hatchling movement to sea. Human activities and development along nesting beaches may also discourage sea turtles from nesting sites. The extent to which these activities reduce sea turtle nesting and hatchling production is unknown. However, more and more coastal counties have or are adopting more stringent protective measures to protect hatchling sea turtles from the disorienting effects of beach lighting. Some of these measures were drafted in response to lawsuits brought against the counties by concerned citizens who charged the counties with failing to uphold the ESA by allowing unregulated beach lighting which results in takes of hatchlings.

NMFS presumes that any additional increases in recreational vessel activity in inshore and offshore waters of the Atlantic Ocean will likely increase the risk of turtles taken by injury or mortality in vessel collisions. Recreational hook-and-line fisheries have been known to lethally take sea turtles. Future cooperation between NMFS and the states on these issues should help decrease take of sea turtles caused by recreational activities. NMFS will continue to work with states to develop ESA Section 6 agreements and Section 10 permits to enhance programs to quantify and mitigate these takes.

Sturgeon

Human activities that affect riverine water quality and quantity such as non-point and point-source discharges are also expected to continue at current rates. Future cooperation between NMFS and the GADNR and SCDNR should help decrease take of sturgeon caused by recreational activities. NMFS will continue to work with states to develop ESA Section 6 agreements and with researchers in Section 10 permits to enhance programs to quantify and mitigate these takes.

Climatically, sea level is expected to continue to rise, water temperatures are expected to continue to rise, and levels of precipitation are likely to fluctuate more drastically. Drought and inter-and intra-state water allocation and their associated impacts will continue and may intensify. A rise in sea level will likely drive the salt wedge farther upriver, further constricting shortnose sturgeon habitat.

7 JEOPARDY ANALYSIS

The analyses conducted in the previous sections of this opinion serve to provide a basis to determine whether the proposed action would be likely to jeopardize the continued existence of affected ESA-listed sea turtles and sturgeon. In Section 5, we outlined how the proposed action can affect sea turtles and sturgeon and the extent of those effects in terms of estimates of the numbers of each species expected to be killed. Now we turn to an assessment of each species' response to this impact, in terms of overall population effects from the estimated take, and whether those effects of the proposed action, when considered in the context of the status of the species (Section 3), the environmental baseline (Section 4), and the cumulative effects (Section 6), will jeopardize the continued existence of the affected species.

It is the responsibility of the action agency to "insure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any endangered species or threatened species..." (ESA Section 7(a)(2)). Action agencies must consult with and seek assistance from the Services to meet this responsibility. The Services must ultimately determine in a biological opinion whether the action jeopardizes listed species. "To jeopardize the continued existence of" means to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and the recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species (50 CFR 402.02). Thus, in making this determination, NMFS must look at whether the action directly or indirectly reduces the reproduction, numbers, or distribution of a listed species. Then, if there is a reduction in one or more of these elements, we evaluate whether it would be expected to cause an appreciable reduction in the likelihood of both the survival of both the survival of both the survival of both the survival of these elements.

In the following section we evaluate the responses of loggerhead (NWA DPS) and Kemp's ridley sea turtles, and sturgeon, to the effects of the action. We have previously summarized how the Savannah River population of shortnose sturgeon is a part of the larger, Southern metapopulation. The Southern metapopulation consists of all shortnose sturgeon populations inhabiting the rivers from North Carolina through Florida. The Southern metapopulation is markedly separate from the other two metapopulations of the shortnose sturgeon, both physically and genetically. We will also evaluate in the following section the response of the Atlantic sturgeon South Atlantic DPS to the effects of the action, which is currently proposed for ESA listing as endangered.

7.1 Effects of the Action on Loggerhead Sea Turtles' Likelihood of Survival and Recovery in the Wild

The lethal take of 16 sea turtles by hopper dredges would result in an instantaneous, but temporary reduction in total population numbers. Thus, the proposed action will result in a reduction of sea turtle numbers. Sea turtle mortality resulting from hopper dredges could result in the loss of reproductive value of an adult turtle. For example, an adult female loggerhead sea turtle can lay 3 or 4 clutches of eggs every 2 to 4 years, with 100 to 130 eggs per clutch. The annual loss of one adult female sea turtle, on average, could preclude the production of thousands of eggs and hatchlings, of which a small percentage is expected to survive to sexual maturity. Thus, the death of an adult female eliminates an individual's contribution to future generations, and the action will result in a reduction in sea turtle reproduction.

Considering the size of the NWA DPS, we believe the loggerhead sea turtle population is sufficiently large enough to persist and recruit new individuals to replace those expected to be lethally taken (i.e., 16 over the course of the 3-year dredging project). We use the following estimates to support our determination.

NMFS SEFSC (2009a) estimated the likely minimum adult female population size for the western North Atlantic subpopulation in the 2004-2008 time frame to be between 20,000 to 40,000 (median 30,050) female individuals, with a low likelihood of there being as many as 70,000 individuals. The estimate of western North Atlantic adult loggerhead females was considered conservative for several reasons. The number of nests used for the western North Atlantic was based primarily on U.S. nesting beaches; as such, the results are a slight underestimate of total nests because of the inability to collect complete nest counts for many non-U.S. nesting beaches. In estimating the current population size for adult nesting female loggerhead sea turtles, NMFS SEFSC (2009a) simplified the number of assumptions and reduced uncertainty by using the minimum total annual nest count over the last five years (i.e., 48,252 nests). This was a particularly conservative assumption considering how the number of nests and nesting females can vary widely from year to year, (cf., 2008's nest count of 69,668 nests, which would have increased proportionately the adult female estimate to between 30,000 and 60,000). Further, minimal assumptions were made about the distribution of remigration intervals and nests per female parameters, which are fairly robust and well-known parameters.

Although not included in the NMFS SEFSC (2009) report, in conducting its loggerhead assessment NMFS SEFSC also produced a much less robust estimate for total benthic females in the western North Atlantic, with a likely range of approximately 60,000 to 700,000, up to less than one million. The estimate of overall benthic females is considered less robust because it is model-derived, assumes a stable age/stage distribution, and is highly dependent upon the life history input parameters. Relative to the more robust estimate of adult females, this estimate of total benthic female population is consistent with our knowledge of loggerhead life history and the relative abundance of adults and benthic juveniles: the benthic juvenile population is an order of magnitude larger than adults. Therefore, we believe female benthic loggerheads number in the hundreds of thousands.

Based on the total numbers of adult females and benthic juvenile females estimated by NMFS SEFSC for the western North Atlantic population of loggerhead sea turtles (now designated as the NWA DPS), the anticipated lethal take resulting from the proposed action (i.e., worst case, up to 16 loggerhead) represent the removal of, at most, approximately 0.043 percent of the estimated adult loggerhead female population. This level of lethal take of sea turtles also represents the removal of, at most, 0.0019 percent of the estimated female benthic loggerheads population. These removals are very small and contribute only minimally to the overall mortality on the population. For adult females, the incremental effect on annual mortality rates is less than four one-hundredths of the range of possible mortality values for the species. For benthic juvenile females, the contribution to overall mortality is less. Further, these percentages are likely an overestimation of the impact of the anticipated lethal take resulting from the proposed project on loggerhead sea turtles because of the following reasons. These percentages represent impacts to adult and benthic juvenile female loggerhead sea turtles only, and not to the population as a whole. Because this estimated contribution to mortality is a tiny part of our range of uncertainty across what total mortality might be for loggerhead sea turtles, we do not believe that the small effect posed by the lethal take resulting from the proposed project will be detectable or appreciable.

The potential lethal take of up to 16 loggerheads over a 3-year period will result in reduction in numbers when takes occur and possibly by lost future reproduction, but, given the magnitude of these trends and likely large absolute population size, it is unlikely to have any detectable influence on the population objectives and trends noted above. In the event that the take is non-lethal, the take would not be expected to impact the reproductive potential, fitness, or growth of the captured sea turtle because it will be immediately released unharmed, or released with only minor injuries from which it is expected to fully recover, or be rehabilitated prior to release. Thus, the proposed action will not interfere with achieving the recovery objectives and will not result in an appreciable reduction in the likelihood of loggerhead sea turtles' recovery in the wild.

The Atlantic recovery plan for the United States population of the loggerhead sea turtles (NMFS and USFWS 1991a), herein incorporated by reference, lists the following relevant recovery objective over a period of 25 continuous years:

The adult female population in Florida is increasing and in North Carolina, South Carolina, and Georgia, it has returned to pre-listing nesting levels (NC = 800 nests/season; SC = 10,000 nests/season; GA = 2,000 nests/season).

The potential lethal take of up to 16 loggerheads over a 3-year period will result in reduction in numbers when takes occur and possibly by lost future reproduction, but, given the magnitude of these trends and likely large absolute population size, it is unlikely to have any detectable influence on the population objectives and trends noted above. Capture of sea turtles by relocation trawlers will not affect the adult female nesting population or number of nests per nesting season. Thus, the proposed action will not interfere with achieving the recovery objectives and will not result in an appreciable reduction in the likelihood of loggerhead sea turtles' recovery in the wild.

7.2 Effect of the Action on Kemp's Ridley Sea Turtles' Likelihood of Survival and Recovery in the Wild

As demonstrated by nesting increases at the main nesting sites in Mexico, adult ridley numbers have increased over the last decade. The population model used by TEWG (2000) projected that Kemp's ridleys could reach the recovery plan's intermediate recovery goal of 10,000 nesters by the year 2015. Recent calculations of nesting females determined from nest counts show that the population trend is increasing towards that recovery goal, with an estimate of 4,047 nesters in 2006 and 5,500 in 2007 (NMFS 2007, Gladys Porter Zoo 2007). Recent nesting data indicated a population of an estimated 8,460 females in 2009 and 5,320 females in 2010 (J. Peña, Gladys Porter Zoo, pers. comm. to S. Heberling, NMFS, March 21, 2011). Based on this information, and similar to the conclusion reached for loggerhead sea turtles, the anticipated lethal take of up to 11 Kemp's ridley sea turtles would not be expected to have a detectable effect on the Kemp's ridley sea turtle population.

The lethal take of 11 Kemp's ridleys by hopper dredges over the 3-year duration of the proposed project could potentially result in short-term effects on individuals; however, these effects do not constitute an appreciable reduction in reproduction and numbers. Changes in distribution, even short-term, are not expected from non-lethal takes (interactions/releases from relocation trawling, vessel strikes, etc.) during the Savannah Harbor Expansion Project. Interactions with vessels and/or relocation trawlers may elicit startle or avoidance responses and the effects of the proposed action may result in temporary changes in behavior of sea turtles (minutes to hours) over small areas, but are not expected to reduce the distribution of any sea turtles in the action area. The removal of up to 11 Kemp's ridleys is anticipated during the proposed project. Because all potential take is expected to occur anywhere in the action area and sea turtles generally have large ranges in which they disperse, no reduction in the distribution of Kemp's ridley sea turtles is expected from the take of these individuals.

Based on the above analysis, we believe that take of Kemp's ridley sea turtles associated with the proposed action are not reasonably expected to cause, directly or indirectly, an appreciable reduction in the likelihood of survival of these species in the wild.

The following analysis considers the effects of the take on the likelihood of recovery in the wild. We consider the recovery objectives in the recovery plans prepared for each species that relate to population numbers or reproduction that may be affected by the predicted reductions in the numbers or reproduction of sea turtles resulting from the proposed action.

The recovery plan for Kemp's ridley sea turtles (USFWS and NMFS 1992), herein incorporated by reference, lists the following relevant recovery objective:

Attain a population of at least 10,000 females nesting in a season.

The potential injury or mortality of 11 Kemp's ridley will result in a reduction in overall population numbers in any given year. We already have determined this take is not likely to reduce population numbers over time due to current population sizes and expected recruitment. Capture of sea turtles by relocation trawlers will not affect the adult female nesting population or number of nests per nesting season. Thus, the proposed action will not result in an appreciable reduction in the likelihood of Kemp's ridley sea turtles recovery in the wild.

7.3 Effects of the Action on Shortnose Sturgeons' Likelihood of Survival and Recovery in the Wild

Adverse effects to important estuarine foraging habitats for juveniles and adults will affect both life stages. These effects are expected to be sub-lethal for individual sturgeon of the existing population, but may reduce the river's overall carrying capacity and ability to provide optimal habitat for shortnose sturgeon to forage. However, based on previous studies indicating that sturgeon moved upriver to suitable habitats after a deepening event (Collins et al., 2001), NMFS believes that both adults and juveniles will move to suitable habitats further upriver after this deepening event. However, NMFS believes there may be a transitional period as the habitat adjusts to the new, higher salinity. Sturgeon are expected to use these areas for foraging once their prey have colonized and stabilized to the new environmental conditions. The adverse effects of habitat loss on young of the year juveniles will be further reduced by being spawned further upriver due to the construction of a sturgeon-friendly fish passage facility, thus giving them more time and distance to mature before reaching the lower river.

NMFS believes that the proposed action is not likely to cause a long-term reduction in reproduction. Although there may be a reduction (1-2 years, maybe longer) in spawning due to lack of fitness of spawning adults resulting from lower foraging success during a transitional period as the habitat adjusts to the new, higher salinity. However, the implementation of the timely sturgeon-friendly fish passage before the project's full impacts occur within the inner harbor will result in the addition of 20 miles of spawning habitat that is expected to result in increased spawning activity over the long term. Adding 20 miles of available habitat will also lengthen the amount of residency time of early juveniles in freshwater, thereby resulting in juveniles being older and larger when

they reach the freshwater/saltwater interface and more adept at adjusting to different salinities.

Based on the fact that NMFS does not believe the proposed action will result in a reduction in reproduction or numbers of shortnose sturgeon in the Savannah River, the proposed action will not result in a decrease in the species' distribution. Based on this information, the proposed action will not appreciably reduce the likelihood of the shortnose sturgeon's survival in the Savannah River.

In the above analysis on the effects of the action, we determined that the loss of foraging habitat for shortnose sturgeon may restrict future population growth but will not appreciably reduce the likelihood of the shortnose sturgeon's survival in the Savannah River. We will analyze the likelihood of shortnose sturgeon recovery in the wild by considering effects resulting from the proposed action relative to accomplishing the conservation goals described in the Recovery Plan (NMFS 1998).

The long-term recovery goal for shortnose sturgeon focuses on recovering each population independently. An increase in the population to a size that maintains a steady recruitment of individuals representing all life stages would provide population stability and enable the population to sustain itself in the event of unavoidable impacts. Goals listed in the 1998 shortnose sturgeon recovery plan that could be affected by the proposed action include:

- 1. Ensure that all fish passageways permit adequate passage of shortnose sturgeon and do not alter migration or spawning behavior;
- 2. In each river, identify natural migration patterns of each life stage and any barriers to movement between habitats. Devise methods to pass shortnose sturgeon above/below existing barriers; and
- 3. Restore flows in regulated rivers during spawning periods to promote spawning success and rehabilitate degraded spawning substrate.

The proposed implementation of fish passage at the New Savannah Bluff Lock and Dam and the associated restoration of 20 miles of upstream habitat, including historic spawning habitat and providing additional habitat for the early life stages of their offspring to use as developmental and foraging habitat. By adding approximately 20 miles of habitat, the early juveniles moving down the river will have a longer length of river in which to feed and grow older and larger before reaching the saltwater/freshwater interface located in the lower Savannah River. As it has been shown by laboratory studies, even a few weeks difference in age enables juvenile sturgeon to develop a higher tolerance of salinity and lower levels of dissolved oxygen. This would help them to be better able to utilize a wider range of foraging habitat once they reach the lower river thereby reducing the negative effects caused by upriver movement of the salt wedge resulting from the deepening. The increased spawning habitat and survival of more juveniles should help to rebuild the population; thereby ensuring a stable population that can maintain continuous recruitment of individuals, will contain all life stages, and will allow the population to sustain itself in the event of unavoidable impacts.

7.4 Effects of the Action on Atlantic Sturgeons' Likelihood of Survival and Recovery in the Wild

While the expected lethal take of 4 Atlantic sturgeon by hopper dredges would result in a reduction in numbers which are considered to be low, the reduction will not decrease the overall population in the South Atlantic DPS as there are significant numbers of fish found in the rivers comprising the South Atlantic DPS range of Atlantic sturgeon.

Adverse effects to important estuarine foraging habitats for juveniles and adults will affect both life stages. These effects are expected to be sub-lethal for individual sturgeon of the existing population, but may reduce the river's carrying capacity and its overall ability to provide suitable foraging habitat for juvenile Atlantic sturgeon. NMFS also believes that both adults and juveniles will move to suitable foraging and resting habitats further upstream. The adverse effects of habitat loss on young of the year juveniles will be further reduced by being spawned further up the river due to the construction of a sturgeon-friendly fish passage structure, thus giving them more time and distance to mature before reaching the lower river.

NMFS believes that the proposed action is not likely to cause a reduction in reproduction. The implementation of the timely sturgeon-friendly fish passage before the project's full impacts occur within the inner harbor will result in the addition of 20 miles of spawning habitat that is expected to result in increased spawning activity over the long term. Adding 20 miles of available habitat may lengthen the amount of residency time of early juveniles in freshwater, thereby resulting in juveniles being older and larger when they reach the freshwater/saltwater interface and more adept at adjusting to different salinities.

Based on the fact the NMFS does not believe the proposed action will result in a reduction in reproduction or numbers of Atlantic sturgeon in the Savannah River, the proposed action will not result in a decrease in the species distribution. Based on this information, the proposed action will not appreciably reduce the likelihood of the Atlantic sturgeon's survival in the Savannah River.

Because the Atlantic sturgeon is not a listed species, there is no recovery plan. However recovery is the process by which listed species and their ecosystems are restored and their future is safeguarded to the point that protections under the ESA are no longer needed (NMFS and USFWS Recovery Planning Guidance 2010). The first step in recovering a species is to reduce identified threats; only by alleviating threats can lasting recovery be achieved (NMFS and USFWS Recovery Planning Guidance 2010). An increase in the population to a size that maintains a steady recruitment of individuals representing all life stages would provide population stability and enable the population to sustain itself even in the event of unforeseen and unavoidable impacts.

Major threats impacting the Atlantic sturgeon South Atlantic DPS were summarized in the proposed listing (75 FR 61904) and include:

- 1. Dams that curtail the extent of available habitat, as well as modifying sturgeon habitat downstream through a reduction in water quality.
- 2. Dredging that modifies the quality and availability of Atlantic sturgeon habitat.
- 3. Degraded water quality that modifies and curtails the extent of available habitat for spawning and nursery areas.
- 4. Climate change that exacerbates the effects of modification and curtailment of Atlantic sturgeon habitat caused by dams, dredging, and reduced water quality.
- 5. Overutilization for commercial purposes contributed to the historical drastic decline in Atlantic sturgeon populations throughout the species' range.
- 6. Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

In addition, the proposed implementation of fish passage at the New Savannah Bluff Lock and Dam and the associated restoration of 20 miles of upstream habitat, including historic spawning habitat should provide additional habitat for the early life stages of Atlantic sturgeon to use as developmental and foraging habitat. It has been shown by laboratory study that even a few weeks difference in age enables juvenile sturgeon to develop a higher tolerance of salinity and lower levels of dissolved oxygen. This would help them to be better able to utilize a wider range of foraging habitat once they reach the lower river, thus reducing the negative effects caused by upriver movement of the salt wedge resulting from the deepening; thereby helping to ensure a stable population that can maintain a continuous recruitment of individuals, will contain all life stages, and will allow the population to sustain itself in the event of unavoidable impacts.

8 CONCLUSION

We have analyzed the best available data, the current status of the species, environmental baseline, effects of the proposed action, and cumulative effects to determine whether the proposed action is likely to jeopardize the continued existence of the Northwest Atlantic DPS of loggerhead sea turtles, Kemp's ridley sea turtles, Atlantic sturgeon, and shortnose sturgeon.

Kemp's Ridley and Loggerhead Sea Turtles (NWA DPS)

Because the proposed action is not reasonably expected to reduce appreciably the likelihood of survival and recovery of Kemp's ridley or loggerhead (NWA DPS) sea turtles, it is our opinion that the Savannah Harbor Expansion Project is not likely to jeopardize their continued existence.

Shortnose Sturgeon

This opinion analyzed the best available data, the current status of the species, environmental baseline, effects of the proposed action, and cumulative effects to determine whether the proposed action is likely to jeopardize the continued existence of shortnose sturgeon. Review of the available data indicates that the proposed project will adversely affect shortnose sturgeon through dredging and habitat modification. These effects are expected to be nonlethal for juvenile and adult shortnose sturgeon found in the Savannah River. NMFS believes the effects of these impacts will be reduced by timely construction of a sturgeon-friendly fish passage prior to or concurrent with project impacts occurring within the inner harbor and will result in the addition of 20 miles of spawning habitat that is expected to result in increased spawning activity. Therefore, it is our opinion that the Savannah Harbor Expansion Project is not likely to jeopardize the continued existence of shortnose sturgeon.

Conference Opinion for South Atlantic DPS of Atlantic Sturgeon

Our Atlantic sturgeon analyses focused on the impacts to and population response of the South Atlantic DPS within the Savannah River. Review of the available data indicates that the proposed project will adversely affect Atlantic sturgeon through dredging and habitat modification. These effects are expected to be nonlethal for the juvenile and adult Atlantic sturgeon found in the Savannah River. NMFS believes the effects of these impacts will be reduced by timely construction of a sturgeon-friendly fish passage prior to or concurrent with project impacts occurring within the inner harbor and will result in the addition of 20 miles of spawning habitat that is expected to result in increased spawning activity. It is therefore our opinion that the Savannah Harbor Expansion Project is not likely to jeopardize the continued existence of the South Atlantic DPS of Atlantic sturgeon.

9 INCIDENTAL TAKE STATEMENT (ITS)

Section 9 of the ESA and protective regulations issued pursuant to Section 4(d) of the ESA prohibit the take of endangered and threatened species, respectively, without a special exemption. Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or attempt to engage in any such conduct. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of Section 7(b)(4) and Section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the ESA provided that such taking is in compliance with the RPMs and terms and conditions of the ITS.

Section 7(b)(4)(c) of the ESA specifies that in order to provide an incidental take statement for an endangered or threatened species of marine mammal, the taking must be authorized under Section 101(a)(5) of the MMPA. Since no incidental take of listed marine mammals is expected or has been authorized under Section 101(a)(5) of the MMPA, no statement on incidental take of endangered whales is provided, and no take is authorized. Nevertheless, the COE must immediately notify (within 24 hours, if communication is possible) NMFS' Office of Protected Resources should a take of a listed marine mammal occur.

9.1 Anticipated Amount or Extent of Incidental Take

Section 9 of the ESA and Federal regulation pursuant to Section 4(d) of the ESA prohibit take of endangered and threatened species, respectively, without special exemption. Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or

to attempt to engage in any such conduct. Harm is further defined by NMFS to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of ESA Section 7(b)(4) and Section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

Sea Turtles

Based on historical distribution data, hopper dredge observer reports, and observations of past strandings, loggerhead and Kemp's ridley sea turtles may occur in the action area and may be taken by the hopper dredging operations of this project. NMFS anticipates incidental take, by injury or mortality, will consist of 27 sea turtles (11 Kemp's ridley and 16 loggerhead) during the three years of project dredging and up to 51 non-injurious takes of non-species-specific sea turtles over the three years. NMFS estimates that, overall, sea turtle trawling and relocation efforts will result in considerably less than 0.5 percent mortality of captured turtles, primarily due to their being previously stressed or diseased or if struck by trawl doors or accidents on deck.

Atlantic sturgeon

During the dredging of the offshore Entrance Channel, we expect 4 Atlantic sturgeon to be killed as a result of interactions with dredges and another 20 will be taken in relocation trawlers but released alive. According to the COE's timeline, dredging of the Entrance Channel will occur over a period of two to three years.

The loss of estuarine habitat currently used by sturgeon will result from the salt wedge moving further upriver causing salinity to increase above levels tolerated by juvenile Atlantic sturgeon. With the higher salinities located further upriver, small juveniles migrating downriver could arrive at the salt wedge too early and be subjected to salinities beyond their tolerable upper limits. This could result in mortality for these individuals. Adult sturgeon may become sick and weak if they are not able to find sufficient prey due to the loss of foraging habitat that would occur with the shift of higher salinity upriver.

An unknown number of Atlantic sturgeon may experience adverse effects due to the loss of estuarine habitat in the inner harbor, but NMFS does not expect this number to rise to a population level. Modeling of habitat loss for Atlantic sturgeon was not conducted due to their proposed listing occurring after the COE had concluded all of its data analyses, however it is generally believed that suitable habitat as determined for juvenile shortnose sturgeon would also be suitable for juvenile Atlantic sturgeon. Modeling for shortnose sturgeon indicates that with the 47-foot deepening alternative, approximately 251.0 acres of foraging and resting habitat used by juvenile shortnose sturgeon during the winter (January conditions were modeled) would be lost. This represents approximately 7.6 percent of the total habitat available to juvenile shortnose sturgeon in the lower river. Because juvenile Atlantic and shortnose sturgeon are thought to share the same foraging and resting habitat, there is a likelihood that juvenile Atlantic sturgeon would also be

affected by the loss of this habitat. The most recent population estimates for Atlantic sturgeon estimated that there are 300 or less adults in the Savannah River, but there are no estimates for juvenile Atlantic sturgeon. Because no population estimates have been conducted, we are unable to determine the actual number of juvenile Atlantic sturgeon currently found in the Savannah River. However, using the loss of 7.6 percent of the total available habitat to extrapolate take of juvenile Atlantic sturgeon, we would estimate that the inner harbor deepening would adversely affect approximately 7.6 percent of the juvenile Atlantic sturgeon found in the Savannah River due to loss of foraging/nursery habitat.

Modeling also indicated that approximately 266.0 acres of foraging and resting habitat used by adult shortnose sturgeon during the winter (January conditions were modeled) would be lost. This represents approximately 6.9 percent of the total habitat available to adult shortnose sturgeon in the lower river. However, since adult Atlantic sturgeon have a wide range of salinity tolerance, we believe the majority of adult Atlantic sturgeon will not be affected and will be able to find suitable foraging habitat. Although we cannot estimate the actual number of sturgeon that would be affected, we would not expect it to rise to a population level adverse affect.

Shortnose sturgeon

NMFS has also determined that juveniles and adults within the Savannah River population of shortnose sturgeon will be affected due to loss of estuarine habitat in the lower river. An unknown number of shortnose sturgeon may experience adverse effects due to the loss of habitat, but NMFS expects this to be a small number and not on a population scale. The modeling indicates that with the 47-foot deepening alternative, approximately 251.0 acres of foraging and resting habitat used by juvenile shortnose sturgeon during the winter (January conditions were modeled) would be lost. This represents approximately 7.6 percent of the total habitat available to juvenile shortnose sturgeon in the lower river. No estimates of juvenile abundance have been conducted. Because no population estimates are available for juvenile shortnose sturgeon, we are unable to determine the actual number of juveniles currently found in the Savannah River.

Modeling also indicated that approximately 266.0 acres of foraging and resting habitat used by adult shortnose sturgeon during the winter (January conditions were modeled) would be lost. This represents approximately 6.9 percent of the total habitat available to adult shortnose sturgeon in the lower river. We believe the majority of adult shortnose sturgeon will not be affected and will be able to find suitable foraging habitat. A draft status review of shortnose sturgeon, being prepared by the Shortnose Status Review Team (2011), provides a (weak) population estimate of 2,000 adults in the Savannah River. If we use this estimate, approximately 2,000 adult shortnose sturgeon in the Savannah River could be adversely affected by the loss of suitable foraging habitat.

9.2 Effect of the Take

Sea Turtles

NMFS has determined the anticipated level of incidental take specified in Section 9.1 is not likely to jeopardize the continued existence of loggerhead (NWA DPS) or Kemp's ridley sea turtles.

Sturgeon

NMFS has determined the anticipated level of incidental take as explained in Section 9.1 is not likely to jeopardize the continued existence of shortnose sturgeon or the Atlantic sturgeon.

9.3 Reasonable and Prudent Measures

Section 7(b)(4) of the ESA requires NMFS to issue a statement specifying the impact of any incidental take on listed species, which results from an agency action otherwise found to comply with Section 7(a)(2) of the ESA. It also states the RPMs necessary to minimize the impacts of take and the terms and conditions to implement those measures, must be provided and must be followed to minimize those impacts. Only incidental taking by the federal agency that complies with the specified terms and conditions is authorized.

The RPMs and terms and conditions are specified as required, by 50 CFR 402.01(i)(1)(ii) and (iv), to document the incidental take by the proposed action and to minimize the impact of that take on ESA-listed species. These measures and terms and conditions are non-discretionary, and must be implemented by the COE in order for the protection of Section 7(o)(2) to apply. The COE has a continuing duty to regulate the activity covered by this incidental take statement. If the COE fails to adhere to the terms and conditions through enforceable terms, and/or fails to retain oversight to ensure compliance with these terms and conditions, the protective coverage of Section 7(o)(2) may lapse.

Sea Turtles

NMFS has determined that the following RPMs are necessary and appropriate to minimize impacts of the incidental take of sea turtles during the proposed action. The RPMs that NMFS believes are necessary to minimize the impacts of the proposed hopper dredging have been discussed with the COE in the past and are standard operating procedures, and include the use of intake and overflow screening, use of sea turtle deflector dragheads, observer and reporting requirements, and relocation trawling. The following RPM's and associated terms and conditions are established to implement these measures, and to document incidental takes. Only incidental takes that occur while these measures are in full implementation are authorized. Experience has shown that injuries sustained by sea turtles entrained in the hopper dredge dragheads are usually fatal. Current regional opinions for hopper dredging require observer monitoring requirements, deflector dragheads, and conditions and guidelines for relocation trawling, which NMFS believes are necessary to minimize effects of these removals on listed sea turtle species that occur in the action area.

1. Take Reporting: Observer Requirements and Dredged Material Screening

NMFS-approved observers monitor dredged material inflow and overflow screening baskets on many projects; however, screening is only partially effective and observed, documented takes provide only partial estimates of total sea turtle mortality. NMFS believes that some listed species taken by hopper dredges go undetected because body parts are forced through the sampling screens by the water pressure and are buried in the dredged material, or animals are crushed or killed but not entrained by the suction and so the takes may go unnoticed. The only mortalities that are documented are those where body parts either float, are large enough to be caught in the screens, and/or can be identified as from sea turtle species. However, this opinion estimates that with 4-inch inflow screening in place, and 24 hour, 100 percent observer coverage will probably detect and record 66.6 percent of turtle mortality. Additionally, coordination with local sea turtle stranding networks can be a valuable adjunct monitoring method; not to directly monitor takes, but to help ensure that unanticipated impacts to sea turtles are not occurring.

2. Deflector Dragheads

V-shaped, sea turtle deflector dragheads prevent an unquantifiable yet significant number of sea turtles from being entrained and killed in hopper dredges each year. Without them, turtle takes during hopper dredging operations would unquestionably be higher. Draghead tests conducted in May-June 1993 by the COE's Waterways Experimental Station (WES), now known as the Engineering Research and Development Center (ERDC), in clear water conditions on the sea floor off Fort Pierce, Florida, with 300 mock turtles placed in rows, showed convincingly that the newly-developed WES deflector draghead "performed exceedingly well at deflecting the mock turtles." Thirtyseven of 39 mock turtles encountered were deflected, 2 turtles were not deflected, and none were damaged. Also, "the deflector draghead provided better production rates than the unmodified California draghead, and the deflector draghead was easier to operate and maneuver than the unmodified California flat-front draghead." The V-shape reduced forces encountered by the draghead, and resulted in smoother operation. V-shaped deflecting dragheads are now a widely accepted conservation tool, the dredging industry is familiar with them and their operation, and they are used by all COE Districts conducting hopper dredge operations where turtles may be present.

3. Relocation Trawling

Relocation trawling has proved to be a useful conservation tool in most dredging projects where it has been implemented. The September 22, 1995, RBO to the COE's New Orleans and Galveston Districts on hopper dredging of channels in Texas and Louisiana included a conservation recommendation for relocation trawling which stated that "Relocation trawling in advance of an operating dredge in Texas and Louisiana channels should be considered if takes are documented early in a project that requires use of a hopper dredge during a period in which large number of sea turtles may occur." That

RBO was amended by NMFS (Amendment No. 1, June 13, 2002) to change the conservation recommendation to a term and condition of the RBO. Overall, it is NMFS' opinion that the COE Districts choosing to implement relocation trawling have benefited from their decisions. For example, in the Galveston District, Freeport Harbor Project (July 13-September 24, 2002), assessment and relocation trawling resulted in one loggerhead capture. In Sabine Pass (Sabine-Neches Waterway), assessment and relocation trawling in July-August 2002 resulted in five loggerhead and three Kemp's ridley sea turtle captures. One turtle was killed by the dredge; this occurred while the relocation trawler was in port repairing its trawl net (P. Bargo, pers. comm. 2002). In the Jacksonville District, sea turtles have been relocated out of the path of hopper dredges operating in Tampa Bay and Charlotte Harbor or their entrance channels. During St. Petersburg Harbor and Entrance Channel dredging in the fall of 2000, a pre-dredging risk assessment trawl survey resulted in capture, tagging, and relocation of two adult loggerheads and one subadult green turtle. In February 2002 during the Jacksonville District's Canaveral Channel emergency hopper dredging project for the Navy, two trawlers working around the clock captured and relocated 69 loggerhead and green turtles in seven days, and no turtles were entrained by the hopper dredge. In the Wilmington District's Bogue Banks Project in North Carolina, two trawlers successfully relocated five turtles in 15 days between March 13 and 27, 2003; one turtle was taken by the dredge. In 2003, Aransas Pass relocation trawling associated with hopper dredging resulted in 71 turtles captured and released (with three recaptures) in three months of dredging and relocation trawling. Five turtles were killed by the dredge. No turtles were killed after relocation trawling was increased from 12 to 24 hours per day (T. Bargo, pers. comm. to E. Hawk, October 27, 2003). In 2006, trawling associated with the dredging of the Houston-Galveston Navigation Channels resulted in 7 loggerheads relocated in 60 days of trawling (COE Sea Turtle Data Warehouse;

http://el.erdc.usace.army.mil/seaturtles/index.cfm). In Fiscal Year 2007, relocation trawling activities in COE channel projects in the Gulf of Mexico resulted in the capture and relocation of 67 green, 42 Kemp's ridley, and 68 loggerhead sea turtles; in the South Atlantic, 18 loggerhead and 17 Kemp's ridley sea turtles were relocated (Ibid).

This opinion authorizes the use of turtle relocation trawling. NMFS believes the use of relocation trawling should be required during all proposed hopper dredging. NMFS will provide a list of contractors who are approved by NMFS to perform this work. NMFS expects the effect of any turtle relocation trawling would be non-lethal and non-injurious.

Sturgeon

We have determined the following RPMs are necessary and appropriate to minimize the impacts of future takes on sturgeon as the COE conducts the dredging of the harbor and implements fish passage and other modifications in the project area.

1. Implement Safe and Effective Fish Passage in a Timely Manner

The implementation of fish passage at the New Savannah Bluff Lock and Dam is a measure that is expected to provide sturgeon access to upstream habitat. A delay in

implementing fish passage will result in adverse effects on the year-class strength of sturgeon. Reduction in year-class is a major consequence for the late-maturing, longlived sturgeon that spawn infrequently. The constriction of habitat in the lower Savannah River adds further urgency to prompt fish passage implementation to restore access to habitat upstream that contains high quality spawning habitat and additional foraging habitat. The COE has presented a fish passage design called an Off-Channel Rock Ramp which is expected to pass fish safely and effectively upstream and downstream. NMFS requested a review of the proposed design by Dr. Luther Aadland (Minnesota Department of Natural Resources), who provided assurance that the proposed rock ramp could effectively pass sturgeon and other anadromous species with some modification. Additionally, a comparison analysis of the performance of existing rock ramps located in other parts of the country with similar characteristics to the New Savannah Bluff Lock and Dam fish passage design may provide useful information on the spatial variation of velocities across the width of rock ramp designs. Final design information provided by the COE for the proposed fish passage should include how the velocity fields would vary with different river flows.

The development of the final design of this fish passage will need to be coordinated with NMFS. A timetable for completion of construction of the fish passage facility shall be included. The COE has agreed to immediately initiate final design work and coordinate the results of that effort with the federal and state natural resource agencies within 6 months of receiving all of the environmental approvals to implement the project. In order to consult with the other resource and sturgeon experts, NMFS will require a minimum of 2 months to provide a review of the final fish passage design.

Additional lands must also be acquired to construct the rock ramp and for an access road to the site. The COE shall initiate land acquisition prior to, or concurrent with, the start of dredging of the Savannah Harbor Entrance Channel. The COE has estimated that it will take 6 months to process the land acquisition. Construction of the fish passage shall commence prior to or concurrently with the start of inner harbor dredging and be completed within 2 years. To reduce adverse affects to sturgeon during construction of the fish passage, special provisions for the protection of sturgeon shall be implemented.

The COE will develop a Monitoring and Adaptive Management plan specifically for the fish passage as a part of the comprehensive Monitoring and Adaptive Management Plan for the project (included in RPM 3). The plan will identify detailed success criteria and triggers for passage modification. Sturgeon will be migrating to spawning habitat during the winter and returning downriver during the spring. Larval fish will also be beginning their movement downriver. To protect spawning sturgeon and their offspring, no inwater construction will be performed at the downstream entrance of the fish passage channel during the late winter/spring spawning period through the early summer larval period. In-water work and installation of sheet pile training walls (if necessary) may be performed upstream of the dam throughout the year. The COE shall employ best management practices such as silt curtains to control turbidity throughout the construction of the fish passage facility. No drawdown of water levels can occur during

the late winter/spring spawning period through the early summer larval period to facilitate construction. Normal flows must be maintained.

2. Protective Measures for Sturgeon during Construction in the SHEP Project Area

To reduce adverse effects to sturgeon during construction of the flow re-routing modifications and during the deepening, special provisions for the protection of sturgeon will need to be implemented. The area of the proposed flow re-routing modifications would be located in foraging and resting habitat for sturgeon and is especially important to juvenile shortnose sturgeon during the winter. A moratorium on specific in-water work associated with the flow re-routing modifications will be necessary to protect sturgeon. The timing of the moratorium is linked to the time of year when sturgeon are most likely to occur in the construction area.

3. Development of a Comprehensive Monitoring and Adaptive Management Plan for the Savannah River Project Area

To ensure appropriate monitoring and adaptive management is conducted within the entire Savannah River Project Area a comprehensive monitoring and adaptive management plan shall be developed for assessing project effects associated with the deepening, the effectiveness of the fish passage, and for implementing corrective actions. The Plan shall contain details describing how sturgeon will be monitored. It must also address how adaptive management would be included during the construction phases. The Plan shall identify explicit success criteria and triggers. This would include a mechanism that would allow results from the monitoring to feed into decisions governing operation of the project activities and mitigation actions. If monitoring of sturgeon habitat indicates the loss of suitable habitat exceeds the amount determined by the COE's models, or if the fish passage is not functioning as intended, and these impacts cannot be addressed through adaptive management, this would trigger re-initiation of consultation with NMFS. The COE will coordinate with NMFS on development of the comprehensive plan to include measures to address these concerns.

4. Ensure Appropriate Dissolved Oxygen Levels

The proposed expansion, deepening, and modification of the Savannah Harbor through dredging will have a significant effect on the habitat of sturgeon. The COE is proposing to install oxygen injection systems on the Savannah River above and within the project area to mitigate for expected impacts to dissolved oxygen caused by deepening the harbor. NMFS believes there is a high degree of uncertainty associated with the proposed use of an oxygen injection system. These systems, known as Speece cones, will be used during the summer months to inject oxygen into the river, as needed. These systems have not been previously used in a tidal system such as the Savannah River, so their efficacy cannot be thoroughly assessed before installation. Once operational, extensive monitoring of the river to determine effectiveness of the systems is proposed and modifications may be necessary as a part of a comprehensive monitoring and

adaptive management plan to be developed for the project. Analysis of projected benefits of dissolved oxygen injection indicate that while there would be improvements in portions of the Front River and Middle River, the lower portion of the Back River would still have areas of unsuitable habitat for shortnose sturgeon. If the oxygen injection system does not perform as designed, impacts to sturgeon habitat from the harbor deepening could be greater than what has been estimated by the COE's models. Contingency funding shall be included in the adaptive management plan to accommodate needed modifications to address low levels of dissolved oxygen. This measure is intended to ensure that impacts from SHEP are no worse than the COE's predictions in the DEIS. Sturgeon have been shown to be impacted by low dissolved oxygen levels, and mortality of sturgeon can occur within hours of exposure to low dissolved oxygen (Campbell and Goodman 2004). The three-level dissolved oxygen criteria for shortnose sturgeon recommended by the interagency fisheries group and applied by the COE to identify areas with suitable sturgeon habitat include rare (<1% of the time) excursions of summertime dissolved oxygen to less than 2 mg/Liter, infrequent excursions (<5%) to less than 3mg/Liter, and occasional excursions (<10%) below 4 mg/Liter. Thus, these are already relatively permissive standards that allow exposure of sturgeon to very depressed dissolved oxygen levels even in the areas designated as suitable habitat. Given the physiological threat posed to sturgeon from low dissolved oxygen combined with high thermal stress in the summer (water temperatures in the summer average 25°-28°C), monitoring and adaptive management of dissolved oxygen shall ensure that the oxygen injection systems perform as intended to offset impacts due to deepening the harbor and ensure the amount of suitable habitat identified as summer suitable habitat (Figure 30) meet these established dissolved oxygen criteria.

5. Tissue Sampling, Tags and Reporting Take

Tissue samples taken of any sturgeon handled or stranded will be processed per Appendix C. All sturgeon encountered will need to be scanned for a PIT tag. The PIT tag reader should be able to read both 125 kHz and 134 kHz tags. Sonic tags, or some other type of state-of-the-art tracking device, will be placed on sturgeon captured during relocation trawling, or alive by the hopper dredge, only by NMFS-approved personnel under the authority of this biological opinion. The COE will need to notify NMFS of any and all sturgeon injuries or mortality occurring during the dredging/construction activities within 24 hours of the take.

9.4 Terms and Conditions

In order to be exempt from the prohibitions of Section 9 of the ESA, the COE must comply with the following terms and conditions, which implement the reasonable and prudent measures described above and outline required reporting and monitoring requirements. These terms and conditions are non-discretionary.

Sea Turtles

- 1. <u>Observers (RPM 1)</u>: The COE shall arrange for NMFS-approved protected species observers to be aboard the hopper dredges to monitor the hopper bin, screening, and dragheads for sea turtles and their remains. Observer coverage sufficient for 100 percent monitoring (i.e., two observers) of hopper dredging operations is required aboard the hopper dredges throughout the proposed project.
- 2. <u>Screening (RPM 1)</u>: 100 percent inflow screening of dredged material is required and 100 percent overflow screening is recommended. If conditions prevent 100 percent inflow screening, inflow screening may be reduced gradually, as further detailed in the following paragraph, but 100 percent overflow screening is then required.

a. Screen Size: The hopper's inflow screens should have 4-inch by 4-inch screening. If the SAD, in consultation with observers and the draghead operator, determines that the draghead is clogging and reducing production substantially, the screens may be modified sequentially: mesh size may be increased, for example, to 6-inch by 6-inch, then 9-inch by 9-inch, then 12-inch by 12-inch openings. Other variations in screening size are allowed, with prior written approval by NMFS. Clogging should be greatly reduced with these flexible options; however, further clogging may compel removal of the screening altogether, in which case effective 100 percent overflow 4-inch screening is mandatory. The COE shall notify NMFS beforehand if inflow screening is going to be reduced or eliminated, and provide details of how effective overflow screening will be achieved.

b. Need for Flexible, Graduated Screens: NMFS believes that this flexible, graduated-screen option is necessary, since the need to constantly clear the inflow screens will increase the time it takes to complete the project and therefore increase the exposure of sea turtles to the risk of impingement or entrainment. Additionally, there are increased risks to sea turtles in the water column when the inflow is halted to clear screens, since this results in clogged intake pipes, which may have to be lifted from the bottom to discharge the clay by applying suction.

- 3. <u>Dredging Pumps</u>: Standard operating procedure shall be that dredging pumps shall be disengaged by the operator when the dragheads are not firmly on the bottom, to prevent impingement or entrainment of sea turtles within the water column. This precaution is especially important during the cleanup phase of dredging operations when the draghead frequently comes off the bottom and can suck in turtles resting in the shallow depressions between the high spots the draghead is trimming off.
- 4. <u>Sea Turtle Deflecting Draghead (RPM 2)</u>: A state-of-the-art rigid deflector draghead must be used on all hopper dredges at all times. Alternate draghead designs shall not be used unless prior, written approval is given by NMFS.

5. Dredge Take Reporting and Final Report: Observer reports of incidental take by hopper dredges must be faxed to NMFS' Southeast Regional Office (phone: 727/824-5312, fax: 727/824-5309), and reported by electronic mail to: (takereport.nmfsser@noaa.gov) by onboard NMFS-approved protected species observers, the dredging company, or the COE within 24 hours of any sea turtle or other listed species take observed.

A final report summarizing the results of the hopper dredging and any documented sea turtle or other listed species takes must be submitted to NMFS within 30 working days of completion of the dredging project. Reports shall contain information on project location (specific channel/area dredged), start-up and completion dates, cubic yards of material dredged, problems encountered, incidental takes and sightings of protected species, mitigative actions taken, screening type (inflow, overflow) utilized, daily water temperatures, name of dredge, names of endangered species observers, percent observer coverage, and any other information the SAD deems relevant.

6. <u>Sea Turtle Strandings (RPM 1)</u>: The SAD Project Manager or designated representative shall notify the Sea Turtle Stranding and Salvage Network (STSSN) state representative (contact information available at: <u>http://www.sefsc.noaa.gov/seaturtleSTSSN.jsp</u>) of the start-up and completion of hopper dredging operations and bed-leveler dredging operations and ask to be notified of any sea turtle strandings in the project area that, in the estimation of STSSN personnel, bear signs of potential draghead impingement or entrainment, or interaction with a bed-leveling type dredge.

Information on any such strandings shall be reported in writing within 30 days of project end to NMFS' Southeast Regional Office. Because the deaths of these turtles, if hopper dredge or bed-leveler dredge related, have already been accounted for in NMFS' jeopardy analysis, the strandings will not be counted against the COE's take limit.

- 7. <u>Reporting Strandings</u>: The COE shall provide NMFS' Southeast Regional Office with a report detailing incidents, with photographs when available, of stranded sea turtles that bear indications of draghead impingement or entrainment and/or bed-leveler interactions.
- 8. <u>Relocation Trawling (RPM 3)(if applicable)</u>: Prior to turtle relocation trawling, the COE shall develop and submit to NMFS detailed specifications on the final selected turtle relocation trawling gear sufficiently ahead of planned dredging activities for NMFS to review and comment on the plans. NMFS fisheries gear specialists may be able to provide technical assistance in developing specifications. The use of relocation trawling will be required during all proposed hopper dredging during December 1 through March 31.

Non-capture relocation trawling ("sweep trawling") may be used if prior, written approval is given by NMFS, after NMFS ensures that the proper net design and sweep trawling procedures will be used. Sweep-trawling trawl net design and trawling procedures are inherently and fundamentally different from capturetrawling trawl net design and procedures.

- 9. <u>Relocation Trawling Report (RPM 3)(if applicable)</u>: The COE shall provide NMFS' Southeast Regional Office with an end-of-project report within 30 days of completion of any relocation trawling. This report may be incorporated into the final report summarizing the results of the hopper dredging project.
- 10. <u>Additional Relocation Trawler Requirements (RPM 3) (if applicable)</u>: Any capture-type or sweep-type relocation trawling conducted or contracted by the COE to temporarily reduce or assess the abundance of these listed species during a hopper dredging project in order to reduce the possibility of lethal hopper dredge interactions, is subject to the following conditions as listed below. In the event that trawling does result in the capture of a sea turtle, the COE or its contractors may employ a separate chase boat to relocate the turtle at a distance of no less than 3 miles from the centerline of the navigation channel at the capture site.

a. Handling: Sea turtles recovered by observers on modified relocation trawlers (e.g., turtles incidentally captured in modified trawl gear, injured turtles recovered on the surface, etc.) shall be handled in a manner designed to ensure their safety and viability, and shall be released over the side of the vessel, away from the propeller, and only after ensuring that the vessel's propeller is in the neutral, or disengaged, position (i.e., not rotating). Resuscitation guidelines are attached (Appendix B).

b. Captured Sea Turtle Holding Conditions: Sea turtles may be held up to 24 hours for the collection of important scientific measurements, prior to their release. Captured sea turtles shall be kept moist, and shaded whenever possible, until they are released.

c. Scientific Measurements and Data Collection: When safely possible, all turtles shall be measured (standard carapace measurements including body depth), tagged, weighed, and a tissue sample taken prior to release. Any external tags shall be noted and data recorded into the observer's log. Only NMFS-approved protected species observers or observer candidates in training under the direct supervision of a NMFS-approved protected species observer shall conduct the tagging/measuring/weighing/tissue sampling operations. External mounting of satellite tags, radio transmitters, data loggers, crittercams, etc. may be done under the authority of this opinion by NMFS-approved, trained personnel, after approval from NMFS SERO PRD (see Terms and Condition #10.g., Other Sampling Procedures).

NMFS-approved protected species observers may conduct more invasive scientific procedures (e.g., bloodletting, laparoscopies, external tumor removals, anal and gastric lavages, etc.) and partake in or assist in "piggy back" research projects but only if the observer holds a valid federal sea turtle research permit (and any required state permits) authorizing the activities, or the observer is acting as the duly-designated agent of the permit holder, and has first notified NMFS' Southeast Regional Office, Protected Resources Division.

d. Injuries: Injured sea turtles shall be immediately transported to the nearest sea turtle rehabilitation facility. Minor skin abrasions resulting from trawl capture are considered non-injurious. The COE shall ensure that logistical arrangements and support to accomplish this are pre-planned and ready, and is responsible for ensuring that dredge vessel personnel comply with this requirement. The COE shall bear the financial cost of sea turtle transport, treatment, rehabilitation, and release.

e. Flipper Tagging: All sea turtles captured by relocation trawling shall be flipper-tagged prior to release with external tags which shall be obtained prior to the project from the University of Florida's Archie Carr Center for Sea Turtle Research. This opinion serves as the permitting authority for any NMFSapproved protected species observer aboard these relocation trawlers to flippertag with external tags (e.g., Inconel tags) captured sea turtles. Columbus crabs or other organisms living on external sea turtle surfaces may also be sampled and removed under this authority.

f. PIT-Tag Scanning: This opinion serves as the permitting authority for any NMFS-approved protected species observer aboard a relocation trawler to PIT-tag captured sea turtles. PIT tagging of sea turtles is not required to be done if the NMFS-approved protected species observer does not have prior training or experience in said activity; however, if the observer has received prior training in PIT tagging procedures and is comfortable with the procedure, then the observer shall PIT tag the animal prior to release (in addition to the standard external tagging):

Sea turtle PIT tagging must then be performed in accordance with the protocol detailed at NMFS' Southeast Fisheries Science Center's Web page: http://www.sefsc.noaa.gov/seaturtlefisheriesobservers.jsp. (See Appendix C on SEFSC's "Fisheries Observers" Web page);

Unless otherwise approved in advance by NMFS SERO PRD, PIT tags used must be sterile, individually-wrapped tags to prevent disease transmission. PIT tags should be 125-kHz, glass-encapsulated tags—the smallest ones made. Note: If scanning reveals a PIT tag and it was not difficult to find, then do not insert another PIT tag; simply record the tag number and location, and frequency, if known. If for some reason the tag is difficult to detect (e.g., tag is embedded deep in muscle, or is a 400-kHz tag), then insert one in the other shoulder. g. Other Sampling Procedures: All other tagging and external or internal sampling procedures (e.g., bloodletting, laparoscopies, external tumor removals, anal and gastric lavages, mounting of satellite or sonic transmitters, or similar tracking equipment, etc.) performed on live sea turtles are not permitted under this opinion unless the observer holds a valid sea turtle research permit authorizing the activity, either as the permit holder or a designated agent of the permit holder, or unless the observer (or person performing the procedure, in the case of piggy-back research by the COE or other federal or state government agency or university personnel) receives prior, written approval by NMFS SERO after a thorough review by PRD of their credentials, experience, and training in the proposed procedures.

h. PIT-Tag Scanning and Data Submission Requirements: All sea turtles captured by relocation trawling or dredges shall be thoroughly scanned for the presence of PIT tags prior to release using a multi-frequency scanner powerful enough to read multiple frequencies (including 125-, 128-, 134-, and 400-kHz tags) and read tags deeply embedded in muscle tissue (e.g., manufactured by Trovan, Biomark, or Avid). Turtles whose scans show they have been previously PIT tagged shall nevertheless be externally flipper tagged. Sea turtle data collected (PIT tag scan data and external tagging data) shall be submitted to NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Attn: Lisa Belskis, 75 Virginia Beach Drive, Miami, Florida 33149. All sea turtle data collected shall be submitted in electronic format within 60 days of project completion to Lisa.Belskis@noaa.gov and Sheryan.Epperly@noaa.gov. Sea turtle external flipper tag and PIT tag data generated and collected by relocation trawlers shall also be submitted to the Cooperative Marine Turtle Tagging Program (CMTTP), on the appropriate CMTTP form, at the University of Florida's Archie Carr Center for Sea Turtle Research.

i. Handling Fibropapillomatose Turtles: NMFS-approved protected species observers are not required to handle viral fibropapilloma tumors if they believe there is a health hazard to themselves and choose not to. When handling sea turtles infected with fibropapilloma tumors, observers must maintain a separate set of sampling equipment for handling animals displaying fibropapilloma tumors or lesions.

11. <u>Requirement and Authority to Conduct Tissue Sampling for Genetic and</u> <u>Contaminants Analyses</u>: This opinion serves as the permitting authority for any NMFS-approved protected species observer aboard a relocation trawler or hopper dredge to tissue-sample live- or dead-captured sea turtles without the need for an ESA Section 10 permit.

All live or dead sea turtles captured by relocation trawling and hopper dredging (for both COE-conducted and COE-permitted activities) shall be tissue-sampled

prior to release. Sampling shall continue uninterrupted until such time as NMFS determines and notifies the COE in writing.

Sea turtle tissue samples shall be taken in accordance with NMFS' SEFSC procedures for sea turtle genetic analyses, and, as specified, for contaminants (e.g., heavy metals) analyses. Protocols for tissue sampling to be utilized in contaminants analyses are currently being developed by Dr. Dena Dickerson, ERDC. The COE shall ensure that tissue samples taken during the dredging project are collected and stored properly and mailed every three months until completion of the dredging project to: NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Attn: Lisa Belskis, 75 Virginia Beach Drive, Miami, Florida 33149.

- 12. <u>Training Personnel on Hopper Dredges</u>: The COE must ensure that all contracted personnel involved in operating hopper dredges (whether privately-funded or federally-funded projects) receive thorough training on measures of dredge operation that will minimize takes of sea turtles. It shall be the goal of the hopper dredging operation to establish operating procedures that are consistent with those that have been used successfully during hopper dredging in other regions of the coastal United States, and which have proven effective in reducing turtle/dredge interactions. Therefore, COE Engineering Research and Development Center experts or other persons with expertise in this matter shall be involved both in dredge operation training, and installation, adjustment, and monitoring of the rigid deflector draghead assembly.
- 13. <u>Dredge Lighting</u>: All lighting aboard hopper dredges and hopper dredge pumpout barges operating within 3 nm of sea turtle nesting beaches shall be limited to the minimal lighting necessary to comply with U.S. Coast Guard and/or OSHA requirements. All non-essential lighting on the dredge and pumpout barge shall be minimized through reduction, shielding, lowering, and appropriate placement of lights to minimize illumination of the water to reduce potential disorientation effects on female sea turtles approaching the nesting beaches and sea turtle hatchlings making their way seaward from their natal beaches.
- 14. <u>Best Management Practices</u>: The COE will be required to conduct activities in compliance with NMFS' March 23, 2006, *Sea Turtle and Smalltooth Sawfish Construction Conditions* (Appendix D).

Sturgeon

The following Terms and Conditions implement the RPMS above, which are designed to minimize the adverse impacts of the expected take from the proposed action, and to provide for monitoring and validation of the impacts associated with the proposed action, and must be collectively implemented.

- Develop a Plan for Safe and Effective Fish Passage (RPM 1): The 1. implementation of a safe and effective fish passage shall be coordinated by the COE in consultation with sturgeon experts with NMFS, FWS, SCDNR, and GADNR. The COE has presented a fish passage design called an Off-Channel Rock Ramp. Using the proposed off-channel rock ramp design as its basis, the COE will work with these agencies to develop the final design details. The COE shall conduct a comparison analysis of the performance of existing rock ramps located in other parts of the country with similar characteristics to the proposed New Savannah Bluff Lock and Dam fish passage conditions to review information on the spatial variation of velocities across the width of rock ramp designs. The COE has agreed to expeditiously initiate final design work and would coordinate the results of that effort with the federal and state natural resource agencies within 6 months of receiving all of the environmental approvals to implement the project. NMFS will need a minimum of 2 months to review the final fish passage design. The proposed final design shall require NMFS' final review to validate that the design meets the requirements specified in the Biological Opinion. The goal of the fish passage alternative is to achieve at least 75 percent upstream passage effectiveness for both shortnose and Atlantic sturgeon, at least 85 percent downstream passage effectiveness, and cause no serious injury to sturgeon that come into contact with the passage or dam structures. The fish passage must maintain velocities comparable to those found in the upstream habitat that the sturgeon are expected to access upon completion of the fish passage facility (at Augusta Shoals).
- 2. <u>Timeline for Construction of the Fish Passage</u> (RPM 1): Fish passage construction shall commence prior to or concurrently with initiation of inner harbor dredging and be completed within two years.
- 3. <u>Land for Fish Passage</u> (RPM1): The COE or project sponsor shall purchase any additional land necessary for construction of the fish passage and for an access road to the site. The land acquisition process must be initiated prior to, or concurrent with, commencement of entrance channel dredging actions.
- 4. <u>Fish Passage Construction Guidelines</u> (RPM 1): To protect spawning sturgeon and their offspring, no in-water fish passage construction downstream of the New Savannah Bluff Lock and Dam shall occur during the late winter/spring spawning period and early summer larval period between February 1 and May 31 of any year. In-water construction of the fish passage may be performed upstream of the dam throughout the year.
- 5. <u>In-water Work During Construction of the Fish Passage</u> (RPM 1): The COE shall adhere to the following protective measures during construction of the fish passage:

- Appropriate erosion and turbidity controls shall be utilized wherever necessary to limit sediments from entering the water.
- Dredging and construction shall be conducted with minimum environmental impact.
- No construction debris shall be allowed to enter the water.
- To ensure passage throughout the habitat, adequate pathways must be provided at all times so that fish can migrate between foraging habitat and spawning habitat; no blocking of the channel is allowed.
- Normal water flows must be maintained throughout the construction areas.
- The COE shall not reduce flows during spring/early summer to aid in the construction of the fish passage.
- 6. <u>Fish Passage Effectiveness Monitoring and Adaptive Management</u> (RPM 1): The COE shall develop a Monitoring and Adaptive Management Plan specifically for the fish passage that will, to the maximum extent practicable, ensure the performance criteria described in sturgeon term and condition no.1 above will be achieved. The plan will also identify detailed triggers for passage modification. Post-construction monitoring shall be designed and conducted to assess the effectiveness of the fish passage in safely passing sturgeon upstream and downstream. The COE shall consult with NMFS and the other federal and state resource agencies in the completion of the Plan within 6 months of receiving all environmental approvals to implement the project. NMFS shall have final review of such plan. If it is determined that sturgeon are not safely and effectively passing upstream and downstream through the fish passage, measures shall be taken to identify the source of the problem, and corrective actions approved by NMFS shall be taken to rectify the problem.
- 7. <u>Timing of Construction of the Flow Re-routing Modifications</u> (RPM 2): The construction of the diversion structure associated with the flow re-routing modifications has the potential to cause injury to sturgeon. The impact to sturgeon shall be minimized by constructing the diversion structure while most sturgeon are congregated upstream of the construction area between May 15 and November 1.
- 8. <u>Protection of Sturgeon during In-water Construction in the Lower Savannah River</u> (RPM 2): The COE shall adhere to the following measures to protect sturgeon during deepening of the harbor and widening of the channel; and during the modifications associated with the flow re-routing, which include plugging Rifle Cut, filling the Sediment Basin, closing the lower arm of McCoy Cut, construction of a flow diversion structure at McCoy Cut, and the dredging of the upper Middle and Back River.
 - Appropriate erosion and turbidity controls shall be utilized wherever necessary to limit sediments from entering the water.

- Dredging and construction shall be conducted with minimum environmental impact.
- No construction debris shall be allowed to enter the water.
- No blocking of the channel is allowed, except where included as part of the flow re-routing modifications.
- 9. Ensure Appropriate Monitoring and Adaptive Management within the Lower Savannah River Project Area (RPM 3): A comprehensive monitoring and adaptive management plan shall be developed for assessing project effects associated with the deepening, the flow re-routing modifications, the injection of dissolved oxygen, and for implementing corrective actions. The comprehensive plan would also include monitoring and adaptive management for the fish passage as described in T&C 6. The Plan shall identify explicit success criteria and triggers. The COE shall coordinate with NMFS and other federal and state resource agencies in the completion of the Plan within 6 months of receiving all environmental approvals to implement the project. NMFS shall have final review of such plan. The Plan shall include monitoring to determine whether the predicted amount of habitat loss, as determined by the COE's models, is being exceeded. If the monitoring indicates that habitat loss to any species within NMFS' ESA authority is being exceeded, this will trigger re-initiation of consultation with NMFS. Preconstruction monitoring would begin in time to allow one year of work to be complete before dredging occurs in the inner harbor.
- 10. <u>Ensure Appropriate Dissolved Oxygen Levels (RPM 4)</u>: Monitoring and adaptive management for dissolved oxygen levels shall ensure that the oxygen injection systems perform as intended to offset impacts due to deepening the harbor and ensure the amount of suitable habitat as predicted in the COE's modeling of the three-level summer habitat suitability criteria for sturgeon (Table 7) are not reduced. During the monitoring and adaptive management period if dissolved oxygen excursions below minimal levels in the modeled river cells are longer in duration than specified in the criteria, corrective action will be taken immediately, if practicable, for example by increasing or adjusting the operation of the Speece Cone system or cessation of dredging in the area of concern. If short-term responses are not practicable, potential engineering solutions shall be identified and implemented as soon as possible, and not later than July 1, following discovery of the poor oxygen levels.
- 11. <u>Tissue Sampling (RPM 5)</u>: A tissue sample shall be taken of any sturgeon handled or stranded per Appendix C; samples shall be shipped to the address provided in Appendix C within one month.
- 12. <u>PIT Tag Scanning (RPM 5)</u>: All sturgeon encountered shall be scanned for a PIT tag; codes shall be included in the take report submitted to NMFS. The PIT tag reader shall be able to read both 125 kHz and 134 kHz tags.

- 13. <u>Lethal Take (RPM 5)</u>: If a lethal take occurs, COE shall arrange for contaminant analysis of the carcass. If this requirement is implemented, the carcass should be frozen and NMFS contacted immediately to provide instructions for shipping and preparation.
- 14. <u>Tagging (RPM 5)</u>: Sonic tags, or some other type of state-of-the-art tracking device, shall be placed on sturgeon captured during relocation trawling, or alive by the hopper dredge, by NMFS-approved personnel only, under the authority of this biological opinion.
- <u>Take Reporting</u>: Observer reports of incidental take by hopper dredges and relocation trawls must be faxed to NMFS' Southeast Regional Office (phone: 727/824-5312, fax: 727/824-5309), and reported by electronic mail to: (takereport.nmfsser@noaa.gov) by onboard NMFS-approved protected species observers, the dredging company, or the COE within 24 hours.

10 CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the ESA directs federal agencies to utilize their authority to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat to help implement recovery plans or to develop information.

Sea Turtles

Pursuant to Section 7(a)(1) of the ESA, the following conservation recommendations are made to assist the COE in contributing to the conservation of sea turtles by further reducing or eliminating adverse impacts that result from dredging.

- 1. <u>Draghead Modifications and Bed-Leveling Studies</u>: The COE should supplement other efforts to develop modifications to existing dredges to reduce or eliminate take of sea turtles, and develop methods to minimize sea turtle take during "cleanup" operations when the draghead maintains only intermittent contact with the bottom. Some method to level the "peaks and valleys" created by dredging would reduce the amount of time dragheads are off the bottom. NMFS is ready to assist the COE in conducting studies to evaluate bed-leveling devices and their potential for interaction with sea turtles, and develop modifications if needed.
- 2. <u>Draghead Evaluation Studies and Protocol</u>: Additional research, development, and improved performance is needed before the V-shaped rigid deflector draghead can replace seasonal restrictions as a method of reducing sea turtle captures during hopper dredging activities. Development of a more effective deflector draghead or other entrainment-deterring device (or combination of devices, including use of acoustic deterrents) could potentially reduce the need for

sea turtle relocation or result in expansion of the winter dredging window. NMFS should be consulted regarding the development of a protocol for draghead evaluation tests. NMFS recommends that COE coordinate with ERDC, the Association of Dredge Contractors of America, and dredge operators (Manson, Bean-Stuyvesant, Great Lakes, Natco, etc.) regarding additional reasonable measures they may take to further reduce the likelihood of sea turtle takes.

- 3. <u>Continuous Improvements in Monitoring and Detecting Takes</u>: The COE should seek continuous improvements in detecting takes and should determine, through research and development, a better method for monitoring and estimating sea turtle takes by hopper dredge. Observation of overflow and inflow screening is only partially effective and provides only partial estimates of total sea turtle mortality.
- 4. <u>Overflow Screening</u>: The COE should encourage dredging companies to develop or modify existing overflow screening methods on their company's dredge vessels for maximum effectiveness of screening and monitoring. Horizontal overflow screening is preferable to vertical overflow screening because NMFS considers that horizontal overflow screening is significantly more effective at detecting evidence of protected species entrainment than vertical overflow screening.
- 5. <u>Preferential Consideration for Horizontal Overflow Screening</u>: The COE should give preferential consideration to hopper dredges with horizontal overflow screening when awarding hopper dredging contracts for areas where new materials, large amounts of debris, or clay may be encountered, or have historically been encountered. Excessive inflow screen clogging may in some instances necessitate removal of inflow screening, at which point effective overflow screening becomes more important.
- 6. Section 10 Research Permits, Relocation Trawling, Piggy-Back Research, and 50 CFR Part 223 Authority to Conduct Research on Salvaged, Dead Specimens: NMFS recommends that COE ERDC apply to NMFS for an ESA Section 10 research permit to conduct endangered species research on species incidentally captured during traditional relocation trawling. SERO shall assist the COE with the permit application process.

NMFS also encourages the COE to cooperate with NMFS' scientists, other federal agencies' scientists, and university scientists holding appropriate research permits to make fuller use of turtles taken or captured by hopper dredges and relocation trawlers pursuant to the authority conferred by this opinion. NMFS encourages "piggy-back" research projects by duly-permitted or authorized individuals or their authorized designees.

Important research can be conducted without a Section 10 permit on salvaged dead specimens. Under current federal regulations (see 50 CFR 223.206 (b): Exception for injured, dead, or stranded [threatened sea turtle] specimens), "Agents...of a Federal land or water management agency may...salvage a dead

specimen which may be useful for scientific study." Similar regulations at 50 CFR 222.310 provide "salvaging" authority for endangered sea turtles.

7. <u>Draghead Improvements - Water Ports</u>: NMFS recommends that the COE require or at least recommend to dredge operators that all dragheads on hopper dredges contracted by the COE for dredging projects be eventually outfitted with water ports located in the top of the dragheads to help prevent the dragheads from becoming plugged with sediments. When the dragheads become plugged with sediments, the dragheads are often raised off the bottom by the dredge operator with the suction pumps on in order to take in enough water to help clear clogs in the dragarm pipeline, which increases the likelihood that sea turtles in the vicinity of the draghead will be taken by the dredge. Water ports located in the top of the dragheads would relieve the necessity of raising the draghead off the bottom to perform such an action, and reduce the chance of incidental take of sea turtles.

NMFS supports and recommends the implementation of proposals by ERDC and COE personnel for various draghead modifications to address scenarios where turtles may be entrained during hopper dredging (Dickerson and Clausner 2003). These include: (1) An adjustable visor; (2) water jets for flaps to prevent plugging and thus reduce the requirement to lift the draghead off the bottom; and (3) a valve arrangement (which mimics the function of a "Hoffer" valve used on cutterhead type dredges to allow additional water to be brought in when the suction line is plugging) that will provide a very large amount of water into the draghead is lifted off the bottom, reducing the potential to take a turtle.

- 8. <u>Economic Incentives for No Turtle Takes</u>: The COE should consider devising and implementing some method of significant economic incentives to hopper dredge operators such as financial reimbursement based on their satisfactory completion of dredging operations, or X number of cubic yards of material moved, or hours of dredging performed, without taking turtles. This may encourage dredging companies to research and develop "turtle friendly" dredging methods; more effective, deflector dragheads; pre-deflectors; top-located water ports on dragarms; etc.
- 9. <u>Sodium Vapor Lights on Offshore Equipment</u>: On offshore equipment (i.e., hopper dredges, pumpout barges) shielded low-pressure sodium vapor lights are highly recommended for lights that cannot be eliminated.

Shortnose Sturgeon

COE should support future research on the biology and life history of shortnose sturgeon throughout the Savannah River.

Recommended research includes:

- 1. Estimating population size and structure.
- 2. Identification of spawning sites and substrate.
- 3. Assessment of areas upstream NSBLD as spawning habitat.
- 4. Effects of regulated flow on spawning habitat.
- 5. Effects of water quality changes on shortnose sturgeon and their resting and foraging habitats.

Specific research should include:

- 1. A study to examine prey composition and availability in the Savannah River would improve knowledge of the distribution of preferred foraging habitat of sturgeon.
- 2. As the implementation of fish passage at the New Savannah Bluff Lock and Dam would trigger implementation of fish passage at the dams located upstream, it would be useful to acquire data identifying the best design for fish passage at these facilities. Accommodating passage of sturgeon at these dams would restore access to additional former spawning habitat and assist in the recovery of the species.
- 3. COE should support future research that evaluates the relationship between flow, water temperature, and sturgeon migration. Additional information on this relationship would provide a better indicator of conditions that cue and successfully initiate sturgeon spawning movement. COE could apply this information to determine future adequate flow rates within Savannah River and the geographic range of the species. The Nature Conservancy (TNC) has taken an active role in shortnose sturgeon research and restoration in the South. In the Savannah River, TNC is working with the COE to identify effects of water release on sturgeon spawning habitat; shortnose sturgeon implanted with ultrasonic transmitters are being tracked to assess impacts of flow and identify spawning areas. The COE should continue to support and encourage more of this type of research.
- 4. COE should develop and coordinate a basin-wide research plan to obtain better results in understanding sturgeon population dynamics and movement. A basin-

wide flow regimen should be developed to ensure adequate water quality for the sturgeon during drought, and a conservative approach to storing excess water for later use.

11 REINITIATION OF CONSULTATION

This concludes formal consultation on the proposed deepening of the Savannah Harbor federal navigational channel. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) The amount or extent of taking specified in the incidental take statement is exceeded; (2) new information reveals effects of the action may affect listed species or critical habitat in a manner or to an extent not previously considered; (3) the identified action is subsequently modified in a manner that causes an effect to listed species or critical habitat that was not considered in the biological opinion; or (4) a new species is listed or critical habitat designated that may be affected by the identified action. In instances where the amount or extent of take is exceeded, COE must immediately request reinitiation of formal consultation.

12 LITERATURE CITED

- Aadland, L. 2010. Reconnecting Rivers: Natural Channel Design in Dam Removal and Fish Passage. Minnesota Department of Natural Resources. First Edition.
- Ackerman, R.A. 1997. The nest environment and embryonic development of sea turtles. Pp 83-106. In: Lutz, P.L. and J.A. Musick (eds.), The Biology of Sea Turtles. CRC Press, New York. 432 pp.
- Aguilar, R., J. Mas and X. Pastor. 1995. Impact of Spanish swordfish longline fisheries on the loggerhead sea turtle, *Caretta caretta*, population in the western Mediterranean, pp. 1. *In*: 12th Annual Workshop on Sea Turtle Biology and Conservation, February 25-29, 1992, Jekyll Island, Georgia.
- Anders, P.J., C.R. Gelok, and M.S. Powell. 2002. Population structure and mitochondrial DNA (mtDNA) diversity in North American white sturgeon (*Acipenser transmontanus*). Proceedings of the Fourth International Sturgeon Symposium, 8-13 July 2001. Oshkosh, Wisconsin.
- Antonelis, G.A., J.D. Baker, T.C. Johanos, R.C. Braun, and A.L. Harting. 2006. Hawaiian monk seal (*Monachus schauinslandi*): status and conservation issues. Atoll Research Bulletin 543:75-101.
- Arendt, M., J. Byrd, A. Segars, P. Maier, J. Schwenter, D. Burgess, J. Boynton, J.D. Whitaker, L. Ligouri, L. Parker, D. Owens, and G. Blanvillain. 2009. Examination of local movement and migratory behavior of sea turtles during spring and summer along the Atlantic Coast off the Southeastern United States. Final Project Report to the National Marine Fisheries Service. Prepared by: South Carolina Department of Natural Resources. 164pp.
- ASSRT. 2007. Status review of the Atlantic sturgeon (*Acipenser oxyrinchus oxyrhincus*) Report to the National Marine Fisheries Service, Northeast Regional Office. 174pp.
- Auer, N.A. 1996. Importance of habitat and migration to sturgeons with emphasis on lake sturgeon. Canadian Journal of Fisheries and Aquatic Sciences 53 (Suppl.1): 152-160.
- Bain, M B. 1997. Atlantic and shortnose sturgeons of the Hudson River: common and divergent life history attributes. Environmental Biology of Fishes 48:347-358.
- Bain, M.B., N. Haley, J.R. Waldman, and K. Arend. 2000. Harvest and habitats of Atlantic sturgeon Acipenser oxyrinchus Mitchill, 1815 in the Hudson River estuary: lessons for sturgeon conservation. Bol. Inst. Esp. Oceanogr. 16:43-53.

- Baker, J.D., C.L. Littnan, and D.W. Johnston. 2006. Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna on the Northwestern Hawaiian Islands. Endangered Species Research 2:21-30.
- Baldwin, R., G.R. Hughes, and R.I.T. Prince. 2003. Loggerhead turtles in the Indian Ocean. Pages 218-232 *in* Bolten, A.B. and B.E. Witherington (editors).
 Loggerhead Sea Turtles. Smithsonian Books, Washington D.C.
- Bath, D.W., J.M. O'Conner, J.B. Alber, and L.G. Arvidson. 1981. Development and identification of larval Atlantic sturgeon (*Acipenser oxyrinchus*) and shortnose sturgeon (*A. brevirostrum*) from the Hudson River estuary, New York. Copeia 1981: 711-717.
- Bemis WE, Grande L. 1992. Early development of the actinopterygian head. I. External development and staging of the paddlefish *Polyodon spathula*. J Morphol. 213:47–83.
- Berlin, W.H., R.J. Hesselberg, and M.J. Mac. 1981. Chlorinated hydrocarbons as a factor in the reproduction and survival of lake trout (*Salvelinus namaycush*) in Lake Michigan. Technical Paper 105, U.S. Fish and Wildlife Service. 42 pp.
- Birstein, V.J. and W.E. Bemis. 1997. How many species are there within the genus *Acipenser?* Environmental Biology of Fishes, 48: 157–163.
- Bjorndal, K.A. 1997. Foraging ecology and nutrition of sea turtles. *In*: Lutz, P.L. and J.A. Musick (eds.), The Biology of Sea Turtles. CRC Press, Boca Raton, Florida.
- Blumenthal, J.M., J.L. Solomon, C.D. Bell, T.J. Austin, G. Ebanks-Petrie, M.S. Coyne, A.C. Broderick, B.J. Godley. 2006. Satellite tracking highlights the need for international cooperation in marine turtle management. Endangered Species Research 7:1-11.
- Bolten, A.B., K.A. Bjorndal, and H.R. Martins. 1994. Life history model for the loggerhead sea turtle (*Caretta caretta*) populations in the Atlantic: Potential impacts of a longline fishery. U.S. Department of Commerce, NOAA Tech. Memo. NMFS-SWFSC-201:48-55.
- Bolten, A.B., J.A. Wetheral, G.H. Balazs, and S.G. Pooley (compilers). 1996. Status of marine turtles in the Pacific Ocean relevant to incidental take in the Hawaii-based pelagic longline fisheries. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-230.
- Bonsdorff, E. 1980. Macrozoobenthic recolonization of a dredged brackish water bay in SW Finland. Ophelia Suppl. 1: 145-155.
- Boreman, J. 1997. Sensitivity of North American sturgeons and paddlefish to fishing mortality. Environmental Biology of Fishes 48(1-4): 399-405

Brongersma, L. 1972. European Atlantic Turtles. Zool. Verhand. Leiden, 121: 318 pp.

- Brown, J.J. and G.W. Murphy. 2010. Atlantic Sturgeon Vessel Strike Mortalities in the Delaware Estuary. Fisheries 35: 2, 72-83.
- Buckley, J. and B. Kynard. 1981. Spawning and rearing of shortnose sturgeon from the Connecticut River. Progressive Fish Culturist 43: 74-76.
- Buckley, J. and B. Kynard. 1985a. Habitat use and behavior of pre-spawning and spawning shortnose sturgeon, *Acipenser brevirostrum*, in the Connecticut River. North American Sturgeons 111-117.
- Buckley, J. and B. Kynard. 1985b. Yearly movements of shortnose sturgeons in the Connecticut River. Transactions of the American Fisheries Society 114: 813-820.
- Caldwell, D.K. and A. Carr. 1957. Status of the sea turtle fishery in Florida. Transactions of the 22nd North American Wildlife Conference, March 4-7, 1957, pp. 457-463.
- Cameron, P., J. Berg, V. Dethlefsen, and H.V. Westernhagen. 1992. Developmental defects in pelagic embryos of several flatfish species in the southern North Sea. Netherlands Journal of Sea Research 29: 239-256.
- Campbell, J.G. and L.R. Goodman. 2004. Acute sensitivity of juvenile shortnose sturgeon to low dissolved oxygen concentrations. Transactions of the American Fisheries Society 133: 772-776.
- Carlson, D.M. and K.W. Simpson. 1987. Gut contents of juvenile sturgeon in the upper Hudson Estuary. Copeia 1987: 796-802.
- Caron, F., D.Hatin, and R. Fortin. 2002. Biological characteristics of adult Atlantic sturgeon (*Acipenser oxyrinchus*) in the Saint Lawrence River estuary and the effectiveness of management rules. Journal of Applied Ichthyology 18:580-585.
- Carr, A. 1963. Pan specific reproductive convergence in *Lepidochelys kempii*. Ergebn. Biol. 26: 298-303.
- Carr, A. 1984. So Excellent a Fishe. Charles Scribner's Sons, New York.
- Catesby M. 1734. The natural history of Carolina, Florida and the Bahama Islands, 1731-1734.
- Chaloupka, M., K.A. Bjorndal, G.H. Balazs, A.B. Bolten, L.M. Ehrhart, C.J. Limpus, H. Suganuma, S. Troëng, and M. Yamaguchi. 2007. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Global Ecol. Biogeogr. (Published online Dec. 11, 2007; to be published in the journal in 2008).

- Chapman, D. 2008. Carolina River War Has Big Ripples. Atlanta Journal Constitution. Atlanta, Georgia, August 24, 2008.
- Chytalo, K. 1996. Summary of Long Island Sound dredging windows strategy workshop. In: Management of Atlantic Coastal Marine Fish Habitat: Proceedings of a workshop for habitat managers. ASMFC Habitat Management Series #2.
- Clarke, D. and C.A. Miller-Way. 1992. An environmental assessment of the effects of open-water disposal of maintenance dredged material on benthic resources in Mobile Bay, Alabama. USAE Waterways Exp. Stn. MP-D-92-1.
- Cobb, J.N. 1900. The sturgeon fishery of Delaware River and Bay. Report to the Commissioner, U.S. Commission of Fish and Fisheries. 25: 369-381.
- Cochnauer, T.G. 1983. Abundance, distribution, growth and management of white sturgeon (*Acipenser transmontanus*) in the middle Snake River, Idaho. Ph.D. Dissertation, University of Idaho, Moscow, ID. 52 pp.
- Collins, M.R. and T.I.J. Smith. 1993. Characteristics of the adult segment of the Savannah River population of shortnose sturgeon. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 47: 485-491.
- Collins, M.R. and T.I.J. Smith. 1997. Management Briefs: Distributions of Shortnose and Atlantic Sturgeons in South Carolina. North American Journal of Fisheries Management 17: 995-1000.
- Collins, M.R., S.G. Rogers, and T.I.J. Smith. 1996. Bycatch of sturgeons along the southern Atlantic coast of the USA. North American Journal of Fisheries Management 16: 24-29.
- Collins, M.R., S.G. Rogers, T.I.J. Smith, and M.L. Moser. 2000a. Primary factors affecting sturgeon populations in the southeastern US: fishing mortality and degradation of essential habitats. Bulletin of Marine Science 66(3): 917-928.
- Collins, M.R., T.I.J. Smith, W.C. Post, and O. Pashuk. 2000b. Habitat utilization and biological characteristics of adult Atlantic sturgeon in two South Carolina rivers. Transactions of the American Fisheries Society 129:982-988.
- Collins, M. R., W.C. Post, and D.C. Russ. 2001. Distribution of shortnose sturgeon in the lower Savannah River. Final Report to the Georgia Ports Authority. 21 p.
- Collins, M. R., W.C. Post, D.C. Russ, and T.I.J. Smith. 2002. Habitat use and movements of juvenile shortnose sturgeon in the Savannah River, Georgia-South Carolina. Transactions of the American Fisheries Society 131:975-979.

- Collins, M.R., D. Cooke, B. Post, J. Crane, J. Bulak, T.I.J. Smith, T.W. Greig, and J.M. Quattro. 2003. Shortnose sturgeon in the Santee-Cooper Reservoir System, South Carolina. Transactions of the American Fisheries Society 132: 1244-1250.
- Collins, M.R., C. Norwood, B. Post and A. Hazel. 2006. Shortnose and Atlantic Sturgeons: Final Report to NFWF. South Carolina Department of Natural Resources. 38 pp.
- Collins, M.R., C. Norwood, and A. Rourk. 2008. Shortnose and Atlantic sturgeon age growth, status, diet, and genetics. Final Report to National Fish and Wildlife Foundation. South Carolina Department of Natural Resources, Charleston, South Carolina, 2006-0087-009. 41p.
- Conant, T.A., P.H. Dutton, T. Eguchi, S.P. Epperly, C.C. Fahy, M.H. Godfrey, S.L. MacPherson, E.E. Possardt, B.A. Schroeder, J.A. Seminoff, M.L. Snover, C.M. Upite, and B.E. Witherington. 2009. Loggerhead sea turtle (*Caretta caretta*) 2009 status review under the U.S. Endangered Species Act. Report of the Loggerhead Biological Review Team to the National Marine Fisheries Service, August 2009. 222 pages.
- Cooper, K. 1989. Effects of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans on aquatic organisms. Reviews in Aquatic Sciences 1(2): 227-242.
- COSEWIC 2005. COSEWIC assessment and update status report on the shortnose sturgeon *Acipenser brevirostrum* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp. (www.sararegistry.gc.ca/status/status e.cfm).
- Counihan, T.D., J.D. DeVore, and M.J. Parsley. In press. The effect of river discharge and water temperature on the year-class strength of Columbia River white sturgeon. Transactions of the American Fisheries Society.
- Craft, C., J. Clough, J. Ehmna, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2008. Forecasting the effects of accelerated sea-level rise on tidal march ecosystem services. Frontiers in Ecology and the Environment.
- Crocker, C.E. and J.J. Cech. 1997. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, *Acipenser transmontanus*, in relation to temperature and life intervals. Environmental Biology of Fishes 50: 382-389.
- Dadswell, M.J. 1979. Biology and population characteristics of the shortnose sturgeon, *Acipenser brevirostrum* LeSueur 1818 (Osteichthyes: Acipenseridae), in the Saint John River estuary, New Brunswick, Canada. Canadian Journal of Zoology 57: 2186-2210.

- Dadswell, M.J., B.D. Taubert, T.S. Squiers, D. Marchette, and J. Buckley. 1984. Synopsis of biological data on shortnose sturgeon, *Acipenser brevirostrum* LeSueur, 1818. NOAA Technical Report-14. 53 pp.
- Daniels, R.C., T.W. White, and K.K. Chapman. 1993. Sea-level rise: destruction of threatened and endangered species habitat in South Carolina. Environmental Management, 17(3):373-385.
- DeVries, R.J. 2006. Population dynamics, movements, and spawning habitat of the shortnose sturgeon, *Acipenser brevirostrum*, in the Altamaha River. Master's Thesis, University of Georgia. 103 pp.
- Dial-Cordy and Associates. 2010. Sediment survey of the lower Savannah River.
- Diamond, J.M. 1984. "Normal" extinctions of isolated populations. Pp. 191-246 In: M.H. Nitecki (ed). Extinctions. University of Chicago Press, Chicago.
- Dickerson, D., K. Reine, D. Nelson, and C. Dickerson, Jr. 1995. Assessment of sea turtle abundance in six south Atlantic U.S. channels. Miscellaneous Paper EL-95-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Dickerson, D.D. and J.E. Clausner. 2003. Draft: Summary of Sea Turtle/Dredging Issues and Recommended Action Tasks Generated by the Improved Draghead Design Meeting, September 4, 2003, Atlanta, Georgia. U.S. Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, Mississippi. 13pp.
- Dickerson, D., M. Wolters, C. Theriot, D. Slay. 2004. Dredging impacts on sea turtles in the southeastern USA: A historical review of protection. Submitted for proceedings of the World Dredging Congress, Hamburg, Germany, 27 September-1 October 2004.
- Dickerson, D.D, C. Theriot, M. Wolters, C. Slay, T. Bargo, W. Parks. 2007. Effectiveness of relocation trawling during hopper dredging for reducing incidental take of sea turtles. 2007 World Dredging Conference. Available at: http://el.erdc.usace.army.mil/seaturtles/docs/07-DickersonWODCON.pdf
- Diffendorfer, J. 1998. Testing models of source-sink dynamics and balanced dispersal. Oikos 81: 417–433.
- Dodd, C.K. 1988. Synopsis of the biological data on the loggerhead sea turtle *Caretta caretta* (Linnaeus 1758). U.S. Fish and Wildlife Service Biological Report, 88-14, 1988. 110 pp.
- Doughty, R.W. 1984. Sea turtles in Texas: A forgotten commerce. Southwestern Historical Quarterly 88: 43-70.

- Dovel, W.L., and T.J. Berggren. 1983. Atlantic sturgeon of the Hudson River estuary, New York. New York. Fish and Game Journal 30:140-172.
- Dovel, W.L., A.W. Pekovitch, and T.J. Berggren. 1992. Biology of the shortnose sturgeon (*Acipenser brevirostrum* Lesueur, 1818) in the Hudson River estuary, New York. Pages 187-216 In: C.L. Smith (Ed) Estuarine Research in the 1980s. State University of New York Press, Albany, New York.
- Ehrhart, L.M. 1983. Marine turtles of the Indian River lagoon system. Florida Sci. 46(3/4): 337-346.
- Ehrhart, L.M. 1989. Status Report of the Loggerhead Turtle. Ogren, L., F. Berry, K.
 Bjorndal, H. Kumpf, R. Mast, G. Medina, H. Reichart, and R. Witham (Eds.).
 Proceedings of the Second Western Atlantic Turtle Symposium. NOAA Technical Memorandum NMFS-SEFSC-226, pp. 122-139.
- Ehrhart, L.M., W.E. Redfoot, D.A. Bagley. 2007. Marine turtles of the central region of the Indian River Lagoon system. Florida Scientist 70(4): 415-434.
- Epperly, S.P. and W.G. Teas. 2002. Turtle excluder devices: Are the escape openings large enough? Fish Bull. 100: 466-474.
- Epperly, S.P., J. Braun, and A.J. Chester. 1995a. Aerial surveys for sea turtles in North Carolina inshore waters. Fishery Bulletin 93: 254-261.
- Epperly, S.P., J. Braun, and A. Veishlow. 1995b. Sea turtles in North Carolina waters. Conserv. Biol. 9: 384-394.
- Epperly, S.P., J. Braun, A. J. Chester, F.A. Cross, J. Merriner, and P.A. Tester. 1995c. Winter distribution of sea turtles in the vicinity of Cape Hatteras and their interactions with the summer flounder trawl fishery. Bull. Mar. Sci. 56(2): 519-540.
- Epperly, S., L. Avens, L. Garrison, T. Henwood, W. Hoggard, J. Mitchell, J. Nance, J. Poffenberger, C. Sasso, E. Scott-Denton, and C. Yeung. 2002. Analysis of sea turtle bycatch in the commercial shrimp industry of southeast U.S. waters and the Gulf of Mexico. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-490. 88 pp.
- Epperly, S.P., J. Braun-McNeill, P.M. Richards. 2007. Trends in the catch rates of sea turtles in North Carolina, U.S.A. Endangered Species Research. 3: 283-293.
- Erickson, D.L., J.A. North, J.E. Hightower, J. Weber, and L. Lauck. 2002. Movement and habitat use of green sturgeon *Acipenser medirostris* in the Rogue River, Oregon, U.S.A. Journal of Applied Ichthyology 18:565.569.

- Evermann, B.W. and B.A. Bean. 1898. Indian River and its fishes. Report of the United States Fisheries Commission 1896: 227-248.
- Fish, M.R., I.M. Cote, J.A. Gill, A.P. Jones, S. Renshoff, and A.R. Watkinson. 2005. Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conservation Biology, 19(2):482-491.
- Flournoy, P.H., S.G. Rogers, and P.S. Crawford. 1992. Restoration of shortnose sturgeon in the Altamaha River, Georgia. Final Report to the United States Fish and Wildlife Service. 29 pp.
- Frazer, N.B. and L.M. Ehrhart. 1985. Preliminary growth models for green, *Chelonia mydas*, and loggerhead, *Caretta caretta*, turtles in the wild. Copeia 1985: 73-79.
- Frazer, N.B., C.J. Limpus, and J.L. Greene. 1994. Growth and age at maturity of Queensland loggerheads. U.S. Department of Commerce. NOAA Technical Memorandum, NMFS-SEFSC-351: 42-45.
- Garduño-Andrade, M., V. Guzman, E. Miranda, R. Briseno-Duenas, and F.A. Abreu-Grobois. 1999. Increases in hawksbill turtle (*Eretmochelys imbricata*) nestings in the Yucatan Peninsula, Mexico, 1977-1996: data in support of successful conservation? Chelonian Conservation and Biology 3(2): 286-295.
- Giesy, J.P., J. Newsted, and D.L. Garling. 1986. Relationships between chlorinated hydrocarbon concentrations and rearing mortality of chinook salmon (*Oncorhynchus tshawytscha*) eggs from Lake Michigan. Journal of Great Lakes Research 12(1): 82-98.
- Gilbert, C.R. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic Bight): Atlantic and shortnose sturgeons. United States Fish and Wildlife Service Biological Report-Report Number-82 (11.91).
- Gladys Porter Zoo. 2007. Report on the Mexico/United States of America Population Restoration Project for the Kemp's Ridley Sea Turtle, Lepidocheyls kempii, on the coasts of Tamaulipas and Veracruz, Mexico – 2007. Report submitted to the U.S. Fish and Wildlife Service, Department of Interior.
- Gladys Porter Zoo. 2008. Final Report on the Mexico/United States of America Population Restoration Project for the Kemp's Ridley Sea Turtle, *Lepidochelys kempii*, on the Coasts of Tamaulipas, Mexico. Report presented by Dr. Patrick M. Burchfield and prepared by Luis Jaime Pena- Gladys Porter Zoo, Brownsville, Texas.
- Gladys Porter Zoo. 2010. Summary Final Report on the Mexico/United States of America Population Restoration Project for the Kemp's Ridley Sea Turtle,

Lepidochelys kempii, on the Coasts of Tamaulipas, Mexico. Report presented by Dr. Patrick M. Burchfield and prepared by Luis Jaime Pena- Gladys Porter Zoo, Brownsville, Texas.

- Greene, K.E., J.L. Zimmerman, R.W. Laney, and J.C. Thomas-Blate. 2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Atlantic States Marine Fisheries Commission Habitat Management Series No. 9. Washington, D.C.
- Groombridge, B. 1982. The IUCN Amphibia Reptilia Red Data Book. Part 1. Testudines, Crocodylia, Rhynchocephalia. Int. Union Conserv. Nature and Nat. Res., 426pp.
- Gross, M.R., J. Repka, C.T. Robertson, D.H. Secor, and W.V. Winkle. 2002. Sturgeon conservation: insights from elasticity analysis. Pages 13-30 In: V.W. Webster et al. (eds.). Biology, management, and protection of North American sturgeon, Symposium 28. American Fisheries Society, Bethesda, Maryland.
- Grunwald, C., J. Stabile, J. R. Waldman, R.Gross, and I. Wirgin. 2002. Population genetics of shortnose sturgeon *Acipenser brevirostrum* based on mitochondrial DNA control region sequences. Molec. Ecol. 11:1885-1898.
- Grunwald, C., L. Maceda, J. Waldman, J. Stabile, I. Wirgin. 2007. Conservation of Atlantic sturgeon *Acipenser oxyrinchus oxyrinchus*: delineation of stock structure and distinct population segments. Conserv. Genet 9:1111–1124.
- Guseman, J.L. and L.M. Ehrhart. 1992. Ecological geography of Western Atlantic loggerheads and green turtles: evidence from remote tag recoveries. *In* Salmon M. and J. Wyneken (compilers), Proceedings of the Eleventh Annual Workshop on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFC-302. 50 pp.
- Hall, J.W., T.I.J. Smith, and S.D. Lamprecht. 1991. Movements and habitats of shortnose sturgeon, *Acipenser brevirostrum*, in the Savannah River. Copeia 1991(3): 695-702.
- Hansen, P.D. 1985. Chlorinated hydrocarbons and hatching success in Baltic herring spring spawners. Marine Environmental Research 15: 59-76.
- Hanski, I. 1999. Old and new challenges. Pp. 264-265 in: Metapopulation Ecology (I. Hanski, ed.). Oxford University Press, Oxford.
- Hanski, I., and D. Simberloff. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. Pp. 5-26 in: Metapopulation Biology: Ecology, Genetics and Evolution (I. Hanski and M.E. Gilpin, eds.).
 Academic Press, New York.

- Hardy, R.S. and M.K. Litvak. 2004. Effects of temperature on the early development, growth, and survival of shortnose sturgeon, *Acipenser brevirostrum*, and Atlantic sturgeon, *Acipenser oxyrinchus*, yolk-sac larvae. Environmental Biology of Fishes 70: 145-154.
- Harrison, S. 1991. Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society 42:73-88.
- Hatase, H., M. Kinoshita, T. Bando, N. Kamezaki, K. Sato, Y. Matsuzawa, K. Goto, K. Omuta, Y. Nakashima, H. Takeshita, and W. Sakamoto. 2002. Population structure of loggerhead turtles, *Caretta caretta*, nesting in Japan: Bottlenecks on the Pacific population. Marine Biology 141:299-305.
- Hawkes, L.A., A.C. Broderick, M.S. Coyne, M.H. Godfrey, L.-F. Lopez-Jurado, P. Lopez-Suarez, S.E. Merino, N. Varo-Cruz, and B.J. Godley. 2006. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Current Biology 16: 990-995.
- Hawkes, L.A., A.C. Broderick, M.H.Godfrey, and B.J. Godley. 2007. Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13:923-932.
- Hays, G.C., A.C. Broderick, F. Glen, B.J. Godley, J.D.R. Houghton, and J.D. Metcalfe.
 2002. Water temperature and internesting intervals for loggerhead (*Caretta caretta*) and green (*Chelonia mydas*) sea turtles. Journal of Thermal Biology, 27:429-432.
- Heidt, A.R. and R.J. Gilbert. 1978. The shortnose sturgeon in the Altamaha River drainage. Pp 54-60 In: R.R. Odum and L. Landers (eds.) Proceedings of the rare and endangered wildlife symposium. Georgia Department of Natural Resources, Game and Fish Division.
- Henwood, T.A. and L.H. Ogren. 1987. Distribution and migrations of immature Kemp's ridley (*Lepidochelys kempii*) and green turtles (*Chelonia mydas*) off Florida, Georgia, and South Carolina. Northeast Gulf Sci. 9: 153-159.
- Heppell, S.S., L.B. Crowder, D.T. Crouse, S.P. Epperly, and N.B. Frazer. 2003.
 Population models for Atlantic loggerheads: past, present, and future. *In*:
 Loggerhead Sea Turtles. Bolten, A.B. and B.E. Witherington (eds.). Smithsonian Books, Washington. pp 255-273.
- Hildebrand, H.H. 1963. Hallazgo del area de anidacion de la tortuga marina "lora" Lepidochelys kempii (Garman), en la costa occidental del Golfo de Mexico. Ciencia Mexicana 22(4): 105-112.
- Hildebrand, H.H. 1982. A historical review of the status of sea turtle populations in the Western Gulf of Mexico. In Bjorndal, K.A. (ed.), Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington D.C. pp 447-453.

- Hill, J. 1996. Environmental considerations in licensing hydropower projects; policies and practices of the Federal Energy Regulatory Commission. American Fisheries Society Symposium 16: 190-199.
- Hirth, H.F. 1997. Synopsis of the biological data on the green turtle *Chelonia mydas* (Linnaeus 1758). Biological Report 97(1), U.S. Fish and Wildlife Service, U.S. Dept. of the Interior. 120 pp.
- Hoff, T.B., R.J. Klauda and J.R. Young. 1988. Contribution to the biology of shortnose sturgeon in the Hudson River Estuary. Pp 171-189 In: C.L. Smith (ed.) Fisheries Research in the Hudson River. Hudson River Environmental Society. State University of New York press, Albany, New York.
- Huff, J.A. 1975. Life history of Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi, in Suwannee River, Florida. Florida Department of Natural Resources, Marine Research Publication 16, St. Petersburg, FL.
- Hulme, P.E. 2005. Adapting to climate change: is there scope for ecological management in the face of global threat? Journal of Applied Ecology 43: 617-627.
- IPCC (Intergovernmental Panel on Climate Change). 2007. Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Quin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Jager, H.I., W. VanWinkle, J.A. Chandler, K.B. Lepla, P. Bates, and T.D. Counihan. 2002. A simulation study of factors controlling white sturgeon recruitment in the Snake River. American Fisheries Society Symposium 28: 127-150.
- Jarvis, P. L., J. S. Ballantyne, and W. E. Hogans. 2001. The influence of salinity on the growth of juvenile shortnose sturgeon. North American Journal of Aquaculture 63:272-276.
- Jenkins, W.E., T.I.J.Smith, L.D. Heyward, and D.M. Knott. 1993. Tolerance of shortnose sturgeon, *Acipenser brevirostrum*, juveniles to different salinity and dissolved oxygen concentrations. Proceedings of the Annual Conference of Southeastern Association of Fish and Wildlife Agencies 47: 476-484.
- Jensen, A. and G. Silber. 2003. Large Whale Ship Strike Database. U.S. Department of Commerce, NOAA Technical Memorandum. NMFS-F/OPR-25, 37 pp.
- Johnson, S.A. and L.M. Ehrhart. 1994. Nest-site fidelity of the Florida green turtle. *In* Schroeder, B.A. and B.E. Witherington (compilers), Proceedings of the Thirteenth

Annual Symposium on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFSC-341. 83 pp.

- Kahn, J. and M. Mohead. 2010. A Protocol for Use of Shortnose, Atlantic, Gulf, and Green Sturgeons. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-OPR-45, 62 p.
- Kahnle, A.W., K.A. Hattala, K.A. McKown, C.A. Shirey, M.R. Collins, T.S. Squiers, Jr., and T. Savoy. 1998. Stock Status of Atlantic sturgeon of Atlantic Coast Estuaries. Report for the Atlantic States Marine Fisheries Commission. Draft III.
- Kaplan, E.H., J.R. Welker, M.G. Kraus, and S. McCourt. 1975. Some factors affecting the colonization of a dredged channel. Marine Biology 32,193e204.
- Keinath, J.A., J.A. Musick and R.A. Byles. 1987. Aspects of the biology of Virginia's sea turtles: 1979-1986. Virginia J. Sci. 38(4):329-336.
- Keiser, R.K. 1976. Species composition, magnitude and utilization of the incidental catch of the South Carolina shrimp fishery. S.C. Mar. Resour. Cent. Tech. Rep. 16, 94 p.
- Kieffer, M.C. and B. Kynard. 1993. Annual movements of shortnose and Atlantic sturgeons in the Merrimack River, Massachusetts. Transactions of the American Fisheries Society 122: 1088-1103.
- Kieffer, M. and B. Kynard. 1996. Spawning of shortnose sturgeon in the Merrimack River, Massachusetts. Transactions of the American Fisheries Society 125: 179-186.
- Kindvall, O. and I. Ahlen. 1992. Geometrical factors and metapopulation dynamics of the brush cricket, *Metrioptera bicolor* Phillippi (Orthoptera: Tettigoniidae). Conservation Biology 6: 520-529.
- King, T. L., B. A. Lubinski, and A. P. Spidle. 2001. Microsatellite DNA variation in Atlantic sturgeon (*Acipenser oxyrinchus oxyrinchus*) and cross-species amplification in the Acipenseridae. Conservation Genetics 2: 103-119.
- King, T.L., A.P Henderson, B.E. Kynard, M.C. Kiefer, D.L. Peterson and D.S. Pavek. In prep. A nuclear DNA perspective on delineating fundamental units of management and distinct population segments in the endangered shortnose sturgeon. Final Report to the National Capital Region, U.S. National Park Service and Eastern Region, USGS.
- Kite-Powell, H.K., A. Knowlton, and M. Brown. 2007. Modeling the effect of vessel speed on right whale ship strike risk. Project report for NOAA/NMFS Project NA04NMF47202394. April 2007.

- Knowlton, A.R. and S.D. Kraus. 2001. Mortality and serious injury of northern right whales (Eubalaena glacialis) in the western North Atlantic Ocean. Journal of Cetacean Research and Management (Special Issue) 2:193-208.
- Kynard, B. 1997. Life history, latitudinal patterns and status of shortnose sturgeon, *Acipenser brevirostrum*. Environmental Biology of Fishes 48: 319-334.
- Kynard, B. 1998. Twenty-two years of passing shortnose sturgeon in fish lifts on the Connecticut River: What has been learned? In: Fish migration and fish bypasses, M. Jungwirth, S. Schmutz, and S. Weiss, Editors. pp. 255-264.
- Kynard, B. and M. Horgan. 2002. Ontogenetic behavior and migration of Atlantic sturgeon, *Acipenser oxyrinchus oxyrinchus*, and shortnose sturgeon, *A. brevirostrum*, with notes on social behavior. Environmental Behavior of Fishes 63: 137-150.
- Kynard, B., M. Kieffer, M. Burlingame and M. Horgan. 1999. Studies on shortnose sturgeon. Final Report to Northeast Utilities Service Company, Berlin, Connecticut and the City of Holyoke, Massachusetts.
- Kynard, B., M. Horgan, M. Kieffer, and D. Seibel. 2000. Habitats used by shortnose sturgeon in two Massachusetts rivers, with notes on estuarine Atlantic sturgeon: a hierarchical approach. Transactions of the American Fisheries Society 129: 487-503.
- Laist, D.W. and C. Shaw. 2006. Preliminary evidence that boat speed restrictions reduce deaths of Florida manatees. Marine Mammal Science 22(2):472-479.
- Laist, D.W., A.R. Knowlton, J.G. Mead, A.S. Collet, and M. Podesta. 2001. Collisions between ships and whales. Marine Mammal Science 17(1):35-75.
- Lande, R. 1988. Genetics and demography in biological conservation. Science 241: 1455-1460.
- Laurent, L., P. Casale, M.N. Bradai, B.J. Godley, G. Gerosa, A.C. Broderick, W. Schroth, B. Schierwater, A.M. Levy, D. Freggi, E.M. Abd El-Mawla, D.A. Hadoud, H.E. Gomati, M. Domingo, M. Hadjichristophorou, L. Kornaraki, F. Demirayak, and C. Gautier. 1998. Molecular resolution of the marine turtle stock composition in fishery bycatch: A case study in the Mediterranean. Molecular Ecology 7:1529-1542.
- León, Y.M. and C.E. Diez, 2000. Ecology and population biology of hawksbill turtles at a Caribbean feeding ground (Proceedings of the Eighteenth International Sea Turtle Symposium. U.S. Dept. of Commerce. NOAA Technical Memorandum NMFS-SEFSC-436, 293 pp.; 2000, p. 32-33)

- Levins, R. 1969. Some demographic and genetic consequence of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America. 15: 237-240.
- Limpus, C.J. and D.J. Limpus. 2003. Loggerhead turtles in the equatorial Pacific and southern Pacific Ocean: A species in decline. *In*: Bolten, A.B., and B.E. Witherington (eds.), Loggerhead Sea Turtles. Smithsonian Institution.
- Longwell, A.C., S. Chang, A. Hebert, J. Hughes, and D. Perry. 1992. Pollution and developmental abnormalities of Atlantic fishes. Environmental Biology of Fishes 35: 1-21.
- Lutcavage, M. and J.A. Musick. 1985. Aspects of the biology of sea turtles in Virginia. Copeia (1985): 449-456.
- Mac, M.J. and C.C. Edsall. 1991. Environmental contaminants and the reproductive success of lake trout in the Great Lakes: An epidemiological approach. Journal of Toxicology and Environmental Health 33: 375-394.
- Mangin, E. 1964. Croissance en Longueur de Trois Esturgeons d'Amerique du Nord: Acipenser oxyrhynchus, Mitchill, Acipenser fulvescens, Rafinesque, et Acipenser brevirostris LeSueur. Verh. Int. Ver. Limnology 15: 968-974.
- Marchette, D.E. and R. Smiley. 1982. Biology and life history of incidentally captured shortnose sturgeon, *Acipenser brevirostrum*, in South Carolina. South Carolina Wildlife and Marine Resources. Unpublished MS.
- Margaritoulis, D., R. Argano, I. Baran, F. Bentivegna, M.N. Bradai, J.A. Camiñas, P. Casale, G.De Metrio, A. Demetropoulos, G. Gerosa, B.J. Godley, D.A. Haddoud, J. Houghton, L.Laurent, and B. Lazar. 2003. Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. Pages 175-198 *in* Bolten, A.B. and B.E.Witherington (editors). Loggerhead Sea Turtles. Smithsonian Books, Washington D.C.
- Márquez, R. 1990. FAO Species Catalogue, Vol. 11. Sea turtles of the world, an annotated and illustrated catalogue of sea turtle species known to date. FAO Fisheries Synopsis, 125. 81 pp.
- McCleave, J.D., S.M. Fried, and A.K. Towt. 1977. Daily movements of shortnose sturgeon, *Acipenser brevirostrum*, in a Maine estuary. Copeia 1977: 149-157.
- McCord, J.W. 1998. Investigation of fisheries parameters for anadromous fisheries in South Carolina. South Carolina Department of Natural Resources. Completion report to National Marine Fisheries Service (AFC -53).

- McClellan, C.M. and A.J. Read. 2007. Complexity and variation in loggerhead sea turtle life history. Biology Letters 3:592-594.
- McDonald, M. 1887. The rivers and sound of North Carolina. Pp 625-637 In: G.B. Goode (ed.) The fisheries and fishery industries of the United States, Section V, Volume 1. U.S. Commission on Fish and Fisheries, Washington D.C.
- McElhaney, P., M.H. Rucklelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt.
 2000. Viable salmonid populations and the recovery of evolutionary significant units. U.S. Dept. Commer. NOAA Tech Memo. NMFS-NWFSC-42. 156 p.
- McMaster, H. 2007. South Carolina Attorney General's Office, Current Cases, State of South Carolina vs. State of North Carolina Water War. November 13, 2008. http://www.scattorneygeneral.org/currentcases/waterwar.html
- Mendonca, M.T., and L.M. Ehrhart. 1982. Activity, Population Size and Structure of Immature *Chelonia mydas* and *Caretta caretta* in Mosquito Lagoon, Florida. Copeia 1:161-167.
- Meylan, A. 1999. Status of the Hawksbill Turtle (*Eretmochelys imbricata*) in the Caribbean Region. Chelonian Conservation and Biology 3(2): 177B184. Available at (http://www.iucn-mtsg.org/publications/cc&b_april1999/4.14-Meylan-Status.pdf).
- Meylan, A., B. Schroeder, and A. Mosier. 1995. Sea turtle nesting activity in the state of Florida. Florida Marine Research Publications, No. 52
- Milton, S.L., S. Leone-Kabler, A.A. Schulman, and P.L. Lutz. 1994. Effects of Hurricane Andrew on the sea turtle nesting beaches of South Florida. Bulletin of Marine Science, 54(3): 974-981.
- Milton, S.L., Lutz, P.L. 2003 Physiological and genetic responses to environmental stress. *In*: Lutz PL, Musick JA, Wyneken J (eds) The biology of sea turtles, Vol II. CRC Press, Boca Raton, FL, p 163–197
- Moorehead, K.K. and M.M. Brinson. 1995. Response of wetlands to rising sea level in the lower coast plain of North Carolina. Ecological Applications 5: 261-271.
- Moser, M. L. and S. W. Ross. 1993. Distribution and movements of shortnose sturgeon (*Acipenser brevirostrum*) and other anadromous fishes of the lower Cape Fear River, North Carolina. Final Report to the U.S. Army Corps of Engineers, Wilmington, North Carolina.
- Moser, M.L. and S.W. Ross. 1995. Habitat use and movements of shortnose and Atlantic sturgeons in the Lower Cape Fear River, North Carolina. Transactions of the American Fisheries Society 124: 225-234.

- Moser M. L., J. B. Bichy, and S. B. Roberts. 1998. Sturgeon distribution in North Carolina. Center for Marine Science Research. Final Report to U.S. ACOE, Wilmington District, NC.
- Moser, M.L., M. Bain, M.R. Collins, N. Haley, B. Kynard, J.C. O'Herron II, G. Rogers, and T.S. Squiers. 2000. A Protocol for Use of Shortnose and Atlantic Sturgeons. U.S. Department of Commerce, NOAA Technical Memorandum-NMFS-OPR-18. 18 pp.
- Munro, J., R.E. Edwards, and A.W. Kahnle. 2007. Anadromous sturgeons: habitats, threats, and management. American Fisheries Society Symposium 56: 1-15.
- Murawski, S.A. and A.L. Pacheco. 1977. Biological and fisheries data on Atlantic sturgeon, *Acipenser oxyrhynchus* (Mitchill). National Marine Fisheries Service, Sandy Hook Lab., Sandy Hook. Tech. Report No. 10. 78 pp.
- Murdoch, P.S., J.S. Baron and T.L. Miller. 2000. Potential effects of climate change on surface-water quality in North America. Journal of the American Water Resources Association 36: 347-366.
- Murphy, T.M. and S.R. Hopkins. 1984. Aerial and ground surveys of marine turtle nesting beaches in the Southeast region, U.S. Final Report to the National Marine Fisheries Service; NMFS Contract No. NA83-GA-C-00021. 73 pp.
- Musick, J.A. 1999. Ecology and conservation of long-lived marine animals. Pp 1-10 In: J.A. Musick (ed.) Life in the slow land: ecology and conservation of long-lived marine animals. American Fisheries Society Symposium 23, Bethesda, Maryland.
- Musick, J.A. and C.J. Limpus. 1997. Habitat utilization in juvenile sea turtles. *In* Lutz, P.L. and J.A. Musick (eds.), The Biology of Sea Turtles. CRC Press, Boca Raton, Florida. pp. 137-163.
- NAST (National Assessment Synthesis Team). 2000. Climate change impacts on the United States: the potential consequences of climate variability and change. US Global Change Research Program, Washington D.C.
- Niklitschek, E.J. 2001. Bioenergetics modeling and assessment of suitable habitat for juvenile Atlantic and shortnose sturgeons (*Acipenser oxyrinchus* and *A. brevirostrum*) in the Chesapeake Bay [dissertation]. [College Park(MD)]: University of Maryland.
- Niklitschek, E.J. and D.H. Secor. 2005. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 64:135–148.

- NIDIS (National Integrated Drought Information System). 2008. Current Drought Conditions for the State of Georgia, November 4, 2008. http://www.drought.gov/portal/server.pt?uuID=%7B950C0A74-978E-47AF-2FF0-9159361A2000%7D&mode=2&in hi userid=2&state=GA
- NMFS. 1991. Biological Opinion for the Dredging of channels in the Southeastern United States from North Carolina through Cape Canaveral, Florida.
- NMFS. 1995. Endangered Species Act section 7 consultation on United States Coast Guard vessel and aircraft activities along the Atlantic coast. Biological Opinion. September 15.
- NMFS. 1996. Endangered Species Act section 7 consultation on reinitiation of consultation on United States Coast Guard Vessel and Aircraft Activities along the Atlantic Coast. Biological Opinion. July 22.
- NMFS. 1997a. Endangered Species Act section 7 consultation on Navy activities off the southeastern United States along the Atlantic Coast. Biological Opinion. May 15.
- NMFS. 1997b. Endangered Species Act Section 7 consultation on the continued hopper dredging of channels and borrow areas in the southeastern United States. Biological Opinion. September 25.
- NMFS. 1998. Endangered Species Act section 7 consultation on COE permits to Kerr-McGee Oil and Gas Corporation for explosive rig removals off of Plaquemines Parish, Louisiana. Draft Biological Opinion. September 22.
- NMFS. 1998. Recovery plan for the shortnose surgeon (*Acipenser brevirostrum*). Prepared by the Shortnose Sturgeon Recovery Team. 119 pp.
- NMFS. 2001a. Stock assessments of loggerhead and leatherback sea turtles and an assessment of the pelagic longline fishery on the loggerhead and leatherback sea turtles of the Western North Atlantic. U.S. Department of Commerce NOAA Technical Memorandum NMFS-SEFSC-455.
- NMFS. 2001b. Endangered Species Act section 7 consultation on the reinitiation of consultation on the Atlantic highly migratory species fishery management plan and its associated fisheries. Biological Opinion. June 14.
- NMFS. 2002. Endangered Species Act section 7 consultation on shrimp trawling in the southeastern United States under the sea turtle conservation regulations and as managed by the fishery management plans for shrimp in the South Atlantic and the Gulf of Mexico. Biological Opinion, December 2.
- NMFS. 2003. Endangered Species Act section 7 consultation on the continued operation of Atlantic shark fisheries (commercial shark bottom longline and drift gillnet

fisheries and recreational shark fisheries) under the Fishery Management Plan for Atlantic Tunas, Swordfish, and Sharks (HMS FMP) and the Proposed Rule for Draft Amendment 1 to the HMS FMP. Biological Opinion. July 2003.

- NMFS. 2004a. Endangered Species Act section 7 consultation on proposed regulatory amendments to the FMP for the pelagic fisheries of the western Pacific region. Biological opinion. February 23.
- NMFS. 2004b. Endangered Species Act section 7 reinitiation consultation on the Atlantic pelagic longline fishery for highly migratory species. Biological Opinion. June 1.
- NMFS. 2007. Endangered Species Act section 7 consultation on the dredging of Gulf of Mexico navigation channels and sand mining ("borrow") areas using hopper dredges by COE Galveston, New Orleans, Mobile, and Jacksonville Districts. Revised Biological Opinion (November 2003). January 2007.
- NMFS SEFSC (Southeast Fisheries Science Center). 2001. Stock assessments of loggerhead and leatherback sea turtles and an assessment of the impact of the pelagic longline fishery on the loggerhead and leatherback sea turtles of the Western North Atlantic. U.S. Department of Commerce, National Marine Fisheries Service, Miami, Florida, SEFSC Contribution PRD-00/01-08; Parts I-III and Appendices I-V1.
- NMFS-SEFSC. 2009. Estimated impacts of mortality reductions on loggerhead sea turtle population dynamics, preliminary results. Presented at the meeting of the Reef Fish
 Management Committee of the Gulf of Mexico Fishery Management Council, June 16, 2009, Tampa, Florida, 20p. (Posted 6/2009 at http://www.sefsc.noaa.gov/seaturtleabstracts.jsp)
- NMFS and USFWS. 1991a. Recovery Plan for U.S. Population of Atlantic Green Turtle. National Marine Fisheries Service, Washington, D.C.
- NMFS and USFWS. 1991b. Recovery Plan for U.S. Population of Loggerhead Turtle. National Marine Fisheries Service, Washington, D.C.
- NMFS and USFWS. 1993. Recovery Plan for Hawksbill Turtles in the U.S. Caribbean Sea, Atlantic Ocean, and Gulf of Mexico. National Marine Fisheries Service, St. Petersburg, Florida.
- NMFS and USFWS. 1995. Status reviews for sea turtles listed under the Endangered Species Act of 1973. National Marine Fisheries Service, Silver Spring, Maryland.
- NMFS and USFWS. 1998a. Recovery Plan for U.S. Pacific Populations of the Green Turtle. Prepared by the Pacific Sea Turtle Recovery Team.

- NMFS and USFWS. 1998b. Recovery Plan for U.S. Pacific Populations of the Hawksbill Turtle (*Eretmochelys imbricata*). National Marine Fisheries Service, Silver Spring, Maryland.
- NMFS and USFWS. 1998c. Recovery Plan for U.S. Pacific Populations of the Leatherback Turtle. Prepared by the Pacific Sea Turtle Recovery Team.
- NMFS and USFWS. 1998d. Recovery Plan for U.S. Pacific Populations of the Loggerhead Turtle. Prepared by the Pacific Sea Turtle Recovery Team.
- NMFS and USFWS. 2007a. Loggerhead Sea Turtle (*Caretta caretta*) 5-Year Review: Summary and Evaluation.
- NMFS and USFWS. 2007b. Kemp's Ridley Sea Turtle (*Lepidochelys kempii*) 5-Year Review: Summary and Evaluation.
- NMFS and USFWS. 2007c. Green Sea Turtle (*Chelonia mydas*) 5-Year Review: Summary and Evaluation.
- NMFS and USFWS. 2007d. Leatherback sea turtle (Dermochelys coriacea) 5 year review: summary and evaluation. National Marine Fisheries Service, Silver Spring, Maryland. 79 pp.
- NMFS and USFWS. 2007e. Loggerhead sea turtle (Caretta caretta) 5 year review: summary and evaluation. National Marine Fisheries Service, Silver Spring, Maryland. 65 pp.
- NMFS and USFWS. 2008. Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (*Caretta caretta*), Second Revision. National Marine Fisheries Service, Silver Spring, MD.
- NRC (National Research Council, Committee on Sea Turtle Conservation). 1990. Decline of the Sea Turtles: Causes and Prevention. National Academy Press, Washington D.C.
- Ogren, L.H. 1989. Distribution of juvenile and subadult Kemp's Ridley Sea Turtles: Preliminary Results from the 1984-1987 Surveys. *In* Caillouet, C.W., Jr. and A.M. Landry, Jr. (eds.), Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation and Management. Texas A&M University Sea Grant College Program, Galveston. TAMU-SG-89-105
- O'Herron, J.C., K.W. Able, and R.W. Hastings. 1993. Movements of shortnose sturgeon (*Acipenser brevirostrum*) in the Delaware River. Estuaries 16:235-240.
- Ong, T.L., J. Stabile, I. Wirgin, and J.R.Waldman. 1996. Genetic divergence between *Acipenser oxyrhinchus oxyrhinchus* and *A. o. desotoi:* An assessment by mitochondrial DNA analysis Copeia 2: 464–469.

- Pace, R.M. and G.K. Silber. 2005. Abstract. Simple analyses of ship and large whale collisions: Does speed kill? Sixteenth Biennial Conference on the Biology of Marine Mammals, San Diego, December 2005.
- Palmer, M.A., C.A. Reidy Liermann, C. Nilsson, M. Florke, J. Alcama, P.S. Lake and N. bond. 2008. Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 81-89.
- Panigada, S., G. Pesante, M. Zanardelli, F. Capoulade, A. Gannier, and M.T. Weinrich. 2006. Mediterranean whales at risk from fatal ship strikes. Marine Pollution Bulletin 52, 1287–1298.
- Paragamian, V.L. and J.P. Duehr. 2005. Variation in vertical location of Kootenai River white sturgeon during the prespawn and spawning periods. Trans. Am. Fish. Soc. 134 (1):261-266.
- Paragamian, V.L., and G. Kruse. 2001. Kootenai River white sturgeon spawning migration behavior and a predictive model. North American Journal of Fisheries Management 21:22-33.
- Park, R.A., J.K. Lee, P.W. Mausel, and R.C. Howe. 1991. The effects if sea level rise on US coastal wetlands. In: J.B. Smith and D.A. Tirpak (eds), The potential effects of global climate change on the United States. Appendix B – sea-level rise. Washington DC: US Environmental Protection Agency.
- Peterson, D.L., P. Vecsei, C.A. Jennings. 2006. Ecology and biology of the lake sturgeon: a synthesis of current knowledge of a threatened North American *Acipenseridae*. Rev. Fish Biol. Fisheries 17:59–76.
- Pike, D.A., R.L. Antworth, and J.C. Stiner. 2006. Earlier nesting contributes to shorter nesting seasons for the Loggerhead sea turtle, *Caretta caretta*. Journal of Herpetology, 40(1):91-94.
- Poddubny, S.P. and D.L. Galat. 1995. Habitat associations of Upper Volga River fishes: effects of reservoirs. Regulated Rivers: Research and Management 11: 67-84.
- Pottle, R., and M.J. Dadswell. 1979. Studies on larval and juvenile shortnose sturgeon (*Acipenser brevirostrum*). Report to the Northeast Utilities Service Company, Hartford, Connecticut.
- Pritchard, P.C.H. 1969. Sea turtles of the Guianas. Bull. Fla. State Mus. 13(2): 1-139.
- Pritchard, P.C.H. 1997. Evolution, phylogeny, and current status. *In*: Lutz, P.L. and J.A. Musick (ed). The Biology of Sea Turtles. pp 1-28. CRC Press. Boca Raton, Florida.

- Quattro, J.M., T.W. Greig, D.K. Coykendall, B.W. Bowen, and J.D. Baldwin. 2002. Genetic issues in aquatic species management: the shortnose sturgeon (*Acipenser brevirostrum*) in the southeastern United States. Conservation Genetics 3: 155-166.
- Ray, G. 1997. Benthic Assemblages of the Padilla Bay National Estuarine Research. Reserve, Mount Vemon, Washington. Washington State Department of Ecology Publication No., Padilla Bay National Estuarine Research Reserve Technical Report No. 21, Mount Vernon, Washington. 91pp.
- Renaud, M.L. 1995. Movements and submergence patterns of Kemp's ridley turtles (*Lepidochelys kempii*). Journal of Herpetology 29: 370-374.
- Richmond, A. and B. Kynard. 1995. Ontogenetic behavior of shortnose sturgeon. Copeia 1995: 172-182.
- Rogers, S.G. and W. Weber. 1994. Occurrence of shortnose sturgeon (*Acipenser brevirostrum*) in the Ogeechee-Canoochee river system, Georgia, during the summer of 1993. Final Report of the United States Army to the Nature Conservancy of Georgia.
- Rogers, S.G. and W. Weber. 1995. Status and restoration of Atlantic and shortnose sturgeons in Georgia. Final Report to the National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida.
- Rogers, S.G., P.H. Flourney, and W. Weber. 1994. Status and restoration of Atlantic sturgeon in Georgia. Final report to the National Marine Fisheries Service Project NA46F0098-01, -02, -03.
- Rosenthal, H. and D.F. Alderdice. 1976. Sub-lethal effects of environmental stressors, natural and pollutional, on marine fish eggs and larvae. Journal of the Fisheries Research Board of Canada 33: 2047-2065.
- Ross, J.P. 1979. Historical decline of loggerhead, ridley, and leatherback sea turtles. *In*: Bjorndal, K.A. (editor), Biology and Conservation of Sea Turtles. pp. 189-195. Smithsonian Institution Press, Washington, D.C. 1995.
- Ruelle, R. and K.D. Keenlyne. 1993. Contaminants in Missouri River Pallid Sturgeon. Bulletin of Environmental Contamination and Toxicology 50: 898-906.
- Rusert, W., and R. Cummings. 2004. Characteristics of Water-use Control Policies: A Survey of 28 Eastern States. Water Policy Working Paper #2004-001. North Georgia Water Planning and Policy Center, Andrew Young School of Policy Studies, Georgia State University, Atlanta, Georgia, February 2004.

- Sæther, B.E., S. Engen, A. Islam, R. McCleery, and C. Perrins. (1998) Environmental stochasticity and extinction risk in a population of a small song bird, the great tit. American Naturalist, 151, 441–450.
- Savoy, T. 1991. Sturgeon status in Connecticut Waters. Connecticut Department of Environmental Protection. 43 pp.
- SCDNR. 2008. Loggerheadlines. July-December 2008.
- Schlosser, I.J. and P.L. Angermeier. 1995. Spatial variations in demographic processes of lotic fishes: conceptual models, empirical evidence, and implications for conservation. Pp 392-401 In: J.L. Nielsen (ed.) Evolution and the Aquatic Ecosystem: Defining Unique Unites in Population Conservation. American Fisheries Society. Bethesda, MD.
- Schmid, J.R. and W.N. Witzell. 1997. Age and growth of wild Kemp's ridley turtles (*Lepidochelys kempii*): Cumulative results of tagging studies in Florida. Chelonian Conservation and Biology 2: 532-537.
- Schroeder, B.A., and A.M. Foley. 1995. Population studies of marine turtles in Florida Bay. *In* Richardson, J.I. and T. H. Richardson (compilers), Proceedings of the Twelfth Annual Workshop on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFSC-361. 117 pp.
- Schueller, P., and D.L. Peterson. 2010. Abundance and recruitment of juvenile Atlantic sturgeon in the Altamaha River, Georgia. Transactions of the American Fisheries Society 139: 1526-1535.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin 184: 966 pp.
- Secor, D.H. 1995. Chesapeake Bay Atlantic sturgeon: current status and future recovery. Summary of findings and recommendations from a workshop convened 8 November 1994 at Chesapeake Biological Laboratory. Chesapeake Bay Biological Laboratory, Center for Estuarine and Environmental Studies, University of Maryland System, Solomons, MD.
- Secor, D.H. 2002. Atlantic sturgeon fisheries and stock abundances during the late nineteenth century. American Fisheries Society Symposium 28: 89-98.
- Secor, D.H. and T.E. Gunderson. 1998. Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgeon (*Acipenser oxyrinchus*). Fishery Bulletin U.S. 96: 603-613.
- Secor, D.H. and E.J. Niklitschek. 2001. Hypoxia and sturgeons. Chesapeake Biological Laboratory Technical Report Series-Number TS-314-01-CBL. 26 pp.

- Secor, D.H. and E.J. Niklitschek. 2003. Sensitivity of sturgeons to environmental hypoxia: physiological and ecological evidence. Pp 61-78 In: Fish Physiology, Toxicology, and Water Quality – Proceedings of the Sixth International Symposium, La Paz, Mexico, January 22-26, 2001. U.S. EPA Office of Research and Development, Ecosystems Research Division, Athens, Georgia.
- Secor, D. H. and J. R. Waldman. 1999. Historical abundance of Delaware Bay Atlantic sturgeon and potential rate of recovery. American Fisheries Society Symposium 23: 203-216.
- Secor, D., P. Anders, V.W. Webster, and D. Dixon. 2002. Can we study sturgeon to extinction? What we do and don't know about the conservation of North American sturgeon. Pages 3-9. In: V.W. Webster et al. (eds.) Biology, management, and protection of North American sturgeon, Symposium 28. American Fisheries Society, Bethesda, Maryland
- Shaver, D.J. 1991. Feeding ecology of wild and head-started Kemp's ridley sea turtles in south Texas waters. Journal of Herpetology. Vol. 23, 1991.
- Shaver, D.J. 1994. Relative abundance, temporal patterns, and growth of sea turtles at the Mansfield Channel, Texas. Journal of Herpetology 28: 491-497.
- Shoop, C., T. Doty and N. Bray. 1982. A characterization of marine mammals and turtles in the mid- and north-Atlantic areas of the U.S. outer continental shelf: Final Report, December 1982. Univ. Rhode Island, Kingston.
- Shortnose Sturgeon Status Review Team. 2011. Status Review of shortnose sturgeon (*Acipenser brevirostrum*). Report to National Marine Fisheries Service, Northeast Regional Office.
- Simberloff, D. 1988. The contribution of population and community biology to conservation science. Annual Review of Ecology and Systematics 19: 473-511.
- Sindermann, C.J. 1994. Quantitative effects of pollution on marine and anadromous fish populations. NOAA Technical Memorandum NMFS-F/NEC-104, National Marine Fisheries Service, Woods Hole, Massachusetts.
- Smith, T.I.J. 1985. The fishery, biology, and management of Atlantic sturgeon, Acipenser oxyrinchus, in North America. Environmental Biology of Fishes 14:61-72.
- Smith, T.I.J. and J.P. Clugston. 1997. Status and management of Atlantic sturgeon, *Acipenser oxyrinchus*, in North America. Environmental Biology of Fishes 48: 335-346.

- Smith, T.I.J., E.K. Dingley, and E.E. Marchette. 1980. Induced spawning and culture of Atlantic sturgeon. Progressive Fish Culturist 42:147-151.
- Smith, T.I.J., D.E. Marchette, and R.A. Smiley. 1982. Life history, ecology, culture and management of Atlantic sturgeon, *Acipenser oxyrhynchus*, Mitchill, in South Carolina. South Carolina Wildlife and Marine Resources. Resources Department, Final Report to U.S. Fish and Wildlife Service Project AFS-9. 75 p.
- Smith, T.I.J., D.E. Marchette, and G.F. Ulrich. 1984. The Atlantic sturgeon fishery in South Carolina. North American Journal of Fisheries Management 4: 164-176.
- Smith, T.I.J., E. Kennedy and M.R. Collins. 1992. Identification of critical habitat requirements of shortnose sturgeon in South Carolina. Final Report to USFWS. Atlanta, Georgia.
- Smith, T.I.J., M.R. Collins, and E.Kennedy. 1993. Identification of critical habitat requirements of shortnose sturgeon in South Carolina. Final Report Project AFS-17, USFWS. Atlanta, GA. 97 pp.
- Smith, T. I. J., M.C. Collins, W.C. Post, and J.W. McCord. 2002. Stock enhancement of shortnose sturgeon: a case study. Pages 31–44 in W. Van Winkle, P. J. Anders, D.H. Secor, and D. A. Dixon, editors. Biology, management, and protection of North American sturgeon. American Fisheries Society, Symposium 28, Bethesda, Maryland.
- Soule, M.E. 1986. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, Massachusetts.
- Spencer, D., and L.B. Muzekari. 2002. Source Water Assessment Plans Across State Lines Beaufort Jasper Water & Sewer Authority and the City of Savannah. Presented at the 2002 South Carolina Environmental Conference.
- Spotila, J.R., A.E. Dunham, A.J. Leslie, A.C. Steyermark, P.T. Plotkin, and F.V. Paladino. 1996. Worldwide population decline of *Dermochelys coriacea*: are leatherback turtles going extinct? Chel. Conserv. Biol. 2(2): 209-222.
- Stabenau, E.K. and K.R. Vietti. 1999. Physiological effects of short-term submergence of loggerhead sea turtles, *Caretta caretta*, in TED-equipped commercial fishing nets. Final Report to National Marine Fisheries Service, Pascagoula Laboratory, Pascagoula, Mississippi.
- Standora, E.A., S.J. Morreale, A. Bolten, M.D. Eberle, J.M. Edbauer, T.S. Ryder, and K.L. Williams. 1993. Diving behavior, daily movements, and homing of loggerhead turtles (*Caretta caretta*) at Cape Canaveral, Florida. March and April 1993. Contr. Report to COE.

- Stevenson, J.C. and M.S. Kearney. In press. Impacts of global climate change and sea level rise on tidal wetlands. In: B.R. Silliman, M.D. Bertness and D. Strong (eds.), Anthropogenic modification of North American salt marshes. Berkeley, CA: University of California Press.
- Stevenson, J.C. and D.H. Secor. 1999. Age determination and growth of Hudson River Atlantic sturgeon, *Acipenser oxyrinchus*. Fishery Bulletin 97:153-166.
- Swingle, M., S. Barco, T. Pitchford, W. McLellan and D.A. Pabst. 1993. The occurrence of foraging juvenile humpback whales (*Megaptera novaeangliae*) in Virginia Coastal Waters. Marine Mammal Science. 9(3):309-315.
- Taubert, B.D. 1980. Reproduction of the shortnose sturgeon (*Acipenser brevirostrum*) in Holyoke Pool, Connecticut River, Massachusetts. Copeia 1: 114-117.
- Taubert. B.D. and M.J. Dadswell. 1980. Description of some larval shortnose sturgeon (*Acipenser brevirostrum*) from the Holyoke Pool, Connecticut River, Massachusetts, U.S.A. and the Saint John River, New Brunswick, Canada. Canadian Journal of Zoology 58: 1125-1128.
- TEWG (Turtle Expert Working Group). 1998. An Assessment of the Kemp's ridley sea turtle (*Lepidochelys kempii*) and loggerhead (*Caretta caretta*) sea turtle populations in the western North Atlantic. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-409. 96 pp.
- TEWG (Turtle Expert Working Group). 2000. Assessment update for the Kemp's ridley and loggerhead sea turtle populations in the Western North Atlantic. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-444. 115 pp.
- TEWG (Turtle Expert Working Group). 2007. An Assessment of the Leatherback Turtle Population in the Atlantic Ocean. NOAA Technical Memorandum NMFS-SEFSC-555, 116p.
- TEWG (Turtle Expert Working Group). 2009. An Assessment of the Loggerhead Turtle Population in the Western North Atlantic Ocean. NOAA Technical Memorandum NMFS-SEFSC-575, 131p.
- Thomas, C.D. 1990. Environmental fluctuations and extinction single species. Theoretical Population Biology 27: 1-26.
- Thomas, C.D. 1994. Extinction, colonization, and metapopulations: environmental tracking by rare species. Conservation Biology 8: 373-378.
- Tillman, M. 2000. Internal memorandum, dated July 18, 2000, from M. Tillman (NMFS-Southwest Fisheries Science Center) to R. McInnis (NMFS-Southwest Regional Office).

- USACE. 2011. Sea Turtle Data Warehouse. http://el.erdc.usace.army.mil/seaturtles/.
- USDOI (U.S. Department of Interior). 1973. Threatened wildlife of the United States. Resource Publication 114, March 1973.
- USFWS (U.S. Fish and Wildlife Service). 1993. Pallid Sturgeon Recovery Plan. U.S. Fish and Wildlife Service, Bismarck, North Dakota. 55 pp.
- USFWS. 2000. Report on the Mexico/United States of America Population Restoration Project for the Kemp's ridley sea turtle, *Lepidochelys kempii*, on the coasts of Tamaulipas and Veracruz, Mexico.
- USFWS and NMFS. 1992. Recovery Plan for the Kemp's ridley sea turtle (*Lepidochelys kempii*). U.S. Fish and Wildlife Service, Washington, DC.
- USFWS and NMFS. 1998. Consultation Handbook: Procedures for conducting consultation and conference activities under section 7 of the Endangered Species Act.
- USFWS, NMFS, and SCDNR. 2001. Santee-Cooper Basin Diadromous Fish Passage Restoration Plan. 72 pp.
- Van Dam, R.P., and C.E. Diez. 1998. Home range of immature hawksbill turtles (*Eretmochelys imbricata*) at two Caribbean islands. J. Exp. Mar. Biol. Ecol. 220:15-24.
- Van Den Avyle, M. J. 1984. Species profile: Life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic): Atlantic sturgeon. U.S. Fish and Wildlife Service Report No. FWS/OBS-82/11.25, and U. S. Army Corps of Engineers Report No. TR EL-82-4, Washington, D.C.
- Vanderlaan, A.S.M and C.T. Taggart. 2007. Vessel collisions with whales: The probability of lethal injury based on vessel speed. Marine Mammal Science 23(1):144-156.
- Van Dolah, R.F., D.R. Calder, F.W. Stapor, Jr., R.H. Dunlap, and C.R. Richter. 1979 Atlantic Intracoastal Waterway environmental studies at Sewee Bay and North Edisto River. South Carolina Marine Resources Center Technical Report No. 39. South Carolina Wildlife and Marine Resources Department, Charleston, SC.
- Van Dolah, R.F., D.R. Calder, and D.M. Knott. 1984. Effects of dredging and open water disposal on benthic macroinvertebrates in a South Carolina estuary. Estuaries 7:28-37.
- Van Eenennaam, J.P., S.I. Doroshov, G.P. Moberg, J.G. Watson, D.S. Moore, and J. Linares. 1996. Reproductive conditions of the Atlantic sturgeon (*Acipenser* oxyrhinchus) in the Hudson River. Estuaries 19: 769-777.

- Varanasi, U. 1992. Chemical contaminants and their effects on living marine resources. Pp 59-71 In: R.H. Stroud (ed.) Stemming the Tide of Coastal Fish Habitat Loss. Proceedings of the Symposium on Conservation of Fish Habitat, Baltimore, Maryland. Marine Recreational Fisheries Number 14. National Coalition for Marine Conservation, Inc., Savannah, Georgia.
- Vargo, S., P. Lutz, D. Odell, E. van Vleet, and G. Bossart. 1986. The effects of oil on marine turtles. Final Report, Vol. 2. Prepared for Mineral Management Services, U.S. Department of Interior. OCS Study MMS 86-0070
- Vecsei, P. and D. Peterson. 2004. Sturgeon ecomorphology: A descriptive approach. Pp 103-133 In: G.T.O. LeBreton et al. (eds.) Sturgeons and Paddlefishes of North America. Kluwer Academic, Netherlands.
- Vladykov, V. D. and J. R. Greely. 1963. Order Acipenseroidei. In: Fishes of Western North Atlantic. Sears Foundation. Marine Research, Yale Univ. 1630 pp.
- Von Westernhagen, H., H. Rosenthal, V. Dethlefsen, W. Ernst, U. Harms, and P.D. Hansen. 1981. Bioaccumulating substances and reproductive success in Baltic flounder *Platichthys flesus*. Aquatic Toxicology 1:85-99.
- Waldman, J.R., J.T. Hart, and I. Wirgin. 1996. Stock composition of the New York Bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. Trans. Am. Fish. Soc. 125:364–371.
- Waldman, J.R., C. Grunwald, J. Stabile, and I. Wirgin. 2002. Impacts of life history and biogeography on the genetic stock structure of Atlantic sturgeon *Acipenser* oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon A. brevirostrum. Journal of Applied Ichthyology 18: 509-518.
- Wallace, B.P., S.S. Heppell, R.L. Lewison, S. Kelez, and L.B. Crowder. 2008. Impacts of fisheries bycatch on loggerhead turtles worldwide inferred from reproductive value analyses. Journal of Applied Ecology 45:1076–1085.
- Walsh, M.G., M.B. Bain, T. Squires Jr., J.R. Waldman, and I. Wirgin. 2001. Morphological and genetic variation among shortnose sturgeon *Acipenser brevirostrum* from adjacent and distant rivers. Estuaries 24: 41-48.
- Wang, Y.L. F.P. Binkowski and S.I. Doroshov. 1985. Effect of temperature on early development of white and lake sturgeon, *Acipenser transmontanus* and *A. fulvescens*. Environmental Biology of Fishes 14: 43-50.
- Weber, W. 1996. Population size and habitat use of shortnose sturgeon, Acipenser brevirostrum, in the Ogeechee River system, Georgia. MSc. Thesis. University of Georgia, Athens, Georgia.

- Weber, W., C.A. Jennings, and S.G. Rogers. 1999. Population size and movement patterns of shortnose sturgeon in the Ogeechee River system, Georgia. Proceedings of the annual conference of the Southeastern Association of Fish and Wildlife Agencies. 52: 18-28.
- Weishampel, J.F., D.A. Bagley, and L.M. Ehrhart. 2004. Earlier nesting by loggerhead sea turtles following sea surface warming. Global Change Biology, 10:1424-1427
- Welcomme, R.L. 1995. Relationships between fisheries and the integrity of river systems. Regulated Rivers: Research and Management 11: 121-136.
- Wershoven, J.L. and R.W. Wershoven. 1992. Juvenile green turtles in their nearshore habitat of Broward County, Florida: a five year review. *In* Salmon M. and J. Wyneken (compilers), Proceedings of the Eleventh Annual Workshop on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFC-302: 121-123.
- Wiley, D.N., R. A. Asmutis, T.D. Pitchford, and D.P. Gannon. 1995. Stranding and mortalities of humpback whales, *Megaptera novaeangliae*, in the mid-Atlantic and southeast United States, 1985-1992. Fishery Bull. 93:196-205.

Williamson, M. 1981. Island populations. Oxford University Press, Oxford.

- Winger, P. V., P. J. Lasier, D. H. White, J. T. Seginak. 2000. Effects of contaminants in dredge material from the lower Savannah River. Archives of Environmental Contamination and Toxicology 38: 128-136.
- Wirgin, I., J.R. Waldman, J. Rosko, R. Gross, M. Collins, S.G. Rogers, and J. Stabile. 2000. Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Transactions of the American Fisheries Society 129: 476-486.
- Wirgin, I., J. Waldman, J. Stabile, B. Lubinski and T. King. 2002. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon (*Acipenser* oxyrinchus). Journal of Applied Ichthyology 18: 313-219.
- Wirgin, I., C. Grunwald, E. Carlson, J. Stabile, D.L. Peterson, and J. Waldman. 2005. Range-wide population structure of shortnose sturgeon *Acipenser brevirostrum* based on sequence analysis of the mitochondrial DNA control region. Estuaries 28(3): 406-421.
- Wirgin, I., C. Grunwald, J. Stabile and J.R. Waldman. 2009. Delineation of discrete population segments of shortnose sturgeon *Acipenser brevirostrum* based on mitochondrial DNA control region sequence analysis. Conserv. Genet. doi: 10.1007/s10592-009-9840-1.

- Witherington, B., P. Kubilis, B. Brost, and A. Meylan. 2009. Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecological Applications 19:30–54.
- Witzell, W.N. 2002. Immature Atlantic loggerhead turtles (*Caretta caretta*): suggested changes to the life history model. Herpetological Review 33(4): 266-269.
- Witzell, W.N. and J.R. Schmid. 2005. Diet of immature Kemp's ridley turtles (*Lepidochelys kempi*) from Gullivan Bay, Ten Thousand Islands, southwest Florida. Bull. Mar. Sci. 77: 191-199.
- Wooley, C.M. and E.J. Crateau. 1985. Movement, microhabitat exploitation and management of Gulf of Mexico sturgeon, Apalachicola River, Florida. North Am. J. Fish Manage. 5, 590–605.
- Wyneken, J., K. Blair, S. Epperly, J. Vaughan, and L. Crowder. 2004. Surprising sex ratios in west Atlantic loggerhead hatchlings – an unexpected pattern. Poster presentation at the 2004 International Sea Turtle Symposium in San Jose, Costa Rica.
- Young, J.R., T.B. Hoff, W.P. Dey, and J.G. Hoff. 1988. Management recommendations for a Hudson River Atlantic sturgeon fishery based on an age-structured population model. Fisheries Research in the Hudson River. State of University of New York Press, Albany, New York. 353 p.
- Ziegeweid, J.R., C.A. Jennings, and D.L. Peterson. 2008a. Thermal maxima for juvenile shortnose sturgeon acclimated to different temperatures. Environmental Biology of Fishes 82: 299-307.
- Ziegeweid, J.R., C.A. Jennings, D.L. Peterson, and M.C. Black. 2008b. Effects of salinity, temperature, and weight on the survival of young-of-year shortnose sturgeon. Environmental Biology of Fishes 137:1490-1499.
- Zurita, J.C., R. Herrera, A. Arenas, M.E. Torres, C. Calderon, L. Gomez, J.C. Alvarado, and R. Villavicencio. 2003. Nesting loggerhead and green sea turtles in Quintana Roo, Mexico. Pp. 125-127 *In*: Proceedings of the Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation. NOAA Technical Memorandum. NMFS SEFSC.
- Zwinenberg, A.J. 1977. Kemp's ridley, *Lepidochelys kempii* (Garman, 1880), undoubtedly the most endangered marine turtle today (with notes on the current status of *Lepidochelys olivacea*). Bulletin of the Maryland Herpetological Society, 13(3): 170-192.

APPENDIX A

Summary of annual incidental take levels anticipated under the incidental take statements associated with NMFS' existing biological opinions in the action area. Note that while these activities overlap the action area, the takes include the entire range of the activity which often far exceeds the geographical scope of the action area.

Federal Action	Sea Turtle Species (numbers represents lethal takes unless otherwise noted)				
	Loggerhead	Leatherback	Green	Kemp's Ridley	Hawksbill
Coast Guard Vessel Operation	1 (combined)				
Navy – SE Ops Area ¹	91	17	16	16	4
COE Dredging – S. Atlantic	35	0	7	7	2
Dolphin/Wahoo Fishery	16	16	2	2	2
	(No more than 2 lethal)	(No more than 1 lethal)	(No more than 1 lethal)	(No more than 1 lethal)	(No more than 1 lethal)
Monkfish Fishery	6				
	(No more than 3 lethal)	1	1	1	0
Summer Flounder, Scup, and Black Sea Bass Fishery	15 (No more than 5 lethal)	3	3	3	3
Shrimp Fishery ²	163,160	3,090	155,503	18,757	640 ³
	(No more than 3,948 lethal)	(No more than 80 lethal)	(No more than 4,208 lethal)	(No more than 514 Lethal)	(All lethal)
Weakfish Fishery	20	0	0	2	0
Atlantic HMS-Shark Fisheries	679	74	2	2	2
(Note: this is 3-year take, not annual)	(No more than 346 lethal)	(No more than 47 lethal)	(No more than 1 lethal)	(No more than 1 lethal)	(No more than 1 lethal)
Coastal Migratory Pelagic	33	2	4	14	2
	(No more than 33 lethal)	(No more than 2 lethal)	(No more than 4 lethal)	(No more than 14 lethal)	(No more than 2 lethal)

¹Total estimated take includes acoustic harassment

²Represents estimated take (interactions between sea turtles and trawls). Lethal take in parentheses.

³Actual mortalities of hawksbills, as a result of sea turtle/trawl interactions, is expected to be much lower than this number. This number represents the estimated total number of mortalities of hawksbill sea turtles from all sources in areas where shrimp fishing takes place.

APPENDIX B

Sea Turtle Resuscitation Guidelines

If a turtle appears to be unconscious or comatose, attempt to revive it before release. Turtles can withstand lengthy periods without breathing; a living comatose sea turtle may not move, breathe voluntarily, or show reflex responses or other signs of life. In other cases, a lightly comatose turtle may show shallow breathing or reflexes such as eyelid or tail movement when touched. Use the following method of resuscitation in the field if veterinary attention is not immediately available:

 Place the turtle on its plastron (lower shell) and elevate the hindquarters approximately 15 - 30 degrees to permit the lungs to drain off water for a period of 4 up to 24 hours. A board, tire or boat cushion, etc. can be used for elevation.

 Periodically, rock the turtle gently left to right and right to left by holding the outer edge of the carapace and lifting one side about 3 inches, then alternate to the other side.

 Keep the turtle in the shade, at a temperature similar to water temperature at capture. Keep the skin (especially the eyes) moist while the turtle is on deck by covering the animal's body with a wet towel, periodically spraying it with water, or by applying petroleum jelly to its skin and carapace. Do not put the turtle into a container with water.

 Do not put the turtle on its carapace (top shell) and pump the plastron (breastplate) or try to compress the turtle to force water out, as this is dangerous to the turtle and may do more harm than good.

 Periodically, gently touch the corner of the eye or eyelid and pinch the tail near the vent (reflex tests) to monitor consciousness.

 Sea turtles may take some time to revive; do not give up too quickly. Turtles that are successfully resuscitated benefit from being held on deck as long as possible (up to 24 hours) to fully recover from the stress of accidental forced submergence.

 Release successfully resuscitated turtles over the stern of the boat, when fishing or scientific collection gear is not in use, the engine is in neutral, and in areas where they are unlikely to be recaptured or injured by vessels. A turtle that has shown no sign of life after 24 hours on deck may be considered dead and returned to the water in the same manner.

NMFS/SEFSC Photos

References:

Federal Register, December 31, 2001. Government Printing Office, Washington DC 66 (250), pp. 67495- 67496.

July 2009

APPENDIX C

Protocol for tissue sampling for genetic analysis.

Tissue samples should be a small (1.0cm2) fin-clip collected from soft pelvic fin tissue using a pair of sharp scissors. Tissue samples should be preserved in individually labeled vials containing either alcohol (70 to 100%) or SDS-UREA.

Data to accompany tissue sample should include species, important morphological Information (TL, SL, weight, sex if known), date, and capture location. Record condition of fish upon release. Keep tissue sample out of direct sun, refrigeration not necessary.

Send samples and supporting data within one month to:

Julie Carter NOAA/NOS 219 Ft. Johnson Road Charleston, SC 29412 PH: (843)762-8547

APPENDIX D

SEA TURTLE AND SMALLTOOTH SAWFISH CONSTRUCTION CONDITIONS

The permittee shall comply with the following protected species construction conditions:

- a. The permittee shall instruct all personnel associated with the project of the potential presence of these species and the need to avoid collisions with sea turtles and smalltooth sawfish. All construction personnel are responsible for observing water-related activities for the presence of these species.
- b. The permittee shall advise all construction personnel that there are civil and criminal penalties for harming, harassing, or killing sea turtles or smalltooth sawfish, which are protected under the Endangered Species Act of 1973.
- c. Siltation barriers shall be made of material in which a sea turtle or smalltooth sawfish cannot become entangled, be properly secured, and be regularly monitored to avoid protected species entrapment. Barriers may not block sea turtle or smalltooth sawfish entry to or exit from designated critical habitat without prior agreement from the National Marine Fisheries Service's Protected Resources Division, St. Petersburg, Florida.
- d. All vessels associated with the construction project shall operate at "no wake/idle" speeds at all times while in the construction area and while in water depths where the draft of the vessel provides less than a four-foot clearance from the bottom. All vessels will preferentially follow deep-water routes (e.g., marked channels) whenever possible.
- e. If a sea turtle or smalltooth sawfish is seen within 100 yards of the active daily construction/dredging operation or vessel movement, all appropriate precautions shall be implemented to ensure its protection. These precautions shall include cessation of operation of any moving equipment closer than 50 feet of a sea turtle or smalltooth sawfish. Operation of any mechanical construction equipment shall cease immediately if a sea turtle or smalltooth sawfish is seen within a 50-ft radius of the equipment. Activities may not resume until the protected species has departed the project area of its own volition.
- f. Any collision with and/or injury to a sea turtle or smalltooth sawfish shall be reported immediately to the National Marine Fisheries Service's Protected Resources Division (727-824-5312) and the local authorized sea turtle stranding/rescue organization.
- g. Any special construction conditions, required of your specific project, outside these general conditions, if applicable, will be addressed in the primary consultation.

Revised: March 23, 2006

APPENDIX E

South Atlantic Division Corps of Engineers Hopper Dredging Protocol for Atlantic Coast FY 98 - FY 03

1. Sea turtle deflecting dragheads will be used at all times.

2. Districts will inspect sea turtle deflecting dragheads systems to ensure that they are fully operational, prior to initiation of work.

3. Districts will ensure that draghead operators know how to properly use the sea turtle deflecting system.

4. Maintenance dredging at Savannah, Brunswick and Kings Bay Harbors must be restricted to 15 December through the end of March. Maintenance dredging at Charleston and Wilmington Harbors must be restricted to 1 December through the end of March where the sea turtle deflecting draghead system can not be used effectively. Dredging may begin as soon as mid-November in those portions of the Wilmington and Charleston Harbor channels where the sea turtle deflecting draghead can be used effectively. All Districts will cooperate to ensure that their scheduling of hopper dredging contracts, does not interfere with this Division priority work area.

5. Sea turtle observers, inflow screens and overflow screens will be used during all dredging operations, except for the months of January and February, which are optional. Variations from this provision may be granted by Division, but must be justified from a technical perspective.

6. All sea turtle takes will be reported promptly to SAD-ET-CO/PD and posted at usace.sad.turtle newsgroup on the Internet.

7. If two sea turtle takes occur within 24 hours, you should immediately notify the Division POC so that he can initiate reconsultation with National Marine Fisheries Service.

8. If a third take occurs on the project the district will cease operations and notify the South Atlantic Division. Continuation of dredging will occur only after cleared by Division. Upon taking three turtles, District will develop a risk assessment along with an appropriate risk management plan, and submit that to Division for assessment. Generally relative abundance and relocation trawling would be an integral part of a risk assessment and management plan. Should a total take of 5 sea turtles occur, for whatever reason, all work will be terminated unless other prior agreements had been reached with Division.

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701-5505 http://sero.nmfs.noaa.gov

> F/SER31: RWS SER-2017-18749

Mr. Erik Blechinger Deputy District Engineer for Planning, Programs and Project Management USACE, Savannah District 100 W. Oglethorpe Ave Savannah, GA 31401

OCT 1 3 2017

Ref.: SER-2017-18749, amendment to the Biological Opinion for the Savannah Harbor Expansion Project

Dear Mr. Blechinger:

The enclosed amendment to the Biological Opinion for the Savannah Harbor Expansion Project was prepared by the National Marine Fisheries Service (NMFS) pursuant to Section 7(a)(2) of the Endangered Species Act (ESA). This is the second amendment to the original Biological Opinion (SER-2010-05579). This amendment analyzes the effects of project dredging and relocation trawling on the North Atlantic and South Atlantic distinct population segments (DPSs) of green sea turtles, and all five DPSs of Atlantic sturgeon (i.e., Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs). This amendment also addresses the potential effects that may result from delay in implementing fish passage at the New Savanah Bluff Lock and Dam. This amendment revises the Incidental Take Statement (ITS) for green sea turtles, Atlantic sturgeon, and shortnose sturgeon and provides revised Reasonable and Prudent Measures and associated Terms and Conditions. The new ITS supersedes the previous 2011 and 2013 ITSs for green sea turtles, Atlantic sturgeon, and shortnose sturgeon. The other ITSs of the original Opinion and the 2013 amendment remain in effect for all other species. NMFS determined the project is likely to adversely affect, but is not likely to jeopardize, green sea turtles, Atlantic sturgeon, and shortnose sturgeon.

Since the previous September 2013 amendment (SER-2013-11301) to the original Opinion was issued, critical habitat has been designated for the loggerhead sea turtle (Northwest Atlantic Ocean DPS; 79 FR 39855; July 10, 2014) and revised for the North Atlantic right whale (NARW; 81 FR 4838; January 27, 2016). Also, humpback whales in the action area have been delisted (81 FR 62259; September 8, 2016). In addition to analyzing the effects to green sea turtles and Atlantic sturgeon, this amended Biological Opinion analyzes project effects on designated critical habitat for loggerhead sea turtles and NARW. This amendment also acknowledges that humpback whales in the action area are no longer listed, and are therefore removed from the Opinion.

Please direct questions regarding this Opinion to Rachel Sweeney, by phone at (727) 551-5743, or by email at rachel.sweeney@noaa.gov.

DBunhart

Roy E. Crabtree, Ph.D. Regional Administrator

Enclosures: Biological Opinion

File: 1514-22 F.4

Endangered Species Act – Section 7 Consultation Biological Opinion Amendment

Action Agency:

Activity:

U.S. Army Corps of Engineers (USACE), Savannah District

Amendment to the biological opinion for the deepening of the Savannah Harbor Federal Navigational Channel in association with the Savannah Harbor Expansion Project (new NMFS Consultation No. SER-2017-18749)

Consulting Agency:

National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NMFS), Southeast Regional Office, Protected Resources Division, St. Petersburg, Florida

Approved By:

Benhart

Roy E. Crabtree, Ph.D., Regional Administrator NMFS, Southeast Regional Office St. Petersburg, Florida

Date Issued:

OCT 1 3 2017

Table of Contents

1	CONSULTATION HISTORY	7
2	DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA	8
3	SPECIES AND CRITICAL HABITAT OCCURRING IN THE ACTION AREA	10
4	ENVIRONMENTAL BASELINE	40
5	EFFECTS OF THE ACTION	62
6	CUMULATIVE EFFECTS	85
7	INTEGRATION AND SYNTHESIS - JEOPARDY ANALYSES	87
8	CONCLUSION	109
9	INCIDENTAL TAKE STATEMENT	109
10	CONSERVATION RECOMMENDATIONS	128
11	REINITIATION OF CONSULTATION	131
12	LITERATURE CITED	132

Figures

Figure 1.	SHEP Inner and Outer Harbor Dredging Stations	. 9
Figure 2.	Threatened (light) and endangered (dark) green turtle DPSs	14
Figure 3.	Green sea turtle nesting at Florida index beaches since 1989	18
Figure 4.	The North American Atlantic coast depicting 3 shortnose sturgeon metapopulations	
based on	mitochondrial DNA control region sequence analysis	35
Figure 5.	No. of Sturgeon Relocated from Outer Harbor Stations	75
Figure 6.	Three marine ecoregions off the east coast of the United States Source:	81
Figure 7.	Map of Mixing Zones	82

Tables

Table 1. Effect Determinations and Status for Species	10
Table 2. Summary of Calculated Population Estimates	23
Table 3. Shortnose Sturgeon Populations and Their Estimated Abundances	36
Table 4. Estimated lethal take by hopper dredging for each DPS	82
Table 5. Estimated lethal and non-lethal take during relocation trawling for each DPS	83
Table 6. Total estimated lethal and non-lethal take for each DPS	83
Table 7. Estimated Take of Green Sea Turtles	88
Table 8. Estimated Take of Atlantic sturgeon	94
Table 9. Calculated Ocean Population Estimates with Adult Equivalents (A.E.)	97
Table 10. Green sea turtle takes resulting from SHEP dredging and relocation trawling	. 111
Table 11. Atlantic sturgeon takes resulting from SHEP dredging and relocation trawling	. 111
Table 12. Total observed lethal and non-lethal takes, remaining observed lethal and non-leth	al
takes, and associated reinitiation triggers (remaining take) of green turtles and Atlantic sturge	eon
resulting from SHEP dredging and relocation trawling	. 112
Table 13. ITS surrogate (habitat losses) resulting from channel expansion for Atlantic and	
shortnose sturgeon	. 112

Acronyms and Abbreviations

ASMFC	Atlantic States Marine Fisheries Commission
BOEM	Bureau of Ocean Energy Management
BSB	Black Sea Bass

BSEE	Bureau of Safety and Environmental Enforcement		
CAFO	Concentrated Animal Feeding Operation		
CB	Chesapeake Bay		
CFR	Code of Federal Regulations		
CI	Confidence Interval		
CMTTP	Cooperative Marine Turtle Tagging Program		
CPUE	Catch per Unit Effort		
DNA	Deoxyribonucleic Acid		
DO	Dissolved Oxygen		
DOIS	Dissolved Oxygen Injection System		
DPS	Distinct Population Segment		
DWH	Deepwater Horizon		
EPA	Environmental Protection Agency		
EPR	Eggs per Recruit		
ERDC	Engineering Research and Development Center		
ESA	Endangered Species Act of 1973		
FIM	Fisheries Independent Monitoring		
FMP	Fishery Management Plan		
FR	Federal Register		
FP	Fibropapillomatosis		
FY	Fiscal Year		
GADNR	Georgia Department of Natural Resources		
GARFO	Greater Atlantic Regional Fisheries Office		
GOM	Gulf of Maine		
GRBO	2003 Gulf of Mexico Regional Biological Opinion		
HMS	Highly Migratory Species		
IPCC	Intergovernmental Panel on Climate Change		
ITP	Incidental Take Permit		
ITS	Incidental Take Statement		
IUCN	International Union for Conservation of Nature and Natural Resources		
LAA	Likely to Adversely Affect		
MMPA	Marine Mammal Protection Act		
MSA	Mixed Stock Analysis		
MMZ	Marine Mixing Zone		
NA	North Atlantic		
NARW	North Atlantic Right Whale		
NCCR	National Coastal Condition Report		
NEAMAP Northeast Area Monitoring and Assessment Program			
NEFOP	6 6		
NLAA	· · · · · · · · · · · · · · · · · · ·		
NMFS	5		
NRC	National Research Council		
NSBLD	New Savanah Bluff Lock and Dam		
NWA	Northwest Atlantic		
NYB	New York Bight		
ODMDS	Ocean Dredged Material Disposal Site		

PAH	Polychlorinated Aromatic Hydrocarbon	
PCB	Polychlorinated Biphenyl	
PCE	Primary Constituent Elements	
PIT	Passive Integrated Transponder	
PRD	Protected Resources Division	
RBO	Regional Biological Opinion	
RPM	Reasonable and Prudent Measure	
SA	South Atlantic	
SARBO	South Atlantic Regional Biological OpinionSAS	Savannah District
SEFSC	Southeast Fisheries Science Center	
SERO	Southeast Regional Office	
SHEP	Savannah Harbor Expansion Project	
SSB/R	Spawning Stock Biomass per Recruit	
STSSN	Sea Turtle Stranding and Salvage Network	
TCDD	Tetrachlorodibenzo-p-dioxin	
TED	Turtle Excluder Device	
TNC	The Nature Conservancy	
USACE	United States Army Corps of Engineers	
USCG	United States Coast Guard	
USFWS	United States Fish and Wildlife Service	
VHF	Very High Frequency	
WES	Waterways Experimental Station	
WIIN	Water Infrastructure Improvements for the Nation	
YOY	Young-of-the-Year	

Units of Measurement

0	
ac	acre(s)
cm	centimeter(s)
cm^2	square centimeter(s)
°C	degrees Celsius
°F	degrees Fahrenheit
ft	foot/feet
in	inch(es)
kg	kilogram(s)
km	kilometer(s)
km ²	square kilometer(s)
lb	pound(s)
m	meter(s)
mgd	million gallons per day
mi	mile(s)
nmi	nautical miles
yd ³	cubic yard(s)
•	• • • •

Introduction

As explained below, this document constitutes National Marine Fisheries Service's (NMFS) second amendment to the 2011 Biological Opinion (Opinion) for the Savanah Harbor Expansion Project (SHEP). This amendment addresses increased lethal and non-lethal takes of green sea turtles and Atlantic sturgeon associated with navigation channel dredging and associated relocation trawling. This amendment also addresses the potential effects that may result from delay in implementing fish passage at the New Savanah Bluff Lock and Dam (NSBLD). This amendment also revises the Incidental Take Statement (ITS) for green sea turtles, Atlantic sturgeon and shortnose sturgeon and provides revised Reasonable and Prudent Measures (RPMs) and associated Terms and Conditions.

This document is based on our review of the first 2 seasons (December 2015 through March 2016 and December 2016 through March 2017) of dredging-related activities that resulted in unforeseen impacts to green sea turtles and Atlantic sturgeon. The original SHEP biological Opinion (SER-2010-05579, referred to heretofore as the original Opinion) was issued in November 2011. It did not include an analysis of potential impacts to green sea turtles since this species had not been documented in previous dredging events within Savannah Harbor. After relocation trawling conducted during work on another project located in Brunswick Harbor resulted in the capture of green sea turtles and later during the project, leatherback sea turtles, the USACE requested reinitiation of consultation for the SHEP Opinion to include these species since it seemed likely that they could be encountered during the SHEP dredging. The amendment to the Opinion (SER-2013-11301) was issued in September 2013. Dredging of the Savannah Harbor Entrance Channel began in late 2015 and is expected to continue into 2018. Relocation trawling is being used to mitigate for the effects of the hopper dredging by relocating sturgeon and turtles out of the path of the hopper dredge. During the second season of the SHEP hopper dredging in the entrance channel, conducted during 2016-17, the Incidental Take level established for non-lethal take of Atlantic sturgeon in the original SHEP Opinion was exceeded, which triggered reinitiation of Endangered Species Act (ESA) consultation. Later, the lethal take limits for Atlantic sturgeon and green sea turtles were also exceeded. Information and analyses from the original Opinion and the 2013 amendment are incorporated into this amendment by reference, unless updated or superseded herein.

This amendment analyzes project dredging and relocation effects on the recently designated North Atlantic (NA) and South Atlantic (SA) distinct population segments (DPSs) of green sea turtles, and all 5 DPSs of Atlantic sturgeon (i.e., Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs), and provides a revised lethal and non-lethal ITS for both species. Information used in the preparation of this amendment was provided by the Savannah District during the first and second year of the offshore dredging of the entrance channel, which is the first portion of the deepening of the Savannah Harbor under SHEP. This amendment documents our analysis of the USACE's information, tiers off of our original 2011 biological Opinion and its 2013 amendment. The new ITS supersedes the previous 2011 and 2013 ITS for Atlantic sturgeon and both green sea turtle DPSs. The ITSs of the original Opinion and the 2013 amendment remain in effect for all other species. This document also addresses changes resulting from passage of the Water Infrastructure Improvements for the Nation (WIIN) Act of 2016 which includes specific provisions regarding implementation of fish passage at the NSBLD.

During USACE's project study, design, and environmental compliance process, fish passage at the NSBLD was identified by the natural resource agencies as one appropriate mitigation measure to mitigate for the impacts of SHEP after their consideration of numerous other options. Because of the tidal nature of the estuary, the interagency team could not identify any measure that could be constructed in the harbor that would improve or increase sturgeon habitat on all tidal and river flows. NMFS specifically viewed NSBLD fish passage as a significant contribution to recovery of sturgeon and other anadromous fish in the Savannah River, especially when combined with other mitigation features such as dissolved oxygen injection systems (DOIS) and flow re-routing. NSBLD is the first dam up the Savannah River and it prohibits sturgeon access to historic spawning areas at the Augusta Shoals, some 20 miles (mi) further upstream.

The original Opinion evaluated fish passage at the NSBLD for Atlantic and shortnose sturgeon as one of several measures to avoid and minimize effects resulting from deepening and expansion of the navigation channel. This fish passage was intended to provide improved access to upstream spawning habitat by constructing an 'out of river' passage adjacent to the NSBLD. This design would require construction of an entirely new artificial channel adjacent to the Savannah River to provide a bypass around the dam structure. Section 1319 of the WIIN Act of 2016 deauthorized the federal interest in the NSBLD project, and directed USACE to re-consider fish passage alternatives for SHEP. Specifically, Section 1319 directs USACE to evaluate an 'in-river' fish passage design that would result in removal of the NSBLD structure entirely. Upon completion of the re-evaluation, WIIN 2016 authorizes USACE to implement one of two variations of an in-river alternative. The mandate provided in the WIIN Act results in a delay in the beginning of construction and also completion of fish passage at NSBLD; the original Opinion required that construction of fish passage commence prior to or concurrently with initiation of inner harbor dredging and be completed within two years. This amendment evaluates the effects on Atlantic and shortnose sturgeon from the delay in implementation of fish passage, and updates the associated ITS for these effects.

Since the September 2013 amendment to the Original SHEP Opinion was issued, critical habitat has been designated for the loggerhead sea turtle (Northwest Atlantic Ocean DPS; 79 FR 39855; July 10, 2014) and revised for the North Atlantic right whale (NARW; 81 FR 4838; January 27, 2016). Also, humpback whales in the action area have been delisted (81 FR 62259; September 8, 2016). In addition to analyzing the effects to green sea turtles and Atlantic sturgeon as requested by the USACE in their request for reinitiation, this amended Biological Opinion analyzes project effects on designated critical habitat for loggerhead sea turtles and NARW. This amendment also acknowledges that humpback whales in the action area are no longer listed, and are therefore removed from the Opinion.

1 CONSULTATION HISTORY

December 4, 2016: NMFS is notified that the non-lethal take level for Atlantic sturgeon has been exceeded and that the USACE will begin preparing a request to re-initiate Section 7 consultation for the SHEP. NMFS is continuously notified when additional takes occur until season 2 dredging ends on March 31, 2017.

December 16, 2016: WIIN Act passed.

January 24, 2017: NMFS receives a request from the Savannah District to reinitiate Section 7 consultation for SHEP (NMFS 2011 Biological Opinion – SER-2010-05579). Using the take rate when the entrance channel work for SHEP was 40% complete, the Savannah District requested that the lethal takes for the project be increased to 10 Atlantic sturgeon and 10 green sea turtles, and the non-lethal takes be increased to 200 Atlantic sturgeon and 10 green sea turtles. USACE prepared an ESA Section 7(a)(2)/7(d) analysis to validate that ongoing Savannah District dredging and relocation trawling activities during SHEP would not jeopardize the continued existence of listed species or make any irreversible or irretrievable commitments of resources. The analysis concludes that the continued use of relocation trawling in SHEP during the reinitiated consultation period as a tool to reduce the risk of lethal take from hopper dredging activities is appropriate and is not likely to jeopardize the continued existence of the species. USACE stated they will not make any irreversible or irretrievable commitment of resources that would foreclose the formulation or implementation of reasonable and prudent alternatives necessary to avoid jeopardizing the continued existence of Atlantic sturgeon or green sea turtle DPSs. USACE also requested that Reasonable and Prudent Measure #5 and Term and Condition #14 be modified to replace the requirement for sonic tags with passive integrated transponder (PIT) tags. They stated the request is being made to limit adverse impacts on sturgeon stressed from the relocation trawling and address concerns about human safety during the process of implanting the sonic tags. They also stated that requiring PIT tags instead of sonic tags would make the SHEP Biological Opinion more consistent with more recent biological Opinions for other USACE new work dredging projects on the Atlantic coast.

January 29, 2017: NMFS is notified that the lethal take level (under the 2011 SHEP Biological Opinion) for Atlantic sturgeon has been reached.

February 12, 2017: NMFS is notified that the lethal take level (under the 2011 SHEP Biological Opinion) for Atlantic sturgeon has been exceeded.

February 21, 2017: NMFS is notified that the non-lethal take level (under the 2013 amended SHEP Biological Opinion) for green sea turtles has been exceeded

February 27, 2017: NMFS is notified that the lethal take level (under the 2013 amended SHEP Biological Opinion) for green sea turtles has been exceeded.

May 19, 2017: Formal consultation reinitiated after NMFS receives and reviews the final dredging reports from season 2 dredging.

May 25, 2017: USACE issued Implementation Guidance to address implementation of Section 1319 of WIIN Act of 2016.

2 DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA

Please refer to the original Opinion for a detailed description of the proposed action and action area.

The current status of the SHEP navigation and mitigation features is as follows:

Navigation Features:

- First Dike Raising Construction 100% complete (July 2017)
- Entrance Channel Dredging 60% complete with 100% completion projected July 2018
- Inner Harbor Dredging Anticipated to begin in October 2018 and scheduled for completion in January 2022.

Mitigation Features:

- Payment to Georgia Department of Natural Resources (GADNR) for Striped Bass Restocking – 100% complete (Mar 2015)
- Freshwater Wetlands Acquisition 100% complete (July 2017)
- Flow Re-Routing in the Estuary:
 - Sediment Basin Tide Gate Removal Construction 80% complete with 100% completion projected December 2017
 - McCoy's Cut Area Work Design 100% complete and will be advertised in 2018
- Dissolved Oxygen Injection System (DOIS) Construction 45% complete; project completion scheduled during 3rd Quarter Fiscal Year (FY) 2018; operations scheduled to begin summer of 2019.
- Raw Water Storage Impoundment for the City of Savannah Construction 89% complete with project completion during 1st/2nd Quarter FY 2018
- Recovery of the Ironclad CSS Georgia from the Savannah River Recovery 100% complete (August 2017)

USACE has dredged approximately 7,464,714 yd³ of material from the entrance channel during the first 2 years of the project. Approximately 54% (4,026,278 yd³) was completed using a hopper dredge and 46% (3,438,436 yd³) was completed using a cutterhead dredge. USACE reports that a new survey shows that approximately 4,200,000 yd³ of material still needs to be dredged from the entrance channel, bringing the total amount of entrance channel dredging (completed plus proposed) to 11,446,143 yd³. It is unknown whether the remaining entrance channel dredging will be completed with hopper and/or cutterhead dredges.

To implement the provisions of WIIN 2016, USACE will first evaluate and choose between the two identified alternatives for fish passage at NSBLD (i.e., previous out of river alternative and new in-river alternative). The evaluation will include extensive hydraulic modeling to ascertain effects of removal of the dam and replacement with a different structure, including the potential for increased flooding in upstream communities, impacts to numerous industrial and water supply intakes, and impacts to recreational use of the upstream pool. USACE will use these analyses and input from the public to identify the best in-river design alternative. Once the

conceptual plan is identified and approved, the USACE must then complete full detailed design, complete required environmental compliance clearances, acquire any necessary lands, easements, or rights-of-way, prepare a solicitation, advertise, and award a construction contract for fish passage.

USACE estimates the overall time to evaluate, document, design, review, obtain real estate, procure, and award a construction contract to be 40 months. USACE also estimates that the construction period for the in-river fish passage may take up to three years. The estimated construction period would be a year longer than the previously identified out of river alternative because the in-river design will require more complex "in the wet" construction methods.

The original Opinion required that construction of fish passage begin concurrent with the start of inner harbor dredging, and fish passage would be completed slightly before or concurrent with the January 2022 completion of inner harbor dredging. Inner harbor dredging is currently scheduled to begin in October of 2018. The current timeline for the in-river fish passage feature estimates that a construction contract for the fish passage would be awarded in January 2021 and that fish passage would be completed in October 2022 (i.e., approximately 8 months after the end of the Inner Harbor Dredging). Therefore, this amendment addresses the effects of the 8-month delay for full implementation of fish passage at NSBLD.

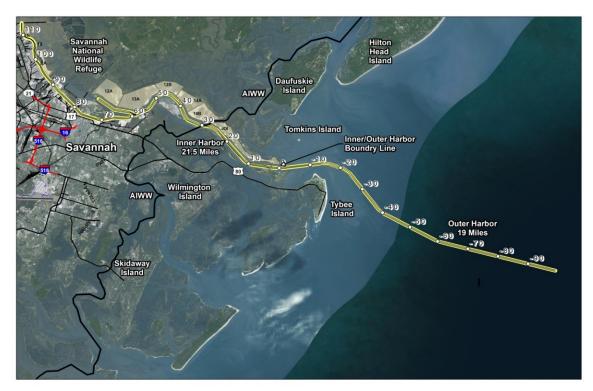


Figure 1. SHEP Inner and Outer Harbor Dredging Stations

3 SPECIES AND CRITICAL HABITAT OCCURRING IN THE ACTION AREA

3.1 Species

The following table lists the endangered (E) and threatened (T) species and DPSs proposed under the jurisdiction of NMFS that may occur in the action area:

Table 1. Effect Determinations and Status for Species in or Near the Action Areas that
Either the Action Agency or NMFS Believes May Be Affected by the Proposed Action

Species	ESA Listing Status	Action Agency Effect Determination	NMFS Effect Determination
Sea T	urtles		
Green (NA DPS and SA DPS)	Т	LAA	LAA
Kemp's ridley	Е	LAA	LAA
Leatherback	Е	LAA	LAA
Loggerhead (Northwest Atlantic Ocean [NWA] DPS)	Т	LAA	LAA
Hawksbill	E	NLAA	NLAA
Fish			
Shortnose sturgeon	Е	LAA	LAA
Atlantic sturgeon (All 5 DPSs)	E or T^1	LAA	LAA
Whales			
North Atlantic right whale	Е	NLAA	NLAA
Humpback whale (West Indies DPS)	Е	NLAA	Delisted
E = endangered; T = threatened; LAA = likely to adversely affect; NLAA = may affect, not likely to adversely affect			

3.1.1 Species Not Likely to be Adversely Affected

In the original Opinion, we determined that the proposed action is not likely to adversely affect green sea turtles, hawksbill sea turtles, leatherback sea turtles, North Atlantic right whales, and humpback whales. We maintain our previous determinations that the proposed action is not likely to adversely affect hawksbill sea turtles or North Atlantic right whales, and these species are not further analyzed in this amendment. In September 2016, NMFS revised the ESA listing for the humpback whale to identify 14 DPSs, list 1 as threatened, 4 as endangered, and identify 9 others as not warranted for listing (81 FR 62259). The West Indies DPS occurring in the action area was delisted. Therefore, humpback whales are not included in the Opinion. The 2013 amendment to the original Opinion determined that the action was likely to adversely affect green sea turtles and leatherback sea turtles and an ITS was added for these species.

¹ The New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs are listed as endangered; the Gulf of Maine DPS is listed as threatened.

3.1.2 Species Likely to be Adversely Affected

The original Opinion and the 2013 amendment determined that green, Kemp's ridley, leatherback, and loggerhead sea turtles; and Atlantic sturgeon are likely to be adversely affected by the entrance channel dredging and relocation trawling associated with SHEP and an ITS for these species was provided. A review of the reports for the first 2 dredging seasons for SHEP indicate that the calculated incidental take limits for Kemp's ridley, leatherback, and loggerhead sea turtles appear to continue to be reasonable and will not be discussed further in this amended Opinion.

The original Opinion determined that juvenile Atlantic sturgeon and juvenile, sub-adult, and adult shortnose sturgeon would be adversely affected by habitat alterations resulting primarily from changes in water quality (salinity and dissolved oxygen) due to dredging of the Savannah inner harbor. The original Opinion also determined that adult and sub-adult Atlantic sturgeon are more salt tolerant and forage mainly in the Atlantic Ocean and habitat changes resulted from channel expansion would be insignificant on them. The original Opinion evaluated habitat alteration effects in consideration of the implementation of a suite of mitigations (i.e., DOIS, flow re-routing, NSBLD fish passage) designed to offset impacts associated with water quality changes. While the original Opinion determined that the inner harbor dredging associated with the SHEP project would have adverse effects to juvenile Atlantic sturgeon and juvenile, subadult, and adult shortnose sturgeon, resulting from habitat changes caused by the deepening, we were not able to determine numerical limits for how many Atlantic and shortnose sturgeon would be adversely affected due to uncertainties regarding ecosystem response to the changes in salinity and other conditions, limited available information regarding use of existing habitats, and lack of data regarding response of individual sturgeon or populations. In the original Opinion, we identified habitat loss as a surrogate measure by which to measure and monitor the extent of these effects. Hydrodynamic modeling conducted by USACE and included in the July, 2012, Final Environmental Impact Statement for the Savannah Harbor Expansions Project, Chatham County, Georgia and Jasper County, South Carolina was used to predict the distribution and magnitude of habitat alternations and to inform development of mitigation measures which include flow re-routing in the estuary, installation and operation of DOIS, and implementation of fish passage at the NSBLD. One of these mitigation measures, implementation of fish passage at NSBLD, will be delayed in response to directives in the WIIN Act of 2016. This amendment addresses the potential effects that may result from delayed fish passage.

In summary, this amendment for SHEP includes a revised analysis of the effects of the entrance channel dredging and relocation trawling on the green sea turtle NA and SA DPSs and all 5 DPSs of Atlantic sturgeon. The amendment also analyzes the potential effects of delaying completion of the fish passage at NSBLD due to evaluations required by the WIIN Act, which may affect Atlantic and shortnose sturgeon. The amendment is based upon the best available information on the status of the NA and SA DPSs of green sea turtle, the Atlantic sturgeon DPSs, and shortnose sturgeon, including information on the distribution, population structure, life history, abundance, and population trends of each species and threats to each species. The biology and ecology of these species as well as their status and trends inform the effects analyses for this amendment. Additional background information on the status of green sea turtles can be found in a number of published documents, including the recovery plans for the Atlantic green sea turtle (NMFS and USFWS 1991). Sources of background information on Atlantic sturgeon

include the status review and proposed and final listing rules (77 FR 5880 and 77 FR 5914). Sources of information on the shortnose sturgeon include the "Biological Assessment of Shortnose Sturgeon" (NMFS 2010).

3.2 Critical Habitat

The previous Opinion and amendment did not contain an analysis of effects to critical habitat. This amendment analyzes the potential effects to final critical habitat designated or revised since the previous Opinion and amendment were issued. Potential effects of the proposed action to newly designated Atlantic sturgeon critical habitat will be evaluated in a subsequent amendment.

NARW Critical Habitat

On January 27, 2016, NMFS published a new final rule (81 FR 4838) designating the marine waters from Cape Fear, North Carolina, southward to 28°N latitude (approximately 31 mi south of Cape Canaveral, Florida) as critical habitat for the NARW. This area was designated as critical habitat because it provides important calving grounds for the NARW. The new critical habitat rule identifies the physical features of calving critical habitat that are essential to the conservation of the NARW to be (1) calm sea surface conditions of Force 4 or less on the Beaufort Wind Scale; (2) sea surface temperatures from a minimum of 7°C, and never more than 17°C; and (3) water depths of 6-28 m, where these features simultaneously co-occur over contiguous areas of at least 231 square kilometers (km²) of ocean waters during the months of November through April.

The entrance channel deepening and relocation trawling for SHEP are occurring in NARW critical habitat; however, we believe these activities have no effect on NARW critical habitat. Deepening of the Savannah Harbor entrance channel and relocation trawling will have no effect on calm sea surface conditions or sea surface temperatures. While dredging will increase water depths from 42 feet (ft) (12.8 meters [m]) to 47 ft (14.3 m), this is still within the essential range of 6-28 m. Therefore, dredging will also have no effect on the essential feature of water depth.

NARW critical habitat will not be discussed further in this amended Opinion.

Loggerhead sea turtle NWA DPS Critical Habitat

Critical habitat for the NWA DPS of loggerhead sea turtles was designated in July 2014 (79 FR 39855) and is defined by 5 specific habitat types: nearshore reproductive, winter concentration, concentrated breeding, constricted migratory, and *Sargassum*. The project is not located in loggerhead critical habitat, but Nearshore Reproductive Critical Habitat Unit LOGG-N-10 is just south of the entrance channel dredging. The primary constituent elements (PCEs) of nearshore reproductive habitat are:

(1) Nearshore waters with direct proximity to nesting beaches that support critical aggregations of nesting turtles (e.g., highest density nesting beaches) to 1 mi (1.6 kilometers [km]) offshore.

(2) Waters sufficiently free of obstructions or artificial lighting to allow transit through the surf zone and outward toward open water.

(3) Waters with minimal manmade structures that could promote predators (i.e., nearshore predator concentration caused by submerged and emergent offshore structures), disrupt wave patterns necessary for orientation, and/or create excessive longshore currents.

The entrance channel deepening and relocation trawling associated with SHEP are not likely to adversely affect Nearshore Reproductive Habitat Unit LOGG-N-10. Dredging and relocation trawling will have no effect on the proximity of nearshore waters to nesting beaches (PCE 1) and will not create manmade structures that could promote predators, disrupt wave patterns, or create excessive longshore currents (PCE 3). The presence of dredging and relocation trawling activities or lighting on the vessels could potentially affect the transit of sea turtles in the action area (PCE 2). However, these effects are discountable because the dredging and relocation trawling are occurring approximately 3-5 mi from Unit LOGG-N-10 and will only occur in one section of the entrance channel at a time. Therefore, these activities are extremely unlikely to alter the passage conditions that allow hatchlings to egress to the open-water environment, or nesting females to transit between beach and open water during the nesting season.

Loggerhead sea turtle critical habitat will not be discussed further in this amended Opinion.

3.3 Status of the Species that are Likely to be Adversely Affected by the Action in a Manner or to a Different Extent than Determined in the Original Opinion or 2013 Amendment

3.3.1 Status of Green Sea Turtles (NA DPS and SA DPS)

The green sea turtle was originally listed as threatened under the ESA on July 28, 1978, except for the Florida and Pacific coast of Mexico breeding populations, which were listed as endangered. On April 6, 2016, the original listing was replaced with the listing of 11 distinct population segments (DPSs) (81 FR 20057). The Mediterranean, Central West Pacific, and Central South Pacific DPSs were listed as endangered. The North Atlantic, South Atlantic, Southwest Indian, North Indian, East Indian-West Pacific, Southwest Pacific, Central North Pacific, and East Pacific were listed as threatened. For the purposes of this consultation, only the NA DPS and SA DPS will be considered, as they are the only two DPSs with individuals occurring in the Atlantic and Gulf of Mexico waters of the United States.

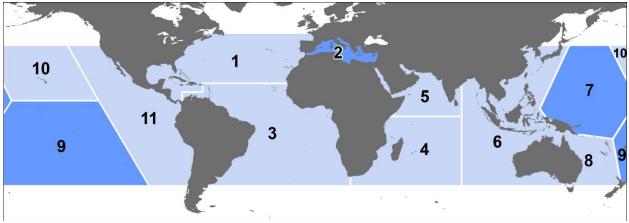


Figure 2. Threatened (light) and endangered (dark) green turtle DPSs: 1. North Atlantic, 2. Mediterranean, 3. South Atlantic, 4. Southwest Indian, 5. North Indian, 6. East Indian-West Pacific, 7. Central West Pacific, 8. Southwest Pacific, 9. Central South Pacific, 10. Central North Pacific, and 11. East Pacific.

Species Description and Distribution

The green sea turtle is the largest of the hardshell marine turtles, growing to a weight of 350 pounds (lb) (159 kilograms [kg]) with a straight carapace length of greater than 3.3 ft (1 m). Green sea turtles have a smooth carapace with 4 pairs of lateral (or costal) scutes and a single pair of elongated prefrontal scales between the eyes. They typically have a black dorsal surface and a white ventral surface, although the carapace of green sea turtles in the Atlantic Ocean has been known to change in color from solid black to a variety of shades of grey, green, or brown and black in starburst or irregular patterns (Lagueux 2001).

With the exception of post-hatchlings, green sea turtles live in nearshore tropical and subtropical waters where they generally feed on marine algae and seagrasses. They have specific foraging grounds and may make large migrations between these forage sites and natal beaches for nesting (Hays et al. 2001). Green sea turtles nest on sandy beaches of mainland shores, barrier islands, coral islands, and volcanic islands in more than 80 countries worldwide (Hirth 1997). The 2 largest nesting populations are found at Tortuguero, on the Caribbean coast of Costa Rica (part of the NA DPS), and Raine Island, on the Pacific coast of Australia along the Great Barrier Reef.

Green sea turtle

Differences in mitochondrial deoxyribonucleic acid (DNA) properties of green sea turtles from different nesting regions indicate there are genetic subpopulations (Bowen et al. 1992; FitzSimmons et al. 2006). Despite the genetic differences, sea turtles from separate nesting origins are commonly found mixed together on foraging grounds throughout the species' range. Within U.S. waters individuals from both the NA and SA DPSs can be found on foraging

grounds. While there are currently no in-depth studies available to determine the percent of NA and SA DPS individuals in any given location, two small-scale studies provide an insight into the degree of mixing on the foraging grounds. An analysis of cold-stunned green turtles in St. Joseph Bay, Florida (northern Gulf of Mexico) found approximately 4% of individuals came from nesting stocks in the SA DPS (specifically Suriname, Aves Island, Brazil, Ascension Island, and Guinea Bissau) (Foley et al. 2007). On the Atlantic coast of Florida, a study on the foraging grounds off Hutchinson Island found that approximately 5% of the turtles sampled came from the Aves Island/Suriname nesting assemblage, which is part of the SA DPS (Bass and Witzell 2000). All of the individuals in both studies were benthic juveniles. Available information on green turtle migratory behavior indicates that long distance dispersal is only seen for juvenile turtles. This suggests that larger adult-sized turtles return to forage within the region of their natal rookeries, thereby limiting the potential for gene flow across larger scales (Monzón-Argüello et al. 2010). While all of the mainland U.S. nesting individuals are part of the NA DPS, the U.S. Caribbean nesting assemblages are split between the NA and SA DPS. Nesters in Puerto Rico are part of the NA DPS, while those in the U.S. Virgin Islands are part of the SA DPS. We do not currently have information on what percent of individuals on the U.S. Caribbean foraging grounds come from which DPS.

NA DPS Distribution

The NA DPS boundary is illustrated in Figure 2. Four regions support nesting concentrations of particular interest in the NA DPS: Costa Rica (Tortuguero), Mexico (Campeche, Yucatan, and Quintana Roo), U.S. (Florida), and Cuba. By far the most important nesting concentration for green turtles in this DPS is Tortuguero, Costa Rica. Nesting also occurs in the Bahamas, Belize, Cayman Islands, Dominican Republic, Haiti, Honduras, Jamaica, Nicaragua, Panama, Puerto Rico, Turks and Caicos Islands, and North Carolina, South Carolina, Georgia, and Texas, U.S.A. In the eastern North Atlantic, nesting has been reported in Mauritania (Fretey 2001).

The complete nesting range of NA DPS green sea turtles within the southeastern United States includes sandy beaches between Texas and North Carolina, as well as Puerto Rico (Dow et al. 2007; NMFS and USFWS 1991). The vast majority of green sea turtle nesting within the southeastern United States occurs in Florida (Johnson and Ehrhart 1994; Meylan et al. 1995). Principal U.S. nesting areas for green sea turtles are in eastern Florida, predominantly Brevard south through Broward counties.

In U.S. Atlantic and Gulf of Mexico waters, green sea turtles are distributed throughout inshore and nearshore waters from Texas to Massachusetts. Principal benthic foraging areas in the southeastern United States include Aransas Bay, Matagorda Bay, Laguna Madre, and the Gulf inlets of Texas (Doughty 1984; Hildebrand 1982; Shaver 1994), the Gulf of Mexico off Florida from Yankeetown to Tarpon Springs (Caldwell and Carr 1957), Florida Bay and the Florida Keys (Schroeder and Foley 1995), the Indian River Lagoon system in Florida (Ehrhart 1983), and the Atlantic Ocean off Florida from Brevard through Broward Counties (Guseman and Ehrhart 1992; Wershoven and Wershoven 1992). The summer developmental habitat for green sea turtles also encompasses estuarine and coastal waters from North Carolina to as far north as Long Island Sound (Musick and Limpus 1997). Additional important foraging areas in the western Atlantic include the Culebra archipelago and other Puerto Rico coastal waters, the south coast of Cuba, the Mosquito Coast of Nicaragua, the Caribbean coast of Panama, scattered areas along Colombia and Brazil (Hirth 1971), and the northwestern coast of the Yucatán Peninsula.

SA DPS Distribution

The SA DPS boundary is shown in Figure 2, and includes the U.S. Virgin Islands in the Caribbean. The SA DPS nesting sites can be roughly divided into four regions: western Africa, Ascension Island, Brazil, and the South Atlantic Caribbean (including Colombia, the Guianas, and Aves Island in addition to the numerous small, island nesting sites).

The in-water range of the SA DPS is widespread. In the eastern South Atlantic, significant sea turtle habitats have been identified, including green turtle feeding grounds in Corisco Bay, Equatorial Guinea/Gabon (Formia 1999); Congo; Mussulo Bay, Angola (Carr and Carr 1991); as well as Principe Island. Juvenile and adult green turtles utilize foraging areas throughout the Caribbean areas of the South Atlantic, often resulting in interactions with fisheries occurring in those same waters (Dow et al. 2007). Juvenile green turtles from multiple rookeries also frequently utilize the nearshore waters off Brazil as foraging grounds as evidenced from the frequent captures by fisheries (Lima et al. 2010; López-Barrera et al. 2012; Marcovaldi et al. 2009). Genetic analysis of green turtles on the foraging grounds off Ubatuba and Almofala, Brazil show mixed stocks coming primarily from Ascension, Suriname and Trindade as a secondary source, but also Aves, and even sometimes Costa Rica (NA DPS)(Naro-Maciel et al. 2007; Naro-Maciel et al. 2012). While no nesting occurs as far south as Uruguay and Argentina, both have important foraging grounds for South Atlantic green turtles (Gonzalez Carman et al. 2011; Lezama 2009; López-Mendilaharsu et al. 2006; Prosdocimi et al. 2012; Rivas-Zinno 2012).

Life History Information

Green sea turtles reproduce sexually, and mating occurs in the waters off nesting beaches and along migratory routes. Mature females return to their natal beaches (i.e., the same beaches where they were born) to lay eggs (Balazs 1982; Frazer and Ehrhart 1985) every 2-4 years while males are known to reproduce every year (Balazs 1983). In the southeastern United States, females generally nest between June and September, and peak nesting occurs in June and July (Witherington and Ehrhart 1989b). During the nesting season, females nest at approximately 2-week intervals, laying an average of 3-4 clutches (Johnson and Ehrhart 1996). Clutch size often varies among subpopulations, but mean clutch size is approximately 110-115 eggs. In Florida, green sea turtle nests contain an average of 136 eggs (Witherington and Ehrhart 1989b). Eggs incubate for approximately 2 months before hatching. Hatchling green sea turtles are approximately 2 inches (in) (5 centimeters [cm]) in length and weigh approximately 0.9 ounces (25 grams). Survivorship at any particular nesting site is greatly influenced by the level of manmade stressors, with the more pristine and less disturbed nesting sites (e.g., along the Great Barrier Reef in Australia) showing higher survivorship values than nesting sites known to be highly disturbed (e.g., Nicaragua) (Campell and Lagueux 2005; Chaloupka and Limpus 2005).

After emerging from the nest, hatchlings swim to offshore areas and go through a post-hatchling pelagic stage where they are believed to live for several years. During this life stage, green sea turtles feed close to the surface on a variety of marine algae and other life associated with drift lines and debris. This early oceanic phase remains one of the most poorly understood aspects of green sea turtle life history (NMFS and USFWS 2007). Green sea turtles exhibit particularly slow growth rates of about 0.4-2 in (1-5 cm) per year (Green 1993), which may be attributed to their largely herbivorous, low-net energy diet (Bjorndal 1982). At approximately 8-10 in (20-25 cm) carapace length, juveniles leave the pelagic environment and enter nearshore developmental

habitats such as protected lagoons and open coastal areas rich in sea grass and marine algae. Growth studies using skeletochronology indicate that green sea turtles in the western Atlantic shift from the oceanic phase to nearshore developmental habitats after approximately 5-6 years (Bresette et al. 2006; Zug and Glor 1998). Within the developmental habitats, juveniles begin the switch to a more herbivorous diet, and by adulthood feed almost exclusively on seagrasses and algae (Rebel 1974), although some populations are known to also feed heavily on invertebrates (Carballo et al. 2002). Green sea turtles mature slowly, requiring 20-50 years to reach sexual maturity (Chaloupka and Musick 1997; Hirth 1997).

While in coastal habitats, green sea turtles exhibit site fidelity to specific foraging and nesting grounds, and it is clear they are capable of "homing in" on these sites if displaced (McMichael et al. 2003). Reproductive migrations of Florida green sea turtles have been identified through flipper tagging and/or satellite telemetry. Based on these studies, the majority of adult female Florida green sea turtles are believed to reside in nearshore foraging areas throughout the Florida Keys and in the waters southwest of Cape Sable, and some post-nesting turtles also reside in Bahamian waters as well (NMFS and USFWS 2007).

Status and Population Dynamics

Accurate population estimates for marine turtles do not exist because of the difficulty in sampling turtles over their geographic ranges and within their marine environments. Nonetheless, researchers have used nesting data to study trends in reproducing sea turtles over time. A summary of nesting trends and nester abundance is provided in the most recent status review for the species (Seminoff et al. 2015), with information for each of the DPSs.

NA DPS

The NA DPS is the largest of the 11 green turtle DPSs, with an estimated nester abundance of over 167,000 adult females from 73 nesting sites. Overall this DPS is also the most data rich. Eight of the sites have high levels of abundance (i.e., <1000 nesters), located in Costa Rica, Cuba, Mexico, and Florida. All major nesting populations demonstrate long-term increases in abundance (Seminoff et al. 2015).

Tortuguero, Costa Rica is by far the predominant nesting site, accounting for an estimated 79% of nesting for the DPS (Seminoff et al. 2015). Nesting at Tortuguero appears to have been increasing since the 1970's, when monitoring began. For instance, from 1971-1975 there were approximately 41,250 average annual emergences documented and this number increased to an average of 72,200 emergences from 1992-1996 (Bjorndal et al. 1999). Troëng and Rankin (2005) collected nest counts from 1999-2003 and also reported increasing trends in the population consistent with the earlier studies, with nest count data suggesting 17,402-37,290 nesting females per year (NMFS and USFWS 2007). Modeling by Chaloupka et al. (2008) using data sets of 25 years or more resulted in an estimate of the Tortuguero, Costa Rica population's growing at 4.9% annually.

In the continental United States, green sea turtle nesting occurs along the Atlantic coast, primarily along the central and southeast coast of Florida where an estimated 200-1,100 females nest each year (Meylan et al. 1994; Weishampel et al. 2003). Occasional nesting has also been documented along the Gulf Coast of Florida (Meylan et al. 1995). Green sea turtle nesting is

documented annually on beaches of North Carolina, South Carolina, and Georgia, though nesting is found in low quantities (nesting databases maintained on www.seaturtle.org).

In Florida, index beaches were established to standardize data collection methods and effort on key nesting beaches. Since establishment of the index beaches in 1989, the pattern of green sea turtle nesting has generally shown biennial peaks in abundance with a positive trend during the 10 years of regular monitoring (Figure 3). According to data collected from Florida's index nesting beach survey from 1989-2015, green sea turtle nest counts across Florida have increased approximately ten-fold from a low of 267 in the early 1990s to a high of 27,975 in 2015. Two consecutive years of nesting declines in 2008 and 2009 caused some concern, but this was followed by increases in 2010 and 2011, and a return to the trend of biennial peaks in abundance thereafter (Figure 3). Modeling by Chaloupka et al. (2008) using data sets of 25 years or more has resulted in an estimate of the Florida nesting stock at the Archie Carr National Wildlife Refuge growing at an annual rate of 13.9%.

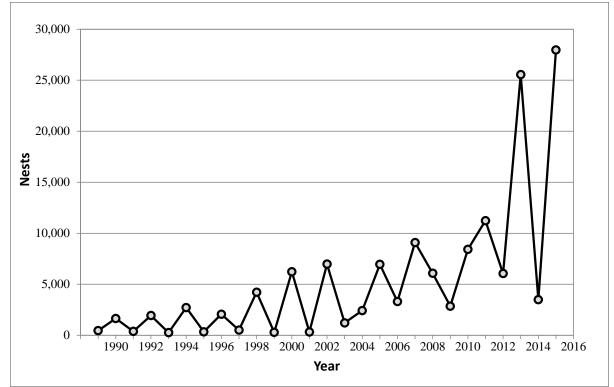


Figure 3. Green sea turtle nesting at Florida index beaches since 1989

Similar to the nesting trend found in Florida, in-water studies in Florida have also recorded increases in green turtle captures at the Indian River Lagoon site, with a 661% increase over 24 years (Ehrhart et al. 2007), and the St Lucie Power Plant site, with a significant increase in the annual rate of capture of immature green turtles (straight carapace length<90 cm) from 1977 to 2002 or 26 years (3,557 green turtles total; M. Bressette, Inwater Research Group, unpubl. data; (Witherington et al. 2006).

SA DPS

The SA DPS is large, estimated at over 63,000 nesters, but data availability is poor. More than half of the 51 identified nesting sites (37) did not have sufficient data to estimate number of nesters or trends (Seminoff et al. 2015). This includes some sites, such as beaches in French Guiana, which are suspected to have large numbers of nesters. Therefore, while the estimated number of nesters may be substantially underestimated, we also do not know the population trends at those data-poor beaches. However, while the lack of data was a concern due to increased uncertainty, the overall trend of the SA DPS was not considered to be a major concern as some of the largest nesting beaches such as Ascension Island, Aves Island (Venezuela), and Galibi (Suriname) appear to be increasing. Others such as Trindade (Brazil), Atol das Rocas (Brazil), and Poilão and the rest of Guinea-Bissau seem to be stable or do not have sufficient data to make a determination. Bioko (Equatorial Guinea) appears to be in decline but has less nesting than the other primary sites (Seminoff et al. 2015).

In the U.S., nesting of SA DPS green turtles occurs on the beaches of the U.S. Virgin Islands, primarily on Buck Island. There is insufficient data to determine a trend for Buck Island nesting, and it is a smaller rookery, with approximately 63 total nesters utilizing the beach (Seminoff et al. 2015).

Threats

The principal cause of past declines and extirpations of green sea turtle assemblages has been the overexploitation of the species for food and other products. Although intentional take of green sea turtles and their eggs is not extensive within the southeastern United States, green sea turtles that nest and forage in the region may spend large portions of their life history outside the region and outside U.S. jurisdiction, where exploitation is still a threat. Green sea turtles also face many of the same threats as other sea turtle species, including destruction of nesting habitat from storm events, oceanic events such as cold-stunning, pollution (e.g., plastics, petroleum products, petrochemicals), ecosystem alterations (e.g., nesting beach development, beach nourishment and shoreline stabilization, vegetation changes), poaching, global climate change, fisheries interactions, natural predation, and disease. A discussion on general sea turtle threats can be found in Section 3.2.1.

In addition to general threats, green sea turtles are susceptible to natural mortality from FP disease. FP results in the growth of tumors on soft external tissues (flippers, neck, tail, etc.), the carapace, the eyes, the mouth, and internal organs (gastrointestinal tract, heart, lungs, etc.) of turtles (Aguirre et al. 2002; Herbst 1994; Jacobson et al. 1989). These tumors range in size from 0.04 in (0.1 cm) to greater than 11.81 in (30 cm) in diameter and may affect swimming, vision, feeding, and organ function (Aguirre et al. 2002; Herbst 1994; Jacobson et al. 1989). Presently, scientists are unsure of the exact mechanism causing this disease, though it is believed to be related to both an infectious agent, such as a virus (Herbst et al. 1995), and environmental conditions (e.g., habitat degradation, pollution, low wave energy, and shallow water (Foley et al. 2005). FP is cosmopolitan, but it has been found to affect large numbers of animals in specific areas, including Hawaii and Florida (Herbst 1994; Jacobson 1990; Jacobson et al. 1991).

Cold-stunning is another natural threat to green sea turtles. Although it is not considered a major source of mortality in most cases, as temperatures fall below 46.4°-50°F (8°-10°C) turtles may lose their ability to swim and dive, often floating to the surface. The rate of cooling that

precipitates cold-stunning appears to be the primary threat, rather than the water temperature itself (Milton and Lutz 2003). Sea turtles that overwinter in inshore waters are most susceptible to cold-stunning because temperature changes are most rapid in shallow water (Witherington and Ehrhart 1989a). During January 2010, an unusually large cold-stunning event in the southeastern United States resulted in around 4,600 sea turtles, mostly greens, found cold-stunned, and hundreds found dead or dying. A large cold-stunning event occurred in the western Gulf of Mexico in February 2011, resulting in approximately 1,650 green sea turtles found cold-stunned in Texas. Of these, approximately 620 were found dead or died after stranding, while approximately 1,030 turtles were rehabilitated and released. During this same time frame, approximately 340 green sea turtles were found cold-stunned in Mexico, though approximately 300 of those were subsequently rehabilitated and released.

Whereas oil spill impacts are discussed generally for all species in Section 3.2.1, specific impacts of the Deepwater Horizon (DWH) spill on green sea turtles are considered here. Impacts to green sea turtles occurred to offshore small juveniles only. A total of 154,000 small juvenile greens (36.6% of the total small juvenile sea turtle exposures to oil from the spill) were estimated to have been exposed to oil. A large number of small juveniles were removed from the population, as 57,300 small juveniles greens are estimated to have died as a result of the exposure. A total of 4 nests (580 eggs) were also translocated during response efforts, with 455 hatchlings released (the fate of which is unknown) (DWH Trustees 2015). Additional unquantified effects may have included inhalation of volatile compounds, disruption of foraging or migratory movements due to surface or subsurface oil, ingestion of prey species contaminated with oil and/or dispersants, and loss of foraging resources which could lead to compromised growth and/or reproductive potential. There is no information currently available to determine the extent of those impacts, if they occurred.

While green turtles regularly use the northern Gulf of Mexico, they have a widespread distribution throughout the entire Gulf of Mexico, Caribbean, and Atlantic, and the proportion of the population using the northern Gulf of Mexico at any given time is relatively low. Although it is known that adverse impacts occurred and numbers of animals in the Gulf of Mexico were reduced as a result of the DWH oil spill of 2010, the relative proportion of the population that is expected to have been exposed to and directly impacted by the DWH event, as well as the impacts being primarily to smaller juveniles (lower reproductive value than adults and large juveniles), reduces the impact to the overall population. It is unclear what impact these losses may have caused on a population level, but it is not expected to have had a large impact on the population trajectory moving forward. However, recovery of green turtle numbers equivalent to what was lost in the northern Gulf of Mexico as a result of the spill will likely take decades of sustained efforts to reduce the existing threats and enhance survivorship of multiple life stages (DWH Trustees 2015).

3.3.2 Status of Atlantic Sturgeon

Five separate DPSs of Atlantic sturgeon were listed under the ESA by NMFS effective April 6, 2012 (77 FR 5880 and 5914, February 6, 2012). The New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs were listed as endangered. The Gulf of Maine DPS was listed as threatened.

Species Descriptions and Distributions

Atlantic sturgeon are long-lived, late-maturing, estuarine-dependent, anadromous fish distributed along the eastern coast of North America (Waldman and Wirgin 1998). Historically, sightings have been reported from Hamilton Inlet, Labrador, south to the St. Johns River, Florida (Murawski et al. 1977; Smith and Clugston 1997). Atlantic sturgeon may live up to 60 years, reach lengths up to 14 ft, and weigh over 800 lb (ASSRT 2007; Collette and Klein-MacPhee 2002). They are distinguished by armor-like plates (called scutes) and a long protruding snout that has 4 barbels (slender, whisker-like feelers extending from the head used for touch and taste). Atlantic sturgeon spend the majority of their lives in nearshore marine waters, returning to their natal rivers to spawn (Wirgin et al. 2002). Young sturgeon may spend the first few years of life in their natal river estuary before moving out to sea (Wirgin et al. 2002). Sturgeon are omnivorous benthic (bottom) feeders and filter quantities of mud along with their food. Adult sturgeon diets include mollusks, gastropods, amphipods, isopods, and small fishes, especially sand lances (*Ammodytes* sp.)(Scott and Crossman 1973). Juvenile sturgeon feed on aquatic insects and other invertebrates (Smith 1985).

Atlantic Sturgeon

Historically, Atlantic sturgeon were present in approximately 38 rivers in the United States from the St. Croix River, Maine to the St. Johns River, Florida, of which 35 rivers have been confirmed to have had a historical spawning population. Atlantic sturgeon are currently present in approximately 32 of these rivers, and spawning occurs in at least 20 of them. The marine range of Atlantic sturgeon extends from the Hamilton Inlet, Labrador, Canada, to Cape Canaveral, Florida. Because adult Atlantic sturgeon from all DPSs mix extensively in marine waters, we expect fish from all DPSs to be found in the action area.

Life History Information

Atlantic sturgeon populations show clinal variation, with a general trend of faster growth and earlier age at maturity in more southern systems. Atlantic sturgeon mature between the ages of 5-19 years in South Carolina (Smith et al. 1982), between 11-21 years in the Hudson River (Young et al. 1988), and between 22-34 years in the St. Lawrence River (Scott and Crossman 1973). Most Atlantic sturgeon adults likely do not spawn every year. Multiple studies have shown that spawning intervals range from 1-5 years for males (Caron et al. 2002; Collins et al. 2000b; Smith 1985) and 2-5 years for females (Stevenson and Secor 1999; Van Eenennaam et al. 1996; Vladykov and Greely 1963). Fecundity of Atlantic sturgeon has been correlated with age and body size, with egg production ranging from 400,000 to 8,000,000 eggs per year (Dadswell 2006; Smith et al. 1982; Van Eenennaam and Doroshov 1998). The average age at which 50% of maximum lifetime egg production is achieved is estimated to be 29 years, approximately 3-10 times longer than for other bony fish species examined (Boreman 1997).

Spawning adult Atlantic sturgeon generally migrate upriver in spring/early summer, which occurs in February-March in southern systems, April-May in mid-Atlantic systems, and May-July in Canadian systems (Bain 1997; Caron et al. 2002; Murawski et al. 1977; Smith 1985; Smith and Clugston 1997). In some southern rivers, a fall spawning migration may also occur (Moser et al. 1998; Rogers and Weber 1995a; Weber and Jennings 1996). In the fall, Hager et al. (2014) captured an Atlantic sturgeon identified as a spawned-out female due to her size and concave stomach and also noted capture of other fish showing signs of wear suggesting males had been engaging in spawning behavior. In Virginia's James River, Balazik et al. (2012) captured 1 fish identified as a female in the fall during the 3-year study with a concave condition of the abdomen consistent with female sturgeon that have spawned recently. In addition, postovulated eggs recovered from the urogenital opening were in an early degradation stage, suggesting the fish had spawned within days (Balazik et al. 2012). Further physiological support for fall spawning is provided by the 9 spermiating males captured along with the female and a grand total of 106 different spermiating males captured during August-October (Balazik et al. 2012). Randall and Sulak (2012) reported similar evidence for fall spawning of the closely related Gulf sturgeon, which included multiple captures of sturgeon in September-November that were ripe or exhibited just-spawned characteristics.

Atlantic sturgeon spawning occurs in fast-flowing water between the salt front and fall line of large rivers (Bain et al. 2000; Borodin 1925; Crance 1987; Leland 1968; Scott and Crossman 1973) over hard substrate, such as cobble, gravel, or boulders, to which the highly adhesive sturgeon eggs adhere (Gilbert 1989; Smith and Clugston 1997). Hatching occurs approximately 94-140 hours after egg deposition and larvae assume a demersal existence (Smith et al. 1980). The yolk sac larval stage is completed in about 8-12 days, during which time the larvae move downstream to rearing grounds (Kynard and Horgan 2002). During the first half of their migration downstream, movement is limited to night. During the day, larvae use benthic structure (e.g., gravel matrix) as refugia (Kynard and Horgan 2002). During the latter half of migration, when larvae are more fully developed, movement to rearing grounds occurs both day and night. Juvenile sturgeon continue to move further downstream into brackish waters, and eventually become residents in estuarine waters for months or years.

Juvenile and adult Atlantic sturgeon occupy upper estuarine habitat where they frequently congregate around the saltwater/freshwater interface. Estuarine habitats are important for juveniles, serving as nursery areas by providing abundant foraging opportunities, as well as thermal and salinity refuges, for facilitating rapid growth. Some juveniles will take up residency in non-natal rivers that lack active spawning sites (Bain 1997). Residency time of young Atlantic sturgeon in estuarine areas varies between 1-6 years (Schueller and Peterson 2010; Smith 1985), after which Atlantic sturgeon start out-migration to the marine environment. Out-migration of adults from the estuaries to the sea is cued by water temperature and velocity. Adult Atlantic sturgeon will reside in the marine habitat during the non-spawning season and forage extensively. Coastal migrations by adult Atlantic sturgeon are extensive and are known to occur over sand and gravel substrate (Greene et al. 2009). Atlantic sturgeon remain in the marine habitat until the waters begin to warm, at which time ripening adults migrate back to their natal rivers to spawn.

Upstream migration to the spawning grounds is cued primarily by water temperature and velocity. Therefore, fish in the southern portion of the range migrate earlier than those to the north do (Kieffer and Kynard 1993; Smith 1985). In Georgia and South Carolina, migration begins in February or March (Collins et al. 2000a). Males commence upstream migration to the spawning sites when waters reach around 6°C (Dovel and Berggren 1983; Smith 1985; Smith et al. 1982), with females following a few weeks later when water temperatures are closer to 12° or 13°C (Collins et al. 2000a; Dovel and Berggren 1983; Smith 1985). In some rivers, predominantly in the south, a fall spawning migration may also occur (Moser et al. 1998; Rogers and Weber 1995a), with running ripe males found August through October and post-spawning females captured in late September and October (Collins et al. 2000b).

Status and Population Dynamics

At the time Atlantic sturgeon were listed, the best available abundance information for each of the 5 DPSs was the estimated number of adult Atlantic sturgeon spawning in each of the rivers on an annual basis. The estimated number of annually spawning adults in each of the river populations is insufficient to quantify the total population numbers for each DPS of Atlantic sturgeon due to the lack of other necessary accompanying life history data. A recently Atlantic sturgeon population estimate was derived from the NEAMAP. NEAMAP trawl surveys were conducted from Cape Cod, Massachusetts, to Cape Hatteras, North Carolina, in nearshore waters to depths of 60 ft from fall 2007 through spring 2012. The results of these surveys, assuming 50% gear efficiency (i.e., assumption that the gear will capture some, but not all, of the sturgeon in the water column along the tow path, and the survey area is only a portion of Atlantic sturgeon habitat), are presented in Table 2. It is important to note that the NEAMAP surveys were conducted primarily in the Northeast and may underestimate the actual population abundances of the Carolina and South Atlantic DPSs, which are likely more concentrated in the Southeast since they originated from and spawn there. However, the total ocean population abundance estimates listed in Table 2 currently represent the best available population abundance estimates for the 5 U.S. Atlantic sturgeon DPSs.

DPS	Estimated Ocean Population Abundance	Estimated Ocean Population of Adults	Estimated Ocean Population of Subadults (of size vulnerable to capture in fisheries)
South Atlantic	14,911	3,728	11,183
Carolina	1,356	339	1,017
Chesapeake Bay	8,811	2,203	6,608
New York Bight	34,566	8,642	25,925
Gulf of Maine	7,455	1,864	5,591

Table 2. Summary of Calculated Population Estimates Based upon the NEAMAP SurveySwept Area, Assuming 50% Efficiency (NMFS 2013)

South Atlantic DPS

The South Atlantic DPS includes all Atlantic sturgeon that spawn or are spawned in the watersheds (including all rivers and tributaries) of the Ashepoo, Combahee, and Edisto River (ACE) Basins southward along the South Carolina, Georgia, and Florida coastal areas to the St. Johns River, Florida. Rivers known to have current spawning populations within the range of the South Atlantic DPS include the Combahee, Edisto, Savannah, Ogeechee, Altamaha, and Satilla Rivers. We determined spawning was occurring if young-of-the-year (YOY) were observed, or mature adults were present, in freshwater portions of a system. However, in some

rivers, spawning by Atlantic sturgeon may not be contributing to population growth because of lack of suitable habitat and the presence of other stressors on juvenile survival and development.

Historically, both the Broad-Coosawatchie and St. Marys Rivers were documented to have spawning populations; there is also evidence that spawning may have occurred in the St. Johns River or one of its tributaries. The spawning population in the St. Marys River, as well as any historical spawning population in the St. Johns River, is believed to be extirpated, and the status of the spawning population in the Broad-Coosawatchie River is unknown. Both the St. Marys and St. Johns Rivers are used as nursery habitat by young Atlantic sturgeon originating from other spawning populations. The use of the Broad-Coosawatchie River by sturgeon from other spawning populations is unknown at this time. The presence of historical and current spawning populations in the Ashepoo River has not been documented; however, this river may currently be used for nursery habitat by young Atlantic sturgeon originating from other spawning populations. This represents our current knowledge of the river systems utilized by the South Atlantic DPS for specific life functions, such as spawning, nursery habitat, and foraging. Still, fish from the South Atlantic DPS likely use other river systems than those listed here for their specific life functions.

Prior to the collapse of the fishery in the late 1800s, the sturgeon fishery was the third largest fishery in Georgia. Secor (2002) estimated from U.S. Fish Commission landing reports that approximately 11,000 spawning females were likely present in Georgia and 8,000 adult females were present in South Carolina prior to 1890. The Altamaha River population of the South Atlantic DPS, with an estimated 343 adults spawning annually, is believed to be the largest remaining population in the Southeast, yet is estimated to be only 6% of its historical population size. The abundances of the remaining river populations within the South Atlantic DPS, each estimated to have fewer than 300 annually spawning adults, are estimated to be less than 1% of what they were historically (ASSRT 2007). The NEAMAP model estimates a minimum ocean population of 14,911 South Atlantic DPS Atlantic sturgeon, of which 3,728 are adults.

Carolina DPS

The Carolina DPS includes all Atlantic sturgeon that are spawned in the watersheds (including all rivers and tributaries) from the Albemarle Sound southward along the southern Virginia, North Carolina, and South Carolina coastal areas to Charleston Harbor. Rivers known to have current spawning populations within the range of the Carolina DPS include the Roanoke, Tar-Pamlico, Cape Fear, Waccamaw, and Yadkin-Pee Dee Rivers. We determined spawning was occurring if YOY were observed, or mature adults were present, in freshwater portions of a system. In some rivers, though, spawning by Atlantic sturgeon may not be contributing to population growth because of lack of suitable habitat and the presence of other stressors on juvenile survival and development. There may also be spawning populations in the Neuse, Santee, and Cooper Rivers, though it is uncertain.

Historically, both the Sampit and Ashley Rivers in South Carolina were documented to have spawning populations at one time, although the spawning population in the Sampit River is believed to be extirpated and the current status of the spawning population in the Ashley River is unknown. Both rivers may be used as nursery habitat by young Atlantic sturgeon originating from other spawning populations. This represents our current knowledge of the river systems utilized by the Carolina DPS for specific life functions, such as spawning, nursery habitat, and

foraging. Still, fish from the Carolina DPS likely use other river systems than those listed here for their specific life functions.

Historical landings data indicate that between 7,000 and 10,500 adult female Atlantic sturgeon were present in North Carolina prior to 1890 (Armstrong and Hightower 2002; Secor 2002). Secor (2002) estimates that 8,000 adult females were present in South Carolina during that same time frame. The Atlantic sturgeon spawning population in at least 1 river system (the Sampit River) within the Carolina DPS has been extirpated, and the statuses of 4 additional spawning populations are uncertain. There are believed to be only 5 of 7-10 historical spawning populations remaining in the Carolina DPS. In some rivers, spawning by Atlantic sturgeon may not be contributing to population growth because of lack of suitable habitat and the presence of other stressors on juvenile survival and development. The abundances of the remaining river populations within the DPS, each estimated to have fewer than 300 spawning adults, are estimated to be less than 3% of what they were historically (ASSRT 2007). The NEAMAP model estimates a minimum ocean population of 1,356 Carolina DPS Atlantic sturgeon, of which 339 are adults.

Chesapeake Bay DPS

The Chesapeake Bay DPS includes all anadromous Atlantic sturgeons that are spawned in the watersheds that drain into the Chesapeake Bay and into coastal waters from the Delaware-Maryland border on Fenwick Island to Cape Henry, Virginia. Within this range, Atlantic sturgeon historically spawned in the Susquehanna, Potomac, James, York, Rappahannock, and Nottoway Rivers (ASSRT 2007). Spawning still occurs in the James River, and the presence of juvenile and adult sturgeon in the York River suggests that spawning may occur there as well (ASSRT 2007; Greene et al. 2009; Musick et al. 1994). However, conclusive evidence of current spawning is available for the James River, only. Atlantic sturgeon that are spawned elsewhere are known to use waters of the Chesapeake Bay for other life functions, such as foraging and as juvenile nursery habitat, before entering the marine system as subadults (ASSRT 2007; Grunwald et al. 2008; Vladykov and Greely 1963; Wirgin et al. 2007).

Historically, the Chesapeake Bay DPS likely supported more than 10,000 spawning adults (ASSRT 2007; KRRMP 1993; Secor 2002). Current estimates of the Chesapeake Bay DPS from the NEAMAP model (Table 2) indicate the current number of spawning adults is likely an order of magnitude lower than historical levels (ASSRT 2007; Kahnle et al. 2007). The NEAMAP model estimates a minimum ocean population of 8,811 Chesapeake Bay DPS Atlantic sturgeon, of which 2,319 are adults.

New York Bight DPS

The New York Bight DPS includes all anadromous Atlantic sturgeon that spawn in the watersheds that drain into coastal waters from Chatham, Massachusetts, to the Delaware-Maryland border on Fenwick Island. Within this range, Atlantic sturgeon historically spawned in the Connecticut, Delaware, Hudson, and Taunton Rivers (ASSRT 2007; Murawski et al. 1977; Secor 2002). Spawning still occurs in the Delaware and Hudson Rivers, but there is no recent evidence (within the last 15 years) of spawning in the Connecticut and Taunton Rivers (ASSRT 2007). Atlantic sturgeon that are spawned elsewhere continue to use habitats within the Connecticut and Taunton Rivers for other life functions (ASSRT 2007; Savoy 2007; Wirgin and King 2011).

Prior to the onset of expanded fisheries exploitation of sturgeon in the 1800s, a conservative historical estimate for the Hudson River Atlantic sturgeon population was 10,000 adult females (Secor 2002). Current population abundance is likely at least one order of magnitude smaller than historical levels (ASSRT 2007; Kahnle et al. 2007; Secor 2002). Based on data collected from 1985-1995, there are 870 spawning adults per year in the Hudson River (Kahnle et al. 2007). Kahnle (2007; 1998) also showed that the level of fishing mortality from the Hudson River Atlantic sturgeon fishery during the period of 1985-1995 exceeded the estimated sustainable level of fishing mortality for the riverine population, and may have led to reduced recruitment. All available data on abundance of juvenile Atlantic sturgeon in the Hudson River Estuary indicate a substantial drop in production of young since the mid-1970s (Kahnle et al. 1998). A decline appeared to occur in the mid- to late 1970s followed by a secondary drop in the late 1980s (ASMFC 2010; Kahnle et al. 1998; Sweka et al. 2007). Catch-per-unit-effort (CPUE) data suggest that recruitment has remained depressed relative to catches of juvenile Atlantic sturgeon in the estuary during the mid- to late 1980s (ASMFC 2010; Sweka et al. 2007). From 1985-2007, there were significant fluctuations in CPUE. The number of juveniles appears to have declined between the late 1980s and early 1990s. While the CPUE is generally higher in the 2000s as compared to the 1990s, significant annual fluctuations make it difficult to discern any trend. The CPUEs from 2000-2007 are generally higher than those from 1990-1999; however, they remain lower than the CPUEs observed in the late 1980s. There is currently not enough information regarding any life stage to establish a trend for the Hudson River population (ASMFC 2010; Sweka et al. 2007).

There is no abundance estimate for the Delaware River population of Atlantic sturgeon. Harvest records from the 1800s indicate that this was historically a large population, with an estimated 180,000 adult females prior to 1890 (Secor 2002; Secor and Waldman 1999). Fisher (2009) sampled the Delaware River in 2009 to target YOY Atlantic sturgeon. The effort captured 34 YOY. Brundage and O'Herron (2003) also collected 32 YOY Atlantic sturgeon from the Delaware River in a separate study. Fisher (2011) reports that genetics information collected from 33 of the 2009 year class YOY indicates that at least 3 females successfully contributed to the 2009 year class. The capture of YOY in 2009 shows that successful spawning is still occurring in the Delaware River, but the relatively low numbers suggest the existing riverine population is limited in size. Similar to the Hudson River, there is currently not enough information to determine a trend for the Delaware River population. The ASSRT (2007) suggested that there may be less than 300 spawning adults per year for the Delaware River portion of 34,566 Atlantic sturgeon, of which 8,642 are adults.

Gulf of Maine DPS

The Gulf of Maine DPS includes all anadromous Atlantic sturgeons that are spawned in the watersheds from the Maine/Canadian border and, extending southward, all watersheds draining into the Gulf of Maine as far south as Chatham, Massachusetts. Within this range, Atlantic sturgeon historically spawned in the Androscoggin, Kennebec, Merrimack, Penobscot, and Sheepscot Rivers (ASSRT 2007). Spawning still occurs in the Kennebec and Androscoggin Rivers, and may still occur in the Penobscot River. Atlantic sturgeon continue to be present in the Kennebec River; in addition, they are captured in directed research projects in the Penobscot River. They are also observed in the Saco, Presumpscot, and Charles Rivers where they were

unknown to occur before or had not been observed to occur for many years. These observations suggest that the abundance of the Gulf of Maine DPS of Atlantic sturgeon is large enough that recolonization to rivers historically suitable for spawning may be occurring.

Historically, the Gulf of Maine DPS likely supported more than 10,000 spawning adults (ASSRT 2007; KRRMP 1993; Secor 2002), suggesting the recent estimate of spawning adults within the DPS is 1-2 orders of magnitude smaller than historical levels (i.e., hundreds to low thousands) (ASSRT 2007; Kahnle et al. 2007). The CPUE of subadult Atlantic sturgeon in a multifilament gillnet survey conducted on the Kennebec River was considerably greater for the period of 1998-2000 (CPUE = 7.43) compared to the CPUE for the period 1977-1981 (CPUE = 0.30). The CPUE of adult Atlantic sturgeon showed a slight increase over the same time period (1977-1981 CPUE = 0.12 versus 1998-2000 CPUE = 0.21) (Squiers 2004). There is also new evidence of Atlantic sturgeon presence in rivers (e.g., the Saco River) where they have not been observed for many years. Still, there is not enough information to establish a trend for this DPS. The NEAMAP model estimates a minimum ocean population of 7,455 Atlantic sturgeon, of which 1,864 are adults.

Viability of Atlantic Sturgeon DPSs

The concept of a viable population able to adapt to changing environmental conditions is critical to Atlantic sturgeon, and the low population numbers of every river population in the 5 DPSs on the East Coast put them in danger of extinction throughout their range. None of the riverine spawning populations are large or stable enough to provide with any level of certainty for continued existence of any of the DPSs. Although the largest impact that caused the precipitous decline of the species has been prohibited (directed fishing), the Atlantic sturgeon population sizes within each DPS have remained relatively constant at greatly reduced levels for 100 years. The largest Atlantic sturgeon population in the United States, the Hudson River population within the New York Bight DPS, is estimated to have only 870 spawning adults each year. The Altamaha River population within the South Atlantic DPS is the largest Atlantic sturgeon population in the U.S. are estimated to have less than 300 spawning adults annually.

Small numbers of individuals resulting from drastic reductions in populations, such as occurred with Atlantic sturgeon due to the commercial fishery, can remove the buffer against natural demographic and environmental variability provided by large populations (Berry 1971; Shaffer 1981; Soulé 1980). Recovery of depleted populations is an inherently slow process for a late-maturing species such as Atlantic sturgeon, and they continue to face a variety of other threats that contribute to their risk of extinction. Their late age at maturity provides more opportunities for individual Atlantic sturgeon to be removed from the population before reproducing. While a long life span allows multiple opportunities to contribute to future generations, it also increases the time frame over which exposure to the multitude of threats facing Atlantic sturgeon can occur.

The viability of the Atlantic sturgeon DPSs depends on having multiple self-sustaining riverine spawning populations and maintaining suitable habitat to support the various life functions (spawning, feeding, growth) of Atlantic sturgeon populations. Because a DPS is a group of populations, the stability, viability, and persistence of individual populations affects the

persistence and viability of the larger DPS. The loss of any population within a DPS will result in: (1) a long-term gap in the range of the DPS that is unlikely to be recolonized; (2) loss of reproducing individuals; (3) loss of genetic biodiversity; (4) potential loss of unique haplotypes; (5) potential loss of adaptive traits; (6) reduction in total number; and (7) potential for loss of population source of recruits. The loss of a population will negatively impact the persistence and viability of the DPS as a whole, as fewer than 2 individuals per generation spawn outside their natal rivers (King et al. 2001; Waldman et al. 2002a; Wirgin et al. 2000). The persistence of individual populations, and in turn the DPS, depends on successful spawning and rearing within the freshwater habitat, the immigration into marine habitats to grow, and then the return of adults to natal rivers to spawn.

Threats

Atlantic sturgeon were once numerous along the East Coast until fisheries for their meat and caviar reduced the populations by over 90% in the late 1800s. Fishing for Atlantic sturgeon became illegal in state waters in 1998 and in remaining U.S. waters in 1999. Dams, dredging, poor water quality, and accidental catch (bycatch) by fishers continue to threaten Atlantic sturgeon. Though Atlantic sturgeon populations appear to be increasing in some rivers, other river populations along the East Coast continue to struggle and some have been eliminated entirely. The 5 DPSs of Atlantic sturgeon were listed as threatened or endangered under the ESA primarily as a result of a combination of habitat restriction and modification, overutilization (i.e., being taken as bycatch) in commercial fisheries, and the inadequacy of regulatory mechanisms in ameliorating these impacts and threats.

Dams

Dams for hydropower generation, flood control, and navigation adversely affect Atlantic sturgeon by impeding access to spawning, developmental, and foraging habitat, modifying free-flowing rivers to reservoirs, physically damaging fish on upstream and downstream migrations, and altering water quality in the remaining downstream portions of spawning and nursery habitat (ASSRT 2007). Attempts to minimize the impacts of dams using measures such as fish passage have not proven beneficial to Atlantic sturgeon, as they do not regularly use existing fish passage devices, which are generally designed to pass pelagic fish (i.e., those living in the water column) rather than bottom-dwelling species, like sturgeon. Within the range occupied by the Carolina DPS, dams have restricted Atlantic sturgeon spawning and juvenile developmental habitat by blocking over 60% of the historical sturgeon habitat upstream of the dams in the Cape Fear and Santee-Cooper River systems. Water quality (velocity, temperature, and dissolved oxygen [DO] downstream of these dams, as well as on the Roanoke River, has been reduced, which modifies and restricts the extent of spawning and nursery habitat for the Carolina DPS.

Within the range of the New York Bight DPS, the Holyoke Dam on the Connecticut River blocks further upstream passage; however, the extent that Atlantic sturgeon historically would have used habitat upstream of Holyoke is unknown. Connectivity may be disrupted by the presence of dams on several smaller rivers in the New York Bight region. Connectivity is disrupted by the presence of dams on several rivers in the range of the Gulf of Maine DPS. Within the Gulf of Maine DPS, access to historical spawning habitat is most severely impacted in the Merrimack River (ASSRT 2007). Construction of the Essex Dam blocked the migration of Atlantic sturgeon are affected by operations of dams in the Gulf of Maine region is currently

unknown, although Atlantic sturgeon larvae have been found downstream of the Brunswick Dam in the Androscoggin River. This suggests that Atlantic sturgeon spawning may be occurring in the vicinity of at least 1 hydroelectric project and may be affected by its operations.

Dredging

Riverine, nearshore, and offshore areas are often dredged to support commercial shipping and recreational boating, construction of infrastructure, and marine mining. Environmental impacts of dredging include the direct removal/burial of prey species; turbidity/siltation effects; contaminant resuspension; noise/disturbance; alterations to hydrodynamic regime and physical habitat; and actual loss of riparian habitat (Chytalo 1996; Winger et al. 2000). According to Smith and Clugston (1997), dredging and filling impact important habitat features of Atlantic sturgeon as they disturb benthic fauna, eliminate deep holes, and alter rock substrates.

In the South Atlantic DPS, maintenance dredging is currently modifying Atlantic sturgeon nursery habitat in the Savannah River. Modeling indicates that the proposed deepening of the navigation channel will result in reduced DO and upriver movement of the salt wedge, restricting spawning habitat. Dredging is also modifying nursery and foraging habitat in the St. Johns River. For the Carolina DPS, dredging in spawning and nursery grounds modifies the quality of the habitat and is further restricting the extent of available habitat in the Cape Fear and Cooper Rivers, where Atlantic sturgeon habitat has already been modified and restricted by the presence of dams. Dredging for navigational purposes is suspected of having reduced available spawning habitat for the Chesapeake Bay DPS in the James River (ASSRT 2007; Bushnoe et al. 2005; Holton and Walsh 1995). Both the Hudson and Delaware rivers have navigation channels that are maintained by dredging. Dredging is also used to maintain channels in the nearshore marine environment. Many rivers in the range of the Gulf of Maine DPS also have navigation channels that are maintained by dredging. Dredging outside of federal channels and in-water construction occurs throughout the range of the New York Bight and Gulf of Maine DPSs.

Water Quality

Atlantic sturgeon rely on a variety of water quality parameters to successfully carry out their life functions. Low DO and the presence of contaminants modify the quality of Atlantic sturgeon habitat and in some cases, restrict the extent of suitable habitat for life functions. Secor (1995) noted a correlation between low abundances of sturgeon during this century and decreasing water quality caused by increased nutrient loading and increased spatial and temporal frequency of hypoxic (low oxygen) conditions. Of particular concern is the high occurrence of low DO coupled with high temperatures in the river systems throughout the range of the Carolina and South Atlantic DPSs in the Southeast. Sturgeon are more highly sensitive to low DO than other fish species (Niklitschek and Secor 2009a; Niklitschek and Secor 2009b) and low DO in combination with high temperature is particularly problematic for Atlantic sturgeon. Studies have shown that juvenile Atlantic sturgeon experience lethal and sublethal (metabolic, growth, feeding) effects as DO drops and temperatures rise (Niklitschek and Secor 2009b; Secor and Gunderson 1998).

Reductions in water quality from terrestrial activities have modified habitat utilized by the South Atlantic DPS. Low DO is modifying sturgeon habitat in the Savannah due to dredging, and non-point source inputs are causing low DO in the Ogeechee River and in the St. Marys River, which completely eliminates juvenile nursery habitat in summer. Low DO has also been observed in

the St. Johns River in the summer. In the Pamlico and Neuse systems occupied by the Carolina DPS, nutrient-loading and seasonal anoxia are occurring, associated in part with concentrated animal feeding operations (CAFOs). Heavy industrial development and CAFOs have degraded water quality in the Cape Fear River. Water quality in the Waccamaw and Yadkin-Pee Dee Rivers has been affected by industrialization and riverine sediment samples contain high levels of various toxins, including dioxins. Decreased water quality also threatens Atlantic sturgeon of the Chesapeake Bay DPS, especially since the Chesapeake Bay system is vulnerable to the effects of nutrient enrichment due to a relatively low tidal exchange and flushing rate, large surface-to-volume ratio, and strong stratification during the spring and summer months (ASMFC 1998; ASSRT 2007; Pyzik et al. 2004). These conditions contribute to reductions in DO levels throughout the bay. The availability of nursery habitat, in particular, may be limited given the recurrent hypoxia (low DO) conditions within the Bay (Niklitschek and Secor 2005; Niklitschek and Secor 2010). Both the Hudson and Delaware Rivers, as well as other rivers in the New York Bight region, were heavily polluted in the past from industrial and sewer discharges. In the past, many rivers in Maine, including the Androscoggin River, were heavily polluted from industrial discharges from pulp and paper mills. While water quality has improved and most discharges are limited through regulations, many pollutants persist in the benthic environment of the New York Bight and Gulf of Maine DPSs. It is particularly problematic if pollutants are present on spawning and nursery grounds, as developing eggs and larvae are particularly susceptible to exposure to contaminants.

Water Quantity

Water allocation issues are a growing threat in the Southeast and exacerbate existing water quality problems. Taking water from one basin and transferring it to another fundamentally and irreversibly alters natural water flows in both the originating and receiving basins, which can affect DO levels, temperature, and the ability of the basin of origin to assimilate pollutants (GWC 2006). Water quality within the river systems in the range of the South Atlantic and Carolina DPSs is negatively affected by large water withdrawals. Known water withdrawals of over 240 million gallons per day are permitted from the Savannah River for power generation and municipal uses. However, permits for users withdrawing less than 100,000 gallons per day are not required, so actual water withdrawals from the Savannah and other rivers within the range of the South Atlantic DPS are likely much higher. In the range of the Carolina DPS, 20 interbasin water transfers in existence prior to 1993, averaging 66.5 million gallons per day (mgd), were authorized at their maximum levels without being subjected to an evaluation for certification by the North Carolina Department of Environment and Natural Resources or other resource agencies. Since the 1993 legislation requiring certificates for transfers, almost 170 mgd of interbasin water withdrawals have been authorized, with an additional 60 mgd, pending certification. The removal of large amounts of water from these systems will alter flows, temperature, and DO. Water shortages and "water wars" are already occurring in the rivers occupied by the South Atlantic and Carolina DPSs and will likely be compounded in the future by population growth and potentially by climate change.

Climate Change

The Intergovernmental Panel on Climate Change (IPCC) projects with high confidence that higher water temperatures and changes in extremes, including floods and droughts, will affect water quality and exacerbate many forms of water pollution—from sediments, nutrients, dissolved organic carbon, pathogens, pesticides, and salt, as well as thermal pollution—with

possible negative impacts on ecosystems (IPCC 2008). In addition, sea level rise is projected to extend areas of salinization of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas. Some of the most heavily populated areas are low-lying, and the threat of salt water entering into its aquifers with projected sea level rise is a concern (USGRG 2004). Existing water allocation issues would be exacerbated, leading to an increase in reliance on interbasin water transfers to meet municipal water needs, further stressing water quality.

Dams, dredging, and poor water quality have already modified and restricted the extent of suitable habitat for Atlantic sturgeon spawning and nursery habitat. Changes in water availability (depth and velocities) and water quality (temperature, salinity, DO, contaminants, etc.) in rivers and coastal waters inhabited by Atlantic sturgeon resulting from climate change will further modify and restrict the extent of suitable habitat for Atlantic sturgeon. Effects could be especially harmful since these populations have already been reduced to low numbers, potentially limiting their capacity for adaptation to changing environmental conditions (Belovsky 1987; Salwasser et al. 1984; Soulé 1987; Thomas 1990).

The effects of changes in water quality (temperature, salinity, DO, contaminants, etc.) in rivers and coastal waters inhabited by Atlantic sturgeon are expected to be more severe for those populations that occur at the southern extreme of the Atlantic sturgeon's range, and in areas that are already subject to poor water quality as a result of eutrophication. The South Atlantic and Carolina DPSs are within a region the IPCC predicts will experience overall climatic drying (IPCC 2008). Atlantic sturgeon from these DPSs are already susceptible to reduced water quality resulting from various factors: inputs of nutrients; contaminants from industrial activities and non-point sources; and interbasin transfers of water. In a simulation of the effects of water temperature on available Atlantic sturgeon habitat in Chesapeake Bay, Niklitschek and Secor (2005) found that a 1°C increase of water temperature in the bay would reduce available sturgeon habitat by 65%.

Vessel Strikes

Vessel strikes are a threat to the Chesapeake Bay and New York Bight DPSs. Eleven Atlantic sturgeon were reported to have been struck by vessels on the James River from 2005 through 2007. Several of these were mature individuals. From 2004-2008, 29 mortalities believed to be the result of vessel strikes were documented in the Delaware River; at least 13 of these fish were large adults. The time of year when these events occurred (predominantly May through July, with 2 in August), indicate the animals were likely adults migrating through the river to the spawning grounds. Because we do not know the percent of total vessel strikes that these observed mortalities represent, we are not able to quantify the number of individuals likely killed as a result of vessel strikes in the Chesapeake and New York Bight DPSs.

Bycatch Mortality

Overutilization of Atlantic sturgeon from directed fishing caused initial severe declines in Atlantic sturgeon populations, from which they have never rebounded. Further, continued overutilization of Atlantic sturgeon as bycatch in commercial fisheries is an ongoing impact to Atlantic sturgeon in all 5 DPSs. Atlantic sturgeon are more sensitive to bycatch mortality because they are a long-lived species, have an older age at maturity, have lower maximum reproductive rates, and a large percentage of egg production occurs later in life. Based on these

life history traits, Boreman (1997) calculated that Atlantic sturgeon can only withstand the annual loss of up to 5% of their population to bycatch mortality without suffering population declines. Mortality rates of Atlantic sturgeon taken as bycatch in various types of fishing gear range between 0% and 51%, with the greatest mortality occurring in sturgeon caught by sink gillnets. Currently, there are estimates of the number of Atlantic sturgeon captured and killed in sink gillnet and otter trawl fisheries authorized by Fishery Management Plans (FMPs) in the Northeast Region (Miller and Shepherd 2011). Those estimates indicate from 2006-2010, on average there were 1,548 and 1,569 encounters per year in observed gillnet and trawl fisheries, respectively, with an average of 3,118 encounters combined annually. Mortality rates in gillnet gear were approximately 20%, while mortality rates in otter trawl gear are generally lower, at approximately 5%. Atlantic sturgeon are particularly vulnerable to being caught in sink gillnets; therefore, fisheries using this type of gear account for a high percentage of Atlantic sturgeon bycatch. Atlantic sturgeon are incidentally captured in state and federal fisheries, reducing survivorship of subadult and adult Atlantic sturgeon (ASMFC 2007; Stein et al. 2004a). Little data exists on bycatch in the Southeast and high levels of bycatch underreporting are suspected. However, fisheries known to incidentally catch Atlantic sturgeon occur throughout the marine range of the species and in some riverine waters as well. Because Atlantic sturgeon mix extensively in marine waters and may access multiple river systems, they are subject to being caught in multiple fisheries throughout their range. In addition, stress or injury to Atlantic sturgeon taken as bycatch but released alive may result in increased susceptibility to other threats, such as poor water quality (e.g., exposure to toxins and low DO). This may result in reduced ability to perform major life functions, such as foraging and spawning, or even postcapture mortality.

3.3.3 Status of Shortnose Sturgeon

Shortnose sturgeon were initially listed as an endangered species by the U.S. Fish and Wildlife Service (USFWS) on March 11, 1967, under the Endangered Species Preservation Act (32 FR 4001). Shortnose sturgeon continued to meet the listing criteria as "endangered" under subsequent definitions specified in the 1969 Endangered Species Conservation Act and remained on the list with the inauguration of the ESA in 1973. NMFS assumed jurisdiction for shortnose sturgeon from USFWS in 1974 (39 FR 41370). The shortnose sturgeon currently remains listed as an endangered species throughout all of its range along the east coast of the United States and Canada. A recovery plan for shortnose sturgeon was published by NMFS in 1998 (63 FR 69613).

Species Description and Distribution

The shortnose sturgeon (*Acipenser brevirostrum*) is the smallest of the 3 sturgeon species that occur in eastern North America. They attain a maximum length of about 6 ft, and a weight of about 55 lbs. Shortnose sturgeon inhabit large coastal rivers of eastern North America. Although considered an anadromous species,² shortnose sturgeon are more properly characterized as "freshwater amphidromous," meaning that they move between fresh and salt water during some part of their life cycle, but not necessarily for spawning. Shortnose sturgeon rarely leave the rivers where they were born ("natal rivers"). Shortnose sturgeon feed

² One that lives primarily in marine waters and breeds in freshwater

opportunistically on benthic insects, crustaceans, mollusks, and polychaetes (Dadswell et al. 1984).

Historically, shortnose sturgeon were found in the coastal rivers along the east coast of North America from the Saint John River, New Brunswick, Canada, to the St. Johns River, Florida, and perhaps as far south as the Indian River in Florida (Evermann and Bean 1898; Gilbert 1989). Currently, the distribution of shortnose sturgeon across their range is disjunctive, with northern populations separated from southern populations by a distance of about 250 mi (400 km) near their geographic center in Virginia. In the southern portion of the range, they are currently found in the Cooper, Altamaha, Ogeechee, and Savannah Rivers in Georgia. While it had been concluded that shortnose sturgeon are extinct from the Satilla River in Georgia, the St. Marys River along the Florida and Georgia border, and the St. Johns River in Florida (Collins et al. 2000a; Kahnle et al. 1998; Rogers and Weber 1995b), recent targeted surveys in both the Satilla and St. Mary's have captured shortnose sturgeon. A single specimen was found in the St. Johns River by the Florida Fish and Wildlife Conservation Commission during extensive sampling of the river in 2002 and 2003.

Life History Information

Shortnose sturgeon populations show clinal variation, ³ with a general trend of faster growth and earlier age at maturity in more southern systems. Fish in the southern portion of the range grow the fastest, but do not reach the larger size of fish in the northern part of the range that continue to grow throughout life. Male shortnose sturgeon mature at 2-3 years of age in Georgia, 3-5 years of age in South Carolina, and 10-11 years of age in the Saint John River, Canada. Females mature at 4-5 years of age in Georgia, 7-10 years of age in the Hudson River, and 12-18 years of age in the Saint John River, Canada. Males begin to spawn 1-2 years after reaching sexual maturity and spawn every 1-2 years (Dadswell 1979; Kieffer and Kynard 1996; NMFS 1998). Age at first spawning for females is about 5 years post-maturation with spawning occurring every 3-5 years (Dadswell 1979). Fecundity of shortnose sturgeon ranges between approximately 30,000-200,000 eggs per female (Gilbert 1989).

Adult shortnose sturgeon spawn in the rivers where they were born. Initiation of the upstream movement of shortnose sturgeon to spawn is likely triggered partially by water temperatures above 46°F (8°C) (Dadswell 1979; Kynard 1997). This typically occurs during the late winter to early spring (December-March) in southern rivers (North Carolina and south) and the mid- to late spring in northern rivers. Southern populations of shortnose sturgeon usually spawn at least 125 mi (200 km) upriver (Kynard 1997) or throughout the fall line⁴ zone if they are able to reach it. Substrate in spawning areas is usually composed of gravel, rubble, cobble, or large rocks (Buckley and Kynard 1985; Dadswell 1979; Kynard 1997; Taubert and Dadswell 1980), or timber, scoured clay, and gravel (Hall et al. 1991). Water depth and flow are also important parameters for spawning sites (Kieffer and Kynard 1996). Spawning sites are characterized by moderate river flows with average bottom velocities between 1-2.5 ft (0.4-0.8 m) per second

³ A gradual change in a character or feature across the distributional range of a species or population, usually correlated with an environmental or geographic transition

⁴ The fall line is the boundary between an upland region of continental bedrock and an alluvial coastal plain, sometimes characterized by waterfalls or rapids.

(Hall et al. 1991; Kieffer and Kynard 1996; NMFS 1998). Spawning in the southern rivers has been reported at water temperatures of $51^{\circ}F(10.5^{\circ}C)$ in the Altamaha River (Heidt and Gilbert 1978) and $48^{\circ}-54^{\circ}F(9^{\circ}-12^{\circ}C)$ in the Savannah River (Hall et al. 1991). In the southern portion of the range, adults typically spawn well upriver in the late winter to early spring and spend the rest of the year in the vicinity of the saltwater/freshwater interface (Collins and Smith 1993).

Little is known about YOY behavior and movements in the wild, but shortnose sturgeon at this age are believed to remain in channel areas within freshwater habitats upstream of the saltwater/freshwater interface for about 1 year, potentially due to their low tolerance for salinity (Dadswell et al. 1984; Kynard 1997). Residence of YOY in freshwater is supported by several studies on cultured shortnose sturgeon (Jarvis et al. 2001; Jenkins et al. 1993; Ziegeweid et al. 2008). In most rivers, juveniles aged 1 and older join adults and show similar patterns of habitat use (Kynard 1997). In the Southeast, juveniles aged 1 year and older make seasonal migrations like adults, moving upriver during warmer months where they shelter in deep holes, before returning to the fresh/saltwater interface when temperatures cool (Collins et al. 2002; Flournoy et al. 1992). Due to their low tolerance for high temperatures, warm summer temperatures (above 82°F) may severely limit available juvenile rearing habitat in some rivers in the southeastern United States. Juveniles in the Saint John, Hudson, and Savannah Rivers use deep channels over sand and mud substrate for foraging and resting (Dovel et al. 1992b; Hall et al. 1991; Pottle and Dadswell 1979).

Status and Population Dynamics

The 1998 shortnose sturgeon recovery plan identified 19 distinct shortnose sturgeon populations based on natal rivers. Since 1998, significantly more tagging/tracking data on straying rates to adjacent rivers has been collected, and several genetic studies have determined where coastal migrations and effective movement (i.e., movement with spawning) are occurring. New genetic analyses aided in identifying population structure across the range of shortnose sturgeon. Several studies (King et al. 2001; Waldman et al. 2002b; Wirgin et al. 2005; Wirgin et al. 2009; Wirgin et al. 2000) indicate that most, if not all, shortnose sturgeon riverine populations are statistically different (p < 0.05), based on tests using both mitochondrial and nuclear DNA genetic markers. That is, while shortnose sturgeon tagged in one river may later be recaptured in another, it is likely that the individuals are not spawning in those non-natal rivers, as gene flow is known to be low between riverine populations. This is consistent with our knowledge that adult shortnose sturgeon are known to return to their natal rivers to spawn. However, Wirgin et al. (2009) provide evidence that greater mixing of riverine populations occurs in areas where the distance between adjacent river mouths is relatively close, such as in the Southeast.

Significant levels of genetic diversity are present in the shortnose sturgeon genome. Characterization of genetic differentiation (haplotype frequency) and estimates of gene flow (genetic distance) provide a quantitative measure to investigate population structure across the range of the shortnose sturgeon and determine their reproductive isolation or connection. Researchers have identified levels of genetic differentiation that indicate high degrees of reproductive isolation in at least 3 groupings (i.e., metapopulations) of shortnose sturgeon (Figure 4). Genetic analyses grouped shortnose sturgeon populations in the Southeast into 1 metapopulation (shown within the "Carolinian Province" in Figure 4). Wirgin et al. (2009) note that genetic differentiation among populations within the Carolinian Province was considerably less pronounced than among those in the other 2 provinces and contemporary genetic data suggest that reproductive isolation among these populations is less than elsewhere.

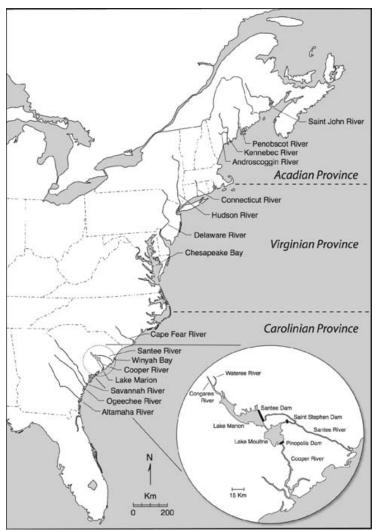


Figure 4. The North American Atlantic coast depicting 3 shortnose sturgeon metapopulations based on mitochondrial DNA control region sequence analysis (Wirgin et al. 2009).

The current status of the shortnose sturgeon in the Southeast is variable. Populations within the southern metapopulation are relatively small compared to their northern counterparts. Table 3 shows available abundance estimates for rivers in the Southeast. The Altamaha River supports the largest known shortnose sturgeon population in the Southeast with successful self-sustaining recruitment. Population estimates for shortnose sturgeon in the Altamaha have been calculated several times since 1993. Total population estimates in the Altamaha show large interannual variation is occurring; estimates have ranged from as low as 468 fish in 1993 to over 6,300 fish in 2006 (DeVries 2006; NMFS 1998). The Ogeechee River is the next most-studied river south of Chesapeake Bay, and abundance estimates indicate that the shortnose sturgeon population in this river is considerably smaller than that in the Altamaha River. The highest point estimate in 1993 using a modified Schnabel technique resulted in a total Ogeechee River population estimate of 361 shortnose sturgeon (95% confidence interval [CI]: 326-400). In contrast, the most recent survey resulted in an estimate of 147 shortnose sturgeon (95% CI: 104-249), suggesting that the

population may be declining. Spawning is also occurring in the Savannah River, the Cooper River, the Congaree River, and the Yadkin-Pee Dee River. The Savannah River shortnose sturgeon population, possibly the second largest in the Southeast with an estimated 1,000-3,000 adults, is facing many environmental stressors and spawning is likely occurring in only a very small area. While active spawning is occurring in South Carolina's Winyah Bay complex (Black, Sampit, Yadkin-Pee Dee, and Waccamaw Rivers) the population status there is unknown. Status of the other riverine populations supporting the southern metapopulation is unknown due to limited survey effort, with capture in some rivers limited to less than 5 specimens.

Population (Location)	Data Series	Abundance Estimate (CI) ^a	Population Segment	Reference
Cape Fear River (NC)	Series	unknown	Segment	
Winyah Bay (NC, SC)		unknown		
Santee River (SC)		unknown		
Cooper River (SC)	1996- 1998	220 (87-301)	Adults	Cooke et al. 2004
ACE Basin (Ashepoo, Combahee, and Edisto Rivers) (SC)		unknown		
Savannah River (SC, GA)		1,000 - 3,000	Adults	B. Post, SCDNR 2003; NMFS unpublished
Ogeechee River (GA)	1993	266 (236-300)		Weber 1996, 1998
	1993	361 (326-400)	Total	Rogers and Weber 1994; NMFS 1998
	1999- 2004	147 (104-249)		Fleming et al. 2003; NMFS unpublished
Altamaha River (GA)	1988	2,862 (1,069-4,226)	Total	NMFS 1998
	1990	798 (645-1,045)	Total	NMFS 1998
	1993	468 (316-903)	Total	NMFS 1998
		6,320 (4,387-9,249)	Total	DeVries 2006
Satilla River (GA)		unknown		
Saint Marys River (FL)		unknown		
St. Johns River (FL)		unknown		FFWCC 2007c

Table 3. Shortnose Sturgeon Populations and Their Estimated Abundances

^a Population estimates (with confidence intervals [CIs]) are established using different techniques and should be viewed with caution. In some cases, sampling biases may have violated the assumptions of the procedures used or resulted in inadequate representation of a population segment. Some estimates (e.g., those without CIs or those that are depicted by ranges only) are the "best professional judgment" of researchers based on their sampling effort and success.

Annual variation in population estimates in many basins is due to changes in yearly capture rates, which are strongly correlated with weather conditions (river flow and water temperatures). In "dry years," fish move into deep holes upriver of the saltwater/freshwater interface, which can make them more susceptible to gillnet sampling. Consequently, rivers with limited data sets among years and limited sampling periods within a year may not offer a realistic representation

of the size or trend of the shortnose sturgeon population in the basin. As a whole, the data on shortnose sturgeon populations is rather limited and some of the differences observed between years may be an artifact of the models and assumptions used by the various studies. Long-term data sets and an open population model would likely provide for more accurate population estimates across the species range, and could provide the opportunity to more closely link strong-year classes to habitat conditions.

The persistence of a species is dependent on the existence of metapopulations. As demonstrated there are 3 metapopulations of shortnose sturgeon. These 3 metapopulations of shortnose sturgeon should not be considered collectively but as individual units of management as each metapopulation is reproductively isolated from the other and therefore, constitutes an evolutionarily (and likely an adaptively) significant lineage. The loss of any metapopulation would result in the loss of evolutionarily significant biodiversity and would result in a significant gap(s) in the species' range. Loss of the southern shortnose sturgeon metapopulation would result in the loss of the southern half of the species' range (i.e., there is no known reproduction south of the Delaware River). Loss of the mid-Atlantic metapopulation (Virginian Province) would create a conspicuous discontinuity in the range of the species from the Hudson River to the northern extent of the Southern metapopulation. The northern metapopulation constitutes the northernmost portion of the U.S. range. Loss of this metapopulation would result in a significant gap in the range that would serve to isolate the shortnose sturgeon that reside in Canada from the remainder of the species' range in the United States. The loss of any metapopulation would result in a decrease in spatial range, biodiversity, unique haplotypes, adaptations to climate change, and gene plasticity. Loss of unique haplotypes that may carry geographic specific adaptations would lead to a loss of genetic plasticity and, in turn, decrease adaptability. The loss of any metapopulation would increase species' vulnerability to stochastic events.

Threats

The shortnose sturgeon was listed as endangered under the ESA as a result of a combination of habitat degradation or loss (resulting from dams, bridge construction, channel dredging, and pollutant discharges), mortality (from impingement on cooling water intake screens, turbines, climate change, dredging, and incidental capture in other fisheries), and the inadequacy of regulatory mechanisms in ameliorating these impacts and threats.

Dams

Dams for hydropower generation, flood control, and navigation adversely affect shortnose sturgeon habitat by impeding access to spawning, developmental, and foraging habitat, modifying free-flowing rivers to reservoirs, physically damaging fish on upstream and downstream migrations, and altering water quality in the remaining downstream portions of spawning and nursery habitat. Fish passage has not proven very successful in minimizing the impacts of dams on shortnose sturgeon, as they do not regularly use existing fish passage devices, which are generally designed to pass pelagic fish (i.e., those living in the water column) rather than bottom-dwelling species like sturgeon. Dams have separated the shortnose sturgeon population in the Cooper River, trapping some above the structure while blocking access upstream to sturgeon below the dam. Telemetry studies indicate that shortnose sturgeon do not pass upriver through the vessel lock in the Pinopolis Dam on the Cooper River. Shortnose sturgeon have been documented entering the lock, but they have never passed into the reservoir, probably because there is a 40 ft (12 m) vertical wall at the upstream end. Shortnose sturgeon

inhabit only Lake Marion, the upper of the 2 reservoirs. There is currently no estimate for the portion of the population that inhabits the reservoirs and rivers above the dam.

Dredging

Riverine, nearshore, and offshore areas are often dredged to support commercial shipping and recreational boating, construction of infrastructure, and marine mining. Environmental impacts of dredging include the direct removal/burial of prey species; turbidity/siltation effects; contaminant resuspension; noise/disturbance; alterations to hydrodynamic regime and physical habitat; and actual loss of riparian habitat (Chytalo 1996; Winger et al. 2000). Dredging in spawning and nursery grounds modifies the quality of the habitat and further restricts the extent of available habitat in the Cooper and Savannah Rivers, where shortnose sturgeon habitat has already been modified and restricted by the presence of dams.

Water Quality

Shortnose sturgeon rely on a variety of water quality parameters to successfully carry out their life functions. Low DO and the presence of contaminants modify the quality of sturgeon habitat and, in some cases, restrict the extent of suitable habitat for life functions. Secor (1995) noted a correlation between low abundances of sturgeon during this century and decreasing water quality caused by increased nutrient loading and increased spatial and temporal frequency of hypoxic (low oxygen) conditions. Of particular concern is the high occurrence of low DO coupled with high temperatures in the river systems throughout the range of the shortnose sturgeon in the Southeast. Sturgeon are more sensitive to low DO than other fish species (Niklitschek and Secor 2009a; Niklitschek and Secor 2009b), and low DO in combination with high temperature is particularly problematic. Dredging activities in the Savannah River are modifying sturgeon habitat by lowering DO, and nonpoint source inputs are causing low DO in the Ogeechee River.

Water Quantity

Water allocation issues are a growing threat in the Southeast and exacerbate existing water quality problems. Taking water from one basin and transferring it to another fundamentally and irreversibly alters natural water flows in both the originating and receiving basins. This transfer can affect DO levels, temperature, and the ability of the basin of origin to assimilate pollutants (GWC 2006). Water quality within the river systems in the range of the shortnose sturgeon is negatively affected by large water withdrawals. Known water withdrawals of over 240 million gallons per day are permitted from the Savannah River for power generation and municipal uses. However, permits for users withdrawing less than 100,000 gallons per day are not required, so actual water withdrawals from the Savannah River and other rivers within the range of the shortnose sturgeon are likely much higher. The removal of large amounts of water from the system alters flows, temperature, and DO. Water shortages and "water wars" are already occurring in the rivers occupied by the shortnose sturgeon and will likely be compounded in the future by human population growth and potentially by climate change.

Climate Change

Shortnose sturgeon in the Southeast are within a region the IPCC predicts will experience overall climatic drying (IPCC 2007). The Southeast has experienced an ongoing period of drought since 2007. During this time, South Carolina experienced drought conditions that ranged from moderate to extreme (SCSCO 2008). From 2006 until mid-2009, Georgia experienced the worst drought in its history. In September 2007, many of Georgia's rivers and streams were at their

lowest levels ever recorded for the month, and new record low daily stream flows were recorded at 15 rivers with 20 or more years of data in Georgia (USGS 2007). The drought worsened in September 2008. All streams in Georgia except those originating in the extreme southern counties were extremely low. While Georgia has periodically undergone periods of drought—there have been 6 periods of drought lasting from 2-7 years since 1903 (Barber and Stamey 2000)—drought frequency appears to be increasing (Ruhl 2003). Abnormally low stream flows can restrict access by sturgeon to habitat areas and exacerbate water quality issues such as water temperature, reduced DO, nutrient levels, and contaminants.

Shortnose sturgeon are already susceptible to reduced water quality resulting from dams, inputs of nutrients, contaminants from industrial activities and nonpoint sources, and interbasin transfers of water. The IPCC report projects with high confidence that higher water temperatures and changes in extremes in this region, including floods and droughts, will affect water quality and exacerbate many forms of water pollution from sediments, nutrients, dissolved organic carbon, pathogens, pesticides, and salt, as well as thermal pollution, with possible negative impacts on ecosystems (IPCC 2007). In addition, sea level rise is projected to extend areas of salinization of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas. Some of the most populated areas of this region are low-lying; the threat of saltwater entering into this region's aquifers with projected sea level rise is a concern (USGRG 2004). Existing water allocation issues would be exacerbated, leading to an increase in reliance on interbasin water transfers to meet municipal water needs, further stressing water quality. Dams, dredging, and poor water quality have already modified and restricted the extent of suitable habitat for shortnose sturgeon spawning and nursery habitat. Changes in water availability (depth and velocities) and water quality (temperature, salinity, DO, contaminants, etc.) in rivers and coastal waters inhabited by shortnose sturgeon resulting from climate change will further modify and restrict the extent of suitable habitat for shortnose sturgeon. Effects could be especially harmful since these populations have already been reduced to low numbers, potentially limiting their capacity for adaptation to changing environmental conditions (Belovsky 1987; Salwasser et al. 1984; Soulé 1987; Thomas 1990).

Bycatch

Overutilization of shortnose sturgeon from directed fishing caused initial severe declines in shortnose sturgeon populations in the Southeast, from which they have never rebounded. Further, continued collection of shortnose sturgeon as bycatch in commercial fisheries is an ongoing impact. Shortnose sturgeon are sensitive to bycatch mortality because they are a long-lived species, have an older age at maturity, have lower maximum reproductive rates, and a large percentage of egg production occurs later in life. In addition, stress or injury to shortnose sturgeon taken as bycatch but released alive may result in increased susceptibility to other threats, such as poor water quality (e.g., exposure to toxins and low DO). This may result in reduced ability to perform major life functions, such as foraging and spawning, or even post-capture mortality.

As a wide-ranging anadromous species, shortnose sturgeon are subject to numerous federal (United States and Canadian), state, provincial, and interjurisdictional laws, regulations, and agencies' activities. While these mechanisms have addressed impacts to shortnose sturgeon through directed fisheries, there are currently no mechanisms in place to address the significant risk posed to shortnose sturgeon from commercial bycatch. Though statutory and regulatory

mechanisms exist that authorize reducing the impact of dams on riverine and anadromous species, such as shortnose sturgeon, and their habitat, these mechanisms have proven inadequate for preventing dams from blocking access to habitat upstream and degrading habitat downstream. Further, water quality continues to be a problem in the historical spawning rivers along the Atlantic coast, even with existing controls on some pollution sources. Current regulatory authorities are not necessarily effective in controlling water allocation issues (e.g., no restrictions on interbasin water transfers in South Carolina, the lack of ability to regulate non-point source pollution).

4 ENVIRONMENTAL BASELINE

This section describes the effects of past and ongoing human and natural factors contributing to the current status of the species, their habitat, and ecosystem within the action area, without the additional effects of the proposed action. In the case of ongoing actions, this section includes the effects that may contribute to the projected future status of the species, their habitats and ecosystems. The environmental baseline describes a species' and habitat's health based on information available at the time of this consultation.

By regulation, environmental baselines for biological opinions include the past and present impacts of all state, federal, or private actions and other human activities in the action area. We identify the anticipated impacts of all proposed federal projects in the specific action area of the consultation at issue, that have already undergone formal or early Section 7 consultation (as defined in 50 CFR 402.11), as well as the impact of state or private actions, or the impacts of natural phenomena, which are concurrent with the consultation in process (50 CFR 402.02).

Focusing on the impacts of the activities in the action area specifically, allows us to assess the prior experience and state (or condition) of the endangered and threatened individuals that occur in an action area, and that will be exposed to effects from the action under consultation. This is important because, in some states or life history stages, or areas of their ranges, listed individuals will commonly exhibit, or be more susceptible to, adverse responses to stressors than they would be in other states, stages, or areas within their distributions. These localized stress responses or stressed baseline conditions may increase the severity of the adverse effects expected from the proposed action.

4.1 Status and Distribution of Green Sea Turtles, Atlantic Sturgeon, and Shortnose Sturgeon in the Action Area

Green Sea Turtles

The green sea turtles that occur in the action area are highly migratory, as are all sea turtle species worldwide. NMFS believes that no individual members of any sea turtle species are likely to be year-round residents of the action area. There are no nesting beaches in the action area. Individual animals will make migrations into nearshore waters as well as other areas of the North Atlantic Ocean, including the Gulf of Mexico and the Caribbean Sea. Therefore, the status of the green sea turtles in the Atlantic (see Section 3) most accurately reflects the species' status within the action area.

Atlantic Sturgeon

Atlantic sturgeon mix extensively in the marine environment (Erickson et al. 2011; Stein et al. 2004b). All 5 DPSs of Atlantic sturgeon could potentially occur in the marine portion of the action area where the entrance channel dredging is occurring. The status of the 5 DPSs of Atlantic sturgeon in the action area, as well as the threats to them, are best reflected in their range-wide statuses and supported by the species accounts in Section 3 (Status of Species). While subadult Atlantic sturgeon utilize multiple estuaries other than the estuary associated with their natal river, we expect the Atlantic sturgeon potentially affected by the inner harbor dredging would be from the South Atlantic DPS due to the inland location of the Inner Harbor dredging in the Savannah River and the fidelity of Atlantic sturgeon to their natal rivers..

Shortnose Sturgeon

All shortnose sturgeon life stages may occur in the action area and are subject to threats which have caused the species endangered listing status (e.g., of access to historical habitat, loss of and alteration of spawning habitat, poor water quality and changes to water flow, substrate alteration, siltation and contamination). We expect that shortnose sturgeon that may occur in the action area would be from the Savannah River spawning population, which is relatively isolated from other shortnose sturgeon river populations. Spawning occurs in the Savannah River, and the population is estimated to consist of between 1,000 and 3,000 spawning adults.

4.1.1 Factors Affecting Green Sea Turtles in the Action Area

The proposed project is located off Georgia, within the Savannah Harbor entrance channel. The following analysis examines actions that may affect these species' environment specifically within the defined action area.

Please refer to the original Opinion for a detailed description of the action area.

4.1.1.1 Federal Actions

In recent years, NMFS has undertaken several ESA Section 7 consultations to address the effects of federally-permitted fisheries and other federal actions on threatened and endangered sea turtle species, and when appropriate, has authorized the incidental taking of these species. Each of those consultations sought to minimize the adverse impacts of the action on sea turtles. Similarly, NMFS has undertaken recovery actions under the ESA to address sea turtle takes in the fishing and shipping industries and other activities such as USACE dredging operations. The summaries below address anticipated sources of incidental take of sea turtles and include- only those federal actions in or near the action area that have already concluded or are currently undergoing formal Section 7 consultation.

Vessel Activities

Watercraft are the greatest contributors to overall noise in the sea and have the potential to interact with sea turtles though direct impacts or propellers. Sound levels and tones produced are generally related to vessel size and speed. Larger vessels generally emit more sound than smaller vessels, and vessels underway with a full load, or those pushing or towing a load, are noisier than unladen vessels. Vessels operating at high speeds have the potential to strike sea turtles. Potential sources of adverse effects from federal vessel operations in the action area

include operations of the United States Department of Defense, Bureau of Ocean Energy Management/Bureau of Safety and Environmental Enforcement (BOEM/BSEE), Federal Energy Regulatory Commission, United States Coast Guard (USCG), NOAA, and USACE.

ESA Section 10 Permits

The ESA allows for the issuance of permits authorizing take of certain ESA-listed species for the purposes of scientific research or enhancement (Section 10(a)(1)(A)). NMFS consults with itself to ensure that issuance of such permits can be done in compliance with Section 7 of the ESA.

Sea turtles are the focus of research activities in the action area for which take is authorized by Section 10 permits under the ESA. As of September 2016, there were 7 active scientific research permits directed toward sea turtles that are applicable to the action area of this Biological Opinion. Authorized activities range from photographing, weighing, and tagging sea turtles, to blood sampling, tissue sampling (biopsy), and performing laparoscopy. The number of authorized takes varies widely depending on the research and species involved but may involve the taking of hundreds of sea turtles annually. Permits are issued for 5 years. Most takes authorized under these permits are expected to be non-lethal. However, Permit No. 16733 authorizes 6 unintentional mortalities. Deaths may include up to: 4 green, 4 Kemp's ridley, 4 loggerhead, 2 hawksbill, 2 leatherback OR 2 olive ridley sea turtles over the course of the permit. Permit No. 19621 authorizes unintentional mortality of 2 loggerhead, 1 Kemp's ridley, and 1 green sea turtle over the course of the permit.

Before any research permit is issued, the proposal must be reviewed under the permit regulations (i.e., must show a benefit to the species). In addition, since issuance of the permit is a federal activity, Section 7 analysis is also required to ensure the issuance of the permit is not likely to result in jeopardy to the species.

Dredging

Marine dredging vessels are common within U.S. coastal waters. Although the underwater noises from dredge vessels are typically continuous in duration (for periods of days or weeks at a time) and strongest at low frequencies, they are not believed to have any long-term effect on sea turtles. However, the construction and maintenance of federal navigation channels and dredging in sand mining sites ("borrow areas") have been identified as sources of sea turtle mortality. Hopper dredges in the dredging mode are capable of moving relatively quickly compared to sea turtle swimming speed and can thus overtake, entrain, and kill sea turtles as the suction draghead(s) of the advancing dredge overtakes the resting or swimming turtle. Entrained sea turtles rarely survive. NMFS completed a regional Opinion on the impacts of USACE's hopperdredging in the South Atlantic in 1997 (NMFS 1997). NMFS determined that (1) hopper dredging in the South Atlantic would adversely affect shortnose sturgeon and 4 sea turtle species (i.e., green, hawksbill, Kemp's ridley, and loggerheads), but would not jeopardize their continued existence, and (2) South Atlantic dredging would not adversely affect leatherback sea turtles or ESA-listed large whales (NMFS 1997). An ITS for those species adversely affected was issued. The USACE requested reinitiation of consultation in 2007 to: (1) consider species and critical habitat, that may be affected by the action, which had not been listed at the time of the previous Opinion and were not considered (e.g., smalltooth sawfish, ESA-listed corals, Acropora critical habitat); (2) update the areas, channels, and dredge techniques that the USACE

wanted considered, and (3) to include BOEM as a co-action agency. NMFS is currently working on drafting an updated South Atlantic Regional Biological Opinion (SARBO).

4.1.1.2 Federally-Managed Fisheries Effects on Sea Turtles

Threatened and endangered sea turtles are adversely affected by several types of fishing gears used throughout the action area. Gillnet, longline, other types of hook-and-line gear, trawl gear, and pot fisheries have all been documented as interacting with sea turtles. Available information suggests sea turtles can be captured in any of these gear types when the operation of the gear overlaps with the distribution of sea turtles. For all fisheries for which there is an FMP or for which any federal action is taken to manage that fishery, impacts have been evaluated under Section 7. Formal Section 7 consultations have been conducted on the following fisheries, occurring at least in part within the action area, found likely to adversely affect threatened and endangered sea turtles. An ITS has been issued for the take of sea turtles in each of these fisheries (please refer to Appendix D). A brief summary of each fishery is provided below, but more detailed information can be found in the respective Biological Opinions.

Atlantic Bluefish Fishery

The fishery has been operating in the U.S. Atlantic (from Maine to Florida) for at least the last half century, although its popularity did not heighten until the late 1970s and early 1980s (MAFMC and ASMFC 1998). The majority of commercial fishing activity in the North Atlantic and mid-Atlantic occurs in the late spring to early fall, when bluefish (and sea turtles) are most abundant in these areas (NEFSC 2005). This fishery is known to interact with loggerhead sea turtles, given the time and locations where the fishery occurs. Gillnets account for the vast majority of bluefish landed by commercial harvesters. In 2011, gillnets accounted for 93.4% of the directed catch of bluefish, while hook gear accounted for 4.5% and other gear categories caught the remaining 2.1% (MAFMC 2013). Aside from gillnets, gear types authorized for use in the commercial harvest of bluefish include trawl, longline, handline, bandit, rod and reel, pot, trap, seine, and dredge gear (50 CFR 600.725(v)).

Consultations on the fishery have been conducted in 1999, 2010, and most recently in 2013. The 2013 consultation included an evaluation of the effects of the fishery on ESA-listed whales, sea turtles, and the newly listed Atlantic sturgeon. The bluefish fishery was considered as part of a larger "batched" consultation that evaluated the effects of: (1) Northeast multispecies, (2) monkfish, (3) spiny dogfish, (4) Atlantic bluefish, (5) Northeast skate complex, (6) Atlantic mackerel/squid/butterfish, and (7) summer flounder/scup/black sea bass fisheries. The consultation concluded that the continued operation of the Atlantic bluefish fishery was likely to adversely affect, but not jeopardize, the continued existence of any species of sea turtle; incidental take was authorized (Appendix D).

Coastal Migratory Pelagics Fishery

In 2007, NMFS completed a Section 7 consultation on the continued authorization of the coastal migratory pelagics fishery in the Gulf of Mexico and South Atlantic (NMFS 2007). In the Gulf of Mexico, vertical line, gillnet, and cast net gears are used. Gillnets are the primary gear type used by commercial fishers in the south Atlantic regions as well, while the recreational sector uses hook-and-line gear. The vertical line effort is primarily trolling. The Opinion concluded that green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles may be adversely

affected by operation of the fishery. In November 2012, NMFS requested reinitiation of consultation to evaluate the potential impact of this fishery on the recently listed 5 distinct population segments of Atlantic sturgeon and an Opinion was issued on June 18, 2015. The proposed action was not expected to jeopardize the continued existence of any of sea turtle species, and an ITS was provided. Appendix D reports the takes currently authorized for the fishery.

Dolphin/Wahoo Fishery

The South Atlantic FMP for the dolphin/wahoo fishery was approved in December 2003. The stated purpose of the Dolphin and Wahoo FMP is to adopt precautionary management strategies to maintain the current harvest level and historical allocations of dolphin (90% recreational) and ensure no new fisheries develop. NMFS conducted a formal Section 7 consultation to consider the effects on sea turtles of authorizing fishing under the FMP (NMFS 2003b). The August 27, 2003, Opinion concluded that green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles may be adversely affected by the longline component of the fishery, but it was not expected to jeopardize their continued existence. An ITS for sea turtles was provided with the Opinion. In addition, pelagic longline vessels can no longer target dolphin/wahoo with smaller hooks because of hook size requirements in the pelagic longline fishery. Appendix D reports the takes currently authorized for the fishery.

Highly Migratory Species (HMS)-Atlantic Pelagic Fisheries for Swordfish, Tuna, and Billfish Atlantic pelagic fisheries for swordfish, tuna, and billfish are known to incidentally capture large numbers of sea turtles, particularly in the pelagic longline component. Pelagic longline, pelagic driftnet, bottom longline, and/or purse seine gear have all been documented taking sea turtles. The Northeast swordfish driftnet portion of the fishery was prohibited during an emergency closure that began in December 1996, and was subsequently extended. A permanent prohibition on the use of driftnet gear in the swordfish fishery was published in 1999. NMFS reinitiated consultation on the pelagic longline component of this fishery (NMFS 2004) because the authorized number of incidental takes for loggerheads and leatherbacks sea turtles were exceeded. The resulting Biological Opinion stated the long-term continued operation this sector of the fishery was likely to jeopardize the continued existence of leatherback sea turtles, but reasonable and prudent alternatives were identified allowing for the continued authorization of the pelagic longline fishing that would not jeopardize leatherback sea turtles. Appendix D reports the takes currently authorized for the fishery.

HMS Atlantic Shark and Smoothhound Fisheries

These fisheries include commercial shark bottom longline and gillnet fisheries and recreational shark fisheries under the FMP for Atlantic Tunas, Swordfish, and Sharks (HMS FMP). NMFS has formally consulted 3 times on the effects of HMS shark fisheries on sea turtles (i.e., (NMFS 2003a; NMFS 2008; NMFS 2012a). NMFS also began authorizing a federal smoothhound fishery that will be managed as part of the HMS shark fisheries. NMFS (2012a) analyzed the potential adverse effects from the smoothhound fishery on sea turtles for the first time. Both bottom longline and gillnet are known to adversely affect sea turtles. From 2007-2011, the sandbar shark research fisheries. During that period, 10 sea turtle (all loggerheads) takes were observed on bottom longline gear in the sandbar shark research fishery, and 5 were taken outside the research fishery. The 5 non-research fishery takes were extrapolated to the entire fishery,

providing an estimate of 45.6 sea turtle takes (all loggerheads) for non-sandbar shark research fishery from 2007-2010 (Carlson and Richards 2011). No sea turtle takes were observed in the non-research fishery in 2011 (NMFS unpublished data). Since the research fishery has a 100% observer coverage requirement those observed takes were not extrapolated (Carlson and Richards 2011). Because few smoothhound trips were observed, no sea turtle captures were documented in the smoothhound fishery.

The most recent ESA Section 7 consultation was completed on December 12, 2012, on the continued operation of those fisheries and Amendments 3 and 4 to the Consolidated HMS FMP (NMFS 2012a). The consultation concluded the proposed action was not likely to jeopardize the continued existence of sea turtles. An ITS was provided authorizing takes. Appendix D reports the takes currently authorized for the fishery.

South Atlantic Snapper-Grouper Fishery

The fishery uses spear and powerheads, black sea bass (BSB) pots, and hook-and-line gear. Hook-and-line gear used in the fishery includes commercial bottom longline gear and commercial and recreational vertical line gear (e.g., handline, bandit gear, and rod-and-reel). The fishery has impacts turtle species. The most recent consultation (2016) concluded the continued authorization of the fishery was not likely to jeopardize the continued existence of any of these species. Appendix D reports the takes currently authorized for the fishery.

Southeastern Shrimp Trawl Fisheries

NMFS has prepared Opinions on the Gulf of Mexico shrimp trawling numerous times over the years (most recently 2002, 2012, and 2014). The consultation history is closely tied to the lengthy regulatory history governing the use of turtle excluder devices (TEDs) and a series of regulations aimed at reducing potential for incidental mortality of sea turtles in commercial shrimp trawl fisheries. The level of annual mortality described in (NRC 1990) is believed to have continued until 1992-1994, when U.S. law required all shrimp trawlers in the Atlantic and Gulf of Mexico to use TEDs, allowing at least some sea turtles to escape nets before drowning (NMFS 2002).⁵ TEDs approved for use have had to demonstrate 97% effectiveness in excluding sea turtles from trawls in controlled testing. These regulations have been refined over the years to ensure that TED effectiveness is maximized through proper placement and installation, configuration (e.g., width of bar spacing), flotation, and more widespread use.

Despite the apparent success of TEDs for some species of sea turtles (e.g., Kemp's ridleys), it was later discovered that TEDs were not adequately protecting all species and size classes of sea turtles. Analyses by Epperly and Teas (2002) indicated that the minimum requirements for the escape opening dimension in TEDs in use at that time were too small for some sea turtles and that as many as 47% of the loggerheads stranding annually along the Atlantic and Gulf of Mexico were too large to fit the existing openings. On December 2, 2002, NMFS completed an Opinion on shrimp trawling in the southeastern United States (NMFS 2002) under proposed revisions to the TED regulations requiring larger escape openings (68 FR 8456, February 21, 2003). This Opinion determined that the shrimp trawl fishery under the revised TED regulations

⁵ TEDs were mandatory on all shrimping vessels. However, certain shrimpers (e.g., fishers using skimmer trawls or targeting bait shrimp) could operate without TEDs if they agreed to follow specific tow time restrictions.

would not jeopardize the continued existence of any sea turtle species. The determination was based in part on the Opinion's analysis that shows the revised TED regulations are expected to reduce shrimp trawl related mortality by 94% for loggerheads and 97% for leatherbacks. In February 2003, NMFS implemented the revisions to the TED regulations.

On May 9, 2012, NMFS completed a Biological Opinion that analyzed the continued implementation of the sea turtle conservation regulations and the continued authorization of the Southeast U.S. shrimp fisheries in federal waters under the Magnuson-Stevens Act (NMFS 2012c). The Opinion also considered a proposed amendment to the sea turtle conservation regulations to withdraw the alternative tow time restriction at 50 CFR 223.206(d)(2)(ii)(A)(3) for skimmer trawls, pusher-head trawls, and wing nets (butterfly trawls) and instead require all of those vessels to use TEDs. The Opinion concluded that the proposed action was not likely to jeopardize the continued existence of any sea turtle species. An ITS was provided that used anticipated trawl effort and fleet TED compliance (i.e., compliance resulting in overall average sea turtle catch rates in the shrimp otter trawl fleet at or below 12%) as surrogates for sea turtle takes. On November 21, 2012, NMFS determined that a Final Rule requiring TEDs in skimmer trawls, pusher-head trawls, and wing nets was not warranted and withdrew the proposal. The decision to not implement the Final Rule created a change to the proposed action analyzed in the 2012 Opinion and triggered the need to reinitiate consultation. Consequently, NMFS reinitiated consultation on November 26, 2012. Consultation was completed in April 2014 and determined the continued implementation of the sea turtle conservation regulations and the continued authorization of the Southeast U.S. shrimp fisheries in federal waters under the Magnuson-Stevens Act was not likely jeopardize the continued existence of any sea turtle species. The ITS maintained the use of anticipated trawl effort and fleet TED compliance as surrogates for numerical sea turtle takes (Appendix D).

Spiny Dogfish Fishery

The primary gear types for the spiny dogfish fishery are sink gillnets, otter trawls, bottom longline, and driftnet gear (NEFSC 2003). The predominance of any 1 gear type has varied over time (NEFSC 2003). In 2005, 62.1% of landings were taken by sink gillnet gear, followed by 18.4% in otter trawl gear, 2.3% in line gear, and 17.1% in gear defined as "other" (excludes drift gillnet gear) (NEFSC 2006). More recently, data from fish dealer reports in Fiscal Year 2008 indicate that spiny dogfish landings came mostly from sink gill nets (68.2%), and hook gear (15.2%), bottom otter trawls (4.9%), as well as unspecified (7.7%) or other gear (3.9%) (MAFMC 2010). Sea turtles can be incidentally captured in spiny dogfish gear, which can lead to injury and death as a result of forced submergence in the gear.

Biological Opinions on the continued operation of the fishery were completed in 2008, 2010, and most recently in December 2013. The 2013 consultation included an evaluation of the effects of the fishery on ESA-listed considered as part of a larger "batched" consultation which evaluated the effects of the (1) Northeast multispecies, (2) monkfish, (3) spiny dogfish, (4) Atlantic bluefish, (5) Northeast skate complex, (6) Atlantic mackerel/squid/butterfish, and (7) summer flounder/scup/BSB fisheries. The consultation concluded that the continued operation of the fishery was likely to adversely affect but not jeopardize the continued existence of any species of sea turtle. Incidental take was authorized. Appendix D reports the takes currently authorized for the fishery.

Fisheries Monitoring

NMFS Integrated Fisheries Independent Monitoring Activities in the Southeast (Atlantic) Region promotes and funds projects conducted by the Southeast Fisheries Science Center (SEFSC) and other NMFS partners to collect fisheries independent data. The various projects use a variety of gear (e.g., trawls, nets, etc.) to conduct fishery research. Sea Turtles are incidentally taken during the course of these activities. Up to 34 loggerhead, 22 Kemp's ridley, 1 leatherback, and 18 green sea turtle lethal takes are expected over continuing 5 year periods (NMFS 2016). NMFS also recently consulted on a project funded by the USFWS for fisheries monitoring to be conducted by GADNR to collect, analyze, and report biological and fisheries information to describe the conditions or health of recreationally important finfish populations and develop management recommendations that would maintain or restore the stocks in coastal Georgia. GADNR collects and reports information from the following studies: 1) Ecological Monitoring Trawl Survey, 2) Juvenile Trawl Survey, 3) Marine Sport Fish Health Survey – Gill Net Survey, 4) Marine Sport Fish Health Survey – Trammel Net Survey, 5) Hook and Line Surveys/Sampling, and 6) Artificial Reef Monitoring. Due to the use of trawls and nets, sea turtles may be taken during the studies. The USFWS consulted with NMFS (SER-2015-16739) on the potential effects to sea turtles (NMFS, 2017). The consultation concluded that the continued operation of GADNR's studies on recreationally important fish species was likely to adversely affect but not jeopardize the continued existence of sea turtles. Non-lethal incidental take was authorized (Appendix D).

4.1.1.3 State or Private Actions

Maritime Industry

Private and commercial vessels, including fishing vessels, operating in the action area of this consultation also have the potential to interact with ESA-listed species. The effects of fishing vessels, recreational vessels, or other types of commercial vessels on listed species may involve disturbance or injury/mortality due to collisions or entanglement in anchor lines. Commercial traffic and recreational pursuits can also adversely affect sea turtles through propeller and boat strikes. The Sea Turtle Stranding and Salvage Network (STSSN) includes many records of vessel interaction (propeller injury) with sea turtles where there are high levels of vessel traffic. The extent of the problem is difficult to assess because of not knowing whether the majority of sea turtles are struck pre- or post-mortem. Private vessels in the action area participating in high-speed marine events (e.g., boat races) are a particular threat to sea turtles. It is important to note that minor vessel collisions may not kill an animal directly, but may weaken or otherwise affect it so it is more likely to become vulnerable to effects such as entanglements.

Coastal Development

Beachfront development, lighting, and beach erosion control all are ongoing activities along the Georgia/South Carolina coastline. These activities potentially reduce or degrade sea turtle nesting habitats or interfere with hatchling movement to sea. Nighttime human activities along nesting beaches may also discourage sea turtles from nesting sites. The extent to which these activities reduce sea turtle nesting and hatchling production is unknown. However, more and more coastal counties are adopting stringent protective measures to protect hatchling sea turtles from the disorienting effects of beach lighting.

State Fisheries

Various fishing methods used in state commercial and recreational fisheries, including gillnets, trawling, trap fisheries, and vertical line are all known to incidentally take sea turtles, but information on these fisheries is sparse (NMFS-SEFSC 2001). Most of the state data are based on extremely low observer coverage, or sea turtles were not part of data collection; thus, these data provide insight into gear interactions that could occur, but are not indicative of the magnitude of the overall problem. The following sections will briefly discuss these fisheries.

Southeastern Shrimp Trawl Fisheries

Please refer to the discussion in section 4.1.1.2; shrimp fishing occurs both in state and federal waters.

Other Fisheries

In addition to the shrimp fishery, several other fisheries exist in Georgia waters using gillnets, seines, pots or wire baskets (e.g., crab, catfish), and hook and line. The exact extent to which these fisheries directly or indirectly affect sea turtles is unknown, but some level of impact is expected, either through direct take or to the species habitat. Additionally, associated fishery research (e.g., the precursor to the proposed action) has taken sea turtles, however no injuries or mortalities have been recorded.

A state (non-shrimp) bottom trawl fishery that is suspected of incidentally capturing sea turtles is the whelk trawl fishery in Georgia (M. Dodd, GADNR, pers. comm. to J. Braun-McNeill, SEFSC, December 21, 2000). From 1996-1997, observers onboard whelk trawlers in Georgia reported a total of 3 Kemp's ridley, 2 green, and 2 loggerhead sea turtles captured in 28 tows for a CPUE of 0.3097 sea turtles/100 ft net hour. Since December 2000, TEDs have been required in Georgia state waters when trawling for whelk. Trawls for cannonball jellyfish may also be a source of interactions.

Beyond commercial fisheries, observations of state recreational fisheries have shown that loggerhead, leatherback, Kemp's ridley, and green sea turtles are known to bite baited hooks, and loggerheads and Kemp's ridleys frequently ingest the hooks. Data reported through Marine Recreational Fishery Statistical Survey/Marine Recreational Information Program and the STSSN show recreational fishers have hooked sea turtles when fishing from boats, piers, and beach, banks, and jetties. Although the past and current effects of these fisheries on listed species have not been quantified, NMFS believes that ongoing state fishing activities may be responsible for a portion of observed strandings of sea turtles on both the Atlantic and Gulf of Mexico coasts.

4.1.1.4 Other Potential Sources of Impacts in the Environmental Baseline

Marine Pollution

While some sources of marine pollution are difficult to attribute to a specific federal, state, local or private action, they may indirectly affect sea turtles in the action area. Sources of pollutants include atmospheric loading of pollutants such as polychlorinated biphenyls (PCBs) and storm water runoff from coastal towns and cities into rivers and canals emptying into bays and the ocean (e.g., Mississippi River). There are studies on organic contaminants and trace metal accumulation in green, leatherback, and loggerhead sea turtles (Aguirre et al. 1994; Caurant et al.

1999; Corsolini et al. 2000). McKenzie et al. (1999) measured concentrations of chlorobiphenyls and organochlorine pesticides in sea turtles tissues collected from the Mediterranean (Cyprus, Greece) and European Atlantic waters (Scotland) between 1994 and 1996. Omnivorous loggerhead turtles had the highest organochlorine contaminant concentrations in all the tissues sampled, including those from green and leatherback turtles (Storelli et al. 2008). It is thought that dietary preferences were likely to be the main differentiating factor among species. Decreasing lipid contaminant burdens with sea turtle size were observed in green turtles, most likely attributable to a change in diet with age. (Sakai et al. 1995) documented the presence of metal residues occurring in loggerhead sea turtle organs and eggs. Storelli et al. (1998) analyzed tissues from 12 loggerhead sea turtles stranded along the Adriatic Sea (Italy) and found that characteristically, mercury accumulates in sea turtle livers while cadmium accumulates in their kidneys, as has been reported for other marine organisms like dolphins, seals, and porpoises (Law et al. 1991). No information on detrimental threshold concentrations is available and little is known about the consequences of exposure of organochlorine compounds to sea turtles. Research is needed into how chlorobiphenyl, organochlorine, and heavy-metal accumulation effect the short- and long-term health of sea turtles and what effect those chemicals have on the number of eggs laid by females. More information is needed to understand the potential impacts of marine pollution in the action area.

Nutrient loading from land-based sources, such as coastal communities and agricultural operations, stimulate plankton blooms in closed or semi-closed estuarine systems. Oxygen depletion, referred to as hypoxia, can negatively impact sea turtles' habitats, prey availability, and survival and reproductive fitness. But the effects of nutrient loading on larger embayments (and the pelagic environment of the action area) are unknown.

The development of marinas and docks in inshore waters can negatively impact nearshore habitats. Fueling facilities at marinas can sometimes discharge oil, gas, and sewage into sensitive estuarine and coastal habitats. Although these contaminant concentrations do not likely affect the more pelagic waters, the species of turtles analyzed in this Biological Opinion travel between nearshore and offshore habitats and may be exposed to and accumulate these contaminants during their life cycles.

Fuel oil spills could affect animals directly or indirectly through the food chain. Fuel spills involving fishing vessels are common events, although these spills typically involve small amounts of material. Larger oil spills may result from accidents, although these events would be rare. No direct adverse effects on listed species resulting from fishing vessel fuel spills have been documented.

Acoustic Impacts

Acoustic impacts can include temporary or permanent injury, habitat exclusion, habituation, and disruption of other normal behavior patterns. NMFS and the U.S. Navy are working cooperatively to assess military acoustic impacts (e.g., mid-range sonar) along the east coast of the United States (i.e., primarily North Carolina through Florida). Although focused on marine mammals, sea turtles may benefit from increased research on acoustics and reduction in noise levels.

Climate Change

As discussed earlier, there is a large and growing body of literature on past, present, and future impacts of global climate change. Potential effects commonly mentioned include changes in sea temperatures and salinity (due to melting ice and increased rainfall), ocean currents, storm frequency and weather patterns, and ocean acidification. These changes have the potential to affect species behavior and ecology including migration, foraging, reproduction (e.g., success), and distribution. For example, sea turtles currently range from temperate to tropical waters. A change in water temperature could result in a shift or modification of range. Climate change may also affect marine forage species, either negatively or positively (the exact effects for the marine food web upon which sea turtles rely is unclear, and may vary between species). It may also affect migratory behavior (e.g., timing, length of stay at certain locations). These types of changes could have implications for sea turtle recovery.

Additional discussion of climate change can be found in the Status of the Species. However, to summarize with regards to the action area, global climate change may affect the timing and extent of population movements and their range, distribution, species composition of prey, and the range and abundance of competitors and predators. Climate change may result in changes in species distribution including displacement from ideal habitats, decline in fitness of individuals, reduced population size due to the potential loss of foraging opportunities or other habitat alterations and adverse impacts on migration, community structure, susceptibility to disease and contaminants, and reproductive success are all possible impacts that may occur as the result of climate change. Still, more information is needed to better determine the full and entire suite of impacts of climate change on sea turtles and specific predictions regarding impacts in the action area are not currently possible.

4.1.1.5 Conservation and Recovery Actions Benefiting Sea Turtles in the Action Area

NMFS has implemented a series of regulations aimed at reducing potential for incidental mortality of sea turtles from commercial fisheries in the action area. These include sea turtle release gear requirements for the Atlantic HMS and South Atlantic snapper-grouper fisheries, TED requirements for the Southeast shrimp trawl and North Carolina flynet fisheries, mesh size restrictions in the North Carolina gillnet fishery and Virginia's gillnet fisheries, and area closures in the North Carolina gillnet fishery. In addition to regulations, outreach programs have been established and data on sea turtle interactions with recreational fisheries has been collected through the Marine Recreational Fishery Statistical Survey/Marine Recreational Information Program. The summaries below discuss all of these measures in more detail.

Reducing Threats from Pelagic Longline and Other Hook-and-Line Fisheries

On July 6, 2004, NMFS published a Final Rule to implement management measures to reduce bycatch and bycatch mortality of Atlantic sea turtles in the Atlantic pelagic longline fishery (69 FR 40734). The management measures include mandatory circle hook and bait requirements, and mandatory possession and use of sea turtle release equipment to reduce bycatch mortality.

NMFS published Final Rules to implement sea turtle release gear requirements and sea turtle careful release protocols in the South Atlantic snapper-grouper fishery (November 8, 2011; 76 FR 69230). These measures require owners and operators of vessels with federal commercial or

charter vessel/headboat permits for South Atlantic snapper-grouper to comply with sea turtle release protocols and have on board specific sea turtle-release gear.

Revised Use of Turtle Excluder Devices in Trawl Fisheries

NMFS has also implemented a series of regulations aimed at reducing potential for incidental mortality of sea turtles in commercial shrimp trawl fisheries. In particular, NMFS has required the use of TEDs in southeast United States shrimp trawls since 1989 and in summer flounder trawls in the mid-Atlantic area (south of Cape Charles, Virginia) since 1992. It has been estimated that TEDs exclude 97% of the sea turtles caught in such trawls. These regulations have been refined over the years to ensure that TED effectiveness is maximized through more widespread use, and proper placement, installation, configuration (e.g., width of bar spacing), and floatation.

Significant measures have been developed to reduce the take of sea turtles in summer flounder trawls and trawls that meet the definition of a summer flounder trawl (which would include fisheries for other species like scup and BSB) by requiring TEDs in trawl nets fished from the North Carolina/South Carolina border to Cape Charles, Virginia. However, the TED requirements for the summer flounder trawl fishery do not require the use of larger TEDs that are used in the shrimp trawl fisheries to exclude leatherbacks, as well as large benthic-immature and sexually mature loggerheads and green sea turtles.

In 1998, the SEFSC began developing a TED for flynets. In 2007, the Flexible Flatbar Flynet TED was developed and catch retention trials and usability testing was completed (Gearhart 2010). Experiments are still ongoing to certify a bottom-opening flynet TED.

Placement of Fisheries Observers to Monitor Sea Turtle Captures

On August 3, 2007, NMFS published a Final Rule that required selected fishing vessels to carry observers on board to collect data on sea turtle interactions with fishing operations, to evaluate existing measures to reduce sea turtle captures, and to determine whether additional measures to address prohibited sea turtle captures may be necessary (72 FR 43176). This Rule also extended the number of days NMFS observers could be placed aboard vessels, for 30-180 days, in response to a determination by the Assistant Administrator that the unauthorized take of sea turtles may be likely to jeopardize their continued existence under existing regulations.

Final Rules for Large-Mesh Gillnets

In March 2002, NMFS published new restrictions for the use of gillnets with larger than 8-instretched mesh, in federal waters (3-200 nautical miles [nmi]) off North Carolina and Virginia. These restrictions were published in an interim Final Rule under the authority of the ESA (67 FR 13098) and were implemented to reduce the impact of the monkfish and other large-mesh gillnet fisheries on ESA-listed sea turtles in areas where sea turtles are known to concentrate. Following review of public comments submitted on the interim Final Rule, NMFS published a Final Rule on December 3, 2002, that established the restrictions on an annual basis. As a result, gillnets with larger than 8-in-stretched mesh were not allowed in federal waters (3-200 nmi) in the areas described as follows: (1) north of the North Carolina/South Carolina border at the coast to Oregon Inlet at all times; (2) north of Oregon Inlet to Currituck Beach Light, North Carolina, from March 16-January 14; (3) north of Currituck Beach Light, North Carolina, to Wachapreague Inlet, Virginia, from April 1-January 14; and (4) north of Wachapreague Inlet, Virginia, to Chincoteague, Virginia, from April 16-January 14. On April 26, 2006, NMFS published a Final Rule (71 FR 24776) that included modifications to the large-mesh gillnet restrictions. The new Final Rule revised the gillnet restrictions to apply to stretched mesh that is greater than or equal to 7 in. Federal waters north of Chincoteague, Virginia, remain unaffected by the large-mesh gillnet restrictions.

Other Sea Turtle Conservation Actions

Sea Turtle Handling and Resuscitation Techniques

NMFS published a Final Rule (66 FR 67495, December 31, 2001) detailing handling and resuscitation techniques for sea turtles that are incidentally caught during scientific research or fishing activities. Persons participating in fishing activities or scientific research are required to handle and resuscitate (as necessary) sea turtles as prescribed in the Final Rule. These measures help to prevent mortality of hardshell turtles caught in fishing or scientific research gear.

Outreach and Education, Sea Turtle Entanglement, and Rehabilitation

There is an extensive network of STSSN participants along the Atlantic and Gulf of Mexico coasts that not only collect data on dead sea turtles, but also rescue and rehabilitate any live stranded sea turtles.

A Final Rule (70 FR 42508) published on July 25, 2005, allows any agent or employee of NMFS, the USFWS, the USCG, or any other federal land or water management agency, or any agent or employee of a state agency responsible for fish and wildlife, when acting in the course of his or her official duties, to take endangered sea turtles encountered in the marine environment if such taking is necessary to aid a sick, injured, or entangled endangered sea turtle, or dispose of a dead endangered sea turtle, or salvage a dead endangered sea turtle that may be useful for scientific or educational purposes. NMFS already affords the same protection to sea turtles listed as threatened under the ESA [50 CFR 223.206(b)].

4.1.2 Factors Affecting Atlantic Sturgeon in the Action Area

The following section examines actions that may affect Atlantic sturgeon or their environments specifically within the action area. Atlantic sturgeon found in the immediate project area may travel widely throughout the Atlantic, and individuals found in the action area can potentially be affected by activities anywhere within this wide range. These impacts outside of the action area are discussed and incorporated as part of the overall status of the species as detailed in Status of Species section, above. The activities that shape the environmental baseline for Atlantic sturgeon in the action area of this consultation are primarily dams, fisheries, dredging, permits allowing take under the ESA, marine pollution, and climate change.

4.1.2.1 Federal Actions

Dredging

Riverine, nearshore, and offshore areas are often dredged to support commercial shipping, recreational boating, construction of infrastructure, and marine mining. Dredging activities can pose significant impacts to sturgeon through direct capture. Environmental impacts of dredging that could also impact sturgeon include the following: (1) direct removal/burial of organisms; (2)

turbidity/siltation effects; (3) contaminant resuspension; (4) noise/disturbance; (5) alterations to hydrodynamic regime and physical habitat; and (6) loss of riparian habitat (Chytalo 1996; Winger et al. 2000).

Maintenance dredging of federal navigation channels can adversely affect Atlantic sturgeon due to their benthic nature. Hydraulic dredges (e.g., hopper, cutterhead) can lethally harm sturgeon directly by entraining sturgeon in dredge drag arms and impeller pumps. Atlantic sturgeon mortalities in mechanical dredges (i.e., clamshell) have also been documented (Dickerson 2011). Potential impacts from hydraulic dredge operations may be avoided by imposing work restrictions during sensitive time periods (i.e., spawning, migration, feeding) when sturgeon are most vulnerable to mortalities from dredging activity.

Dickerson (2011) summarized observed takings of 29 sturgeon from dredging activities conducted by the USACE off of the Atlantic coast and observed from 1990-2010: 2 Gulf, 11 shortnose, and 15 Atlantic, and 1 unidentified due to decomposition. Of these, seven takes of Atlantic sturgeon (five lethal, two non-lethal) occurred in the action area during hopper dredging of the Savanah River under the 2003 Gulf of Mexico Regional Biological Opinion (GRBO). Of the 3 types of dredges included (hopper, clamshell, and pipeline) in the report, most sturgeon were captured by hopper dredge. Notably, reports include only those trips when an observer was on board to document capture.

4.1.2.2 Federally Managed Fisheries Effects on Atlantic Sturgeon

Atlantic sturgeon are adversely affected by fishing gears used throughout the action area. While a number of different gears are utilized (e.g., gillnet, longline, other types of hook-and-line gear, trawl gear, and pot fisheries), Atlantic sturgeon bycatch mainly occurs in gillnets, with the greatest number of captures and highest mortality rates occurring in sink gillnets. Atlantic sturgeon are also taken in trawl fisheries, though recorded captures and mortality rates are low. Formal Section 7 consultations have been conducted on the fisheries discussed in the following sections, occurring at least in part within the action area; these fisheries utilize gear known to adversely affect Atlantic sturgeon (i.e., gillnets and trawls). A brief summary of each fishery is provided below, but more detailed information can be found in the respective Biological Opinions. Appendix D lists the incidental takes authorized under the federal fisheries where Section 7 consultation has been completed.

Atlantic Bluefish Fishery

The Atlantic bluefish fishery has been operating in the U.S. Atlantic for at least the last half century, although its popularity did not heighten until the late 1970s and early 1980s (MAFMC and ASMFC 1998). The gears used include otter trawls, gillnets, and hook-and-line. The majority of commercial fishing activity in the north Atlantic and mid-Atlantic occurs in the late spring to early fall, when bluefish are most abundant in these areas (NEFSC 2005). Formal consultations on the fishery have been conducted in 1999, 2010, and most recently in December 2013. The 2013 consultation included an evaluation of the effects of the fishery on ESA-listed whales, sea turtles, and the newly listed Atlantic sturgeon. The bluefish fishery was considered as part of a larger "batched" consultation which evaluated the effects of the (1) Northeast multispecies, (2) monkfish, (3) spiny dogfish, (4) Atlantic bluefish, (5) Northeast skate complex, (6) Atlantic mackerel/squid/butterfish, and (7) summer flounder/scup/BSB fisheries. The

consultation concluded that the continued operation of the Atlantic bluefish fishery was likely to adversely affect, but not jeopardize, the continued existence of any DPS of Atlantic sturgeon. Incidental take was authorized (Appendix D).

Coastal Migratory Pelagic Resources Fisheries

NMFS completed a Section 7 consultation on the continued authorization of the coastal migratory pelagic resources fishery in the Gulf of Mexico and South Atlantic (NMFS 2015). In the Gulf of Mexico and South Atlantic, commercial fishers target king and Spanish mackerel with hook-and-line (i.e., handline, rod-and-reel, and bandit), gillnet, and cast net gears. Recreational fishers in both areas use only rod-and-reel. Trolling is the most common hook-and-line fishing technique used by both commercial and recreational fishers. Although run-around gillnets accounted for the majority of the king mackerel catch from the late 1950s through 1982, in 1986, and in 1993, handline gear has been the predominant gear used in the commercial king mackerel fishery since 1993 (NMFS 2015). The consultation concluded that the continued operation of the coastal migratory pelagic resources fishery in the Gulf of Mexico and South Atlantic was likely to adversely affect, but not jeopardize, the continued existence of any DPS of Atlantic sturgeon. Incidental take was authorized (Appendix D).

HMS Atlantic Shark and Smoothhound Fisheries

These fisheries include commercial shark bottom longline and gillnet fisheries and recreational shark fisheries under the FMP for Atlantic Tunas, Swordfish, and Sharks (HMS FMP). NMFS (2012a) was the first formal consultation that evaluated the potential adverse effects of these fisheries on all 5 DPSs. Hook-and-line gear (including bottom longline gear) is considered not likely to adversely affect Atlantic sturgeon. NMFS (2012a) considered the potential adverse effects from bottom longline gear on Atlantic sturgeon to be discountable. It did, however, anticipate the capture of Atlantic sturgeon in shark and smoothhound gillnet gear, but it ultimately concluded the proposed action was not likely to jeopardize the continued existence of sea turtles. An ITS for the incidental take of Atlantic sturgeon by DPS was issued; Appendix D reports those takes.

Southeastern Shrimp Trawl Fisheries

On December 2, 2002, NMFS completed an Opinion for shrimp trawling in the southeastern United States (NMFS 2002) under proposed revisions to the TED regulations (68 FR 8456, February 21, 2003). On May 9, 2012, NMFS completed the new Biological Opinion on the southeastern shrimp fisheries, which included an evaluation of the potential impacts of the fisheries on Atlantic sturgeon in federal waters. Information considered in the Opinion included the North Carolina Division of Marine Fisheries reporting that no Atlantic sturgeon were observed in 958 observed tows conducted by commercial shrimp trawlers working in North Carolina waters (L. Daniel, NCDMF, pers. comm., via public comment on the proposed rule to list Atlantic sturgeon, 2010). Nine Atlantic sturgeon have been reported captured in the South Atlantic shrimp trawl fisheries. Seven Atlantic sturgeon were captured by a single shrimp trawler off Winyah Bay, South Carolina, from October 27-29, 2008). Six were caught in the main otter trawl gear and 1 was captured in the try net: 6 were released alive, 1 was released dead (NMFS 2014a). One Atlantic sturgeon was captured by a shrimp trawler off South Carolina near Kiawah Island, South Carolina, on December 13, 2011, and it was released alive. Two Atlantic sturgeon were captured by a shrimp trawler near Sapelo Island, Georgia, from December 27-29, 2011. Both were approximately 2 ft long, and both were released alive. No

Atlantic sturgeon have been observed caught since 2011 (NMFS 2014a). Collins et al. (1996) did a study of commercial bycatch of shortnose and Atlantic sturgeon. Based on this and additional information, the 2012 Biological Opinion concluded that interactions between shrimp trawls and Atlantic sturgeon were likely but many of the animals were likely to survive the interactions. Ultimately, the Biological Opinion concluded that the proposed action was likely to adversely affect Atlantic sturgeon, but would not jeopardize the continued existence of any Atlantic sturgeon DPS; incidental take was authorized (Appendix D).

Spiny Dogfish Fisheries

The primary gear types for the spiny dogfish fishery are sink gillnets, otter trawls, bottom longline, and driftnet gear (NEFSC 2003). Observer data from 2001-2006 shows 32 recorded interactions between the dogfish fishery and Atlantic sturgeon, with 5 interactions resulting in death; a 16% mortality rate for Atlantic sturgeon that are taken as bycatch (Shepherd et al. 2007). The most recent consultation on the fishery was completed in December 2013 as part of a larger batched consultation. The consultation concluded that the continued operation of the spiny dogfish fishery was likely to adversely affect but not jeopardize the continued existence of any DPS of Atlantic sturgeon. Incidental take was authorized (Appendix D).

The commercial shad fisheries in Georgia incidentally capture Atlantic sturgeon. Georgia implemented regulations restricting fishing to the lower portions of the Savannah, Ogeechee, and Altamaha Rivers and close the fishery in the Satilla and St. Marys River to reduce sturgeon bycatch. The Georgia shad fishery is open from January 1 to as late as April 30 each year, but would typically end March 31. Georgia applied for, and received, an Incidental Take Permit from NMFS in 2013. The biological Opinion evaluating the permit request determined the continued operation of the fishery was likely to adversely affect Atlantic sturgeon but would not jeopardize its continued existence. NMFS determined that incidental capture by fisherman will be 140 Atlantic sturgeon per year in the Altamaha River, 35 Atlantic sturgeon per year in the Savannah River, and 5 Atlantic sturgeon per year in the Ogeechee River; the animals will be juveniles and subadults. The biological Opinion anticipated the maximum intercept rate for each Atlantic sturgeon DPS to be: South Atlantic DPS 95%; Chesapeake Bay DPS 20%; Carolina DPS 15%; New York Bight DPS 10%; and Gulf of Maine DPS 2% of the total number of incidental capture, and a mortality rate of 1% (NMFS 2013b). Two years of data indicates that the number of incidental captures in Georgia's shad fisheries is less than anticipated. Subsequent, to the completion of the biological Opinion, the Ogeechee River was closed to commercial shad fishing in 2014.

Recreational Fisheries Studies

The Georgia Department of Natural Resources (GADNR) Coastal Resources Division collects, analyzes, and reports biological and fisheries information to describe the conditions or health of recreationally important finfish populations and develop management recommendations that would maintain or restore the stocks in coastal Georgia. GADNR collects and reports information from the following studies: 1) Ecological Monitoring Trawl Survey, 2) Juvenile Trawl Survey, 3) Marine Sport Fish Health Survey – Gill Net Survey, 4) Marine Sport Fish Health Survey – Trammel Net Survey, 5) Hook and Line Surveys/Sampling, and 6) Artificial Reef Monitoring. Due to the use of trawls and nets, Atlantic sturgeon may be taken during the studies. The USFWS provides funding for these studies and consulted with NMFS (SER-2015-16739) on the potential effects to Atlantic sturgeon (NMFS, 2017). The consultation concluded

that the continued operation of GADNR's studies on recreationally important fish species was likely to adversely affect but not jeopardize the continued existence of any DPS of Atlantic sturgeon. Incidental take was authorized (Appendix D).

Fisheries Monitoring

NMFS Integrated Fisheries Independent Monitoring Activities in the Southeast (Atlantic) Region promotes and funds projects conducted by the SEFSC and other NMFS partners to collect fisheries independent data. The various projects use a variety of gear (e.g., trawls, nets, etc.) to conduct fishery research. Atlantic sturgeon are incidentally taken during the course of these activities. Up to 4 Gulf of Maine DPS, 7 New York Bight DPS, 4 Chesapeake Bay DPS, 1 Carolina DPS, and 5 South Atlantic DPS Atlantic sturgeon lethal takes are expected over continuing 5 year periods (NMFS 2016).

ESA Section 10 Scientific Research

Through issuance of ESA Section 10(a)(1)(A) permits, scientific and enhancement studies are conducted by researchers on Atlantic sturgeon.

There are currently 3 Section 10(a)(1)(A) scientific research permits issued to study Atlantic sturgeon in the action area. The studies authorize researchers to anesthetize; collect eggs; attach external instrument (e.g., Very High Frequency [VHF], satellite); insert internal instrument, (e.g., VHF, sonic); mark, PIT tag; measure; photograph/video; fin clip; and weigh animals. Permit No. 19642 authorizes up to 2 unintentional mortalities over the life of permit. Permit No. 16482 authorizes up to 6 unintentional mortalities annually. The third permit does not authorize any mortalities.

Permit No. 19621 authorizes research on turtles and in the course of that research authorizes incidental take of 10 Atlantic sturgeon over life of permit (5 years) but they must be released alive.

4.1.2.3 State or Private Actions

State Fisheries

Atlantic sturgeon are known to be adversely affected by gillnets and otter trawls. Given these gear types are used most frequently used in state waters, state fisheries may have a greater impact on Atlantic sturgeon than federal fisheries using these same gear types.

4.1.2.4 Other Potential Sources of Impacts in the Environmental Baseline

Marine Pollution and Environmental Contamination

Anthropogenic sources of marine pollution, while difficult to attribute to a specific federal, state, local or private action, may indirectly affect Atlantic sturgeon in the action area. Sources of pollutants in the action area include atmospheric loading of pollutants such as: PCBs; storm water runoff from coastal towns, cities, and villages; and runoff into rivers that empty into bays and groundwater.

Atlantic sturgeon may be particularly susceptible to impacts from environmental contamination due to their benthic foraging behavior and long-life span. Sturgeon using estuarine habitats near

urbanized areas may be exposed to numerous suites of contaminants within the substrate. Contaminants, including toxic metals, polychlorinated aromatic hydrocarbons (PAHs), organophosphate and organochlorine pesticides, PCBs, and other chlorinated hydrocarbon compounds can have substantial deleterious effects on aquatic life. Effects from these elements and compounds on fish include production of acute lesions, growth retardation, and reproductive impairment (Cooper 1989; Sindermann 1994).

Heavy metals and organochlorine compounds accumulate in sturgeon tissue, but their long-term effects are not known (Ruelle and Henry 1992; Ruelle and Keenlyne 1993). Elevated levels of contaminants, including chlorinated hydrocarbons, in several other fish species are associated with reproductive impairment (Cameron et al. 1992; Drevnick and Sandheinrich 2003; Hammerschmidt et al. 2002; Longwell et al. 1992), reduced egg viability (Billsson et al. 1998; Giesy et al. 1986; Mac and Edsall 1991; Matta et al. 1997; Von Westernhagen et al. 1981), reduced survival of larval fish (Berlin et al. 1981; Giesy et al. 1986), delayed maturity (Jorgensen et al. 2004), and posterior malformations (Billsson et al. 1998). Pesticide exposure in fish may affect antipredator and homing behavior, reproductive function, physiological development, and swimming speed and distance (Beauvais et al. 2000; Moore and Waring 2001; Scholz et al. 2000; Waring and Moore 2004). Moser and Ross (1995) suggested that certain deformities and ulcerations found in Atlantic sturgeon in North Carolina's Brunswick River might be due to poor water quality in addition to possible boat-propeller-inflicted injuries. It should be noted that the effect of multiple contaminants or mixtures of compounds at sublethal levels on fish has not been adequately studied. Atlantic sturgeon use marine, estuarine, and freshwater habitats and are in direct contact through water, diet, or dermal exposure with multiple contaminants throughout their range.

Sensitivity to environmental contaminants varies among fish species and life stages. Early life stages of fish seem to be more susceptible to environmental and pollutant stress than older life stages (Rosenthal and Alderdice 1976). In aquatic toxicity tests (Dwyer et al. 2000), Atlantic sturgeon fry were more sensitive to 5 contaminants (carbaryl, copper sulfate, 4-nonylphenol, pentachlorophenol, and permethrin) than fathead minnow (*Pimephales promelas*), sheepshead minnow (*Cyprinodon variegatus*), and rainbow trout (*Oncorhynchus mykiss*) - 3 common toxicity test species - and 12 other species of threatened and endangered fishes. The authors note, however, that Atlantic sturgeon were difficult to test and conclusions regarding chemical sensitivity should be interpreted with caution.

Another suite of contaminants occurring in fish are metals (mercury, cadmium, selenium, lead, etc.), also referred to as trace metals, trace elements, or inorganic contaminants. Post (1987) states that toxic metals may cause death or sublethal effects to fish in a variety of ways and that chronic toxicity of some metals may lead to the loss of reproductive capabilities, body malformation, inability to avoid predation, and susceptibility to infectious organisms.

Dioxin and furans were detected in ovarian tissue from shortnose sturgeon caught in the Sampit River/Winyah Bay system (S.C.). Results showed that 4 out of 7 fish tissues analyzed contained tetrachlorodibenzo-p-dioxin (TCDD) concentrations greater than 50 pg/g (parts-per-trillion), a level which can adversely affect the development of sturgeon fry (J. Iliff, NOAA, Damage Assessment Center, Silver Spring, M.D., unpublished data).

The U.S. Environmental Protection Agency (EPA) published its second edition of the National Coastal Condition Report (NCCR II) in 2004, which is a "report card" summarizing the status of coastal environments along the coast of the United States (EPA 2005). The report analyzes water quality, sediment, coastal habitat, benthos, and fish contaminant indices to determine status. The Southeast region (North Carolina - Florida) received an overall grade of B. There was a mixture of poor benthic scores scattered along the Southeast region.

Climate Change

As discussed earlier, there is a large and growing body of literature on past, present, and future impacts of global climate change. The effects of changes in water quality (temperature, salinity, DO, contaminants, etc.) in rivers and coastal waters inhabited by Atlantic sturgeon are expected to be more severe for those populations that occur at the southern extreme of the Atlantic sturgeon's range, and in areas that are already subject to poor water quality as a result of eutrophication. As discussed in Section 3, the South Atlantic and Carolina DPSs are within a region that will likely experience overall climatic drying. Atlantic sturgeon from these DPSs are already susceptible to reduced water quality resulting from various factors: inputs of nutrients; contaminants from industrial activities and non-point sources; and interbasin transfers of water. Still, more information is needed to better determine the full and entire suite of impacts of climate change on Atlantic sturgeon and specific predictions regarding impacts in the action area are not currently possible.

4.1.2.5 Conservation and Recovery Actions Benefitting Atlantic Sturgeon

State and Federal Moratoria on Directed Capture of Atlantic Sturgeon

In 1998, the Atlantic States Marine Fisheries Commission (ASMFC) instituted a coast-wide moratorium on the harvest of Atlantic sturgeon, which is to remain in effect until there are at least 20 protected age classes in each spawning stock (anticipated to take up to 40 or more years). NMFS followed the ASMFC moratorium with a similar moratorium on the harvest of Atlantic sturgeon in federal waters. Amendment 1 to ASMFC's Atlantic sturgeon FMP also includes measures for preservation of existing habitat, habitat restoration and improvement, monitoring of bycatch and stock recovery, and breeding/stocking protocols.

Use of TEDs in Trawl Fisheries

Atlantic sturgeon benefit from the use of devices designed to exclude other species from trawl nets, such as TEDs. TEDs and bycatch reduction device requirements may reduce Atlantic sturgeon bycatch in Southeast trawl fisheries (ASSRT 2007). NMFS has required the use of TEDs in southeast United States shrimp trawls since 1989 and in summer flounder trawls in the mid-Atlantic area (south of Cape Charles, Virginia) since 1992 to reduce the potential for incidental mortality of sea turtles in commercial trawl fisheries. These regulations have been refined over the years to ensure that TED effectiveness is maximized through more widespread use, and proper placement, installation, floatation, and configuration (e.g., width of bar spacing). NMFS has also been working to develop a TED, which can be effectively used in a type of trawl known as a flynet, which is sometimes used in the mid-Atlantic and Northeast fisheries to target sciaenids and bluefish. A top-opening flynet TED was certified in the summer of 2007, but experiments are still ongoing to certify a bottom-opening TED. All of these changes may lead to greater conservation benefits for Atlantic sturgeon.

4.1.3 Factors Affecting Shortnose Sturgeon in the Action Area

The following analysis examines actions that may affect the shortnose sturgeon or its environment specifically within the action area. The environmental baseline includes the effects of several activities affecting the survival and recovery of the shortnose sturgeon. The activities that shape the environmental baseline in the action area of this consultation include dams and hydroelectric projects, permits allowing take under the ESA, dredging, fisheries, pollution, and climate change.

4.1.3.1 Federal Actions

ESA Section 10 Permits

Through issuance of ESA Section 10(a)(1)(A) permits, scientific and enhancement studies are conducted by researchers on shortnose sturgeon. Permits are issued for 5 years.

There are currently 2 Section 10(a)(1)(A) scientific research permits issued to study shortnose sturgeon in the action area. The studies authorize researchers to anesthetize; collect eggs; attach external instrument (e.g., VHF, satellite); insert internal instrument, (e.g., VHF, sonic); mark, PIT tag; measure; photograph/video; fin clip; and weigh animals. Permit No. 19642 authorizes up to 1 unintentional mortality over life of permit. Permit No. 16482 authorizes up to 2 unintentional mortalities annually.

Permit No. 19621 authorizes research on turtles, and in the course of that research authorizes incidental take of 5 shortnose sturgeon over the life of the permit, but they are released alive.

Federally Managed Fisheries Effects on Shortnose Sturgeon

The commercial shad fisheries in Georgia incidentally capture shortnose sturgeon. Georgia implemented regulations restricting fishing to the lower portions of the Savannah, Ogeechee, and Altamaha Rivers and close the fishery in the Satilla and St. Marys River to reduce sturgeon bycatch. The Georgia shad fishery is open from January 1 to as late as April 30 each year. Georgia applied for, and received, an Incidental Take Permit from NMFS in 2013. The biological opinion evaluating the permit request determined the continued operation of the fishery was likely to adversely affect shortnose sturgeon but would not jeopardize its continued existence. NMFS determined that incidental capture by fisherman will not exceed 140 shortnose sturgeon per year (no more than 420 in a 3-year period) in the Altamaha River, 70 shortnose sturgeon per year (no more than 210 in a 3-year period) in the Ogeechee River. The biological opinion anticipated a mortality rate of approximately 2.3% (NMFS 2013c).

Fisheries Monitoring

NMFS Integrated Fisheries Independent Monitoring Activities in the Southeast (Atlantic) Region promotes and funds projects conducted by the SEFSC and other NMFS partners to collect fisheries independent data. The various projects use a variety of gear (e.g., trawls, nets, etc.) to conduct fishery research. Shortnose sturgeon are incidentally taken during the course of these activities. Up to 1 lethal take is expected over the course of continuing five year periods (NMFS 2016a).

Dredging

On May 27, 1997, NMFS completed an Opinion on the continued hopper dredging of channels and borrow areas in the southeast United States. NMFS is currently reinitiating consultation on dredging and beach renourishment activities of the USACE, South Atlantic Region, which will address potential effects to shortnose sturgeon.

4.1.3.2 State Actions or Private Actions

Fisheries

Directed harvest of shortnose sturgeon is currently prohibited, but shortnose sturgeon are taken incidentally in state fisheries that deploy nets. Entanglement of sturgeon in gillnets can result in injury and mortality, reduced fecundity, and delayed or aborted spawning migrations of sturgeon (Collins et al. 2000a; Moser et al. 2000; Moser and Ross 1993; Moser and Ross 1995; Weber 1996). Collins et al. (1996) also reported rare instances of shortnose sturgeon captures in the shrimp trawl fishery. Poaching is also still occurring throughout their range, but the impacts from poaching are currently unknown (Collins et al. 1996; Dadswell 1979; Dovel et al. 1992a).

4.1.3.3 Marine Pollution and Environmental Contamination

Anthropogenic sources of marine pollution, while difficult to attribute to a specific federal, state, local or private action, may indirectly affect shortnose sturgeon in the action area. Sources of pollutants in the action area include atmospheric loading of pollutants such as: PCBs; storm water runoff from coastal towns, cities, and villages; and runoff into rivers that empty into bays and groundwater.

Shortnose sturgeon may be particularly susceptible to impacts from environmental contamination due to their benthic foraging behavior and long-life span. Sturgeon using estuarine habitats near urbanized areas may be exposed to numerous suites of contaminants within the substrate. Contaminants, including toxic metals, PAHs, organophosphate and organochlorine pesticides, PCBs, and other chlorinated hydrocarbon compounds can have substantial deleterious effects on aquatic life. Effects from these elements and compounds on fish include production of acute lesions, growth retardation, and reproductive impairment (Cooper 1989; Sindermann 1994).

Heavy metals and organochlorine compounds accumulate in sturgeon tissue, but their long-term effects are not known (Ruelle and Henry 1992; Ruelle and Keenlyne 1993). Elevated levels of contaminants, including chlorinated hydrocarbons, in several other fish species are associated with reproductive impairment (Cameron et al. 1992; Drevnick and Sandheinrich 2003; Hammerschmidt et al. 2002; Longwell et al. 1992), reduced egg viability (Billsson et al. 1998; Giesy et al. 1986; Mac and Edsall 1991; Matta et al. 1997; Von Westernhagen et al. 1981), reduced survival of larval fish (Berlin et al. 1981; Giesy et al. 1986), delayed maturity (Jorgensen et al. 2004), and posterior malformations (Billsson et al. 1998). Pesticide exposure in fish may affect antipredator and homing behavior, reproductive function, physiological development, and swimming speed and distance (Beauvais et al. 2000; Moore and Waring 2001; Scholz et al. 2000; Waring and Moore 2004). Moser and Ross (1995) suggested that certain deformities and ulcerations found in sturgeon in North Carolina's Brunswick River might be due to poor water quality in addition to possible boat-propeller-inflicted injuries. It should be noted that the effect of multiple contaminants or mixtures of compounds at sublethal levels on fish has not been

adequately studied. Shortnose sturgeon use marine, estuarine, and freshwater habitats and are in direct contact through water, diet, or dermal exposure with multiple contaminants throughout their range.

Sensitivity to environmental contaminants varies among fish species and life stages. Early life stages of fish seem to be more susceptible to environmental and pollutant stress than older life stages (Rosenthal and Alderdice 1976). Post (1987) states that toxic metals may cause death or sublethal effects to fish in a variety of ways and that chronic toxicity of some metals may lead to the loss of reproductive capabilities, body malformation, inability to avoid predation, and susceptibility to infectious organisms.

Dioxin and furans were detected in ovarian tissue from shortnose sturgeon caught in the Sampit River/Winyah Bay system (S.C.). Results showed that 4 out of 7 fish tissues analyzed contained TCDD concentrations greater than 50 pg/g (parts-per-trillion), a level which can adversely affect the development of sturgeon fry (J. Iliff, NOAA, Damage Assessment Center, Silver Spring, M.D., unpublished data).

The EPA published its second edition of the National Coastal Condition Report (NCCR II) in 2004, which is a "report card" summarizing the status of coastal environments along the coast of the United States (EPA 2005). The report analyzes water quality, sediment, coastal habitat, benthos, and fish contaminant indices to determine status. The Southeast region (North Carolina - Florida) received an overall grade of B. There was a mixture of poor benthic scores scattered along the Southeast region.

4.1.3.4 Climate Change

As discussed earlier in <u>this amendment</u>, there is a large and growing body of literature on past, present, and future impacts of global climate change. Potential effects for shortnose sturgeon in the action area include overall climatic drying, drought, and negative impacts on rivers and streams. Abnormally low stream flows can restrict access by sturgeon to habitat areas and exacerbate water quality issues such as water temperature, reduced DO, nutrient levels, and contaminants. Higher water temperatures and changes in extremes in this region, including floods and droughts, could affect water quality and exacerbate many forms of water pollution from sediments, nutrients, dissolved organic carbon, pathogens, pesticides, and salt, as well as thermal pollution, with possible negative impacts on ecosystem. In addition, as discussed in Section 3 of <u>this amendment</u>, changes in water availability (depth and velocities) and water quality (temperature, salinity, DO, contaminants, etc.) in rivers and coastal waters inhabited by shortnose sturgeon resulting from climate change could further modify and restrict the extent of suitable habitat for this species. Still, more information is needed to better determine the full and entire suite of impacts of climate change on shortnose sturgeon and specific predictions regarding impacts in the action area are not currently possible.

4.1.3.5 Conservation Activities Benefitting Shortnose Sturgeon

Federal Actions

NMFS finalized the Recovery Plan for the Shortnose Sturgeon in 1998 as required by ESA Section 4. The Recovery Plan identified 19 discrete riverine populations of shortnose sturgeon

(NMFS 1998). The 1998 Shortnose Sturgeon Recovery Plan also identified 4 main recovery actions: (1) establish listing criteria for shortnose sturgeon population segments; (2) protect shortnose sturgeon and their habitats; (3) rehabilitate shortnose sturgeon populations and habitats; and (4) implement recovery tasks. To rehabilitate shortnose sturgeon habitats and population segments, the Recovery Plan specifically calls for actions to restore access to habitats, spawning habitat and conditions, and foraging habitat (NMFS 1998).

Through ESA Section 6 cooperative agreements, NMFS has supported numerous research projects within the South Atlantic to investigate the life history of the shortnose sturgeon. Since 2003, NMFS has funded 7 shortnose sturgeon research projects within the South Atlantic region to obtain the best available information to investigate life history and effects of existing project operations.

Other Actions

Shortnose sturgeon were added to the International Union for Conservation of Nature and Natural Resources (IUCN) Red List in 1986 as vulnerable. Shortnose sturgeon remain listed by the IUCN as vulnerable based in part on an estimated range reduction of greater than 30% over the past 3 generations, irreversible habitat losses, effects of habitat alteration and degradation, degraded water quality, and extreme fluctuations in the number of mature individuals between rivers. Shortnose sturgeon were listed in Appendix I by The Convention on International Trade in Endangered Species of Wild Fauna and Flora in 1975. Appendix I species are considered threatened by extinction and trade is permitted only in exceptional circumstances.

5 EFFECTS OF THE ACTION

This section includes our assessment of the unanticipated effects of the proposed action on green sea turtles, Atlantic sturgeon and shortnose sturgeon, beyond those described in the original Opinion and the 2013 amendment. The analysis in this section forms the foundation for our jeopardy analysis in Section 7.0. A jeopardy determination is reached if we would reasonably expect the proposed action to cause reductions in numbers, reproduction, or distribution that would appreciably reduce listed species' likelihood of surviving and recovering in the wild.

The original SHEP Biological Opinion (NMFS Consultation No. SER-2010-05579) included an analysis of potential impacts to Atlantic sturgeon that was based on historical takes in and near the project area. The original Opinion did not include an ITS for green sea turtles, due to the lack of historical information documenting take during hopper dredging. The 2013 amendment to the Opinion (NMFS Consultation No. SER-2013-11301) was issued after new information from the 2012 maintenance dredging of Savannah and Brunswick harbors and an evaluation of bed-leveling in Brunswick Harbor during 2013 revealed that green sea turtles could be off the Georgia Coast during SHEP dredging. This new amendment is based on information and data reports provided in emails from the USACE between 2015 - 2017 pertaining to project activities and the lethal and non-lethal takes of Atlantic sturgeon and green sea turtles during offshore hopper dredging and relocation trawling of the entrance channel. Other information from previous NMFS consultations conducted on the use of hopper dredging methods is also included in our analyses in this amendment. This section also analyzes the effects on sturgeon from delay in implementation of fish passage at NSBLD.

Hopper dredging can result in take (usually lethal) of sea turtles and sturgeon when these species become entrained in the draghead, the portion of the dredge that makes contact with the bottom substrate during dredging. Entrainment is defined as the direct uptake of aquatic organisms by the suction field generated at the draghead. Hopper dredges operate for prolonged periods underwater, with minimal disturbance, but generate continuous flow fields of suction forces while dredging. Entrainment is believed to occur primarily when the draghead is not in firm contact with the channel bottom, so the potential exists for sea turtles and sturgeon feeding or resting on or near the bottom may be vulnerable to entrainment. Additionally, the size and flow rates produced by the suction power of the dredge, the condition of the channel being dredged, and the method of operation of the dredge and draghead all relate to the potential of the dredge to entrain sea turtles or sturgeon. It is possible to monitor entrainment on a hopper dredge because the dredged material is retained on the vessels as opposed to the direct placement of dredged material both overboard or in confined disposal facilities by a hydraulic pipeline dredge. A hopper dredge contains screened inflow cages from which an observer can inspect recently dredged contents. Typically, the observer inspection is performed at the completion of each load while the vessel is transiting to the authorized placement area and does not impact production of the dredging operations.

The function and purpose of capture relocation trawling is to capture sea turtles and sturgeon that may be in the dredge's path. By reducing the density of sea turtles and sturgeon immediately in front of the dredge's suction dragheads, the potential for lethal interactions with these species is reduced. The relocation trawler typically pulls two standard (60-foot headrope) shrimp trawl nets, as close as safely possible in front of the advancing hopper dredge, without TEDs. The trawler also continues sweeping the area to be dredged (channels or borrow areas) even while the hopper dredge is not actively dredging. NMFS believes that properly conducted relocation trawling (i.e., per NMFS's requirements regarding trawl speed, tow-time limits, release protocols and other conditions) that is monitored by trained observers will result in a low mortality rate to green sea turtles and Atlantic sturgeon while greatly reducing the number of these species lethally taken during hopper dredging of the entrance channel.

Conservative Decisions- Providing the Benefit of the Doubt to the Species

The analysis in this section is based upon the best available commercial and scientific data on green sea turtle biology, Atlantic sturgeon biology, and the potential effects of the proposed action. However, there can be instances where there is limited information upon which to make a determination. In those cases, in keeping with the direction from the U.S. Congress to provide the "benefit of the doubt" to threatened and endangered species [House of Representatives Conference Report No. 697, 96th Congress, Second Session, 12 (1979)], we will generally make determinations to resolve uncertainty which provide the most conservative (conservation oriented) outcome for listed species.

5.1 Effects of the Action on Green Sea Turtles (SA DPS and NA DPS)

5.1.1 Entrance Channel Dredging

The potential for adverse effects of dredging operations on sea turtles has been previously assessed by NMFS in the various versions of the SARBO (NMFS 1991, 1995, 1997b) and the

(GRBO) that was revised in 2005 and 2007 (NMFS 2003, 2005, 2007). Additionally, the USACE prepared a comprehensive analysis of data from Gulf and Atlantic hopper dredging projects to identify factors affecting sea turtle take rates (Dickerson et al. 2007). The USACE previously maintained an online data warehouse (USACE 2013) with historical records of dredging projects and interactions with ESA species. It now maintains the Operations and Dredging Endangered Species System to manage new records of dredging projects and interactions with the dredging/relocation trawling reports from the first 2 hopper dredging seasons of the SHEP entrance channel, these are the primary sources, discussed further below, for our analysis of dredging effects on green sea turtles.

Hopper Dredging

Hopper dredging was implicated in the mortality of South Atlantic endangered and threatened sea turtles as early as the late 1970s and in NMFS's Opinions issued in 1979, 1980, and others leading to the SARBO issued in 1991. This determination was repeated in the 1995 and 1997 SARBOs (NMFS 1995, 1997b) and the 2003 GRBO. The measures established in consecutive SARBOs (NMFS 1991, 1995, 1997b) to avoid and minimize sea turtle interactions during hopper dredging operations permitted by the USACE in the southeastern United States are included in this project, with the exception of modifications to dredge timing (i.e., "dredging window") and conditions of/requirements for capture-type relocation trawling. For SHEP, the duration of the hopper dredging was extended to April 15 and a condition was made to accommodate the safe release of leatherback turtles by requiring a cargo net to be available on relocation trawlers.

Savannah Harbor Entrance Channel

The previous ITS in the 2013 amendment estimated 3 lethal green sea turtle takes due to hopper dredging of the entrance channel and 3 non-lethal takes due to relocation trawling. However, the first two seasons of work in the entrance channel revealed that these levels of green sea turtle take were underestimated. The USACE reports that 5 lethal takes and 2 non-lethal takes of green sea turtles occurred during the first 2 years of entrance channel hopper dredging. The 2 nonlethally taken green sea turtles were injured and transported to the Jekyll Island Rehabilitation Center. Both turtles have since been released after making a full recovery. We believe the survival of the 2 green sea turtles after being entrained by the hopper dredge was an extremely rare and unusual occurrence. Very few turtles (over the years, a fraction of a percent) survive entrainment in hopper dredges, usually smaller juveniles that are sucked through the pumps without being dismembered or badly injured. Often they will appear uninjured only to die days later of unknown internal injuries while in rehabilitation. Experience has shown that the vast majority of sea turtles entrained in hopper-dredges are immediately crushed or dismembered by the violent forces they are subjected to during entrainment. In addition, the 2 live-but-injured turtles taken by the dredge would have died in the hopper had they not been observed, rescued, and taken to the sea turtle rehabilitation center. Therefore, to be conservative in our take calculations for the remaining dredging, we are counting all 7 green sea turtles taken in the first 2 years of entrance channel dredging (5 taken lethally and 2 taken non-lethally but with injuries) as lethal takes and we will assume that any additional green sea turtles taken by hopper dredging will be lethal.

We calculated the "observed" CPUE of green sea turtles (turtles per yd^3 of dredged material) lethally taken during the first 2 years of hopper dredging the entrance channel. We did not

consider the material removed using the cutterhead dredge in our calculation since non-hoppertype dredges are not known to take sea turtles. The "observed" CPUE only estimates the observed number of sea turtles taken per yd³ of dredged material, and not the total number of green sea turtles we expect to be lethally taken during dredging. As discussed in the next section, observers are not able to detect all turtles taken during hopper dredging and we will calculate the total sea turtle takes after we first estimate observed takes.

We calculated the "observed" CPUE during the first 2 years of hopper dredging the entrance channel by dividing the number of observed takes (7 turtles) by the amount of material removed using a hopper dredge. The USACE estimates that 4,026,278 yd³ of material was removed using a hopper dredge during the first 2 dredging seasons, yielding a CPUE of 0.00000173858 green turtles taken per yd^3 of hopper dredged material. The USACE reports that a recent survey determined an additional 4,200,000 yd^3 of material still needs to be dredged from the entrance channel. The remaining entrance channel dredging will be conducted via hydraulic cutterhead, hopper, or a combination of the two types. Because we do not know what type of dredge will be used, we will assume 100% will be conducted with a hopper dredge. Based on the estimated 8,226,278 yd³ of material that will be removed from the entrance channel over the duration of the project (4,026,278 yd³ of material already hopper dredged plus 4,200,000 yd³ of material still to be dredged), we estimate that 15 green sea turtles may be observed to be lethally taken by hopper dredging in the entrance channel in total (8,226,278 yd³ multiplied by 0.00000173858 green turtles observed taken per yd³ of hopper dredged material, rounded up to the nearest whole number). Since USACE has already observed 7 green sea turtle takes during the first two seasons of entrance channel hopper dredging, we estimate up to 8 additional observed green sea turtles may be lethally taken during the remainder of the entrance channel hopper dredging.

As noted above, observers are not able to detect all turtles taken during hopper dredging. Hopper dredging projects are often required by the terms of their authorization to have NMFS-approved observers onboard to monitor dredged material inflow and overflow screening baskets. Dredged material screening is only partially effective, and observed takes likely provide only partial estimates of total sea turtle mortality. NMFS believes that some turtles killed by hopper dredges go undetected because body parts are forced through the sampling screens by water pressure and are buried in the dredged material, or animals are crushed or killed but their bodies or body parts are not entrained by the suction and so the takes may go unnoticed. The only mortalities that are noticed and documented are those where body parts float, are large enough to be caught in the screens, and can be identified as sea turtle parts. Body parts that are forced through the 4-in (or greater) inflow screens of the suction dragheads by the suction-pump pressure and that do not float are very unlikely to be observed, since they will sink to the bottom of the hopper and not be detected by the overflow screening. Unobserved takes are not documented, thus, observed takes likely under-represent actual lethal takes.

While it is unknown how many turtles are killed but unobserved, NMFS estimated in the GRBO (NMFS 2003b) that up to 1 out of 2 impacted turtles may go undetected (i.e., that observed take constituted only about 50% of total take). The 50% estimate was based on all hopper dredging projects in the Gulf of Mexico occurring year-round, including seasonal windows when no observers are required, times when 100% coverage is required, and times when only 50% observer coverage is required. The hopper dredging of the Savannah Harbor Entrance Channel

is required to implement 100% observer coverage. Since the 100% observer coverage required for the SHEP dredging action is twice as intensive (and theoretically, twice as effective) as the 50% observer coverage requirement of the 2003 GRBO, NMFS believes that a significantly greater number of turtles are being detected with 100% observer coverage than with just 50% observer coverage (i.e., 1 of 2 turtles). NMFS's biological Opinion to the USACE's Galveston District on the Freeport Harbor Navigation Channel widening and deepening project (also with 100% observer coverage) anticipated that approximately 66.7 % (i.e., 2 out of 3) of entrained turtles would be detected. Similarly, we estimate that observers on this project will continue to detect approximately 2 of every 3 turtles entrained. This estimate is based on the use of 100% observer coverage, the best available empirical evidence, years of hopper dredging experience and observer reports, and the commonality of the 100% observer requirement with previous dredging consultations under similar conditions. This amendment estimates that observers will detect and record approximately 66.7 % of total mortality (i.e., 2 of every 3 turtles killed by the dredge will be detected, observed, and tallied by onboard observers). Therefore, based on our estimated observed lethal take of 15 green sea turtles by hopper dredging, we estimate that a total of 23 green sea turtles may be lethally taken during entrance channel hopper dredging (15 observed turtle takes divided by 0.667, rounded up to the nearest whole number).

As with previous NMFS biological Opinions on hopper dredging, our subsequent jeopardy analysis is necessarily based on our knowledge (in this case, our best estimate) of the total number of green sea turtles that will be lethally taken, which includes those that are killed but not observed. Our best estimate of turtles lethally taken will be the sum of the observed and unobserved takes, i.e., those observed and documented by onboard protected species observers, plus those unobserved, undocumented lethal takes (because the turtles/turtle parts were either not entrained, or were entrained but were not seen/counted by onboard protected species observers). Our ITS is based on observed takes, not only because observed mortality gives us an estimate of unobserved mortality, but because observed, documented take numbers serve as triggers for some of the reasonable and prudent measures, and for potential reinitiation of consultation if actual observed takes exceed the anticipated/authorized number of observed takes. Furthermore, our ITS level of anticipated/authorized lethal takes assumes ongoing sea turtle relocation trawling, since it is an integral and important part of the action. Without relocation trawling, mortalities resulting from hopper dredge activities could be higher.

5.1.2 Relocation Trawling

During the first 2 seasons of the deepening of the Savannah Harbor entrance channel, relocation trawling has been successful at relocating 8 Kemp's ridley, 10 loggerhead, 1 leatherback, and 2 green sea turtles from the intended path of the hopper dredge in the entrance channel. Dickerson et al. (2007) analyzed historical data for USACE dredging projects in the Atlantic Ocean and Gulf of Mexico and concluded that relocation trawling is effective at reducing the rate of sea turtle entrainment by hopper dredges. Dickerson et al. (2007) also found that the effectiveness of relocation trawling was increased when the trawling was initiated at the beginning or early in the project and by the intensity of trawling effort (i.e., more time trawling per hour). Dickerson et al. (2007) noted that when a relocation trawler is used – whether or not turtles are actually captured – the incidence of lethal sea turtle take by hopper dredges decreases. Dickerson et al. (2007)

bottom and into the water column, where they are no longer likely to be impacted by the suction draghead of a hopper dredge.

Sea Turtle Mortalities by Relocation Trawling

Between 1991 and 2011, the USACE has documented more than 75 hopper-dredging projects in the South Atlantic and Gulf of Mexico where a relocation trawler was used as part of the project, with thousands of individual net tows. In addition, the USACE has also conducted or permitted abundance assessments and/or project-specific relocation trawling of sea turtles in navigation channels and sand borrow areas in the Southeast and Gulf of Mexico using commercial shrimp vessels equipped with otter trawls (Sea Turtle Data Warehouse; D. Dickerson 2007). On 8 occasions a turtle has been lethally or injuriously taken by a relocation trawler (6 in the Gulf of Mexico and 2 in the South Atlantic) over the same 20-year period (USACE Sea Turtle Warehouse; pers. comm. T. Jordan, USACE, to E. Hawk, NMFS, May 23, 2011). Some of these incidents are described below.

Rarely, properly conducted relocation trawling can result in accidental sea turtle deaths, as the following examples illustrate. Henwood noted that trawl-captured loggerhead sea turtles died on several occasions during handling on deck during winter trawling in Canaveral Channel in the early 1980s, after short (approximately 30 minutes) tow times. However, Henwood (T. Henwood, NMFS SEFSC, pers. comm. to E. Hawk, NMFS, December 6, 2002) also noted that a significant number of the loggerheads captured at Canaveral during winter months appeared to be physically stressed and in "bad shape" compared to loggerheads captured in the summer months from the same site that appeared much healthier and robust.

In November 2002, during relocation trawling conducted in York Spit, Virginia, a Kemp's ridley sea turtle was likely struck by one of the heavy trawl doors or it may have been struck and killed by another vessel shortly before trawl net capture. The hopper dredge was not working in the area at the time. Additionally, during relocation trawling conducted off Destin, Florida, on December 2, 2006, a leatherback turtle was captured and killed. However, this mortality by drowning occurred after the trawler encountered and entangled its trawl net on a large section of uncharted bottom debris, and was unable to retrieve it from the bottom for several hours (Dickerson et al. 2007). During over 15 days of dredging and associated turtle relocation trawling conducted between July 9 and 23, 2010, for the construction of 35 mi of oil-barrier sand-berms at Hewes Point, Chandeleur Islands, Louisiana, 194 sea turtles were trawl-captured, with 3 mortalities in 584 thirty-minute tows, or a 1.5% mortality rate (R. Crabtree, NMFS, letter to USACE, dated January 14, 2011). NMFS considers that this rate is unusually high, given the last 2 decades of relocation trawling experience. The reason for the unusually high level of relocation trawler turtle mortalities associated with the berm project is unknown. At Mayport Channel dredging in April 2011, a green turtle was drowned when it entangled in an improperly designed non-capture trawl net (non-capture trawl nets have typical tow times of 3-4 hours, since they are not designed to capture turtles).

Trawl Tow Time Limits

The National Research Council (NRC) report "Decline of the Sea Turtles: Causes and Prevention" (NRC 1990) suggested that limiting tow durations to 40 minutes in summer and 60 minutes in winter would yield sea turtle survival rates that approximate those required for the approval of new TED designs, i.e., 97%. The NRC report also concluded that mortality of turtles

caught in shrimp trawls increases markedly for tow times greater than 60 minutes. Current NMFS TED regulations allow, under very specific circumstances, for shrimpers with no mechanical-advantage trawl retrieval devices on board, to be exempt from TED requirements if they limit tow times to 55 minutes during April through October and 75 minutes from November through March. The presumption is that these tow time limits will result in turtle survivability comparable to having TEDs installed. Based on 1,225 tows (584 in the nearshore Gulf of Mexico and 641 in the nearshore South Atlantic) following the time restrictions required for TED exemption, 295 sea turtles were captured during trawling. There were 7 mortalities (6 in the South Atlantic and 1 in the Gulf of Mexico) out of the 295 trawl-caught turtles, yielding a trawling mortality rate of 2.4% (7 mortalities divided by the total capture of 295 sea turtles).

Current NMFS SERO Opinions typically limit tow times for relocation trawling to 42 minutes or less, measured from the time the trawl doors enter the water when setting the net to the time the trawl doors exit the water during haulback ("doors in – doors out"). This approximates 30 minutes of bottom-trawling time. The USACE further limits authorized relocation trawling time in association with hopper dredging to 30 minutes or less, doors in to doors out. Overall, the significantly reduced relocation trawling tow times compared to those used during the 1998 studies on the effects of 55-minute and 75-minute tow times leads NMFS to conclude that current relocation trawling mortalities occur (and will continue to occur) at a much lower rate than 2.4%. Relocation trawling data bears this out strikingly: from October 2006 to July 2013, USACE dredging projects relocated 1,359 turtles in the Gulf of Mexico and South Atlantic. There were 8 documented mortalities during those relocation events or 0.6% mortality (8 mortalities divided by the total capture of 1,359 sea turtles) overall (USACE Sea Turtle Data Warehouse, queried July 2013 before the website was closed down by USACE).

Total Impact of Relocation Trawling on Sea Turtles

Even though relocation trawling involves the take (via capture, collection, and relocation) of sea turtles, it has constituted a legitimate RPM in past NMFS biological Opinions on hopper dredging because it reduces the level of almost certain mortality of sea turtles by hopper dredges, and it allows the sea turtles captured non-injuriously by trawl to be relocated out of the path of the dredges. NMFS believes that properly conducted relocation trawling (i.e., NMFSrecommended trawl speed and tow-time limits as required in SARBO are implemented and adequate precautions to release captured animals are taken) that is monitored by trained observers will result in a low mortality rate (0.6%) to green sea turtles while greatly reducing the number of green sea turtles lethally taken during hopper dredging of the entrance channel. Without relocation trawling, the number of sea turtle mortalities resulting from hopper dredging would likely be significantly greater than the estimated number discussed above and specified in the ITS. The Consultation Handbook (for Procedures for Conducting Consultation and Conference Activities under Section 7 of the Endangered Species Act, U.S. Fish and Wildlife Service and National Marine Fisheries Service, March 1998) expressly authorizes such directed take as an RPM at pages 4-54. Therefore, NMFS will in this section evaluate the expected number of sea turtles collected or captured during the remainder of relocation trawling for the project, so that these numbers can be included in the evaluation of whether the action will jeopardize the continued existence of the species.

Dickerson et al. (2007) concluded that relocation trawling is an effective management option for reducing incidental take of sea turtles during hopper dredging in some locations, provided

aggressive trawling effort is initiated either at the onset of dredging or early in the project. It is reasonable to assume that, in the absence of relocation trawling the number of sea turtle mortalities would increase, but predicting a precise number would be problematic due to the fact that the USACE has not been consistent in previous years in using relocation trawling as a standard practice for the maintenance dredging of the Savannah Harbor Entrance Channel. The number of sea turtles captured by relocation trawlers does not directly translate into potential mortalities by hopper dredges in the absence of relocation trawling, due to the differences in footprint between the 2 gear types. The spread of a relocation trawler's net is much greater than the width of a hopper dredge's dragheads; therefore, the trawler will encounter a significantly greater number of sea turtles.

Estimating the Number of Relocation Trawler Takes during Project Dredging

Due to lack of data, the take of green sea turtles during relocation trawling was underestimated in the ITS in the 2013 Amendment to the 2011 SHEP Biological Opinion. In the past few years since that amendment was written, we have seen an increasing number of green sea turtles in areas or during periods when they were previously not abundant. This may be due to many factors such as a change in sea temperatures, climate change, or prey abundance causing turtles to move into areas earlier than expected or greater efficiency in the ability of relocation trawling to capture turtles. During the first 2 seasons of relocation trawling for the Savannah Harbor entrance channel dredging, 2 green sea turtles were non-lethally captured. Approximately 48.9% of the hopper dredging (4,026,278 yd³ out of 8,226,278 yd³ total) was completed during this time period. Therefore, we expect up to 3 more green sea turtles will be captured during the remaining relocation trawling for a total of 5 trawl-caught green sea turtles (2 green sea turtles captured divided by 0.489, rounded up to the nearest whole number).

Relocation trawling usually results in non-lethal, non-injurious take due to the short duration of the tow times (15 to 30 minutes per tow; not more than 42 minutes) and required safe-handling procedures. Though rare, mortality of trawl-caught sea turtles can occur. As previously explained, NMFS estimates that relocation trawling could result in up to 0.6% mortality of captured turtles, primarily due to their being previously stressed or diseased, or if struck by trawl doors, or from accidents occurring during handling in the water and on deck. During the first 2 years of relocation trawling, 2 green sea turtles were taken non-lethally. We anticipate that up to 3 additional green sea turtles will be captured during relocation trawling and that no more than 1 green sea turtle mortality (3 turtles multiplied by 0.6% mortality, rounded to the nearest whole number) will occur during the remaining relocation trawling.

Flipper Tagging

Tagging is a non-injurious form of take. Flipper tagging of turtles captured during relocation trawling is not expected to have any detrimental effects on captured animals. Tagging prior to release will help NMFS learn more about the habits and identity of trawl-captured animals after they are released, and if they are recaptured they will enable improvements in relocation trawling design to further reduce the effect of the hopper dredging activities. External and internal flipper tagging with Inconel and PIT tags is not considered a dangerous procedure by the sea turtle research community, is routinely done by thousands of volunteers in the United States and abroad, and can be safely accomplished with minimal training. NMFS knows of no instance where flipper tagging has resulted in mortality or serious injury to a trawl-captured sea turtle. Such an occurrence would be extremely unlikely because the technique of applying a flipper tag

is minimally traumatic and relatively noninvasive; in addition, these tags are attached using sterile techniques. Important growth, life history, and migratory behavior data may be obtained from turtles captured and subsequently relocated. Therefore, these turtles should not be released without tagging (and prior scanning for pre-existing tags).

Genetic Sampling

Analysis of genetic samples may provide information on sea turtle populations such as life history, nesting beach identification, and distribution/stock overlap. This may ultimately lead to enhanced sea turtle protection measures. Tissue sampling is performed to determine the genetic origins of captured sea turtles, and learn more about turtle nesting beach/population origins. For all tissue sample collections, a sterile 4- to 6-mm punch sampler is used. Researchers who examined turtles caught 2 to 3 weeks after sample collection noted that the sample collection site was almost completely healed. Genetic sampling is a non-injurious form of take. NMFS does not expect that the collection of a tissue sample from each captured turtle will cause any additional stress or discomfort to the turtle beyond that experienced during capture, collection of measurements, and tagging. Tissue sampling procedures are specified in the Terms and Conditions in Section 9.

5.1.3 Dredged Material Disposal

No new information has become available since the original Opinion and 2013 amendment were issued to change our original determination that dredged material disposal activities are not likely to adversely affect green sea turtles. Sea turtles may be attracted to Ocean Dredged Material Disposal Sites (ODMDSs) to forage on the bycatch that may be occasionally found in the dredged material being dumped. As such, turtles could be potentially impacted by the sediments being discharged overhead. However, NMFS does not expect an injury from, nor has ever received a report of an injury to a sea turtle resulting from disposal of hopper-dredgereleased sediments, either from inshore or offshore disposal sites, anywhere the USACE conducts dredged material disposal operations. Green sea turtles are highly mobile and due to their swimming speed, we believe they are able to avoid a descending sediment plume discharged at the surface by a hopper dredge opening its hopper doors, or pumping its sediment load over the side. Even if temporarily enveloped in a sediment plume, NMFS believes the possibility of injury or burial of normal, healthy sea turtles by dredged material (i.e., sand and silt) disposal, is discountable or its effects insignificant. NMFS believes that foraging habitat for green sea turtles is not likely a limiting factor in the action area, and thus the loss of potential sand bottom foraging habitat adjacent to, or on the surface of, the disposal areas (compared to remaining foraging habitat) from burial by dredged material sediments will have insignificant effects on green sea turtles. The risk of injury to green sea turtles from collisions with dredgerelated vessels is also considered discountable, considering the species' mobility and the slow speed of the hopper dredge vessels and associated barges and scows.

5.1.4 Assignment of Takes to NA DPS and SA DPS

Entrance channel dredging and associated relocation trawling will result in takes of green sea turtles. Based on the above estimates, a total of 15 green sea turtles would be observed lethally taken by the hopper dredging over 3 seasons of dredging, but up to 23 green sea turtles total could be lethally taken since we estimate that only 67% of sea turtle takes are observed. A total

of 5 green sea turtles would be taken by relocation trawling during the 3 seasons of the project dredging, with no more than 1 expected to be a lethal take. As discussed in the status of the species (Section 3), on April 6, 2016, the single species listing was replaced with the listing of 11 DPSs. Therefore, this amendment must evaluate the effects of the action on the newly listed DPSs that may be in the action area.

Individuals from both the NA and SA DPSs can be found in the action area of the project. While there are currently no in-depth studies available to determine the percent of NA and SA DPS individuals in any given location, as discussed in Section 3, a study on the foraging grounds off Hutchinson Island, Florida found that approximately 5% of the turtles sampled came from the Aves Island/Suriname nesting assemblage, which is part of the SA DPS. All of the individuals in the study were benthic juveniles. This is only one study, but is recent, is from waters relatively close to Georgia, and represents the best available science and most relevant means of estimating relative occurrence of DPSs in the area. Available information on green turtle migratory behavior indicates that long distance dispersal is only seen for juvenile turtles. This suggests that larger adult-sized turtles return to forage within the region of their natal rookeries, and that any adult animals taken would be from the NA DPS. Since either adult or juvenile animals could occur in the action area, the lowest percentage of the animals that would likely come from the NA DPS would be 95% (if no adults were taken). If adults were also taken, this number would approach some number closer to 100%. To analyze effects in a precautionary manner, we will assume animals would be taken from both DPSs. We will conservatively analyze impacts to the NA DPS assuming that 100% of the takes would come from that DPS (this is the greatest percentage that could be taken from the DPS). Similarly, the greatest percentage of animals that would likely be taken from the SA DPS would be 5% (likely less if adults are taken, but we assume the most precautionary outcome).

Hopper Dredging

NA Green Sea Turtle DPS= **Up to 23** (100% of 23) green sea turtles from the NA DPS could be lethally taken during hopper dredging during the 3 seasons of dredging.

SA Green Sea Turtle DPS= **Up to 2** (5% of 23, rounded to the nearest whole number) green sea turtles from the SA DPS could be lethally taken during hopper dredging during the 3 seasons of dredging.

Relocation Trawling

NA Green Sea Turtle DPS= **Up to 5** (100% of 5) green sea turtles from the NA DPS could be captured in relocation trawling gear during the 3 seasons of dredging. No more than 1 green sea turtle mortality (0.6% of 5, rounded to the nearest whole number) from this DPS is expected to occur.

SA Green Sea Turtle DPS= **Up to 1** (5% of 5, rounded to the nearest whole number) green sea turtles from the SA DPS could be captured in relocation trawling gear during the 3 seasons of dredging. No more than 1 green sea turtle mortality (0.6% of 1, rounded to the nearest whole number) from this DPS is expected to occur.

5.2 Effects of the Action on Atlantic Sturgeon (All 5 DPSs)

5.2.1 Entrance Channel Hopper Dredging

Sturgeon are vulnerable to entrainment in hopper dredges. As noted previously, the size and flow rates produced by the suction power of the dredge, the condition of the channel being dredged, and the method of operation of the dredge and draghead all relate to the potential of the dredge to entrain sturgeon (Reine and Clarke, 1998). Additionally, the likelihood of entrainment is influenced by the swimming stamina and size of the individual fish at risk (Boysen and Hoover, 2009). Swimming stamina is positively correlated with total fish length. Entrainment of larger sturgeon is less likely due to the increased swimming performance and the relatively small size of the dredging operations and the time of year in which the dredging occurs. Typically major concerns of juvenile entrainment relate to fish below 200 mm (Hoover et al., 2005; Boysen and Hoover, 2009). Juvenile sturgeon are not powerful swimmers and they are prone to bottomholding behaviors, which make them vulnerable to entrainment when in close proximity to dragheads (Hoover et al., 2011).

In general, entrainment of large mobile animals, such as sturgeon, is relatively rare. Several factors are thought to contribute to the likelihood of entrainment. In areas where animals are present in high density, the risk of an interaction is greater because more animals are exposed to the potential for entrainment. The risk of entrainment is likely to be higher in areas where the movements of animals are restricted (e.g., in narrow rivers or confined bays) where there is limited opportunity for animals to move away from the dredge than in unconfined areas such as wide rivers or open bays. The hopper dredge draghead operates on the bottom and is typically at least partially buried in the sediment. Sturgeon are benthic feeders and are often found at or near the bottom while foraging or while moving within rivers. Sturgeon at or near the bottom could be vulnerable to entrainment if they were unable to swim away from the draghead.

The original SHEP Opinion estimated that 4 Atlantic sturgeon would be lethally taken during hopper dredging; this estimate remained the same in the 2013 amendment to the SHEP Opinion. During the first 2 seasons of the Savannah Harbor entrance channel hopper dredging conducted 2015-2017, 5 Atlantic sturgeon were lethally taken. There are several possible reasons that could explain why the lethal take was exceeded. Prior to the extension of the entrance channel as a part of the SHEP, the new area extending the channel seaward had never been dredged. This is important to note because the information for calculating take of Atlantic sturgeon was based on takes occurring during regular maintenance dredging conducted within the existing navigational channel, which has been dredged for many years. This data indicated very few Atlantic sturgeon had been killed during hopper dredging and were the basis for determining that there would be 4 lethal takes of Atlantic sturgeon during the 3 years of offshore dredging. The exceedance of the lethal take limit did not occur until hopper dredging reached the previously undredged area where the entrance channel is being extended. It is possible that this new area (the channel extension) offers good foraging habitat to sturgeon as it may benefit from receiving nutrient-rich water from the riverine estuaries during tidal exchanges. If the area does benefit from the estuarine discharge, perhaps sturgeon prey are more abundant than in the surrounding sandy substrate beyond the channel and as a result, sturgeon congregate in greater numbers while using the area for foraging. An increased number of sturgeon congregated in a small area would lead

to an increase in the potential for encounters with dredging equipment. The increased number of unanticipated takes may reflect what happens when intense dredging is sustained over a long period of time in one area such as with SHEP's deepening actions versus smaller scale navigational channel maintenance dredging. Another theory is that a warmer winter may have resulted in a shift in the distribution of sturgeon causing them to be more abundant off the Georgia coast during the dredging. It is also possible that Atlantic sturgeon may be more abundant than previously thought, but significant increases in takes in other areas have not been documented.

In order to revise our estimate of the number of Atlantic sturgeon lethally taken during hopper dredging over the life of the project, we first calculated the "observed" CPUE of Atlantic sturgeon (sturgeon per yd³ of dredged material) lethally taken during the first 2 years of hopper dredging the entrance channel. We did not consider the material removed using the cutterhead dredge in our calculation since non-hopper-type dredges are not known to take sturgeon. The "observed" CPUE only estimates the observed number of sturgeon taken per yd³ of dredged material, and not the total number of Atlantic sturgeon we expect to be lethally taken during dredging. As discussed in the next section, observers are not able to detect all sturgeon taken during hopper dredging and we will calculate the total Atlantic sturgeon takes after we first estimate observed takes.

We calculated the "observed" CPUE during the first 2 years of hopper dredging the entrance channel by dividing the number of observed takes (5 Atlantic sturgeon) by the amount of material removed using a hopper dredge. The USACE estimates that 4,026,278 yd³ of material were removed using a hopper dredge during the first 2 dredging seasons, yielding a CPUE of 0.00000124184 Atlantic sturgeon taken per yd³ of hopper dredged material. The USACE reports that a recent survey determined an additional 4,200,000 yd³ of material still needs to be dredged from the entrance channel. The dredge type that will be used to complete the work is unknown at this time. In order to be conservative, we will assume 100% will be conducted with a hopper dredge. Based on the estimated 8,226,278 yd³ of material that will be removed from the entrance channel over the duration of the project $(4,026,278 \text{ yd}^3 \text{ of material already hopper dredged plus})$ $4,200,000 \text{ yd}^3$ of material still to be dredged), we estimate that as many as 11 Atlantic sturgeon may be observed to be lethally taken by hopper dredging in the entrance channel $(8,226,278 \text{ yd}^3)$ multiplied by 0.00000124184 Atlantic sturgeon observed taken per yd³ of hopper dredged material, rounded up to the nearest whole number). Since USACE has already observed 5 Atlantic sturgeon takes during entrance channel hopper dredging, we estimate up to 6 additional Atlantic sturgeon may be observed to be lethally taken during the remainder of the entrance channel hopper dredging.

As noted above, observers are not able to detect all sturgeon taken during hopper dredging. Hopper dredging projects are often required by the terms of their authorization to have NMFSapproved observers onboard to monitor dredged material inflow and overflow screening baskets. Dredged material screening is only partially effective, and observed takes likely provide only partial estimates of total sturgeon mortality. NMFS believes that some sturgeon killed by hopper dredges go undetected because body parts are forced through the sampling screens by water pressure and are buried in the dredged material, or animals are crushed or killed but their bodies or body parts are not entrained by the suction and so the takes may go unnoticed. The only mortalities that are noticed and documented are those where body parts float, are large enough to be caught in the screens, and can be identified as sturgeon parts. Body parts that are forced through the 4-in (or greater) inflow screens of the suction dragheads by the suction-pump pressure and that do not float are very unlikely to be observed, since they will sink to the bottom of the hopper and not be detected by the overflow screening. Unobserved takes are not documented, thus, observed takes likely under-represent actual lethal takes.

As discussed in the section above on green sea turtles, we anticipate that approximately 66.7% of (i.e., 2 out of 3) entrained turtles would be detected. We do not have data specific to Atlantic sturgeon, however we believe that not all sturgeon that are killed by the hopper dredge will be observed. Without specific sturgeon data, we believe that the data on sea turtle observations is the best available science, and we apply a similar observation rate to Atlantic sturgeon takes. This amendment estimates that observers will detect and record approximately 66.7% of total sturgeon mortality (i.e., 2 of every 3 sturgeon killed by the dredge will be detected, observed, and tallied by onboard observers). Therefore, based on our estimated total observed lethal take of 11 Atlantic sturgeon for all entrance channel hopper dredging, we estimate that a total of 17 Atlantic sturgeon may be lethally taken during all entrance channel hopper dredging (11 observed sturgeon takes divided by 0.667, rounded up to the nearest whole number).

As with previous NMFS biological Opinions on hopper dredging, our subsequent jeopardy analysis is necessarily based on our knowledge (in this case, our best estimate) of the total number of Atlantic sturgeon that will be lethally taken, which includes those that are killed but not observed. Our best estimate of sturgeon lethally taken will be the sum of the observed and unobserved takes, i.e., those observed and documented by onboard protected species observers, plus those unobserved, undocumented lethal takes (because the sturgeon/sturgeon parts were either not entrained, or were entrained but were not seen/counted by onboard protected species observers).

In our amended Incidental Take Statement (ITS), observed, documented take numbers serve as triggers for some of the reasonable and prudent measures, and for potential reinitiation of consultation if actual observed takes exceed the anticipated/authorized number of observed takes. Furthermore, our ITS level of anticipated/authorized lethal takes assumes ongoing sturgeon relocation trawling, since it is an integral and important part of the action. Without relocation trawling, mortalities resulting from hopper dredge activities could be higher.

5.2.2 Relocation Trawling

The original SHEP Opinion and the 2013 amendment did not predict that any lethal takes of Atlantic sturgeon would occur during relocation trawling. However, 1 Atlantic sturgeon was lethally taken during the second season of relocation trawling. The mortality was presumably caused when an Atlantic sturgeon was caught under several hundred pounds of cannonball jellyfish (*Stomolophus meleagris*) during trawl retrieval. Attempts to revive the sturgeon were unsuccessful. We believe this may be the first documented case of an Atlantic sturgeon being killed during relocation trawling.

The original SHEP Opinion estimated that 20 Atlantic sturgeon would be non-lethally captured and relocated during hopper dredging; this estimate remained the same in the 2013 amendment

to the SHEP Opinion. However, within the first few days of the second season of relocation trawling, the non-lethal take was exceeded and take continued to occur during relocation trawling on an almost daily basis until dredging was stopped during the end of March. A total of 96 Atlantic sturgeon were caught; 95 were relocated and 1 Atlantic sturgeon died, as noted above. As discussed in the section above on hopper dredging, NMFS believes that dredging and relocation trawling within the new channel extension may have been a contributing factor to the higher than predicted take numbers. The graph below shows where the relocation trawler encountered Atlantic sturgeon. As can be seen, a greater number of Atlantic sturgeon were encountered at the outermost stations of the channel extension, the area that had not been previously dredged.

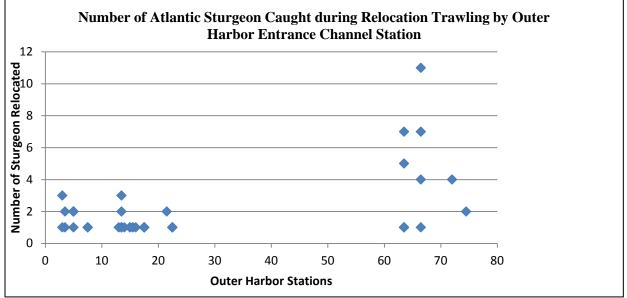


Figure 5. No. of Sturgeon Relocated from Outer Harbor Stations -0+000 to -76+000 during dredging seasons 1-2

We believe that Atlantic sturgeon may be congregating there because they consider it to be suitable for foraging and resting. The season 3 dredging to begin December 2017 and conclude in 2018, will be conducted adjacent to the areas dredged during season 2 and will also include the very terminal end of the channel extension, which has also never been dredged before (Stations -73+000 to -97+680).

During the first 2 seasons of relocation trawling for the Savannah Harbor entrance channel dredging, 95 Atlantic sturgeon were non-lethally captured. Approximately 48.9% of the hopper dredging (4,026,278 yd³ out of 8,226,278 yd³ total) was completed during this time period. Therefore, we expect up to 100 more Atlantic sturgeon will be captured during the remaining relocation trawling for a total of 195 trawl-caught Atlantic sturgeon (95 Atlantic sturgeon captured divided by 0.489, rounded up to the nearest whole number).

Relocation trawling usually results in non-lethal, non-injurious take due to the short duration of the tow times (15 to 30 minutes per tow; not more than 42 minutes) and required safe-handling procedures. The single Atlantic sturgeon mortality that occurred during the second season of dredging the Savannah Harbor entrance channel is the first report we have received of a lethal

take of sturgeon during relocation trawling. Approximately 48.9% of the hopper dredging $(4,026,278 \text{ yd}^3 \text{ out of } 8,226,278 \text{ yd}^3 \text{ total})$ was completed during this time period. Therefore, we expect up to 2 more Atlantic sturgeon will be lethally captured during the remaining relocation trawling for a total of 3 lethally trawl-caught Atlantic sturgeon (1 Atlantic sturgeon captured divided by 0.489, rounded up to the nearest whole number).

Tagging and Genetic Sampling

In addition to not having dredging/relocation trawling data for the outer harbor area while preparing the 2011 SHEP Biological Opinion, the lack of distribution data on Atlantic sturgeon in this area hindered our efforts to develop a realistic ITS for this species. Genetic sampling and tagging efforts carried out during SHEP's relocation trawling will provide helpful information that will assist in better protection of sturgeon in the future, and will allow identification of the DPS of fish captured. During relocation trawling in the first 2 dredging seasons, 59 Atlantic sturgeon were tagged with PIT tags. All sturgeon were scanned for PIT tags and 3 were detected with tags already in place. Those sturgeon had been previously tagged by sturgeon researchers in the Savannah River during 2015 and 2016 as a part of ongoing studies on sturgeon.

Tagging is a non-injurious form of take. Continued tagging of sturgeon caught during relocation trawling is not expected to have any detrimental effects on these fish. Tagging prior to release will help NMFS learn more about the habits and identity of trawl-captured animals after they are released, and if they are recaptured they will enable improvements in relocation trawling design to further reduce the effect of the hopper dredging activities. Tagging with PIT tags is not considered a dangerous procedure by the sturgeon research community, is routinely done by observers onboard vessels and can be safely accomplished with minimal training. NMFS knows of no instance where PIT tagging has resulted in mortality or serious injury to a trawl-captured sturgeon. Such an occurrence would be extremely unlikely because the technique of applying a PIT tag is minimally traumatic and relatively noninvasive; in addition, these tags are attached using sterile techniques. Important growth, life history, and migratory behavior data may be obtained from sturgeon captured and subsequently relocated. Therefore, sturgeon should be scanned for pre-existing tags and tagged before release if they are not already tagged.

Likewise, analysis of genetic samples may provide information on sturgeon DPS populations such as life history, and distribution/stock overlap. This may ultimately lead to enhanced sturgeon protection measures. Tissue sampling is performed to determine the genetic origins of captured sturgeon, and learn more about their distribution. Researchers who examined sturgeon caught after sample collection noted that the sample collection site was almost completely healed. Genetic sampling is a non-injurious form of take. NMFS does not expect that the collection of a tissue sample from each captured sturgeon will cause any additional stress or discomfort to the fish beyond that experienced during capture, collection of measurements, and tagging. Tissue sampling procedures are specified in the Terms and Conditions in Section 9.

5.2.3 Dredged Material Disposal

No new information has become available since the original Opinion and 2013 amendment were issued to change our original determination that dredged material disposal activities are not likely to adversely affect Atlantic sturgeon. Sturgeon may be attracted to the ODMDS to forage on prey that may be disturbed when the dredged material is being dumped. They could also be

potentially impacted by the sediments being discharged overhead. However, NMFS does not expect an injury from, nor has ever received a report of an injury to a sturgeon resulting from disposal of hopper-dredge-released sediments, either from inshore or offshore disposal sites, anywhere the USACE conducts dredged material disposal operations. Sturgeon are highly mobile and we believe their swim speeds allow them to avoid a descending sediment plume discharged at the surface by a hopper dredge opening its hopper doors, or pumping its sediment load over the side. Even if temporarily enveloped in a sediment plume, NMFS believes the possibility of injury or burial+ of normal, healthy sturgeon by dredged material (i.e., sand and silt) disposal, is discountable or its effects insignificant. NMFS believes that foraging habitat for sturgeon is not likely a limiting factor in the action area, and thus the loss of potential foraging habitat adjacent to, or on the surface of, the disposal areas (compared to remaining foraging habitat) from burial by dredged material sediments will have insignificant effects on sturgeon.

5.2.4 Delay in Fish Passage Implementation

Implementation of NSBLD fish passage is delayed by provisions of the WIIN Act of 2016 which directs USACE to compare an in-river fish passage alternative (including removal of the existing lock and dam structure) to the previously evaluated out-of-river bypass design prior to implementation of fish passage at NSBLD. As described in Section 2, Proposed Action, the original Opinion required that construction of fish passage would begin prior to or concurrent with the start of inner harbor dredging so that fish passage would be completed slightly before or concurrent with the completion of inner harbor dredging. As described in the original Opinion, timing of fish passage implementation is an important measure to minimize adverse effects to Atlantic and shortnose sturgeon that will result from reduction in availability of suitable habitat caused by expansion of the navigation channel. Inner harbor dredging is currently scheduled to begin in October 2018. Due to the requirements of the WIIN Act, the current timeline for the inriver fish passage estimates that a construction contract for the selected fish passage alternative will be awarded in January 2021 and that fish passage will be complete 8 months after the end of the inner harbor dredging in 2022. Therefore, this amendment addresses the effects of the 8month delay in full implementation of fish passage at NSBLD beyond that evaluated in the original Opinion.

As described in Section 3, water quality, salinity, DO, and access to spawning areas are all important factors influencing the status, conservation and recovery of Atlantic and shortnose sturgeon populations. The original Opinion identified fish passage at NSBLD as one of several project measures required to offset impacts to sturgeon habitat by increasing access to historically important, high quality spawning areas. Dredging of the inner harbor associated with SHEP is anticipated to affect sturgeon habitat through changes in water quality (primarily salinity and dissolved oxygen). Measures to offset low DO are also being implemented.

As evaluated in the original Opinion, the channel deepening will result in a 5,000-ft upstream movement in the salinity wedge in the main Savannah River. The Middle River will experience a smaller upstream movement in salinity, while the Back River will experience a larger downstream movement. Freshwater flow rerouting will provide some benefits to sturgeon habitat by offsetting upstream salinity movement. The 5,000-ft upstream movement in the salinity wedge in the Savannah River would not affect spawning areas, which are located over 100 mi upriver. However, salinity increases in the Savannah River will result in the loss of

winter habitat for juvenile sturgeon. Specifically, based on hydrodynamic modeling and habitat change analyses, it is expected that 251 acres (ac) of juvenile Atlantic sturgeon habitat will be altered by SHEP, which represents 7.6% of their current estuarine habitat in the lower river. While the original Opinion determined that the SHEP project would have adverse effects to juvenile Atlantic sturgeon, we were not able to determine numerical limits for the number of Atlantic sturgeon that will be adversely affected due to uncertainty regarding population estimates as well as uncertainty regarding potential development and utilization of habitats affected by both the navigation project and the associated mitigation measures. However, as described in the original Opinion, we used habitat loss as a surrogate measure to monitor anticipated effects on Atlantic sturgeon and provide for reinitiation of consultation, and in the absence of more certain information we believe it is reasonable to project that the loss of 7.6% of juvenile foraging habitat will adversely affect 7.6% of the juvenile Atlantic sturgeon population in the river.

In the original Opinion, we discussed how prompt implementation of fish passage at NSBLD would minimize the habitat-related adverse effects to sturgeon described above. The original Opinion determined that time lags between inner harbor dredging and completion of fish passage will result in adverse effects on the year-class strength of sturgeon. Reduction in year-class is a major consequence for the late-maturing, long-lived sturgeon that spawn infrequently. Therefore, we expect the delay of fish passage implementation will further adversely affect juvenile Atlantic sturgeon, since dredging of the inner harbor downstream will now be completed prior to completion of the fish passage. We believe the delay in implementation evaluated in this amendment will result in adverse effects to juvenile Atlantic sturgeon by reductions in survival and maturation of an undetermined number of juveniles during the 8-month delay in fish passage implementation. This delay in fish passage implementation will result in a prolonged period of adverse effects to an unknown number of individuals. Newly spawned juvenile sturgeon are very sensitive to salinity. Salinity tolerance of juvenile sturgeon develops as they migrate downstream from spawning grounds. Sturgeon spawned in the habitat upstream of NSBLD would have greater time and distance over which to develop salinity tolerance before they encounter the salinity wedge. Without the completion of fish passage at NSBLD prior to completion of the dredging, juvenile Atlantic sturgeon spawned below NSBLD will have less time and distance to develop salinity tolerance before reaching the salinity wedge.

Due to fidelity to natal rivers, we expect that impacts resulting from inner harbor dredging, including associated habitat changes, will affect only juvenile Atlantic sturgeon of the South Atlantic DPS. Analysis of the best available information indicates that juvenile Atlantic sturgeon from the Savannah River population of the South Atlantic DPS will be affected by habitat loss due to the inner harbor dredging, though no estimates (of either the number of juveniles in the population or the number of juveniles likely to be affected) are available. The loss of foraging area mentioned above will reduce the amount of prey available to juveniles, making successful foraging more difficult. This reduction in prey and reduction in foraging success will result in slower growth rates and reduced fitness of juvenile sturgeon. Reduced fitness can also lead to disease and mortality. These effects will occur over the same habitat area described in the original Opinion, but sturgeon will be exposed to these effects for a longer time period due to delay in fish passage implementation. However, we do not believe the 8-month

delay will change these sublethal effects to lethal effects, or affect a greater percentage of the population of juvenile Atlantic sturgeon in the action area.

With the transition from lower salinities to higher salinities, the estuarine species (vegetation and benthos) currently found in the area will shift further upriver. Surveys conducted by the USACE indicate that substrate suitable for the prey species preferred juvenile Atlantic sturgeon is found immediately upriver from the estuarine foraging habitat that will be modified by the increased salinity. The USACE surveys did not establish whether these areas support sturgeon prey species, but NMFS believes that this upriver habitat will eventually be colonized by prey species as the habitat equalizes to the higher salinities resulting from the upriver movement of the salt wedge. To compensate for the lost foraging habitat, sturgeon will be forced to shift foraging efforts into new areas, once suitable prey become available, or to intensify their foraging in the remaining suitable habitats, if sufficient prey remains there. To the extent that sturgeon and the ecosystem are capable of making these responses, the overall impacts of lost foraging habitat may eventually be reduced.

While fish passage will be delayed by 8 months, other measures for offsetting effects to sturgeon habitat are being implemented. The original Opinion summarized effects resulting from anticipated changes in water quality and determined that salinity increases and dissolved oxygen decreases would adversely affect foraging and resting habitat for sturgeon in the estuarine portion of the Savannah River. To offset low dissolved oxygen (DO), a DOIS is sited in the critical low DO area in the harbor. Summer DO levels in the harbor are regularly quite low, commonly dropping below 2 parts per million (ppm). Construction of the DOIS is 45% complete and the system is scheduled to become fully operational by the summer of 2019. This is expected to increase the habitat suitable for sturgeon by 6.5% in summer. Sturgeon will experience a 6.5% increase in available summer habitat for the majority of the period when inner harbor dredging is occurring (2018-2022) and for the full duration of the project life. Due to chronically low DO during the summer months, the availability of additional summer habitat is considered a benefit to sturgeon in the Savannah River.

The original Opinion also determined that adult and sub-adult Atlantic sturgeon are more salt tolerant than juvenile Atlantic sturgeon and forage mainly in the Atlantic Ocean and the effects of habitat alterations to adult and sub-adult Atlantic sturgeon would be insignificant. Though these Atlantic sturgeon life stages will be denied access to a larger area of important, high quality spawning habitat for an additional 8-month period due to the delay of fish passage implementation, we expect the delay to be insignificant. Adult Atlantic sturgeon are currently using spawning areas downstream of NSBLD, and we do not expect the quantity or success of spawning to be reduced by the delay in 8-month delay in fish passage implementation.

5.2.5 Assigning Takes to the 5 Atlantic Sturgeon DPSs

Atlantic sturgeon mix extensively in the marine environment, and individuals from all 5 Atlantic sturgeon DPSs could occur within the action area. Therefore, we must determine from which DPSs the takes will occur. Unfortunately, data is limited regarding the distributions of Atlantic sturgeon DPSs when mixed in marine waters. To date, there is only 1 report available which examines the distributions of the individual DPSs in offshore environments – NMFS's Greater Atlantic Regional Fisheries Office (GARFO) Protected Resources Division's Mixed Stock

Analysis (MSA) (Damon-Randall et al. 2013). The report is an analysis of the composition of Atlantic sturgeon stocks along the East Coast, using tag-recapture data and genetic samples that identify captured fish back to their DPS of origin. Atlantic sturgeon can be assigned to their DPS based on genetic analyses with 92-96% accuracy, though some fish used in the MSA could not be assigned to a DPS. Data from Northeast Fisheries Observer Program (NEFOP) and the At Sea Monitoring (ASM) programs were used in the MSA to determine the percentage of fish from each of the DPSs at the selected locations along the coast. This report is the best available information, and we will use this to assign the Atlantic sturgeon takes to the 5 DPSs.

As part of their analysis, GARFO-PRD examined the raw results of the genetic analyses to determine if natural geographic boundaries emerged. Given the relatively small number of samples, boundaries were not obvious from the genetics data alone (Damon-Randall et al. 2013). The results of the MSA for the coastal samples indicated groupings of animals that coincided with 3 "marine ecoregions." These marine ecoregions were defined by The Nature Conservancy and refined in 2007. Within a marine ecoregion, the composition of marine species is relatively homogenous and clearly distinct from adjacent ecoregions. The Nature Conservancy focused on features such as population isolation,⁶ upwelling, nutrient inputs, freshwater influx, temperature regimes, ice regimes, exposure, sediments, currents, and bathymetric or coastal complexity, when defining ecoregions. Along the east coast of the United States, there are 3 marine ecoregions (Figure 6). The proposed action occurs in the Carolinian ecoregion.

⁶ Isolation in the marine environment may be caused by "deep water, narrow straits, or rapid changes in shelf conditions" Spalding, M. D., H. E. Fox, G. R. Allen, and N. Davidson. 2007. Marine ecoregions of the world. Pages Companion publication: Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., Robertson, J. (2007) Marine Ecoregions of the World: a bioregionalization of coast and shelf areas. BioScience 57: 573-583 *in*. The Nature Conservancy, Arlington, Virginia.

Figure 6. Three marine ecoregions off the east coast of the United States Source: (Damon-Randall et al. 2013)

GARFO-PRD refined these marine ecoregions using the boundaries for existing fisheries statistical areas and known Atlantic sturgeon migratory pathways (Damon-Randall et al. 2013). According to Damon-Randall et al. (2013), the Gulf of Maine/Bay of Fundy marine ecoregion falls into Marine Mixing Zone (MMZ) 1, the Virginian marine ecoregion falls into MMZ 2, and the Carolinian marine ecoregion falls into MMZ 3 (Figure 7). Marine Mixing Zone 3, which extends from Cape Hatteras to the tip of Florida, corresponds to the portion of the action area where the Atlantic sturgeon are likely to occur in the marine environment. While updates to this analysis were conducted in 2013, Damon-Randall et al. (2013) report no new data for MMZ 3 were available. NMFS determined that the original data from the NEFOP and ASM programs still represent the best available information with respect to the DPS composition of animals in MMZ 3. The composition of Atlantic sturgeon residing in MMZ 3 are a range around a mean value, with a 5% confidence interval on either side. The mean composition point estimates are listed below with each respective range in parenthesis:

- 1% St. John (0-6%)
- 11% Gulf of Maine (6-16%)
- 51% New York Bight (46-56%)
- 13% Chesapeake Bay (8-18%)
- 2% Carolina (0-7%)
- 22% South Atlantic (17-27%)

It important to note that we estimate a few Atlantic sturgeon takes are likely from the population in St. John, Canada. Since these animals are from a population outside the United States that was not listed under the ESA, we do not consider the take of these animals further in this Biological Opinion. Removing the contributions of those fish means the average composition estimates (e.g., 11% + 51%, etc.) do not add to 100 (i.e., only sums to 99%).

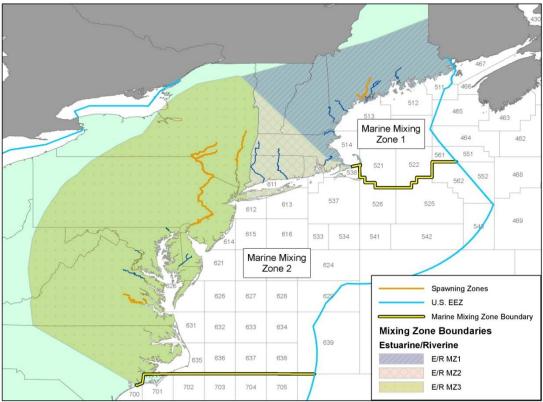


Figure 7. Map of Mixing Zones Source: (Damon-Randall et al. 2013)

We determined the number of Atlantic sturgeon from each DPS that would be taken during hopper dredging and relocation trawling by multiplying the total expected lethal and non-lethal take of Atlantic sturgeon by the percentage of sturgeon from each DPS expected to be in the action area based on the MSA and rounded up to the nearest whole number. Because we rounded up to the nearest whole number, the number of sturgeon taken from each DPS will be greater than the total estimated number of sturgeon. Tables 4-6 show the estimated take for each Atlantic sturgeon DPS by activity and type of take (lethal versus non-lethal).

able 7. Estimateu lethai take b	y nopper ureuging for each Dry
DPS	Hopper Dredging
DIS	Lethal
Total	17
Gulf of Maine DPS (11%)	2
New York Bight DPS (51%)	9
Chesapeake Bay DPS (13%)	3
Carolina DPS (2%)	1
South Atlantic DPS (22%)	4

Tabla 4	Estimated	lathal	taka	hv	honner	drod	aina	for	ooch T)PC
Table 4.	Estimateu	leulai	lake	Dy	nopper	ureu	ging	101.0	each L	ло

DPS	Relocation Trawling			
DIS	Non-lethal	Lethal		
Total	195	3		
Gulf of Maine DPS (11%)	22	1		
New York Bight DPS (51%)	100	2		
Chesapeake Bay DPS (13%)	26	1		
Carolina DPS (2%)	4	1		
South Atlantic DPS (22%)	43	1		

Table 5. Estimated lethal and non-lethal take during relocation trawling for each DPS

Table 6. Total estimated lethal and non-lethal take for each DP	'S
---	----

DPS	Total Take by DPS				
DPS	Non-lethal	Lethal			
Total	195	20			
Gulf of Maine DPS (11%)	22	3			
New York Bight DPS (51%)	100	11			
Chesapeake Bay DPS (13%)	26	4			
Carolina DPS (2%)	4	2			
South Atlantic DPS (22%)	43	5			

5.3 Effects of the Action on Shortnose Sturgeon

The only action evaluated in this amendment that may adversely affect shortnose sturgeon is the delayed implementation of fish passage at NSBLD. Implementation of NSBLD fish passage is delayed by provisions of the WIIN Act of 2016 which directs USACE to compare an in-river fish passage alternative (including removal of the existing lock and dam structure) to the previously evaluated out-of-river bypass design, prior to implementation of fish passage at NSBLD. As described in the Section 2, Proposed Action, the 2011 Opinion required that construction of fish passage begin prior to or concurrent with the start of inner harbor dredging so that fish passage would be completed slightly before or concurrent with the completion of inner harbor dredging. Inner harbor dredging is currently scheduled to begin in October 2018. Due to the requirements of the WIIN Act, the current timeline for the in-river fish passage estimates that a construction contract for the fish passage will be awarded in January 2021 and that fish passage will be complete 8 months after the end of the inner harbor dredging in 2022. Therefore, this amendment addresses the effects of the 8-month delay in full implementation of fish passage at NSBLD beyond that evaluated in the original Opinion.

As described in Section 3, the status and recovery of sturgeon populations in the Savannah River is affected by water quality, DO, access to spawning areas, and salinity. As described in the original Opinion, fish passage at NSBLD is one of several project measures being implemented to offset impacts to sturgeon habitat by increasing access to historically important, high quality spawning areas. Dredging of the inner harbor associated with SHEP is anticipated to affect sturgeon habitat through changes in water quality (primarily salinity and dissolved oxygen). Measures to offset low DO are also being implemented, and flow re-routing has been implemented which will offset some of the impacts of increased salinities in the action area.

As evaluated in the original Opinion, the deepening within the inner harbor will result in impacts to shortnose sturgeon foraging habitat and the foraging base found there, which will affect an unknown portion of the Savannah River population of shortnose sturgeon that is believed to reside only within the action area. Habitat changes will result from changes in salinity and dissolved oxygen concentrations. Expansion of the navigation channel will result in a 5,000-ft upstream movement in the salinity wedge in the main Savannah River. The Middle River would experience a smaller upstream movement in salinity, while the Back River would experience a larger downstream movement. Freshwater flow rerouting will provide some benefits to sturgeon habitat by offsetting upstream salinity movement. The 5,000-ft upstream movement in the salinity wedge in the Savannah River would not affect spawning areas, which are located over 100 mi upriver. However, salinity increases throughout the Savannah river will result in the loss of winter habitat for juvenile sturgeon. Specifically, based on hydrodynamic modeling and habitat change analyses, it is expected that 251 ac of juvenile shortnose sturgeon habitat will be altered by SHEP, which represents 7.6% of their current estuarine habitat in the lower river. It is also expected that 266 ac of habitat important to adult and sub-adult shortnose sturgeon will be altered, which represents 6.9% of their current estuarine habitat in the lower river. In the absence of more certain information, it is reasonable to predict that approximately 7.6% of juvenile and 6.9% of adult shortnose sturgeon will be adversely affected by the deepening, though we are not able to reliably determine the specific number of shortnose sturgeon that would be affected due to uncertainty regarding population estimates as well as uncertainty regarding potential development and utilization of habitats affected by both the navigation project and the associated mitigation measures. Consequently, as described in the original Opinion and in more detail in the ITS below, we identified habitat change as a surrogate measure that is causally related to the potential take of shortnose sturgeon, and can be measured and monitored.

The loss of foraging area mentioned above will reduce the amount of prey available to juveniles, making successful foraging more difficult. This reduction in prey and reduction in foraging success will result in slower growth rates and reduced fitness of juvenile sturgeon. Reduced fitness can also lead to disease and mortality. Adult shortnose sturgeon will also face a reduction in foraging success which will lead to reduced fitness. Reduced fitness in adult shortnose sturgeon can lead to disease and mortality, lower fecundity in females, and a reduction in the energy required to make spawning runs, thereby, causing a lowering of reproductive success.

In the original Opinion, we discussed how prompt implementation of fish passage at NSBLD would minimize the habitat-related adverse effects to sturgeon described above. The original Opinion determined that time lags between inner harbor dredging and completion of fish passage will result in adverse effects on the year-class strength of sturgeon. Reduction in year-class is a major consequence for the late-maturing, long-lived sturgeon that spawn infrequently. Therefore, we expect the delay of fish passage implementation will further adversely affect shortnose sturgeon, since dredging of the inner harbor downstream will now be completed prior to completion of the fish passage. We believe the delay in implementation evaluated in this amendment will result in reductions in fitness of both juvenile and adult shortnose sturgeon, and reductions in maturation of juveniles, as a result of decreased foraging success. This delay in fish passage implementation will result in a prolonged period of adverse effects to an unknown number of individuals. Newly spawned juvenile sturgeon are very sensitive to salinity.

tolerance of juvenile sturgeon develops as they migrate downstream from spawning grounds. Sturgeon spawned in the habitat upstream of NSBLD would have greater time and distance over which to develop salinity tolerance before they encounter the salinity wedge. Without the completion of fish passage at NSBLD prior to completion of the dredging, juvenile shortnose sturgeon spawned below NSBLD will have less time and distance to develop salinity tolerance before reaching the salinity wedge.

Habitat changes resulting from channel expansions will also adversely affect adult shortnose sturgeon through reduction in forage and resting habitats. Adult shortnose sturgeon will also face a reduction in foraging success which will lead to reduced fitness. Reduced fitness in adult shortnose sturgeon can lead to disease and mortality, lower fecundity in females, and a reduction in the energy required to make spawning runs, thereby, causing a lowering of reproductive success.

With the transition from lower salinities to higher salinities, the estuarine species (vegetation and benthos) currently found in the area will shift further upriver. To compensate for the lost foraging habitat, sturgeon will be forced to shift foraging efforts into new areas, once suitable prey become available, or to intensify their foraging in the remaining suitable habitats, if sufficient prey remains there. To the extent that sturgeon and the ecosystem are capable of making these responses, the overall impacts of lost foraging habitat may eventually be reduced.

These adverse effects to shortnose sturgeon will occur over the same habitat area described in the original Opinion, but will occur for a longer time period due to delay in fish passage implementation. However, we do not believe the 8-month delay will change these sublethal effects to lethal effects, or affect a greater percentage of the population of juvenile or adult shortnose sturgeon in the action area.

While fish passage will be delayed by 8 months, other measures for offsetting effects to sturgeon habitat are currently being implemented. The original Opinion summarized effects resulting from anticipated changes in water quality and determined that salinity increases and dissolved oxygen decreases would adversely affect foraging and resting habitat for sturgeon in the estuarine portion of the Savannah River. To offset low dissolved oxygen (DO), a DOIS is sited in the critical low DO area in the harbor. Summer DO levels in the harbor are regularly quite low, commonly dropping below 2 parts per million (ppm). Construction of the DOIS is 45% complete and the system is scheduled to become fully operational by the summer of 2019. This is expected to increase the habitat suitable for sturgeon by 6.5% in summer. Sturgeon will experience a 6.5% increase in available summer habitat for the majority of the period when inner harbor dredging is occurring (2018-2022) and for the full duration of the project life.

6 CUMULATIVE EFFECTS

Cumulative effects are the effects of future state, local, or private activities that are reasonably certain to occur within the action area considered in this biological Opinion. Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to Section 7 of the ESA.

Within the action area, no reasonably certain future state, local or private activities beyond the continuation of those discussed in the environmental baseline section are expected. In addition, major future changes are not anticipated in ongoing human activities described in the environmental baseline. The present human uses of the action area, such as commercial shipping, boating, and fishing, are expected to continue at the present levels of intensity in the near future as are their associated risks of injury or mortality to sea turtles or sturgeon posed by incidental capture by fishermen, vessel collisions, pollution, coastal development, and climate change. While the combination of these activities may prevent or slow the recovery of populations of sea turtles and sturgeon, the magnitude of these effects is currently unknown.

Fisheries

Fisheries in state waters of the action area have been known to adversely affect sea turtles and ESA-listed sturgeon. The past and present impacts of these activates discussed in the Environmental Baseline section of this Opinion are expected to continue into the foreseeable future, concurrent with the proposed action. NMFS is not aware of any proposed or anticipated changes in these fisheries that would substantially change the impacts each fishery has on sea turtles and ESA-listed sturgeon covered by this Opinion.

Vessel Interactions

NMFS's STSSN data indicate that vessel interactions are responsible for a large number of sea turtles stranding within the action area each year. Such collisions are reasonably certain to continue into the future. Collisions with boats can stun or easily kill sea turtles, and many stranded sea turtles have obvious propeller or collision marks (Dwyer et al. 2003). Still, it is not always clear whether the collision occurred pre- or post-mortem. NMFS believes that sea turtle takes by vessel interactions will continue in the future. An estimate of the number of sea turtles that will likely be killed by vessels is not available from data at this time. Since ESA-listed sturgeon are benthic species, vessel strikes are not considered a major threat to them in the action area.

Pollution

Marine debris (e.g., discarded fishing line or lines from boats) can entangle sea turtles in the water and drown them. Sea turtles commonly ingest plastic or mistake debris for food. Excessive turbidity due to coastal development and/or construction sites could influence sea turtle foraging behavior. As mentioned previously, sea turtles are not very easily affected by changes in water quality or increased suspended sediments, but if these alterations make habitat less suitable for sea turtles and hinder their capability to forage, eventually they would tend to leave or avoid these areas (Ruben and Morreale 1999).

Coastal Development/Maintenance

Beachfront development, lighting, and beach erosion control are all ongoing activities along the southeastern coast of the United States. These activities potentially reduce or degrade sea turtle nesting habitats or interfere with hatchling movement to sea. Human activities and development along nesting beaches may also discourage sea turtles from nesting sites. The extent to which these activities reduce sea turtle nesting and hatchling production is unknown. However, more and more coastal counties have or are adopting more stringent protective measures to protect hatchling sea turtles from the disorienting effects of beach lighting. Some of these measures were drafted in response to lawsuits brought against the counties by concerned citizens who

charged the counties with failing to uphold the ESA by allowing unregulated beach lighting which results in takes of hatchlings.

Dredging of harbors and rivers are likely to impact (capture and injure) both turtles and sturgeon in the future.

Global Climate Change

Global climate change is likely adversely affecting sea turtles and ESA-listed sturgeon. Some of the likely effects commonly mentioned are sea level rise, increased frequency of severe weather events, and change in air and water temperatures. The effects on ESA-listed species are unknown at this time. There are multiple hypothesized effects to ESA-listed sea turtles, and ESA-listed sturgeon including changes in their range and distribution, as well as prey distribution and/or abundance due to water temperature changes. Ocean acidification may also negatively affect marine life, particularly organisms with calcium carbonate shells that serve as important prey items for many species. Global climate change may also affect reproductive behavior in sea turtles, including earlier onset of nesting, shorter intervals between nesting, and a decrease in the length of nesting season. Sea level rise may also reduce the amount of nesting beach available. Changes in air temperature may also affect the sex ratio of sea turtle hatchlings. Water temperature is a main factor affecting the distribution of large whales, and may affect the range of these species. A decline in reproductive fitness as a result of global climate change could have profound effects on the abundance and distribution of sea turtles in the Atlantic.

Sea levels and water temperatures are expected to rise, and levels of precipitation are likely to fluctuate. Drought and inter- and intra-state water allocations and their associated impacts to ESA-listed sturgeon will continue and may intensify. A rise in sea level may drive the salt wedge upriver on river systems inhabited by sturgeon, potentially constricting sturgeon habitat. NMFS will continue to work with states to implement ESA Section 6 agreements, and with researchers holding Section 10 permits, to enhance programs to quantify and mitigate these takes and effects.

7 INTEGRATION AND SYNTHESIS - JEOPARDY ANALYSES

This section provides an integration and synthesis of the information presented in the Status of the Species, Environmental Baseline, Cumulative Effects, and Effects of the Action sections of this amendment. The intent of the following discussion is to provide a basis for determining the additive effects of the take on green sea turtles and sturgeon in light of their present and anticipated future statuses.

The analyses conducted in the previous sections of this amendment serve to provide a basis to determine whether the proposed action would be likely to jeopardize the continued existence of green sea turtle DPSs, Atlantic sturgeon DPSs, and shortnose sturgeon. In Section 5, we outlined how the proposed action can affect green sea turtles and sturgeon and the extent of those effects in terms of estimates of the numbers or extent of each species expected to be killed. Now we turn to an assessment of each species' response to this impact, in terms of overall population effects from the estimated take, and whether those effects of the proposed action, when considered in the context of the status of the species (Section 3), the environmental baseline

(Section 4), and the cumulative effects (Section 6), will jeopardize the continued existence of the affected species.

To "jeopardize the continued existence of…" means to "engage in an action that reasonably would be expected, directly or indirectly to reduce appreciably the likelihood of both the survival and the recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species" (50 CFR 402.02). Thus, in making this determination for each species, we must look at whether the proposed action directly or indirectly reduces the reproduction, numbers, or distribution of a listed species. Then if there is a reduction in 1 or more of these elements, we evaluate whether it would be expected to cause an appreciable reduction in the likelihood of both the survival and the recovery of the species.

The status of each species likely to be adversely affected by the changes in the proposed action covered by this amendment is reviewed in Section 3.

Please refer to the original Opinion for detailed information on the jeopardy analyses for the species not evaluated in this amendment.

7.1 Green Sea Turtles (NA DPS and SA DPS)

Within U.S. waters, individuals from both the NA and SA DPSs can be found where the proposed action would occur. To analyze effects in a precautionary manner to address the uncertainty in level of impacts to each DPS, we will conduct two jeopardy analyses, one for each DPS (i.e., assuming animals would be taken from both DPSs). We will conservatively analyze impacts to the NA DPS assuming that 100% of the takes would come from that DPS (this is the greatest percentage that could be taken from the DPS). Similarly, the greatest percentage of animals that would likely be taken from the SA DPS would be 5% (likely less if adults are taken, but we assume the most precautionary result). Table 7 shows the estimated take of green sea turtles from each DPS under these two approaches.

	Hopper Dredging	Relocation Trawling			Total Ma	Grand Total ⁷	
	Lethal	Lethal (Max)	Non-lethal (Max)	Total ⁸	Lethal	Non-lethal	
Green Sea Turtles (SA + NA DPS)	23	1	5	5	24	5	28
NA DPS	23	1	5	5	24	5	28
SA DPS	2	1	1	1	3	1	3

Table 7.	Estimated	Take of	Green	Sea	Turtles
	13501110000	I this of	010011		

⁷ This column lists the total numbers of green sea turtles estimated to be taken, either lethally or non-lethally, during hopper dredging and relocation trawling. This number will not equal total maximum lethal takes plus the total maximum non-lethal take. See the next footnote for further explanation.

⁸ This is the total number of green sea turtles we estimate will be captured during relocation trawling. There is a small likelihood (0.6%) that one of the captures could be lethal, though we expect all will likely be non-lethal (as has been the case during the project to date.) This table lists both the maximum lethal take and maximum non-lethal take estimated to occur during relocation trawling. The total numbers listed in this column will not equal the lethal plus the non-lethal take during relocation trawling.

7.1.1 Green Sea Turtle NA DPS

Hopper dredging of the entrance channel could result in the lethal take of up to 23 green sea turtles. To be conservative, we assumed that 100% of the 23 turtles lethally taken could come from the NA DPS. Further, we expect 5 green sea turtles, to be captured during relocation trawling, with no more than 1 of those captures being lethal. Therefore, up to 24 green sea turtles from the NA DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal capture of up to 5 green sea turtles from the NA DPS during relocation trawling over the 3 dredging seasons is not expected to have any measurable impact on the reproduction, numbers, or distribution of these species. The individuals suffering non-lethal injuries or stresses are expected to fully recover such that no reductions in reproduction or numbers of green sea turtles are anticipated. The captures may occur anywhere in the action area, which encompasses only a tiny portion of green sea turtles' overall range/distribution within the NA DPS. Because any incidentally caught animal would be released within the general area where caught, no change in the distribution of NA DPS green sea turtles is anticipated.

The potential lethal take of 24 NA DPS green sea turtles over the 3 dredging seasons would reduce the number of NA DPS green sea turtles, compared to their numbers in the absence of the proposed action, assuming all other variables remained the same. Lethal interactions would also result in a potential reduction in future reproduction, assuming some individuals would be females and would have survived otherwise to reproduce. For example, , an adult green sea turtle can lay up to 7 clutches (usually 3-4) of eggs every 2-4 years, with up to an average of 136 eggs/nest, of which a small percentage is expected to survive to sexual maturity. The anticipated lethal interactions are expected to occur anywhere in the action area and only affect a small portion of the DPS, and sea turtles generally have large ranges in which they disperse; thus, no reduction in the distribution of green sea turtles within the NA DPS is expected from these captures.

Whether the reductions in numbers and reproduction of this species would appreciably reduce its likelihood of survival depends on the probable effect the changes in numbers and reproduction would have relative to current population sizes and trends. In the Status of Species section of this amendment, we presented the status of the DPS, outlined threats, and discussed information on estimates of the number of nesting females and nesting trends at primary nesting beaches. In the Environmental Baseline, this amendment outlined the past and present impacts of all state, federal, or private actions and other human activities in or having effects in, the action area that have impacted and continue to impact this DPS. The Cumulative Effects section discussed the effects of future state, tribal, local, or private actions that are reasonably certain to occur within the action area.

Seminoff et al. (2015) estimated that there are greater than 167,000 nesting females in the NA DPS. The nesting at Tortuguero, Costa Rica, accounts for approximately 79% of that estimate (approximately 131,000 nesters), with Quintana Roo, Mexico, (approximately 18,250 nesters; 11%), and Florida, USA, (approximately 8,400 nesters; 5%) also accounting for a large portion of the overall nesting (Seminoff et al. 2015).

At Tortuguero, Costa Rica, the number of nests laid per year from 1999 to 2010 increased, despite substantial human impacts to the population at the nesting beach and at foraging areas (Campell and Lagueux 2005; Troëng 1998; Troëng and Rankin 2005).

Nesting locations in Mexico along the Yucatan Peninsula also indicate the number of nests laid each year has increased (Seminoff et al. 2015). In the early 1980s, approximately 875 nests/year were deposited, but by 2000 this increased to over 1,500 nests/year (NMFS and USFWS 2007)(NMFS and USFWS 2007a). By 2012, more than 26,000 nests were counted in Quintana Roo (J. Zurita, CIQROO, unpubl. data, 2013, in Seminoff et al. 2015)

In Florida, most nesting occurs along the Atlantic coast of eastern central Florida, where a mean of 5,055 nests were deposited each year from 2001 to 2005 (Meylan et al. 2006) and 10,377 each year from 2008 to 2012 (B. Witherington, Florida Fish and Wildlife Conservation Commission, pers. comm., 2013). As described in the Section 3.3.3, nesting has increased substantially over the last 20 years and peaked in 2015 with 27,975 nests statewide in 2015. In-water studies conducted over 24 years in the Indian River Lagoon, Florida, suggest similar increasing trends, with green sea turtle captures up 661% (Ehrhart et al. 2007). Similar in-water work at the St. Lucie Power Plant site revealed a significant increase in the annual rate of capture of immature green sea turtles over 26 years (Witherington et al. 2006).

In summary, nesting at the primary nesting beaches has been increasing over the course of the decades, against the background of the past and ongoing human and natural factors (environmental baseline) that have contributed to the current status of the species. We believe these nesting trends are indicative of a species with a high number of sexually mature individuals. Since the abundance trend information for NA DPS green sea turtles is clearly increasing, we believe the potential lethal capture of 24 NA DPS green sea turtles over the 3 dredging seasons will not have any measurable effect on that trend. After analyzing the magnitude of the project dredging, in combination with the past, present, and future expected impacts to the DPS discussed in this amendment, we believe the action is not reasonably expected to cause an appreciable reduction in the likelihood of survival of the green sea turtle NA DPS in the wild.

Recovery

The NA DPS of green sea turtles does not have a separate recovery plan at this time. However, an Atlantic Recovery Plan for the population of Atlantic green sea turtles (NMFS and USFWS 1991) does exist. Since the animals within the NA DPS all occur in the Atlantic Ocean and would have been subject to the recovery actions described in that plan, we believe it is appropriate to continue using that Recovery Plan as a guide until a new plan, specific to the NA DPS, is developed. The Atlantic Recovery Plan lists the following relevant recovery objectives over a period of 25 continuous years:

Objective: The level of nesting in Florida has increased to an average of 5,000 nests per year for at least 6 years.

Objective: A reduction in stage class mortality is reflected in higher counts of individuals on foraging grounds.

According to data collected from Florida's index nesting beach survey from 1989-2015, green sea turtle nest counts across Florida have increased approximately ten-fold from a low of 267 in the early 1990s to a high of 27,975 in 2015 (http://myfwc.com/research/wildlife/sea-turtles/nesting/2015-nesting-trends/). There are currently no estimates available specifically addressing changes in abundance of individuals on foraging grounds. Given the clear increases in nesting, however, it is likely that numbers on foraging grounds have increased.

The potential lethal capture of up to 24 NA DPS green sea turtles over the 3 dredging seasons will result in a reduction in numbers when captures occur and a potential reduction in future reproduction, but it is unlikely to have any detectable influence on the recovery objectives and trends noted above, even when considered in the context of the of the Status of the Species, the Environmental Baseline, and Cumulative Effects discussed in this amendment. Non-lethal captures of these sea turtles would not affect the adult female nesting population or number of nests per nesting season. Thus, the project dredging and relocation trawling will not impede achieving the recovery objectives above and will not result in an appreciable reduction in the likelihood of NA DPS green sea turtles' recovery in the wild.

Conclusion

The lethal and non-lethal captures associated with the project dredging are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the NA DPS of green sea turtle in the wild.

7.1.2 Green Sea Turtle SA DPS

Hopper dredging of the entrance channel could result in the lethal take of up to 23 green sea turtles. To be conservative, we assumed that up to 5% or 2 of the 23 turtles lethally taken could come from the SA DPS. Further, we expect 5 green sea turtles to be captured during relocation trawling, with 1 of those turtles originating from the SA DPS. We expect that the trawl capture of the SA DPS green turtle will be non-lethal, however there is a small possibility (0.6%) that it could be lethal. Therefore, up to 3 green sea turtles from the SA DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal capture of 1 green sea turtle from the SA DPS during relocation trawling over the 3 dredging seasons is not expected to have any measurable impact on the reproduction, numbers, or distribution of these species. The individual suffering non-lethal injuries or stresses is expected to fully recover such that no reductions in reproduction or numbers of green sea turtles are anticipated. The capture may occur anywhere in the action area, which encompasses only a tiny portion of green sea turtles' overall range/distribution within the NA DPS. Because any incidentally caught animal would be released within the general area where caught, no change in the distribution of NA DPS green sea turtles is anticipated.

The potential lethal capture of 3 green sea turtles over 3 dredging seasons would reduce the number of green sea turtles, compared to their numbers in the absence of the project's action, assuming all other variables remained the same. Lethal interactions would also result in a potential reduction in future reproduction, assuming the individuals caught would at least in some years be female and would have survived otherwise to reproduce. For example, as discussed in Section 3, an adult green sea turtle can lay up to 7 clutches (usually 3-4) of eggs every 2-4 years, with up to an average of 136 eggs/nest, of which a small percentage is expected

to survive to sexual maturity. The anticipated lethal interaction is expected to occur anywhere in the action area and sea turtles generally have large ranges in which they disperse; thus, no reduction in the distribution of green sea turtles within the SA DPS is expected from this capture.

Whether the reductions in numbers and reproduction of this species would appreciably reduce its likelihood of survival depends on the probable effect the changes in numbers and reproduction would have relative to current population sizes and trends. In the Status of Species of this amendment, we presented the status of the DPS, outlined threats, and discussed information on estimates of the number of nesting females and nesting trends at primary nesting beaches. In the Environmental Baseline, this amendment considered the past and present impacts of all state, federal, or private actions and other human activities in or having effects in, the action area that have impacted and continue to impact this DPS. The Cumulative Effects section considered the effects of future state, tribal, local, or private actions that are reasonably certain to occur within the action area.

In Section 3.4.1, we summarized available information on number of nesters and nesting trends at SA DPS beaches. Seminoff et al. (2015) estimated that there are greater than 63,000 nesting females in the SA DPS, though they noted the adult female nesting abundance from 37 beaches could not be quantified. The nesting at Poilão, Guinea-Bissau, accounted for approximately 46% of that estimate (approximately 30,000 nesters), with Ascension Island, United Kingdom, (approximately 13,400 nesters; 21%), and the Galibi Reserve, Suriname (approximately 9,400 nesters; 15%) also accounting for a large portion of the overall nesting (Seminoff et al. 2015).

Seminoff et al. (2015) reported that while trends cannot be estimated for many nesting populations due to the lack of data, they could discuss possible trends at some of the primary nesting sites. Seminoff et al. (2015) indicated that the nesting concentration at Ascension Island (United Kingdom) is one of the largest in the SA DPS and the population has increased substantially over the last 3 decades (Broderick et al. 2006; Glen et al. 2006). Mortimer and Carr (1987) counted 5,257 nests in 1977 (about 1,500 females), and 10,764 nests in 1978 (about 3,000 females) whereas from 1999–2004, a total of about 3,500 females nested each year (Broderick et al. 2006). Since 1977, numbers of nests on 1 of the 2 major nesting beaches, Long Beach, have increased exponentially from around 1,000 to almost 10,000 (Seminoff et al. 2015). From 2010 to 2012, an average of 23,000 nests per year was laid on Ascension (Seminoff et al. 2015). Seminoff et al. (2015), caution that while these data are suggestive of an increase, historic data from additional years are needed to fully substantiate this possibility.

Seminoff et al. (2015) reported that the nesting concentration at Galibi Reserve and Matapica in Suriname were stable from the 1970s through the 1980s. From 1975–1979, 1,657 females were counted (Schulz 1982), a number that increased to a mean of 1,740 females from 1983–1987 (Ogren 1989), and to 1,803 females in 1995 (Weijerman et al. 1998). Since 2000, there appears to be a rapid increase in nest numbers (Seminoff et al. 2015).

In the Bijagos Archipelago (Poilão, Guinea-Bissau), Parris and Agardy (1993 as cited in Fretey 2001) reported approximately 2,000 nesting females per season from 1990 to 1992, and Catry et al. (2002) reported approximately 2,500 females nesting during the 2000 season. Given the typical large annual variability in green sea turtle nesting, Catry et al. (2009) suggested it was premature to consider there to be a positive trend in Poilão nesting, though others have made

such a conclusion (Broderick et al. 2006). Despite the seeming increase in nesting, interviews along the coastal areas of Guinea-Bissau generally resulted in the view that sea turtles overall have decreased noticeably in numbers over the past two decades (Catry et al. 2009). In 2011, a record estimated 50,000 green sea turtle clutches were laid throughout the Bijagos Archipelago (Seminoff et al. 2015).

Nesting at the primary nesting beaches has been increasing over the course of the decades, against the background of the past and ongoing human and natural factors (environmental baseline) that have contributed to the current status of the species. We believe these nesting trends are indicative of a species with a high number of sexually mature individuals. Since the abundance trend information for the SA DPS of green sea turtles is clearly increasing, we believe the potential lethal capture of 3 sea turtles over 3 years attributed to the proposed action will not have any measurable effect on that trend. After analyzing the magnitude of the effects of the proposed action, in combination with the past, present, and future expected impacts to the DPS discussed in this amendment, we believe the proposed action is not reasonably expected to cause an appreciable reduction in the likelihood of survival of the green sea turtle SA DPS in the wild.

Recovery

Like the NA DPS, the SA DPS of green sea turtles does not have a separate recovery plan in place at this time. However, an Atlantic Recovery Plan for the population of Atlantic green sea turtles (NMFS and USFWS 1991) does exist. Since the animals within the SA DPS all occur in the Atlantic Ocean and would have been subject to the recovery actions described in that plan, we believe it is appropriate to continue using that Recovery Plan as a guide until a new plan, specific to the SA DPS, is developed. In our analysis for the NA DPS, we stated that the Atlantic Recovery Plan lists the following relevant recovery objectives over a period of 25 continuous years:

Objective: The level of nesting in Florida has increased to an average of 5,000 nests per year for at least 6 years.

Objective: A reduction in stage class mortality is reflected in higher counts of individuals on foraging grounds.

The nesting recovery objective is specific to the NA DPS, but demonstrates the importance of increases in nesting to recovery. As previously stated, nesting at the primary SA DPS nesting beaches has been increasing over the course of the decades. There are currently no estimates available specifically addressing changes in abundance of individuals on foraging grounds. Given the clear increases in nesting and in-water abundance, however, it is likely that numbers on foraging grounds have increased.

The potential lethal capture of 3 SA DPS green sea turtles over 3 dredging seasons will result in a reduction in numbers when a capture occurs and a potential reduction in future reproduction, but it is unlikely to have any detectable influence on the trends noted above, even when considered in context with the Status of the Species, the Environmental Baseline, and Cumulative Effects discussed in this amendment. Non-lethal capture of a sea turtle would not affect the adult female nesting population or number of nests per nesting season. Thus, the project dredging and relocation trawling will not impede achieving the recovery objectives above

and will not result in an appreciable reduction in the likelihood of NA DPS green sea turtles' recovery in the wild.

Conclusion

The lethal and non-lethal captures of green sea turtles associated with the proposed action are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the SA DPS of green sea turtle in the wild.

7.2 Atlantic Sturgeon

Five DPSs of Atlantic sturgeon have been listed, 4 as endangered and 1 as threatened. Because Atlantic sturgeon mix extensively in the marine range, individuals from all 5 DPSs could occur in the action area. Therefore, a jeopardy determination must be made for each Atlantic sturgeon DPS. A jeopardy determination is made if the proposed action would appreciably reduce the likelihood of survival and recovery of any of the DPSs. Table 8 shows the estimated take of Atlantic sturgeon from each DPS during hopper dredging of the entrance channel and the associated relocation trawling.

	Hopper Dredging	Relocation Trawling			Total Take		Grand Total
	Lethal	Lethal	Non-lethal	Total	Lethal	Non-lethal	
Atlantic Sturgeon (All DPSs)	17	3	195	198	20	195	215
Gulf of Maine DPS (11%)	2	1	22	23	3	22	25
New York Bight DPS (51%)	9	2	100	102	11	100	111
Chesapeake Bay DPS (13%)	3	1	26	27	4	26	30
Carolina DPS (2%)	1	1	4	5	2	4	6
South Atlantic DPS (22%)	4	1	43	44	5	43	48

Table 8. Estimated Take of Atlantic sturgeon

7.2.1 Gulf of Maine DPS

The proposed action may result in 25 lethal and non-lethal Atlantic sturgeon takes from the Gulf of Maine (GOM) DPS over 3 dredging seasons. Hopper dredging of the entrance channel could result in the lethal take of 2 Atlantic sturgeon from the GOM DPS. Further, we expect 23 GOM DPS Atlantic sturgeon to be captured during relocation trawling. Based on the first 2 dredging seasons, we anticipate that 3 total lethal captures could occur during relocation trawling, and 1 of those lethal captures could be a fish from the GOM DPS. We estimate the remaining captures of 22 Atlantic sturgeon from the GOM DPS will be non-lethal. Therefore, up to 3 Atlantic sturgeon from the GOM DPS will be non-lethal takes of 22 sturgeon are not expected to have any measurable impact on the reproduction, numbers, or distribution of animals from the GOM DPS, as the individuals captured and released are expected to fully recover.

We do not believe the potential lethal take of up to 3 Atlantic sturgeon from the GOM DPS would affect the distribution of the GOM DPS. The potential lethal take would reduce the population of Atlantic sturgeon in the GOM DPS. For the population of GOM DPS Atlantic sturgeon to remain stable over generations, a certain amount of spawning must occur across the entire DPS to offset deaths within the population. Two ways to measure spawning potential are spawning stock biomass per recruit (SSB/R) and eggs per recruit (EPR). EPR_{Max.} refers to the maximum number of eggs produced by a female Atlantic sturgeon over the course of its lifetime assuming no fishing mortality. Similarly, SSB/R_{Max.} is the expected contribution a female Atlantic sturgeon would make during its lifetime to the total weight of the fish in a stock that is old enough to spawn, assuming no fishing mortality. In both cases, as fishing mortality increases, the expected lifetime production of a female decreases from the theoretical maximum (i.e., SSB/R_{Max.} or EPR_{Max.}) due to an increased probability the animal will be caught and therefore unable to achieve its maximum potential (Boreman 1997). Since the EPR_{Max.} or SSB/R_{Max.} for each individual within a population is the same, it is appropriate to talk about these parameters not only for individuals but for populations as well.

Goodyear (1993) suggests that maintaining a SSB/R of at least 20% of SSB/R_{Max.} would allow a population to remain stable (i.e., retain the capacity for survival). Boreman (1997) indicates that since stock biomass and egg production are typically linearly correlated (i.e., larger individuals generally produce more eggs than smaller individuals) it is appropriate to apply the 20% (Goodyear 1993) threshold directly to EPR estimates.

Boreman (1997) reported adult female Atlantic sturgeon in the Hudson River could have likely sustained a fishing mortality rate of 14% and still retained enough spawners for the population to remain stable (i.e., maintain an EPR of at least 20% of EPR_{max}). We believe evaluating the potential effects of the proposed action against the fishing mortality associated (F = 0.14) with maintaining an EPR of at least 20% of EPR_{max} is appropriate for evaluating the potential impacts of the proposed action on the likelihood the GOM DPS will survive in the wild.

Other Biological Opinions have considered the effects from other federal fisheries on Atlantic sturgeon. Likewise, a quantitative estimate of current/future Atlantic sturgeon takes exists for the American shad fishery in Georgia North Carolina's inshore gillnet fishery. Our analysis will include the authorized/calculated takes reported in the federal Biological Opinions as well as the Georgia and North Carolina fisheries since our analysis uses published literature standard (F=0.14= EPR_{20%}) that includes known fishing mortality from all fishing sources (i.e., federal and state fisheries). Specifically, the Biological Opinion on the HMS Atlantic shark and smoothhound fisheries (NMFS 2012a) estimated 2 lethal takes of adult/adult equivalents GOM DPS fish would occur annually. The GARFO batched consultation on 7 FMPs (NMFS 2013a) also determined up to 22 Atlantic sturgeon adult/adult equivalents would be lethally taken annually from the GOM DPS. The incidental take of Atlantic sturgeon in the commercial shrimp fishery of the South Atlantic (NMFS 2012b; NMFS 2014a) estimated 1 Atlantic sturgeon from the GOM DPS would be killed annually.

GADNR's trawling and net studies of recreationally important fish species are expected to result in 9 captures of Atlantic sturgeon from the GOM DPS over a 5-year period (NMFS, 2017).

While the initial captures are expected to be non-lethal, some post-release mortality is expected to occur. The ITS provided to the USFWS for their funding of GADNR (NMFS, 2017) estimated that up to 2 lethal takes of adults/adult equivalents from the GOM DPS could occur as a result of post-release mortality.

The Incidental Take Permit (ITP) (No. 16645) provided to Georgia in response to their Section 10 application provides for up to 0.55 lethal takes of Atlantic sturgeon annually from the GOM DPS over the course their 10 year permit and the Opinion analyzing those takes indicates those takes will be juveniles and subadults (NMFS 2013b). Converting those animals to adult equivalents as done previously decreases the number further, but not zero.⁹ To be conservative for the species, we round the 0.55 animal to 1 animal.

The ITP (No. 18102) provided to North Carolina in response to their Section 10 application provides for up to 7 lethal takes of Atlantic sturgeon annually through 2023. The Opinion issuing those takes indicates those takes will be juveniles and subadults (NMFS 2014b). Following the previously discussed process for estimating the adult equivalents, we will consider 4 of those captures as adult equivalents.¹⁰

Each year the SEFSC, state resource management agencies, USFWS, and academic institutions receive funding support from NMFS to collect fisheries independent data. This suite of independent but related activities collectively makes up NMFS's integrated fisheries independent monitoring (FIM) activities in the Southeast Region. Up to 0.6 adult animals from this DPS are expected to be lethally taken annually from these activities. To be conservative, we round the 0.6 to 1.

An anticipated 3 sturgeon may be taken by the proposed action over the 3 hopper dredging seasons (an average of 1 sturgeon annually). Together, the Biological Opinions for the HMS shark/smoothhound fishery, the GARFO batched FMP, Southeast shrimp trawl fishery, the Georgia shad fishery, the North Carolina gillnet fisheries, the USFWS-funded studies by GADNR of recreationally important finfish, and the proposed action estimate 34 GOM DPS adult/adult equivalent mortalities annually. The NEAMAP model referenced earlier in this section estimates a minimum ocean population of 7,455 Atlantic sturgeon in the GOM DPS, of which 4,548 are adults/subadults (Table 9). Therefore, our anticipated lethal takes represent 0.75% of the adult/adult equivalent population in the GOM DPS.¹¹ This is below the estimated 14% fishing mortality rate we believe the population could likely withstand and still maintain EPR_{20%}. Therefore, although the proposed action's removal of 3 sturgeon over 3 dredging seasons will cause a reduction in numbers and reproduction, we do not believe the reductions will appreciably reduce the likelihood that the GOM DPS will survive in the wild.

 $^{^{9}}$ 0.55 annual juvenile/subadult Georgia shad gillnet takes x 0.48 subadult survival = 0.264 adult equivalents 10 7 annual juvenile/subadult North Carolina gillnet takes x 0.48 subadult survival = 3.36 adult equivalents

¹¹ (1 Shrimp fishery take + 2 HMS shark/smoothhound fishery takes + 22 GARFO batched fisheries takes + 2

USFWS-funded GADNR study takes + 4 North Carolina gillnet fisheries + 1 Georgia shad fishery + 1 FIM research + 1 estimated take from SHEP) \div 4,548 estimated adults/adult equivalents in the GOM DPS = 0.75% of the GOM DPS taken

DPS	Estimated Ocean Population	Estimated Adult Ocean Population	Estimated Subadult Ocean Population*	Estimated Ocean Population of A.E.**	Estimated Ocean Population of Adults/A.E.
GOM (11%)	7,455	1,864	5,591	2,684	4,548
NYB (51%)	34,566	8,642	25,925	12,444	21,086
CB (13%)	8,811	2,203	6,608	3,172	5,375
Carolina (2%)	1,356	339	1,017	488	827
SA (22%)	14,911	3,728	11,183	5,368	9,096

 Table 9. Calculated Ocean Population Estimates with Adult Equivalents (A.E.)

*This estimate reflects the animals of a size vulnerable to capture in fisheries.

**This column estimated by multiplying the subadult population from previous column by 0.48.

Recovery

Our analysis must also consider whether the proposed action is likely to impede the recovery of Atlantic sturgeon from the GOM DPS. Because the GOM DPS of Atlantic sturgeon has only recently been listed, a recovery plan for this DPS has not yet been developed. However, a key step in recovering a species is to reduce threats identified as contributing to a species' threatened or endangered status; only by alleviating these threats can lasting recovery be achieved.

The final listing rule noted several major threats affecting the GOM DPS:

- 1) Dredging that can displace sturgeon while it is occurring and affect the quality of the habitat afterwards by changing the depth, sediment characteristics, and prey availability.
- 2) Degraded water quality in areas as a result of withdrawals for public use, runoff from agriculture, industrial discharges, and the alteration of river systems by dams and reservoirs.
- 3) Impeded access to historical habitat by dams and reservoirs.
- 4) Bycatch of Atlantic sturgeon in commercial fisheries.
- 5) Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

Nothing about the project's offshore dredging and relocation trawling will significantly affect the habitat or water quality or curtail the range of the species in the GOM DPS. The action has no relationship to the blockage of access to historical habitats by dams or reservoirs. The action will have no negative impact on the issue of regulatory mechanisms regarding control of bycatch and the modification and curtailment of Atlantic sturgeon habitat. For these reasons, we believe the project action is not likely to appreciably reduce the likelihood that the GOM DPS will recover in the wild.

Conclusion

Based on the information of this section, we believe the effects from project dredging and relocation trawling are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the GOM DPS of Atlantic sturgeon.

7.2.2 New York Bight DPS

The proposed action may result in 111 lethal and non-lethal Atlantic sturgeon takes from the New York Bight (NYB) DPS over 3 dredging seasons. Hopper dredging of the entrance channel could result in the lethal take of 9 Atlantic sturgeon from the NYB DPS. Further, we expect 102 NYB DPS Atlantic sturgeon to be captured during relocation trawling. Based on the first 2 dredging seasons, we anticipate that 3 total lethal captures could occur during relocation trawling, and up to 2 of those lethal captures could be a fish from the NYB DPS. We estimate the remaining captures of 100 Atlantic sturgeon from the NYB DPS will be non-lethal. Therefore, up to 11 Atlantic sturgeon from the NYB DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal takes of 100 sturgeon are not expected to have any measurable impact on the reproduction, numbers, or distribution of animals from the NYB DPS, as the individuals captured and released are expected to fully recover such that no reductions in reproduction or numbers of Atlantic sturgeon are anticipated.

We do not believe the potential lethal take of up to 11 Atlantic sturgeon from the NYB DPS would affect the distribution of the NYB DPS. The potential lethal take of 11 Atlantic sturgeon (an average of 3.67 sturgeon annually) would reduce the population of Atlantic sturgeon in the NYB DPS by that amount. To be conservative for the species in this calculation, we round up to 4 fish. As discussed previously, we believe breeding adults are especially important to the overall populations of the Atlantic sturgeon DPSs. For that reason, we followed the same approach described in the previous section on the GOM DPS for the NYB DPS and for the remaining DPSs. We will evaluate those takes relative to the 14% fishing mortality rate Boreman (1997) reported adult female Atlantic sturgeon in the Hudson River could have likely sustained and still retained enough spawners for the population to remain stable (i.e., maintain an EPR of at least 20% of EPR_{max}). Additionally, we anticipate lethal NYB DPS takes in the HMS Atlantic shark and smoothhound fisheries (10 annually) (NMFS 2012a), the Southeastern shrimp fishery (3 annually) (NMFS 2012b), the 7 fisheries analyzed in the GARFO batched consultation (100 annually) (NMFS 2013a).

GADNR's trawling and net studies of recreationally important fish species are expected to result in 35 captures of Atlantic sturgeon from the NYB DPS over a 5-year period (NMFS, 2017). While the initial captures are expected to be non-lethal, some post-release mortality is expected to occur. The ITS provided to the USFWS for their funding of GADNR (NMFS, 2017) estimated that up to 3 lethal takes of adults/adult equivalents from the NYB DPS could occur as a result of post-release mortality.

The Georgia ITP provides for up to 2.55 lethal takes of Atlantic sturgeon annually from the NYB DPS over the course their 10 year permit, indicating those takes will be juveniles and subadults (NMFS 2013b). Converting those animals to adult equivalents as done previously yields a number less than 2.¹² To be conservative for the species, we round to 2 animals.

 $^{^{12}}$ 2.55 annual juvenile/subadult Georgia shad gillnet takes x 0.48 subadult survival = 1.23 adult equivalents

The ITP (No. 18102) provided to North Carolina provides for up to 18 lethal takes of Atlantic sturgeon from the NYB DPS annually through 2023. The Opinion issuing those takes indicates those takes will be juveniles and subadults (NMFS 2014b). Following the previously discussed process for estimating the adult equivalents, we will consider 9 of those captures as adult equivalents.¹³

Each year the SESFC, state resource management agencies, USFWS, and academic institutions receive funding support from NMFS to collect fisheries independent data. This suite of independent but related activities collectively makes up NMFS's integrated FIM activities in the Southeast Region. Up to 1 adult animal from this DPS is expected to be lethally taken annually from these activities.

We anticipate that 132 Atlantic sturgeon may be taken annually in these fisheries and by the SHEP project's offshore dredging and relocation trawling actions. The NEAMAP model estimates a minimum ocean population of 34,556 Atlantic sturgeon in the NYB DPS, of which 21,086 are adults/subadults (Table 9). Based on this information, we believe 0.63% of the adult/adult equivalent population in the NYB DPS will be killed annually.¹⁴ This 0.63% is below the estimated 14% total fishing mortality rate we believe the population could likely withstand and still maintain EPR_{20%}. Therefore, although the proposed action's removal of up to 4 Atlantic sturgeon over 3 dredging seasons will cause a reduction in numbers and reproduction, we do not believe these reductions are likely to cause an appreciable reduction in the likelihood that the NYB DPS will survive in the wild.

Recovery

Our analysis must also consider whether the project's offshore dredging action is likely to impede the recovery of Atlantic sturgeon from this DPS. Because this DPS of Atlantic sturgeon has only recently been listed, a recovery plan for this segment of the population has not yet been developed. However, a key step in recovering a species is to reduce threats identified as contributing to a species' threatened or endangered status; only by alleviating these threats can lasting recovery be achieved.

The final listing rule noted several major threats affecting Atlantic sturgeon in the NYB DPS:

- 1) Dredging that can displace sturgeon while it is occurring and affect the quality of the habitat afterwards by changing the depth, sediment characteristics, and prey availability.
- 2) Degraded water quality in areas throughout the range of the 5 DPSs as a result of withdrawals for public use, runoff from agriculture, industrial discharges, and the alteration of river systems by dams and reservoirs.
- 3) Impeded access to historical habitat by dams and reservoirs.

¹³ 18 annual juvenile/subadult North Carolina gillnet takes x 0.48 subadult survival = 8.64 adult equivalents

¹⁴ (3 Shrimp fishery takes + 10 HMS shark/smoothhound fishery takes + 100 GARFO batched fisheries takes + 3

USFWS-funded GADNR study takes + 2 Georgia shad fishery + 9 North Carolina gillnet fisheries + 1 FIM research + 4 estimated takes from SHEP) \div 21,086 estimated adults/adult equivalents in the NYB DPS = 0.63% of the NYB DPS taken

- 4) Bycatch of Atlantic sturgeon in commercial fisheries.
- 5) Vessel strikes within the riverine portions of the range of the New York Bight.
- 6) Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

Nothing about the project's offshore dredging and relocation trawling will significantly affect the habitat or water quality or curtail the range of the species in the NYB DPS. The action has no relationship to the blockage of access to historical habitats by dams or reservoirs. The action will have not negative impact on the issue of regulatory mechanisms regarding control of bycatch and the modification and curtailment of Atlantic sturgeon habitat. For these reasons, we believe the project action is not likely to appreciably reduce the likelihood that the NYB DPS will recover in the wild.

Conclusion

Based on the information of this section, we believe the effects from the project dredging and relocation trawling are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the NYB DPS of Atlantic sturgeon.

7.2.3 Chesapeake Bay DPS

The proposed action may result in 30 lethal and non-lethal Atlantic sturgeon takes from the Chesapeake Bay (CB) DPS over 3 dredging seasons. Hopper dredging of the entrance channel could result in the lethal take of 3 Atlantic sturgeon from the CB DPS. Further, we expect 27 CB DPS Atlantic sturgeon to be captured during relocation trawling. Based on the first 2 dredging seasons, we anticipate that 3 total lethal captures could occur during relocation trawling, and 1 of those lethal captures could be a fish from the CB DPS. We estimate the remaining captures of 26 Atlantic sturgeon from the CB DPS will be non-lethal. Therefore, up to 4 Atlantic sturgeon from the CB DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal takes of 26 sturgeon are not expected to have any measurable impact on the reproduction, numbers, or distribution of animals from the CB DPS, as the individuals captured and released are expected to fully recover such that no reductions in reproduction or numbers of Atlantic sturgeon are anticipated.

Atlantic sturgeon travel extensively throughout the marine environment and have large ranges over which they disperse. Because the anticipated takes (both lethal and non-lethal) could occur anywhere within the range of the species, no change in the distribution of the CB DPS Atlantic sturgeon is anticipated.

We do not believe the potential lethal take of up to 1 Atlantic sturgeon from the CB DPS would affect the distribution of the CB DPS. The potential lethal take would reduce the population of Atlantic sturgeon in the CB DPS. As discussed previously, we believe breeding adults are especially important to the overall populations of the Atlantic sturgeon DPSs. We will evaluate those takes relative to the 14% fishing mortality rate Boreman (1997) reported adult female Atlantic sturgeon in the Hudson River could have likely sustained and still retained enough spawners for the population to remain stable (i.e., maintain an EPR of at least 20% of EPR_{max}).

We anticipated 4 Atlantic sturgeon may be taken by the project's offshore dredging and relocation trawling actions (an average of 1.33 sturgeon annually). To be conservative in our calculation, we will round up to 2 sturgeon annually. Additionally, we anticipate lethal CB DPS takes in the HMS Atlantic shark and smoothhound fisheries (3 annually) (NMFS 2012a), the Southeastern shrimp fishery (2 annually) (NMFS 2012b), the 7 fisheries analyzed in the GARFO batched consultation (27 annually) (NMFS 2013a).

GADNR's trawling and net studies of recreationally important fish species are expected to result in 11 captures of Atlantic sturgeon from the CB DPS over a 5-year period (NMFS, 2017). While the initial captures are expected to be non-lethal, some post-release mortality is expected to occur. The ITS provided to the USFWS for their funding of GADNR (NMFS, 2017) estimated that up to 2 lethal takes of adults/adult equivalents from the CB DPS could occur as a result of post-release mortality.

The Georgia ITP provides for up to 0.65 lethal takes of Atlantic sturgeon from the CB DPS over the course their 10 year permits; indicating those takes will be juveniles and subadults (NMFS 2013b). Converting those animals to adult equivalents as done previously yields a number less than 1, but not zero.¹⁵ To be conservative, we will assume the 0.52 animal potentially taken annually would have survived to be an adult and will consider it an adult equivalent.

The North Carolina ITP (No. 18102) provides for up to 69 lethal takes of Atlantic sturgeon from the CB DPS annually through 2023. The Opinion issuing those takes indicates those takes will be juveniles and subadults (NMFS 2014b). Following the previously discussed process for estimating the adult equivalents, we will consider 33 of those captures as adult equivalents.¹⁶

Each year the SEFSC, state resource management agencies, USFWS, and academic institutions receive funding support from NMFS to collect fisheries independent data. This suite of independent but related activities collectively makes up NMFS's integrated FIM activities in the Southeast Region. Up to 0.6 adult animals from this DPS are expected to be lethally taken annually from these activities. To be conservative, we round this number to 1.

We anticipate that 71 adult Atlantic sturgeon may be taken annually in these fisheries and by the SHEP project's offshore dredging and relocation trawling actions. The NEAMAP model estimates a minimum ocean population of 8,811 Atlantic sturgeon in the CB DPS, of which 5,375 are adults/subadults (Table 9). Based on this information, we believe 1.32% of the adult/adult equivalent population in the CB DPS will be killed annually.¹⁷ This 1.32% is below the estimated 14% total fishing mortality rate we believe the population could likely withstand and still maintain EPR_{20%}. Therefore, although the project's offshore dredging action's removal of 1 Atlantic sturgeon over 3 dredging season will cause a reduction in numbers and

 $^{^{15}}$ 0.65 annual juvenile/subadult Georgia shad gillnet takes x 0.48 subadult survival = 0.32 adult equivalents

¹⁶ 69 annual juvenile/subadult North Carolina gillnet takes x 0.48 subadult survival = 33 adult equivalents

¹⁷ (2 Shrimp fishery takes + 3 HMS shark/smoothhound fishery takes + 27 GARFO batched fisheries takes + 2 USFWS-funded GADNR study takes + 1 Georgia shad fishery + 33 North Carolina fisheries + 1 FIM + 2 estimated takes from the SHEP project) \div 5,375 estimated adults/adult equivalents in the CB DPS = 1.32% of the CB DPS taken.

reproduction, we do not believe the reduction is likely to cause an appreciable reduction in the likelihood that the CB DPS will survive in the wild.

Recovery

Our analysis must also consider whether the project dredging is likely to impede the recovery of Atlantic sturgeon from this DPS. Because this DPS of Atlantic sturgeon has only recently been listed, a recovery plan for this segment of the population has not yet been developed. However, a key step in recovering a species is to reduce threats identified as contributing to a species' threatened or endangered status; only by alleviating these threats can lasting recovery be achieved.

The final listing rule noted several major threats affecting Atlantic sturgeon in the CB DPS:

- 1) Dredging that can displace sturgeon while it is occurring and affect the quality of the habitat afterwards by changing the depth, sediment characteristics, and prey availability.
- 2) Degraded water quality in areas throughout the range of the 5 DPSs as a result of withdrawals for public use, runoff from agriculture, industrial discharges, and the alteration of river systems by dams and reservoirs.
- 3) Bycatch of Atlantic sturgeon in commercial fisheries.
- 4) Vessel strikes in within the riverine portions of the range of CB DPS.
- 5) Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

Nothing about the project's offshore dredging and relocation trawling actions will significantly affect the habitat or water quality or curtail the range of the species, in the CB DPS. The proposed action will have not negative impact on the issue of regulatory mechanisms regarding control of bycatch and the modification and curtailment of Atlantic sturgeon habitat. For these reasons, we believe the project dredging is not likely to appreciably reduce the likelihood that the CB DPS will recover in the wild.

Conclusion

Based on the information of this section, we believe the effects from the project dredging and relocation trawling are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the CB DPS of Atlantic sturgeon.

7.2.4 Carolina DPS

The proposed action may result in 6 lethal and non-lethal Atlantic sturgeon takes from the Carolina DPS over 3 dredging seasons. Hopper dredging of the entrance channel could result in the lethal take 1 of Atlantic sturgeon from the Carolina DPS. Further, we expect 5 Carolina DPS Atlantic sturgeon to be captured during relocation trawling. Based on the first 2 dredging seasons, we anticipate that 3 total lethal captures could occur during relocation trawling, and 1 of those lethal captures could be a fish from the Carolina DPS. We estimate the remaining captures of 4 Atlantic sturgeon from the Carolina DPS will be non-lethal. Therefore, up to 2 Atlantic

sturgeon from the Carolina DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal takes of 4 sturgeon are not expected to have any measurable impact on the reproduction, numbers, or distribution of animals from the Carolina DPS as the individuals are expected to fully recover such that no reductions in reproduction or numbers of Atlantic sturgeon are anticipated.

We do not believe the potential lethal take of up to 2 Atlantic sturgeon from the Carolina DPS would affect the distribution of this DPS. The potential lethal take of 2 Atlantic sturgeon (an average of 0.67 sturgeon annually) would reduce the population of Atlantic sturgeon in the Carolina DPS by that amount. To be conservative for the species in this calculation, we round up to 1 fish. As discussed previously, we believe breeding adults are especially important to the overall populations of the Atlantic sturgeon DPSs. We will evaluate those takes relative to the 14% fishing mortality rate Boreman (1997) reported adult female Atlantic sturgeon in the Hudson River could have likely sustained and still retained enough spawners for the population to remain stable (i.e., maintain an EPR of at least 20% of EPR_{max}). Additionally, we anticipate lethal Carolina DPS takes in the HMS Atlantic shark and smoothhound fisheries (2 annually) (NMFS 2012a), the Southeastern shrimp fishery (3 annually) (NMFS 2012b), the 7 fisheries analyzed in the GARFO batched consultation (5 annually) (NMFS 2013a).

GADNR's trawling and net studies of recreationally important fish species are expected to result in 3 captures of Atlantic sturgeon from the Carolina DPS over a 5-year period (NMFS, 2017). While the initial captures are expected to be non-lethal, some post-release mortality is expected to occur. The ITS provided to the USFWS for their funding of GADNR (NMFS, 2017) estimated that up to 2 lethal takes of adults/adult equivalents from the Carolina DPS could occur as a result of post-release mortality.

The Georgia ITP provides for up to 0.1 lethal takes of Atlantic sturgeon annually from the Carolina DPS over the course their 10 year permit, indicating those takes will be juveniles and subadults (NMFS 2013b). Converting those animals to adult equivalents as done previously yields a number less than 1, but not zero.¹⁸ To be conservative, we round the 0.048 to 1 adult equivalent.

The ITP (No. 18102) provided to North Carolina provides for up to 127 lethal takes of Atlantic sturgeon from the Carolina DPS annually through 2023. The Opinion issuing those takes indicates those takes will be juveniles and subadults (NMFS 2014b). Following the previously discussed process for estimating the adult equivalents, we will consider 61 of those captures as adult equivalents.¹⁹

Each year the SESFC, state resource management agencies, USFWS, and academic institutions receive funding support from NMFS to collect fisheries independent data. This suite of independent but related activities collectively makes up NMFS's integrated fisheries independent monitoring (FIM) activities in the Southeast Region. Up to 0.2 adult animals (rounded to 1) from this DPS are expected to be lethally taken annually from these activities.

 $^{^{18}}$ 0.1 annual juvenile/subadult Georgia shad gillnet takes x 0.48 subadult survival = 0.048 adult equivalents

¹⁹ 127 annual juvenile/subadult North Carolina gillnet takes x 0.48 subadult survival = 61 adult equivalents

We anticipate that 76 Atlantic sturgeon may be taken annually in these fisheries and by the SHEP project's offshore dredging and relocation trawling actions. The NEAMAP model estimates a minimum ocean population of 1,356 Atlantic sturgeon in the Carolina DPS, of which 827 are adults/subadults (Table 9). Based on this information, we believe 9.2% of the adult/adult equivalent population in the Carolina DPS will be killed annually.²⁰ This 9.2% is below the estimated 14% total fishing mortality rate we believe the population could likely withstand and still maintain EPR_{20%}. Based on this information, we believe the project's offshore dredging action's removal of 1 Atlantic sturgeon over 3 dredging season will cause a reduction in numbers and reproduction, however, we do not believe the reduction is likely to cause an appreciable reduction in the likelihood that the Carolina DPS will survive in the wild.

Recovery

Our analysis must also consider whether the project's offshore dredging action is likely to impede the recovery of Atlantic sturgeon from this DPS. Because this DPS of Atlantic sturgeon has only recently been listed, a recovery plan for this segment of the population has not yet been developed. However, a key step in recovering a species is to reduce threats identified as contributing to a species' threatened or endangered status; only by alleviating these threats can lasting recovery be achieved.

The final listing rule noted several major threats affecting Atlantic sturgeon in the Carolina DPS:

- 1) Dredging that can displace sturgeon while it is occurring and affect the quality of the habitat afterwards by changing the depth, sediment characteristics, and prey availability.
- 2) Degraded water quality in areas throughout the range of the 5 DPSs as a result of withdrawals for public use, runoff from agriculture, industrial discharges, and the alteration of river systems by dams and reservoirs.
- 3) Impeded access to historical habitat by dams and reservoirs.
- 4) Bycatch of Atlantic sturgeon in commercial fisheries.
- 5) Vessel strikes within the riverine portions of the range of the New York Bight.
- 6) Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

Nothing about the project's offshore dredging and relocation trawling will significantly affect the habitat or water quality or curtail the range of the species in the Carolina DPS. The action has no relationship to the blockage of access to historical habitats by dams or reservoirs. The action will have not negative impact on the issue of regulatory mechanisms regarding control of bycatch and the modification and curtailment of Atlantic sturgeon habitat. For these reasons, we

 $^{^{20}}$ (3 Shrimp fishery takes + 2 HMS shark/smoothhound fishery takes + 5 GARFO batched fisheries takes + 2 USFWS-funded GADNR study takes + 1 Georgia shad fishery + 61 North Carolina gillnet fisheries + 1 FIM + 1 estimated takes from the SHEP project) \div 827 estimated adults/adult equivalents in the Carolina DPS = 9.2% of the Carolina DPS taken

believe the project action is not likely to appreciably reduce the likelihood that the NYB DPS will recover in the wild.

Conclusion

Based on the information of this section, we believe the effects from the project dredging and relocation trawling are not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the Carolina DPS of Atlantic sturgeon.

7.2.5 South Atlantic DPS

The proposed action may result in 48 lethal and non-lethal Atlantic sturgeon takes from the South Atlantic (SA) DPS over 3 dredging seasons. Hopper dredging of the entrance channel could result in the lethal take of 4 Atlantic sturgeon from the SA DPS. Further, we expect 44 SA DPS Atlantic sturgeon to be captured during relocation trawling. Based on the first 2 dredging seasons, we anticipate that 3 total lethal captures could occur during relocation trawling, and 1 of those lethal captures could be a fish from the SA DPS. We estimate the remaining captures of 43 Atlantic sturgeon from the SA DPS will be non-lethal. Therefore, up to 5 Atlantic sturgeon from the SA DPS could be lethally taken during hopper dredging of the entrance channel and the associated relocation trawling. The potential non-lethal takes of 43 sturgeon are not expected to have any measurable impact on the reproduction, numbers, or distribution of animals from the SA DPS, as the individuals are expected to fully recover such that no reductions in reproduction or numbers of Atlantic sturgeon are anticipated.

We do not believe the potential lethal take of up to 5 Atlantic sturgeon from the SA DPS would affect the distribution of this DPS. The potential lethal take of 5 Atlantic sturgeon (an average of 1.67 sturgeon annually) would reduce the population of Atlantic sturgeon in the SA DPS by that amount. To be conservative for the species in this calculation, we round up to 2 fish. As discussed previously, we believe breeding adults are especially important to the overall populations of the Atlantic sturgeon DPSs. We will evaluate those takes relative to the 14% fishing mortality rate Boreman (1997) reported adult female Atlantic sturgeon in the Hudson River could have likely sustained and still retained enough spawners for the population to remain stable (i.e., maintain an EPR of at least 20% of EPR_{max}). Additionally, we anticipate lethal SA DPS takes in the HMS Atlantic shark and smoothhound fisheries (4 annually) (NMFS 2012a), the Southeastern shrimp fishery (7 annually) (NMFS 2012b), the 7 fisheries analyzed in the GARFO batched consultation (43 annually) (NMFS 2013a).

GADNR's trawling and net studies of recreationally important fish species are expected to result in 16 captures of Atlantic sturgeon from the SA DPS over a 5-year period (NMFS, 2017). While the initial captures are expected to be non-lethal, some post-release mortality is expected to occur. The ITS provided to the USFWS for their funding of GADNR (NMFS, 2017) estimated that up to 2 lethal takes of adults/adult equivalents from the SA DPS could occur as a result of post-release mortality.

The Georgia ITP provides for up to 1.1 lethal takes of Atlantic sturgeon annually from the SA DPS over the their 10 year permit, indicating those takes will be juveniles and subadults (NMFS

2013b). Following the previously discussed process for estimating the adult equivalents, we will consider this as 1 adult equivalent.²¹

The North Carolina ITP (No. 18102) provides for up to 69 lethal takes of Atlantic sturgeon from the SA DPS annually through 2023. The Opinion issuing those takes indicates those takes will be juveniles and subadults (NMFS 2014b). Following the previously discussed process for estimating the adult equivalents, we will consider 33 of those captures as adult equivalents.²²

Each year the SEFSC, state resource management agencies, USFWS, and academic institutions receive funding support from NMFS to collect fisheries independent data. This suite of independent but related activities collectively makes up NMFS's integrated FIM activities in the Southeast Region. Up to 0.8 adult (rounded to 1) animals from this DPS are expected to be lethally taken annually from these activities.

We anticipate that 93 Atlantic sturgeon may be taken annually in these fisheries and the project dredging action. The NEAMAP model estimates a minimum ocean population of 14,911 Atlantic sturgeon in the SA DPS, of which 9,096 are adults/subadults (Table 9). Based on this information, we believe 1.0% of the adult/adult equivalent population in the SA DPS will be killed annually.²³ This 1.0% is below the estimated 14% total fishing mortality rate we believe the population could likely withstand and still maintain EPR20%. Based on this information, we believe the project's offshore dredging action's removal of up to 5 Atlantic sturgeon over 3 dredging seasons will cause a reduction in numbers and reproduction.

In addition to the takes attributed to the dredging and relocation trawling, juvenile Atlantic sturgeon from the SA DPS are likely to be adversely affected by habitat losses caused by the harbor deepening and additional delay in the completion of the fish passage at NSBLD. Based on USACE hydrodynamic modeling or projected site conditions, we estimate that approximately 251 ac of juvenile habitat will be impacted by channel expansion. Since the fish passage will not be completed prior to completion of the inner harbor dredging, the increases in upstream spawning success due to access to habitat above NSBLD will not offset the losses in habitat downstream due to increases in salinity and reductions in DO. Using a habitat-based surrogate, we estimate that these impacts may affect 7.6% of the juvenile Atlantic sturgeon population in the Savanah River, resulting in adverse effects to an unknown number of individuals. We believe these adverse effects will result in weakening of each year-class.

These effects are expected to be sub-lethal for individual sturgeon of the existing population, and will not reduce their numbers, but may reduce the river's carrying capacity and its overall ability to provide suitable foraging habitat for juvenile Atlantic sturgeon. We believe that the additional delay in fish passage implementation will not result in lethal effects to individuals, NMFS also

 $^{^{21}}$ 1.1 annual juvenile/subadult Georgia shad gillnet takes x 0.48 subadult survival = 0.528 adult equivalents

 $[\]frac{22}{22}$ 69 annual juvenile/subadult North Carolina gillnet takes x 0.48 subadult survival = 33 adult equivalents

²³(7 Shrimp fishery takes + 4 HMS shark/smoothhound fishery takes + 43 GARFO batched fisheries takes + 2 USFWS-funded GADNR study takes + 1 Georgia shad fishery + 33 North Carolina fisheries + 1 FIM + 2 estimated takes from the SHEP project) \div 9,096 estimated adults/adult equivalents in the SA DPS = 1.0% of the SA DPS taken.

believes that juvenile Atlantic sturgeon will use the remaining 92.4% of available habitat below NSBLD and will move to suitable foraging and resting habitats further upstream upon completion of the NSBLD fish passage.

NMFS believes that the proposed action is not likely to cause a reduction in reproduction. Adult Atlantic sturgeon will still be able to use the spawning habitat below NSBLD until fish passage is implemented. Based on the fact the NMFS does not believe the proposed action will result in a reduction in reproduction or numbers of Atlantic sturgeon in the Savannah River, the proposed action will not result in a decrease in the species distribution. Based on this information, the proposed action will not appreciably reduce the likelihood of the Atlantic sturgeon's survival in the Savannah River.

Recovery

Our analysis must also consider whether the project's offshore dredging and relocation trawling actions are likely to impede the recovery of Atlantic sturgeon from this DPS. Because this DPS of Atlantic sturgeon has only recently been listed, a recovery plan for this segment of the population has not yet been developed. However, a key step in recovering a species is to reduce threats identified as contributing to a species' threatened or endangered status; only by alleviating these threats can lasting recovery be achieved.

The final listing rule noted several major threats affecting the SA DPS:

- 1) Dredging that can displace sturgeon while it is occurring and affect the quality of the habitat afterwards by changing the depth, sediment characteristics, and prey availability.
- 2) Degraded water quality in areas as a result of withdrawals for public use, runoff from agriculture, industrial discharges, and the alteration of river systems by dams and reservoirs.
- 3) Impeded access to historical habitat by dams and reservoirs.
- 4) Bycatch of Atlantic sturgeon in commercial fisheries.
- 5) Inadequacy of regulatory mechanisms to control bycatch and the modification and curtailment of Atlantic sturgeon habitat.

Nothing about the project's offshore dredging and relocation trawling actions will significantly affect the habitat or water quality or curtail the range of the species in the SA DPS. The proposed action has no relationship to the blockage of access to historical habitats by dams or reservoirs. We anticipate primarily non-lethal incidental captures will be documented and procedures have been established to minimize the impact of any interactions that do occur. For these reasons, we believe the project dredging action is not likely to appreciably reduce the likelihood that the SA DPS will recover in the wild.

The required fish passage at NSBLD addresses the threat of impeded access to historical habitat by dams (#3 above). The NSBLD fish passage will restore access to approximately 20 mi of historically important, high quality spawning access for Atlantic sturgeon. Though completion of the fish passage will be delayed by 8 months, we believe this is not likely to appreciably

reduce the likelihood that the SA DPS will recover in the wild. While delay in implementation will result in temporary adverse effects to juvenile Atlantic sturgeon, we believe that the current mandate under the WIIN Act to consider all alternatives for providing passage above NSBLD to sturgeon, including alternatives previously not considered, will ensure the best opportunity for successful sturgeon passage in the Savannah River.

Conclusion

Based on the information of this section, we believe the effects from the project's offshore dredging action is not expected to cause an appreciable reduction in the likelihood of either the survival or recovery of the SA DPS of Atlantic sturgeon.

7.3 Shortnose Sturgeon

All life stages of shortnose sturgeon are likely to be adversely affected by the 8-month delay in the completion of the fish passage at NSBLD. Since the fish passage will not be completed prior to completion of the inner harbor dredging, the increases in upstream spawning success due to access to habitat about NSBLD will not offset the losses in habitat downstream due to increases in salinity and reductions in DO. In the original Opinion, we determined that the habitat impacts from expansion of the navigation channel would result in adverse effects to juvenile shortnose sturgeon, and that the time-lag between channel expansion and fish passage implementation would result in reduced year class fitness until fish passage is completed. Based on USACE hydrodynamic modeling, we estimated that approximately 251 ac (7.6%) of available juvenile shortnose sturgeon habitat and 266 ac (6.9%) of available adult shortnose sturgeon habitat will be impacted by channel expansion. We believe it is reasonable to project that these habitat losses will adversely affect 7.6% of the adult population and 6.9% of the juvenile population of shortnose sturgeon in the action area. The time-lag between inner harbor dredging induced impacts and implementation of fish passage will extend these adverse effects over the same habitat area for another 8 months. Delay in fish passage implementation evaluated in this amendment will result in adverse effects to shortnose sturgeon by reductions in survival and maturation of an undetermined number of juveniles during the 8-month delay in fish passage implementation.

The adverse effects associated with habitat losses resulting from navigation channel expansion are expected to be sub-lethal for individual sturgeon of the existing population, and will not reduce their numbers, but may reduce the river's carrying capacity and its overall ability to provide suitable foraging habitat for shortnose sturgeon. We believe the additional delay will not result in lethal effects to individuals. NMFS also believes that shortnose sturgeon will use the remaining habitat (92.4% for juveniles and 93.1% for adults) prior to implementation of fish passage and should ultimately move to suitable foraging and resting habitats further upstream.

NMFS believes that the proposed action is not likely to cause a reduction in reproduction. Adult shortnose sturgeon will still be able to use the spawning habitat below NSBLD until fish passage is implemented. Based on the fact the NMFS does not believe the proposed action will result in a reduction in reproduction or numbers of shortnose sturgeon in the Savannah River, the proposed action will not result in a decrease in the species distribution. Based on this information, the proposed action will not appreciably reduce the likelihood of the shortnose sturgeon's survival in the Savannah River.

Recovery

The recovery plan for the shortnose sturgeon (NMFS 1998) lists 3 main objectives as recovery criteria for the species. Goals listed in the 1998 shortnose sturgeon recovery plan that could be affected by the proposed action include:

- 1) Ensure that all fish passageways permit adequate passage of shortnose sturgeon and do not alter migration or spawning behavior;
- 2) In each river, identify natural migration patterns of each life stage and any barriers to movement between habitats. Devise methods to pass shortnose sturgeon above/below existing barriers; and

The NSBLD fish passage will restore access to approximately 20 mi of historically important, high quality spawning access for shortnose sturgeon. Though completion of the fish passage will be delayed by 8 months, we believe this is not likely to appreciably reduce the likelihood that the SA DPS will recover in the wild. While delay in implementation will result in temporary adverse effects to juvenile Atlantic sturgeon, we believe that the current mandate under the WIIN Act to consider all alternatives for providing passage above NSBLD to sturgeon, including alternatives previously not considered, will ensure the best opportunity for successful sturgeon passage in the Savannah River.

8 CONCLUSION

After reviewing the current status of the species, the environmental baseline, the effects of the project's offshore dredging action, and cumulative effects, it is NMFS's Biological Opinion that the project's offshore dredging is not likely to jeopardize the continued existence of the NA or SA DPS of green sea turtle, any of the 5 DPSs of Atlantic sturgeon, or the shortnose sturgeon.

9 INCIDENTAL TAKE STATEMENT

Section 9 of the ESA and protective regulations issued pursuant to Section 4(d) of the ESA prohibit the take of endangered and threatened species, respectively, without a special exemption.

Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or attempt to engage in any such conduct. *Incidental take* is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of Section 7(b)(4) and Section 7(o)(2), taking that would otherwise be considered prohibited under Section 9 or Section 4(d), but which is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the ESA provided that such taking is in compliance with the reasonable and prudent measures and the terms and conditions of the ITS of the Opinion.

Section 7(b)(4)(c) of the ESA specifies that to provide an ITS for an endangered or threatened species of marine mammal, the taking must be authorized under Section 101(a)(5) of the Marine Mammal Protection Act (MMPA). Since no incidental take of listed marine mammals is expected or has been authorized under Section 101(a)(5) of the MMPA, no statement on incidental take of protected marine mammals is provided and no take is authorized.

Nevertheless, USACE must immediately notify (within 24 hours, if communication is possible) NMFS's Office of Protected Resources should a take of a listed marine mammal occur.

9.1 Anticipated Amount of Incidental Take

This section of the Opinion summarizes the observed levels of green sea turtle and Atlantic sturgeon take estimated for hopper dredging of the Savannah Harbor entrance channel and the associated relocation trawling, based on new information from the first 2 years of the project. This section also establishes the use of habitat losses as a surrogate for takes of Atlantic and shortnose sturgeon resulting from habitat losses caused by expansion of the navigation channel and by delay in implementation of fish passage. The new ITS supersedes the previous 2011 and 2013 ITS for Atlantic and shortnose sturgeon and both green sea turtle DPSs. The ITSs of the original Opinion and the 2013 amendment remain in effect for all other species.

The take estimates in Table 10 represent the total anticipated lethal and non-lethal takes of green sea turtles and Atlantic sturgeon from hopper dredging and relocation trawling for the entire project. Table 11includes the levels of take that have already been observed, and that which is expected to be observed during the remaining dredging and relocation trawling. These observed take levels are to be used by USACE to determine if take estimates have been exceeded and reinitiation of ESA Section 7 consultation is necessary.

The take estimates in Table 12 represent our estimates of how much habitat supportive of Atlantic and shortnose sturgeon will be lost as a result of the expansion of the navigation channel. We are unable to reliably predict or estimate the specific number of individuals that may be adversely affected by habitat alternations resulting from channel deepening due to uncertainty regarding ecosystem/habitat response, limited information regarding current population estimates and habitat use distribution within the action area, and uncertainty regarding the response of individuals or populations to the habitat alternations. Use of habitat loss as a surrogate is based on the relationship between habitat needs of the species and available information regarding the habitat effects of the proposed action. Therefore, monitoring of habitat effects will be used to determine the extent of the effects to these species and to determine the need to reinitiate consultation.

Monitoring will include ensuring that habitat effects predicted by the USACE's modeling are not greater than expected. The monitoring will also be used to determine if prey species do colonize upriver habitats and how long it takes for such colonization to occur. Lastly, monitoring will determine if the sturgeon are using new habitat areas including those that we expect to eventually be newly colonized by prey species. If monitoring indicates that these predictions are not accurate and that the effects of the action are greater than expected, taking action through the adaptive management process will be required. Any future information regarding changes in the projected or actual habitat effects in Table 11 shall result in the need for reinitiation.

This amendment also serves as the permitting authority for take associated with handling, identifying, measuring, weighing, photographing, tagging (flipper tagging, PIT tagging), tissue sampling (e.g., fin clip of sturgeon), releasing incidentally taken sea turtles, or Atlantic sturgeon, and retaining carcasses (without the need for an ESA Section 10 permit). The effects of these activities have been analyzed in this document. The authorized measures provide data necessary

to monitor the anticipated incidental take and its effects on adversely affected species. The data collected helps ensure the action is not disproportionately affecting a portion of the population while also supporting recovery objectives.

Tuble 10. Green seu tur te turbes resulting from Stille areaging and refocution training							
	Hopper Dredging	Relocation Trawling			Total Ma	Grand Total ²⁴	
	Lethal	Lethal (Max)	Non-lethal (Max)	Total ²⁵	Lethal	Non-lethal	
Green Sea Turtles (SA + NA DPS)	23	1	5	5	24	5	28
NA DPS	23	1	5	5	24	5	28
SA DPS	2	1	1	1	3	1	3

Table 10. Green sea turtle takes resulting from SHEP dredging and relocation trawling

Table 11. Atlantic sturgeo	n takes resulting from SHI	EP dredging and relocation	n trawling

	Hopper Dredging	Re	elocation Traw		Total Take		Grand Total
	Lethal	Lethal	Non-lethal	Total	Lethal	Non-lethal	
Atlantic Sturgeon (All DPSs)	17	3	195	198	20	195	215
Gulf of Maine DPS (11%)	2	1	22	23	3	22	25
New York Bight DPS (51%)	9	2	100	102	11	100	111
Chesapeake Bay DPS (13%)	3	1	26	27	4	26	30
Carolina DPS (2%)	1	1	4	5	2	4	6
South Atlantic DPS (22%)	4	1	43	44	5	43	48

²⁴ This column lists the total numbers of green sea turtles estimated to be taken, either lethally or non-lethally, during hopper dredging and relocation trawling. This number will not equal total maximum lethal takes plus the total maximum non-lethal take. See the next footnote for further explanation.

 $^{^{25}}$ This is the total number of green sea turtles we estimate will be captured during relocation trawling. There is a small likelihood (0.6%) that one of the captures could be lethal, though we expect all will likely be non-lethal (as has been the case during the project to date.) This table lists both the maximum lethal take and maximum non-lethal take estimated to occur during relocation trawling. The total numbers listed in this column will not equal the lethal plus the non-lethal take during relocation trawling.

Table 12. Total observed lethal and non-lethal takes, remaining observed lethal and nonlethal takes, and associated reinitiation triggers (remaining take) of green turtles and Atlantic sturgeon resulting from SHEP dredging and relocation trawling

	Hopper Dredging			Relocation Trawling					
Species	Total Observed Lethal	Already Observed (Lethal)	Reinitiation Trigger: Remaining Observed Take (lethal)	ITS: Total (Lethal)	Already Observed (Lethal)	Reinitiation Trigger: Remaining Lethal Take Allowed	ITS: Total (Non- Lethal)	Already Observed (Non- lethal)	Reinitiation Trigger: Remaining Non-Lethal Take Allowed
Green Sea Turtle (NA and SA DPSs)	15	7*	8	1	0	1	5	2	3
Atlantic Sturgeon (all 5 DPSs)	11	5	6	3	1	2	195	95	100

*Two of the turtles included as lethal takes have since been rehabilitated and released.

Table 13. ITS surrogate (habitat losses) resulting from channel expansion for Atlantic and
shortnose sturgeon

Species	Adverse Effects	ITS
Atlantic sturgeon,	Reduced fitness of	Annual loss of approximately 251 ac of winter foraging
juvenile, South	approximately 7.6% of	and resting habitat as defined by changes in salinity and
Atlantic DPS	juvenile population	DO concentrations. Habitat losses shall not exceed
	resulting from loss of	changes predicted through USACE hydrodynamic
	7.6% of suitable	modeling, as represented in Figures 25 through 30 of
	available forage and	the original Opinion and described in detail in the July,
	resting habitat	2012 Final Environmental Impact Statement for the
		Savannah Harbor Expansions Project, Chatham County,
		Georgia and Jasper County, South Carolina.
Shortnose sturgeon,	Reduced fitness of	Annual loss of approximately 251 ac of winter foraging
juvenile	approximately 7.6% of	and resting habitat as defined by changes in salinity and
	juvenile population	DO concentrations. Habitat losses shall not exceed
	resulting from loss of	changes predicted through USACE hydrodynamic
	7.6% of suitable	modeling, as represented in Figures 25 through 30 of
	available foraging and	the original Opinion and described in detail in the July,
	resting habitat	2012 Final Environmental Impact Statement for the
		Savannah Harbor Expansions Project, Chatham County,
		Georgia and Jasper County, South Carolina
Shortnose sturgeon,	Reduced fitness of	Annual loss of approximately 266 ac of winter foraging
adult	approximately 6.9% of	and resting habitat as defined by changes in salinity and
	adult population	DO concentrations. Habitat losses shall not exceed
	resulting from loss of	changes predicted through USACE hydrodynamic
	6.9% of suitable	modeling represented in Figures 25 through 30 of the
	available foraging	original Opinion and described in detail in the July,
	habitat	2012 Final Environmental Impact Statement for the
		Savannah Harbor Expansions Project, Chatham
		County, Georgia and Jasper County, South Carolina

9.2 Effect of the Take

NMFS has determined the level of anticipated take associated with the project's offshore dredging is not likely to jeopardize the continued existence of the NA and SA DPS of green sea

turtles. NMFS has also determined that anticipated take associated with habitat alterations in combination with effects of dredging and relocation trawling are not likely to jeopardize the continued existence of any of the 5 DPSs of Atlantic sturgeon. NMFS has also determined that anticipated take associated with habitat alterations is not likely to jeopardize the continued existence of shortnose sturgeon.

9.3 Reasonable and Prudent Measures

Section 7(b)(4) of the ESA requires NMFS to issue a statement specifying the impact of any incidental take on listed species, which results from an agency action otherwise found to comply with Section 7(a)(2) of the ESA. It also states the RPMs necessary to minimize the impacts of take and the terms and conditions to implement those measures, must be provided and must be followed to minimize those impacts. Only incidental taking by the federal agency that complies with the specified terms and conditions is authorized.

The RPMs and terms and conditions are specified as required, by 50 CFR 402.01(i)(1)(ii) and (iv), to document the incidental take by the proposed action and to minimize the impact of that take on ESA-listed species. These measures and terms and conditions are non-discretionary, and must be implemented by the USACE in order for the protection of Section 7(o)(2) to apply. The USACE has a continuing duty to regulate the activity covered by this ITS. If the USACE fails to adhere to the terms and conditions through enforceable terms, and/or fails to retain oversight to ensure compliance with these terms and conditions, the protective coverage of Section 7(o)(2) may lapse.

9.3.1 Sea Turtles

NMFS has determined that the following RPMs are necessary and appropriate to minimize impacts of the incidental take of sea turtles during the proposed action. The RPMs that NMFS believes are necessary to minimize the impacts of the proposed hopper dredging have been discussed with the USACE in the past and are standard operating procedures, and include the use of intake and overflow screening, use of sea turtle deflector dragheads, observer and reporting requirements, and relocation trawling. The following RPMS and associated terms and conditions are established to implement these measures, and to document incidental takes. Only incidental takes that occur while these measures are in full implementation are authorized. Experience has shown that injuries sustained by sea turtles entrained in the hopper dredge dragheads are usually fatal. Current regional opinions for hopper dredging require observer monitoring requirements, deflector dragheads, and conditions and guidelines for relocation trawling, which NMFS believes are necessary to minimize effects of these removals on listed sea turtle species that occur in the action area.

9.3.1.1 Take Reporting: Observer Requirements and Dredged Material Screening

Qualified protected species observers monitor dredged material inflow and overflow screening baskets on many projects; however, screening is only partially effective and observed, documented takes provide only partial estimates of total sea turtle mortality. NMFS believes that some listed species taken by hopper dredges go undetected because body parts are forced through the sampling screens by the water pressure and are buried in the dredged material, or

animals are crushed or killed but not entrained by the suction and so the takes may go unnoticed. The only mortalities that are documented are those where body parts either float, are large enough to be caught in the screens, and/or can be identified as from sea turtle species. However, this opinion estimates that with 4-in inflow screening in place, and 24 hour, 100 percent observer coverage will probably detect and record 67% of turtle mortality. Additionally, coordination with local sea turtle stranding networks can be a valuable adjunct monitoring method; not to directly monitor takes, but to help ensure that unanticipated impacts to sea turtles are not occurring.

9.3.1.2 Deflector Dragheads

V-shaped, sea turtle deflector dragheads prevent an unquantifiable yet significant number of sea turtles from being entrained and killed in hopper dredges each year. Without them, turtle takes during hopper dredging operations would unquestionably be higher. Draghead tests conducted in May-June 1993 by the USACE 's Waterways Experimental Station (WES), now known as the Engineering Research and Development Center (ERDC), in clear water conditions on the sea floor off Fort Pierce, Florida, with 300 mock turtles placed in rows, showed convincingly that the newly-developed WES deflector draghead "performed exceedingly well at deflecting the mock turtles." Thirty-seven of 39 mock turtles encountered were deflected, 2 turtles were not deflected, and none were damaged. Also, "the deflector draghead provided better production rates than the unmodified California flat-front draghead." The V-shape reduced forces encountered by the draghead, and resulted in smoother operation. V-shaped deflecting dragheads are now a widely accepted conservation tool, the dredging industry is familiar with them and their operation, and they are used by all USACE Districts conducting hopper dredge operations where turtles may be present.

9.3.1.3 Relocation Trawling

Relocation trawling has proved to be a useful conservation tool in most dredging projects where it has been implemented. The September 22, 1995, Regional Biological Opinion (RBO) to the USACE's New Orleans and Galveston Districts on hopper dredging of channels in Texas and Louisiana included a conservation recommendation for relocation trawling which stated that "Relocation trawling in advance of an operating dredge in Texas and Louisiana channels should be considered if takes are documented early in a project that requires use of a hopper dredge during a period in which large number of sea turtles may occur." That RBO was amended by NMFS (Amendment No. 1, June 13, 2002) to change the conservation recommendation to a term and condition of the RBO. Overall, it is NMFS' opinion that the USACE Districts choosing to implement relocation trawling have benefited from their decisions. For example, in the Galveston District, Freeport Harbor Project (July 13-September 24, 2002), assessment and relocation trawling resulted in one loggerhead capture. In Sabine Pass (Sabine-Neches Waterway), assessment and relocation trawling in July-August 2002 resulted in five loggerhead and three Kemp's ridley sea turtle captures. One turtle was killed by the dredge; this occurred while the relocation trawler was in port repairing its trawl net (P. Bargo, pers. comm. 2002). In the Jacksonville District, sea turtles have been relocated out of the path of hopper dredges operating in Tampa Bay and Charlotte Harbor or their entrance channels. During St. Petersburg Harbor and Entrance Channel dredging in the fall of 2000, a pre-dredging risk assessment trawl

survey resulted in capture, tagging, and relocation of two adult loggerheads and one subadult green turtle. In February 2002 during the Jacksonville District's Canaveral Channel emergency hopper dredging project for the Navy, two trawlers working around the clock captured and relocated 69 loggerhead and green turtles in seven days, and no turtles were entrained by the hopper dredge. In the Wilmington District's Bogue Banks Project in North Carolina, two trawlers successfully relocated five turtles in 15 days between March 13 and 27, 2003; one turtle was taken by the dredge. In 2003, Aransas Pass relocation trawling associated with hopper dredging resulted in 71 turtles captured and released (with three recaptures) in three months of dredging and relocation trawling. Five turtles were killed by the dredge. No turtles were killed after relocation trawling was increased from 12 to 24 hours per day (T. Bargo, pers. comm. to E. Hawk, October 27, 2003). In 2006, trawling associated with the dredging of the Houston-Galveston Navigation Channels resulted in 7 loggerheads relocated in 60 days of trawling (USACE Sea Turtle Data Warehouse; http://el.erdc.usace.army.mil/seaturtles/index.cfm). In Fiscal Year 2007, relocation trawling activities in USACE channel projects in the Gulf of Mexico resulted in the capture and relocation of 67 green, 42 Kemp's ridley, and 68 loggerhead sea turtles; in the South Atlantic, 18 loggerhead and 17 Kemp's ridley sea turtles were relocated (Ibid).

This opinion authorizes the use of turtle relocation trawling. NMFS believes the use of relocation trawling should be required during all proposed hopper dredging.

9.3.2 Sturgeon

We have determined the following RPMs are necessary and appropriate to minimize the impacts of future takes on sturgeon as the USACE conducts the dredging of the harbor and implements fish passage and other modifications in the project area.

9.3.2.1 Implement Safe and Effective Fish Passage in a Timely Manner

The implementation of fish passage at the New Savannah Bluff Lock and Dam is a measure that is expected to provide sturgeon access to upstream habitat. The delay in implementing fish passage will result in additional adverse effects beyond those anticipated in the original Opinion, including adverse effects to the year-class strength of both Atlantic and shortnose sturgeon over multiple years resulting from habitat changes. Reduction in year-class is a major consequence for the late-maturing, long-lived sturgeon that spawn infrequently. The constriction of habitat resulting from the effects of SHEP in the lower Savannah River adds further urgency to prompt fish passage implementation to restore access to habitat upstream that contains high quality spawning habitat and additional foraging habitat.

USACE estimates that analyses required by WIIN Act will be completed by August 2018. USACE will provide NMFS with final design and performance information for the selected fish passage alternative, including data on variance of velocity fields under different river flow scenarios. In order to consult with the other resource and sturgeon experts, NMFS will require a minimum of 30 days to provide a review of the final fish passage design. Construction of the fish passage shall commence prior to January 2021 and be completed by October 2022. To reduce adverse effects to sturgeon during construction of the fish passage, special provisions for the protection of sturgeon shall be implemented (see below).

USACE shall initiate and complete fish passage land acquisition and design phase actions upon approval of the recommended alternative contained in the WIIN 2016 legislation. Construction of the fish passage shall commence following land acquisition, NEPA actions, additional permitting requirements, and the successful award of the feature construction contract. Additional lands must also be acquired to construct the rock ramp and for an access road to the site. The USACE shall initiate land acquisition prior to, or concurrent with, the start of dredging of the Savannah Harbor Entrance Channel.

USACE will coordinate the development of the final design of any fish passage alternative, either in-river or out-of-channel, with NMFS. The overall design goal of the fish passage alternative is to achieve at least 75 percent upstream passage effectiveness for both shortnose and Atlantic sturgeon, at least 85 percent downstream passage effectiveness, and cause no serious injury to sturgeon that come into contact with the passage or dam structures. The desired performance metrics for sturgeon tagged and monitored under the Monitoring and Adaptive Management Plan that reach the base of the structure are 90 percent upstream passage and 100 percent downstream passage. The fish passage must maintain velocities comparable to those found in the upstream habitat that the sturgeon are expected to access upon completion of the fish passage facility (at Augusta Shoals). USACE will retain these design parameters for the in-river design.

The USACE previously presented a fish passage design called an Off-Channel Rock Ramp which is expected to pass fish safely and effectively upstream and downstream. NMFS previously reviewed this design and its performance in detail and determined the proposed design would effectively pass sturgeon and other anadromous species.

The USACE will develop a Monitoring and Adaptive Management plan specifically for the fish passage as a part of the comprehensive Monitoring and Adaptive Management Plan for the project (included in RPM 3). The plan will identify detailed success criteria and triggers for passage modification. Atlantic sturgeon migrate to spawning habitat in spring/early summer and there is evidence suggesting that this species may also make a fall spawning run in some southern rivers. In contrast, shortnose sturgeon migrate to spawning habitat during late winter to early spring. Larval fish will also be beginning their movement downriver. To protect spawning sturgeon and their offspring, no in-water construction will be performed at the downstream entrance of the fish passage channel during the late winter/spring spawning period through the early summer larval period. In-water work and installation of sheet pile training walls (if necessary) may be performed upstream of the dam throughout the year. The USACE shall employ best management practices such as silt curtains to control turbidity throughout the construction of the fish passage facility. No drawdown of water levels can occur during the late winter/spring spawning period through the early summer larval period through the early summer larval period through the early summer larval period through the construction of the fish passage facility. No drawdown of water levels can occur during the late winter/spring spawning period through the early summer larval period to facilitate construction. Normal flows must be maintained.

9.3.2.2 Protective Measures for Sturgeon during Construction in the SHEP Project Area

To reduce adverse effects to sturgeon during construction of the flow re-routing modifications and during the deepening, special provisions for the protection of sturgeon will need to be implemented. The area of the proposed flow re-routing modifications would be located in foraging and resting habitat for sturgeon and is especially important to juvenile shortnose sturgeon during the winter. A moratorium on specific in-water work associated with the flow rerouting modifications will be necessary to protect sturgeon. The timing of the moratorium is linked to the time of year when sturgeon are most likely to occur in the construction area.

9.3.2.3 Development of a Comprehensive Monitoring and Adaptive Management Plan for the Savannah River Project Area

To ensure appropriate monitoring and adaptive management is conducted within the entire Savannah River Project Area comprehensive monitoring and adaptive management plan shall be developed for assessing project effects associated with the deepening, the effectiveness of the fish passage, and for implementing corrective actions. The Plan shall contain details describing how sturgeon will be monitored. It must also address how adaptive management would be included during the construction phases. The Plan shall identify explicit success criteria and triggers. This would include a mechanism that would allow results from the monitoring to feed into decisions governing operation of the project activities and mitigation actions. If monitoring of sturgeon habitat indicates the loss of suitable habitat exceeds the amount determined by the USACE's models, or if the fish passage is not functioning as intended, and these impacts cannot be addressed through adaptive management, this would trigger re-initiation of consultation with NMFS. The USACE will coordinate with NMFS on development of the comprehensive plan to include measures to address these concerns.

9.3.2.4 Ensure Appropriate Dissolved Oxygen Levels

The proposed expansion, deepening, and modification of the Savannah Harbor through dredging will have a significant effect on the habitat of sturgeon. The USACE is currently installing oxygen injection systems on the Savannah River above and within the project area to mitigate for expected impacts to dissolved oxygen caused by deepening the harbor. NMFS believes there is a high degree of uncertainty associated with the proposed use of an oxygen injection system. These systems, known as Speece cones, will be used during the summer months to inject oxygen into the river, as needed. These systems have not been previously used in a tidal system such as the Savannah River, so their efficacy cannot be thoroughly assessed before installation. Once operational, extensive monitoring of the river to determine effectiveness of the systems is proposed and modifications may be necessary as a part of a comprehensive monitoring and adaptive management plan to be developed for the project. Analysis of projected benefits of dissolved oxygen injection indicate that while there would be improvements in portions of the Front River and Middle River, the lower portion of the Back River would still have areas of unsuitable habitat for shortnose sturgeon. If the oxygen injection system does not perform as designed, impacts to sturgeon habitat from the harbor deepening could be greater than what has been estimated by the USACE's models. Contingency funding shall be included in the adaptive management plan to accommodate needed modifications to address low levels of dissolved

oxygen. This measure is intended to ensure that impacts from SHEP are no worse than the USACE's predictions in the Environmental Impact Statement. Sturgeon have been shown to be impacted by low dissolved oxygen levels, and mortality of sturgeon can occur within hours of exposure to low dissolved oxygen (Campbell and Goodman 2004). The three-level dissolved oxygen criteria for shortnose sturgeon recommended by the interagency fisheries group and applied by the USACE to identify areas with suitable sturgeon habitat include rare (<1% of the time) excursions of summertime dissolved oxygen to less than 2 mg/Liter, infrequent excursions (<5%) to less than 3mg/Liter, and occasional excursions (<10%) below 4 mg/Liter. Thus, these are already relatively permissive standards that allow exposure of sturgeon to very depressed dissolved oxygen levels even in the areas designated as suitable habitat. Given the physiological threat posed to sturgeon from low dissolved oxygen combined with high thermal stress in the summer (water temperatures in the summer average 25°-28°C), monitoring and adaptive management of dissolved oxygen shall ensure that the oxygen injection systems perform as intended to offset impacts due to deepening the harbor and ensure the amount of suitable habitat identified as summer suitable habitat (see Figure 30 of the original Opinion) meet these established dissolved oxygen criteria.

9.3.2.5 Tissue Sampling, Tags and Reporting Take

Tissue samples taken of any sturgeon handled or stranded will be processed per Appendix C. All sturgeon encountered will need to be scanned for a PIT tag. The PIT tag reader should be able to read both 125 kHz and 134 kHz tags. The USACE will need to notify NMFS of any and all sturgeon injuries or mortality occurring during the dredging/construction activities within 24 hours of the take.

9.4 Terms and Conditions

In order to be exempt from the prohibitions of Section 9 of the ESA, the USACE must comply with the following terms and conditions, which implement the reasonable and prudent measures described above and outline required reporting and monitoring requirements. These terms and conditions are non-discretionary.

Sea Turtles

- 1. <u>Observers (RPM 9.3.1.1)</u>: The USACE shall arrange for qualified protected species observers to be aboard the hopper dredges to monitor the hopper bin, screening, and dragheads for sea turtles and their remains. Observer coverage sufficient for 100 percent monitoring (i.e., two observers) of hopper dredging operations is required aboard the hopper dredges throughout the proposed project.
- 2. <u>Screening (RPM 9.3.1.1)</u>: 100 percent inflow screening of dredged material is required and 100 percent overflow screening is recommended. If conditions prevent 100 percent inflow screening, inflow screening may be reduced gradually, as further detailed in the following paragraph, but 100 percent overflow screening is then required.
 - a. Screen Size: The hopper's inflow screens should have 4-in by 4-in screening. If the Savannah District (SAS), in consultation with observers and the draghead operator,

determines that the draghead is clogging and reducing production substantially, the screens may be modified sequentially: mesh size may be increased, for example, to 6in by 6-in, then 9-in by 9-in, then 12-in by 12-in openings. Other variations in screening size are allowed, with prior written approval by NMFS. Clogging should be greatly reduced with these flexible options; however, further clogging may compel removal of the screening altogether, in which case effective 100 percent overflow 4in screening is mandatory. The USACE shall notify NMFS beforehand if inflow screening is going to be reduced or eliminated, and provide details of how effective overflow screening will be achieved.

- b. Need for Flexible, Graduated Screens: NMFS believes that this flexible, graduatedscreen option is necessary, since the need to constantly clear the inflow screens will increase the time it takes to complete the project and therefore increase the exposure of sea turtles to the risk of impingement or entrainment. Additionally, there are increased risks to sea turtles in the water column when the inflow is halted to clear screens, since this results in clogged intake pipes, which may have to be lifted from the bottom to discharge the clay by applying suction.
- 3. <u>Dredging Pumps (RPM 9.3.1.1)</u>: Standard operating procedure shall be that dredging pumps shall be disengaged by the operator when the dragheads are not firmly on the bottom, to prevent impingement or entrainment of sea turtles within the water column. This precaution is especially important during the cleanup phase of dredging operations when the draghead frequently comes off the bottom and can suck in turtles resting in the shallow depressions between the high spots the draghead is trimming off.
- 4. <u>Sea Turtle Deflecting Draghead (RPM 9.3.1.2)</u>: A state-of-the-art rigid deflector draghead must be used on all hopper dredges at all times. Alternate draghead designs shall not be used unless prior, written approval is given by NMFS.
- 5. Dredge Take Reporting and Final Report (RPM 9.3.1.1): Observer reports of incidental take by hopper dredges must be faxed to NMFS' Southeast Regional Office (phone: 727/824-5312, fax: 727/824-5309, and reported by electronic mail to: (takereport.nmfsser@noaa.gov) by onboard NMFS-approved protected species observers, the dredging company, or the USACE within 24 hours of any sea turtle or other listed species take observed.

A final report summarizing the results of the hopper dredging and any documented sea turtle or other listed species takes must be submitted to NMFS within 30 working days of completion of the dredging project. Reports shall contain information on project location (specific channel/area dredged), start-up and completion dates, cubic yards (yd³) of material dredged, problems encountered, incidental takes and sightings of protected species, mitigative actions taken, screening type (inflow, overflow) utilized, daily water temperatures, name of dredge, names of endangered species observers, percent observer coverage, and any other information the SAS deems relevant.

6. <u>Sea Turtle Strandings (RPM 9.3.1.1)</u>: The SAS representative shall notify the STSSN state representative (contact information available at: <u>http://www.sefsc.noaa.gov/seaturtleSTSSN.jsp</u>) of the start-up and completion of hopper dredging operations and bed-leveler dredging operations and ask to be notified of any sea turtle strandings in the project area that, in the estimation of STSSN personnel, bear signs of potential draghead impingement or entrainment, or interaction with a bed-leveling type dredge.

Information on any such strandings shall be reported in writing within 30 days of project end to NMFS' Southeast Regional Office. Because the deaths of these turtles, if hopper dredge or bed-leveler dredge related, have already been accounted for in NMFS' jeopardy analysis, the strandings will not be counted against the USACE's take limit.

- 7. <u>Reporting Strandings (RPM 9.3.1.1)</u>: The USACE shall provide NMFS' Southeast Regional Office with a report detailing incidents, with photographs when available, of stranded sea turtles that bear indications of draghead impingement or entrainment and/or bed-leveler interactions.
- 8. <u>Relocation Trawling (RPM 9.3.1.3)(if applicable)</u>: Prior to turtle relocation trawling, the USACE shall develop and submit to NMFS detailed specifications on the final selected turtle relocation trawling gear sufficiently ahead of planned dredging activities for NMFS to review and comment on the plans. NMFS fisheries gear specialists may be able to provide technical assistance in developing specifications. The use of relocation trawling will be required during all proposed hopper dredging during December 1 through April 15.

Non-capture relocation trawling ("sweep trawling") may be used if prior, written approval is given by NMFS, after NMFS ensures that the proper net design and sweep trawling procedures will be used. Sweep-trawling trawl net design and trawling procedures are inherently and fundamentally different from capture-trawling trawl net design and procedures.

- 9. <u>Relocation Trawling Report (RPM 9.3.1.3) (if applicable)</u>: The USACE shall provide NMFS' Southeast Regional Office with an end-of-project report within 30 days of completion of any relocation trawling. This report may be incorporated into the final report summarizing the results of the hopper dredging project.
- 10. <u>Additional Relocation Trawler Requirements (RPM 9.3.1.3) (if applicable)</u>: Any capturetype or sweep-type relocation trawling conducted or contracted by the USACE to temporarily reduce or assess the abundance of these listed species during a hopper dredging project in order to reduce the possibility of lethal hopper dredge interactions, is subject to the following conditions as listed below. In the event that trawling does result in the capture of a sea turtle, the USACE or its contractors may employ a separate chase boat to relocate the turtle at a distance of no less than 3 mi from the centerline of the navigation channel at the capture site.

- a. Handling: Sea turtles recovered by observers on modified relocation trawlers (e.g., turtles incidentally captured in modified trawl gear, injured turtles recovered on the surface, etc.) shall be handled in a manner designed to ensure their safety and viability, and shall be released over the side of the vessel, away from the propeller, and only after ensuring that the vessel's propeller is in the neutral, or disengaged, position (i.e., not rotating). Resuscitation guidelines are attached (Appendix B).
- b. Captured Sea Turtle Holding Conditions: Sea turtles may be held up to 24 hours for the collection of important scientific measurements, prior to their release. Captured sea turtles shall be kept moist, and shaded whenever possible, until they are released.
- c. Scientific Measurements and Data Collection: When safely possible, all turtles shall be measured (standard carapace measurements including body depth), tagged, weighed, and a tissue sample taken prior to release. Any external tags shall be noted and data recorded into the observer's log. Only NMFS-approved protected species observers or observer candidates in training under the direct supervision of a NMFS-approved protected species observer shall conduct the tagging/measuring/weighing/tissues sampling operations. External mounting of satellite tags, radio transmitters, data loggers, crittercams, etc., may be done under the authority of this opinion by NMFS-approved, trained personnel, after approval from NMFS SERO PRD (see Terms and Condition #10.g., Other Sampling Procedures).

NMFS-approved protected species observers may conduct more invasive scientific procedures (e.g., bloodletting, laparoscopies, external tumor removals, anal and gastric lavages, etc.) and partake in or assist in "piggy back" research projects but only if the observer holds a valid federal sea turtle research permit (and any required state permits) authorizing the activities, or the observer is acting as the duly-designated agent of the permit holder, and has first notified NMFS' Southeast Regional Office, Protected Resources Division.

- d. Injuries: Injured sea turtles shall be immediately transported to the nearest sea turtle rehabilitation facility. Minor skin abrasions resulting from trawl capture are considered non-injurious. The USACE shall ensure that logistical arrangements and support to accomplish this are pre-planned and ready, and is responsible for ensuring that dredge vessel personnel comply with this requirement. The USACE shall bear the financial cost of sea turtle transport, treatment, rehabilitation, and release.
- e. Flipper Tagging: All sea turtles captured by relocation trawling shall be flippertagged prior to release with external tags which shall be obtained prior to the project from the University of Florida's Archie Carr Center for Sea Turtle Research. This opinion serves as the permitting authority for any NMFS-approved protected species observer aboard these relocation trawlers to flipper-tag with external tags (e.g., Inconel tags) captured sea turtles. Columbus crabs or other organisms living on external sea turtle surfaces may also be sampled and removed under this authority.

f. PIT-Tag Scanning: This opinion serves as the permitting authority for any NMFSapproved protected species observer aboard a relocation trawler to PIT-tag captured sea turtles. PIT tagging of sea turtles is not required to be done if the NMFSapproved protected species observer does not have prior training or experience in said activity; however, if the observer has received prior training in PIT tagging procedures and is comfortable with the procedure, then the observer shall PIT tag the animal prior to release (in addition to the standard external tagging):

Sea turtle PIT tagging must then be performed in accordance with the protocol detailed at NMFS' Southeast Fisheries Science Center's Web page: http://www.sefsc.noaa.gov/seaturtlefisheriesobservers.jsp. (See Appendix C on SEFSC's "Fisheries Observers" Web page);

Unless otherwise approved in advance by NMFS SERO PRD, PIT tags used must be sterile, individually-wrapped tags to prevent disease transmission. PIT tags should be 125-kHz, glass-encapsulated tags—the smallest ones made. Note: If scanning reveals a PIT tag and it was not difficult to find, then do not insert another PIT tag; simply record the tag number and location, and frequency, if known. If for some reason the tag is difficult to detect (e.g., tag is embedded deep in muscle, or is a 400-kHz tag), then insert one in the other shoulder.

- g. Other Sampling Procedures: All other tagging and external or internal sampling procedures (e.g., bloodletting, laparoscopies, external tumor removals, anal and gastric lavages, mounting of satellite or sonic transmitters, or similar tracking equipment, etc.) performed on live sea turtles are not permitted under this opinion unless the observer holds a valid sea turtle research permit authorizing the activity, either as the permit holder or a designated agent of the permit holder, or unless the observer (or person performing the procedure, in the case of piggy-back research by the USACE or other federal or state government agency or university personnel) receives prior, written approval by NMFS SERO after a thorough review by PRD of their credentials, experience, and training in the proposed procedures.
- PIT-Tag Scanning and Data Submission Requirements: All sea turtles captured by relocation trawling or dredges shall be thoroughly scanned for the presence of PIT tags prior to release using a multi-frequency scanner powerful enough to read multiple frequencies (including 125-, 128-, 134-, and 400-kHz tags) and read tags deeply embedded in muscle tissue (e.g., manufactured by Trovan, Biomark, or Avid). Turtles whose scans show they have been previously PIT tagged shall nevertheless be externally flipper tagged. Sea turtle data collected (PIT tag scan data and external tagging data) shall be submitted to NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Attn: Lisa Belskis, 75 Virginia Beach Drive, Miami, Florida 33149. All sea turtle data collected shall be submitted in electronic format within 60 days of project completion to Lisa.Belskis@noaa.gov and Sheryan.Epperly@noaa.gov. Sea turtle external flipper tag and PIT tag data generated and collected by relocation trawlers shall also be submitted to the

Cooperative Marine Turtle Tagging Program (CMTTP), on the appropriate CMTTP form, at the University of Florida's Archie Carr Center for Sea Turtle Research.

- i. Handling Fibropapillomatose Turtles: NMFS-approved protected species observers are not required to handle viral fibropapilloma tumors if they believe there is a health hazard to themselves and choose not to. When handling sea turtles infected with fibropapilloma tumors, observers must maintain a separate set of sampling equipment for handling animals displaying fibropapilloma tumors or lesions.
- 11. <u>Requirement and Authority to Conduct Tissue Sampling for Genetic and Contaminants</u> <u>Analyses</u>: This opinion serves as the permitting authority for any NMFS-approved protected species observer aboard a relocation trawler or hopper dredge to tissue-sample live- or dead-captured sea turtles without the need for an ESA Section 10 permit.

All live or dead sea turtles captured by relocation trawling and hopper dredging (for both USACE-conducted and USACE-permitted activities) shall be tissue-sampled prior to release. Sampling shall continue uninterrupted until such time as NMFS determines and notifies the USACE in writing.

Sea turtle tissue samples shall be taken in accordance with NMFS' SEFSC procedures for sea turtle genetic analyses, and, as specified, for contaminants (e.g., heavy metals) analyses. Protocols for tissue sampling to be utilized in contaminants analyses are currently being developed by Dr. Dena Dickerson, ERDC. The USACE shall ensure that tissue samples taken during the dredging project are collected and stored properly and mailed every three months until completion of the dredging project to: NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Attn: Lisa Belskis, 75 Virginia Beach Drive, Miami, Florida 33149.

- 12. <u>Training Personnel on Hopper Dredges</u>: The USACE must ensure that all contracted personnel involved in operating hopper dredges (whether privately-funded or federally-funded projects) receive thorough training on measures of dredge operation that will minimize takes of sea turtles. It shall be the goal of the hopper dredging operation to establish operating procedures that are consistent with those that have been used successfully during hopper dredging in other regions of the coastal United States, and which have proven effective in reducing turtle/dredge interactions. Therefore, USACE Engineering Research and Development Center experts or other persons with expertise in this matter shall be involved both in dredge operation training, and installation, adjustment, and monitoring of the rigid deflector draghead assembly.
 - 13. <u>Dredge Lighting</u>: All lighting aboard hopper dredges and hopper dredge pumpout barges operating within 3 nm of sea turtle nesting beaches shall be limited to the minimal lighting necessary to comply with U.S. Coast Guard and/or Occupational Safety and Health Administration requirements. All non-essential lighting on the dredge and pumpout barge shall be minimized through reduction, shielding, lowering, and appropriate placement of lights to minimize illumination of the water to reduce potential

disorientation effects on female sea turtles approaching the nesting beaches and sea turtle hatchlings making their way seaward from their natal beaches.

14. <u>Best Management Practices</u>: The USACE will be required to conduct activities in compliance with NMFS' March 23, 2006, *Sea Turtle and Smalltooth Sawfish Construction Conditions* (Appendix D), except that Condition "e" shall not apply to the hopper dredging operations as it is impracticable to require a hopper dredge to stop all forward movement whenever a sea turtle is sited closer than 50 feet on the surface.

Sturgeon

The following Terms and Conditions implement the RPMs above, which are designed to minimize the adverse impacts of the expected take from the proposed action, and to provide for monitoring and validation of the impacts associated with the proposed action, and must be collectively implemented.

Develop a Plan for Safe and Effective Fish Passage (RPM 9.3.2.1): The final design, selection of preferred alternative and implementation of a safe and effective fish passage shall be coordinated by the USACE in consultation with NMFS, USACE will coordinate directly with NMFS and NMFS will need a minimum of 30 days to review the final fish passage design. USACE will provide NMFS with final design and performance information for the selected fish passage alternative, including data on variance of velocity fields under different river flow scenarios. The proposed final design shall require NMFS' final review to validate the design meets the requirements specified in the Biological Opinion. The overall design goal of the fish passage alternative is to achieve at least 75 percent upstream passage effectiveness for both shortnose and Atlantic sturgeon, at least 85 percent downstream passage effectiveness, and cause no serious injury to sturgeon that come into contact with the passage or dam structures. The desired performance metrics for sturgeon tagged and monitored under the Monitoring and Adaptive Management Plan that reach the base of the structure are 90 percent upstream passage and 100 percent downstream passage. The fish passage must maintain velocities comparable to those found in the upstream habitat that the sturgeon are expected to access upon completion of the fish passage facility (at Augusta Shoals).

- 1. <u>Timeline for Construction of the Fish Passage</u> (RPM 9.3.2.1): USACE estimates that analyses required by WIIN Act will be completed by August 2018. Construction of the fish passage shall commence prior to January 2021 and be completed within 3 years. To reduce adverse effects to sturgeon during construction of the fish passage, special provisions for the protection of sturgeon shall be implemented.
- 2. <u>Land for Fish Passage</u> (RPM1): The USACE or project sponsor shall purchase any additional land necessary for construction of the fish passage and for an access road to the site. The land acquisition process must be initiated prior to, or concurrent with, commencement of entrance channel dredging actions.

3. <u>Fish Passage Construction Guidelines</u> (RPM 9.3.2.1): To minimize effects to spawning sturgeon and their offspring, no in-water fish passage construction downstream of the NSBLD shall occur between August 15 and April 15 of any year. In-water construction of the fish passage may be performed downstream of the dam between April 16 and August 14 of any year, and upstream of the dam throughout the year.

The original Opinion included a Term and Condition prohibiting in-water work downstream of the NSBLD between February 1 and May 31 of any year. That Term and Condition has been revised in this amendment based on emerging information regarding seasonal migration patterns of Atlantic sturgeon, including results from telemetry tagging investigations completed through the SHEP Monitoring and Adaptive Management Plan (Post et al. 2016). This revised Term and Condition extends the no-work window from four months to eight months each year allowing only four months each year for in-water work conducted downstream of NSBLD. This expanded no-work period could affect both the total duration of fish passage construction as well as the cost of such work, however because we do not know which alternative will be selected, we are unable to determine how the revised no-work window will ultimately affect the overall fish passage construction timeline. While the no-work window is intended to avoid and minimize potential effects to individual sturgeon that may be in close physical proximity to the NSBLD work area, timely and full implementation of fish passage is also a significant consideration because such passage minimizes potential effects to sturgeon populations in the Savannah River resulting from SHEP by allowing access to alternative habitats for both spawning and larval development. Moreover, passage at NSBLD is a pivotal component of NMFS's conservation and recovery efforts for both Atlantic and shortnose sturgeon. As such, upon USACE's selection of the preferred passage alternative, NMFS may re-evaluate trade-offs between potential short term effects associated with in-water work and potential loss of benefits to spawning, larval and young juvenile sturgeon resulting from additional delay of full fish passage implementation that might result from the expanded in-water work prohibition.

- 4. <u>In-water Work During Construction of the Fish Passage</u> (RPM 9.3.2.1): The USACE shall adhere to the following protective measures during construction of the fish passage.
 - a. Appropriate erosion and turbidity controls shall be utilized wherever necessary to limit sediments from entering the water.
 - b. Dredging and construction shall be conducted with minimum environmental impact.
 - c. No construction debris shall be allowed to enter the water.
 - d. To ensure passage throughout the habitat, adequate pathways must be provided at all times so that fish can migrate between foraging habitat and spawning habitat; no blocking of the channel is allowed.
 - e. Normal water flows must be maintained throughout the construction areas.

- f. The USACE shall not reduce flows during spring/early summer to aid in the construction of the fish passage.
- 5. Fish Passage Effectiveness Monitoring and Adaptive Management (RPM 9.3.2.1): The USACE shall develop a Monitoring and Adaptive Management Plan specifically for the fish passage that will, to the maximum extent practicable, ensure the performance criteria described in sturgeon term and condition no.1 above will be achieved. The plan will also identify detailed triggers for passage modification. Post-construction monitoring shall be designed and conducted to assess the effectiveness of the fish passage in safely passing sturgeon upstream and downstream. The USACE shall consult with NMFS and the other federal and state resource agencies in the completion of the Plan within 6 months of receiving all environmental approvals to implement the project. NMFS shall have final review of such plan. If it is determined that sturgeon are not safely and effectively passing upstream and downstream through the fish passage, measures shall be taken to identify the source of the problem, and corrective actions approved by NMFS shall be taken to rectify the problem.
- 6. <u>Timing of Construction of the Flow Re-routing Modifications</u> (RPM 9.3.2.2): The construction of the diversion structure associated with the flow re-routing modifications has the potential to cause injury to sturgeon. The impact to sturgeon shall be minimized by constructing the diversion structure while most sturgeon are congregated upstream of the construction area between May 15 and November 1.
- 7. Protection of Sturgeon during In-water Construction in the Lower Savannah River (RPM 9.3.2.2): The USACE shall adhere to the following measures to protect sturgeon during deepening of the harbor and widening of the channel; and during the modifications associated with the flow re-routing, which include plugging Rifle Cut, filling the Sediment Basin, closing the lower arm of McCoy Cut, construction of a flow diversion structure at McCoy Cut, and the dredging of the upper Middle and Back River.
 - a. Appropriate erosion and turbidity controls shall be utilized wherever necessary to limit sediments from entering the water.
 - b. Dredging and construction shall be conducted with minimum environmental impact.
 - c. No construction debris shall be allowed to enter the water.
 - d. No blocking of the channel is allowed, except where included as part of the flow rerouting modifications.
- 8. <u>Ensure Appropriate Monitoring and Adaptive Management within the Lower Savannah</u> <u>River Project Area</u> (RPM 9.3.2.3): A comprehensive monitoring and adaptive management plan shall be developed for assessing project effects associated with the deepening, the flow re-routing modifications, the injection of dissolved oxygen, and for implementing corrective actions. The USACE shall coordinate with NMFS and other federal and state resource agencies in the completion of the Plan within 6 months of receiving all environmental approvals to implement the project. NMFS shall have final

review of such plan. The Plan shall include monitoring to determine whether the predicted amount of habitat loss, as determined by the USACE's models, is being exceeded. If the monitoring indicates that habitat loss to any species within NMFS' ESA authority is being exceeded, this will trigger re-initiation of consultation with NMFS. Preconstruction monitoring would begin in time to allow one year of work to be complete before dredging occurs in the inner harbor. USACE shall conduct post-construction monitoring of dissolved oxygen concentrations and salinity in the Savanah River to confirm the extent of sturgeon habitat losses estimated through hydrodynamic modeling. This monitoring will support verification of the magnitude and geographic extent of the projected changes in DO and salinity depicted in Figures 25 – 30 of the original Opinion and described in detail in the July, 2012 Final Environmental Impact Statement for the Savannah Harbor Expansions Project, Chatham County, Georgia and Jasper County, South Carolina.

- 9. <u>Ensure Appropriate Dissolved Oxygen Levels (RPM 9.3.2.4)</u>: Monitoring and adaptive management for dissolved oxygen levels shall ensure that the oxygen injection systems perform as intended to offset impacts due to deepening the harbor and ensure the amount of suitable habitat as predicted in the USACE's modeling of the three-level summer habitat suitability criteria for sturgeon (Table 7) are not reduced. During the monitoring and adaptive management period if dissolved oxygen excursions below minimal levels in the modeled river cells are longer in duration than specified in the criteria, corrective action will be taken immediately, if practicable, for example by increasing or adjusting the operation of the Speece Cone system or cessation of dredging in the area of concern. If short-term responses are not practicable, potential engineering solutions shall be identified and implemented as soon as possible, and not later than July 1, following discovery of the poor oxygen levels.
- 10. <u>Tissue Sampling (RPM 9.3.2.5)</u>: A tissue sample shall be taken of any sturgeon handled or stranded per Appendix C; samples shall be shipped to the address provided in Appendix C within one month.
- 11. <u>PIT Tag Scanning</u> (RPM 9.3.2.5): All sturgeon encountered shall be scanned for a PIT tag; codes shall be included in the take report submitted to NMFS. The PIT tag reader shall be able to read both 125 kHz and 134 kHz tags. Any untagged sturgeon will be fitted with a PIT tag. PIT tagging of sturgeon is not required to be done if the NMFS-approved protected species observer does not have prior training or experience in said activity; however, if the observer has received prior training in PIT tagging procedures and is comfortable with the procedure, then the observer shall PIT tag the animal prior to release (in addition to the standard external tagging).
- 12. <u>Lethal Take (RPM 9.3.2.5)</u>: If a lethal take occurs, USACE shall arrange for contaminant analysis of the carcass. The carcass should be frozen and NMFS contacted immediately to provide instructions for shipping and preparation.
- 13. <u>Take Reporting (RPM 9.3.2.5)</u>: Observer reports of incidental take by hopper dredges and relocation trawls must be faxed to NMFS' Southeast Regional Office (phone:

727/824-5312, fax: 727/824-5309), <u>and</u> reported by electronic mail to: (**takereport.nmfsser@noaa.gov**) by onboard NMFS-approved protected species observers, the dredging company, or the USACE within 24 hours.

10 CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the ESA directs federal agencies to utilize their authority to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat to help implement recovery plans or to develop information.

10.1 Sea Turtles

Pursuant to Section 7(a)(1) of the ESA, the following conservation recommendations are made to assist the USACE in contributing to the conservation of sea turtles by further reducing or eliminating adverse impacts that result from dredging.

- 1. Draghead Modifications and Bed-Leveling Studies: The USACE should supplement other efforts to develop modifications to existing dredges to reduce or eliminate take of sea turtles, and develop methods to minimize sea turtle take during "cleanup" operations when the draghead maintains only intermittent contact with the bottom. Some method to level the "peaks and valleys" created by dredging would reduce the amount of time dragheads are off the bottom. NMFS is ready to assist the USACE in conducting studies to evaluate bed-leveling devices and their potential for interaction with sea turtles, and develop modifications if needed.
- 2. Draghead Evaluation Studies and Protocol: Additional research, development, and improved performance is needed before the V-shaped rigid deflector draghead can replace seasonal restrictions as a method of reducing sea turtle captures during hopper dredging activities. Development of a more effective deflector draghead or other entrainment-deterring device (or combination of devices, including use of acoustic deterrents) could potentially reduce the need for sea turtle relocation or result in expansion of the winter dredging window. NMFS should be consulted regarding the development of a protocol for draghead evaluation tests. NMFS recommends that USACE coordinate with ERDC, the Association of Dredge Contractors of America, and dredge operators (Manson, Bean-Stuyvesant, Great Lakes, Natco, etc.) regarding additional reasonable measures they may take to further reduce the likelihood of sea turtle takes.
- 2. <u>Continuous Improvements in Monitoring and Detecting Takes</u>: The USACE should seek continuous improvements in detecting takes and should determine, through research and development, a better method for monitoring and estimating sea turtle takes by hopper dredge. Observation of overflow and inflow screening is only partially effective and provides only partial estimates of total sea turtle mortality.

- 3. <u>Overflow Screening</u>: The USACE should encourage dredging companies to develop or modify existing overflow screening methods on their company's dredge vessels for maximum effectiveness of screening and monitoring. Horizontal overflow screening is preferable to vertical overflow screening because NMFS considers that horizontal overflow screening is significantly more effective at detecting evidence of protected species entrainment than vertical overflow screening.
- 4. <u>Preferential Consideration for Horizontal Overflow Screening</u>: The USACE should give preferential consideration to hopper dredges with horizontal overflow screening when awarding hopper dredging contracts for areas where new materials, large amounts of debris, or clay may be encountered, or have historically been encountered. Excessive inflow screen clogging may in some instances necessitate removal of inflow screening, at which point effective overflow screening becomes more important.
- 5. Section 10 Research Permits, Relocation Trawling, Piggy-Back Research, and 50 CFR Part 223 Authority to Conduct Research on Salvaged, Dead Specimens: NMFS recommends that USACE ERDC apply to NMFS for an ESA Section 10 research permit to conduct endangered species research on species incidentally captured during traditional relocation trawling. SERO shall assist the USACE with the permit application process.

NMFS also encourages the USACE to cooperate with NMFS' scientists, other federal agencies' scientists, and university scientists holding appropriate research permits to make fuller use of turtles taken or captured by hopper dredges and relocation trawlers pursuant to the authority conferred by this opinion. NMFS encourages "piggy-back" research projects by duly-permitted or authorized individuals or their authorized designees.

Important research can be conducted without a Section 10 permit on salvaged dead specimens. Under current federal regulations (see 50 CFR 223.206 (b): Exception for injured, dead, or stranded [threatened sea turtle] specimens), "Agents...of a Federal land or water management agency may...salvage a dead specimen which may be useful for scientific study." Similar regulations at 50 CFR 222.310 provide "salvaging" authority for endangered sea turtles.

6. <u>Draghead Improvements - Water Ports</u>: NMFS recommends that the USACE require or at least recommend to dredge operators that all dragheads on hopper dredges contracted by the USACE for dredging projects be eventually outfitted with water ports located in the top of the dragheads to help prevent the dragheads from becoming plugged with sediments. When the dragheads become plugged with sediments, the dragheads are often raised off the bottom by the dredge operator with the suction pumps on in order to take in enough water to help clear clogs in the draghead will be taken by the dredge. Water ports located in the top of the dragheads would relieve the necessity of raising the draghead off the bottom to perform such an action, and reduce the chance of incidental take of sea turtles.

NMFS supports and recommends the implementation of proposals by ERDC and USACE personnel for various draghead modifications to address scenarios where turtles may be entrained during hopper dredging (Dickerson and Clausner 2003). These include: (1) An adjustable visor; (2) water jets for flaps to prevent plugging and thus reduce the requirement to lift the draghead off the bottom; and (3) a valve arrangement (which mimics the function of a "Hoffer" valve used on cutterhead type dredges to allow additional water to be brought in when the suction line is plugging) that will provide a very large amount of water into the suction pipe thereby significantly reducing flow through the visor when the draghead is lifted off the bottom, reducing the potential to take a turtle.

- 7. <u>Economic Incentives for No Turtle Takes</u>: The USACE should consider devising and implementing some method of significant economic incentives to hopper dredge operators such as financial reimbursement based on their satisfactory completion of dredging operations, or X number of yd³ of material moved, or hours of dredging performed, without taking turtles. This may encourage dredging companies to research and develop "turtle friendly" dredging methods; more effective, deflector dragheads; predeflectors; top-located water ports on dragarms; etc.
- 8. <u>Sodium Vapor Lights on Offshore Equipment</u>: On offshore equipment (i.e., hopper dredges, pumpout barges) shielded low-pressure sodium vapor lights are highly recommended for lights that cannot be eliminated.

10.2 Atlantic Sturgeon

USACE should help fund or conduct future research that gathers information that furthers understanding of DPS distribution of Atlantic Sturgeon in U.S. southern Atlantic coastal waters, including location and movement in the Atlantic Ocean by depth and substrate to assist in future evaluation of potential effects to sturgeon populations, assessments of interactions and sturgeon migratory and feeding behavior.

10.3 Shortnose Sturgeon

USACE should support future research on the biology and life history of shortnose sturgeon throughout the Savannah River.

Recommended research includes:

- 1. Estimating population size and structure.
- 2. Identification of spawning sites and substrate.
- 3. Assessment of areas upstream NSBLD as spawning habitat.
- 4. Effects of regulated flow on spawning habitat.

5. Effects of water quality changes on shortnose sturgeon and their resting and foraging habitats.

Specific research should include:

- 1. A study to examine prey composition and availability in the Savannah River would improve knowledge of the distribution of preferred foraging habitat of sturgeon.
- 2. As the implementation of fish passage at the New Savannah Bluff Lock and Dam would trigger implementation of fish passage at the dams located upstream, it would be useful to acquire data identifying the best design for fish passage at these facilities. Accommodating passage of sturgeon at these dams would restore access to additional former spawning habitat and assist in the recovery of the species.
- 3. USACE should support future research that evaluates the relationship between flow, water temperature, and sturgeon migration. Additional information on this relationship would provide a better indicator of conditions that cue and successfully initiate sturgeon spawning movement. USACE could apply this information to determine future adequate flow rates within Savannah River and the geographic range of the species. The Nature Conservancy (TNC) has taken an active role in shortnose sturgeon research and restoration in the South. In the Savannah River, TNC is working with the USACE to identify effects of water release on sturgeon spawning habitat; shortnose sturgeon implanted with ultrasonic transmitters are being tracked to assess impacts of flow and identify spawning areas. The USACE should continue to support and encourage more of this type of research.
- 4. USACE should develop and coordinate a basin-wide research plan to obtain better results in understanding sturgeon population dynamics and movement. A basin-wide flow regimen should be developed to ensure adequate water quality for the sturgeon during drought, and a conservative approach to storing excess water for later use.

11 REINITIATION OF CONSULTATION

This concludes the reinitiated formal consultation on the SHEP project. As provided in 50 CFR 402.16, reinitiation of formal consultation is required if discretionary federal action agency involvement or control over the action has been retained, or is authorized by law, and if (1) the amount or extent of the taking specified in the ITS is exceeded; (2) new information reveals effects of the agency action that may affect listed species or designated critical habitat in a manner or to an extent not previously considered in this amendment; (3) the identified action is subsequently modified in a manner that causes an effect to listed species or critical habitat that was not considered in the Opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, USACE must immediately request reinitiation of formal consultation.

12 LITERATURE CITED

- Aguirre, A., G. Balazs, T. Spraker, S. K. K. Murakawa, and B. Zimmerman. 2002. Pathology of oropharyngeal fibropapillomatosis in green turtles *Chelonia mydas*. Journal of Aquatic Animal Health 14:298-304.
- Aguirre, A. A., G. H. Balazs, B. Zimmerman, and F. D. Galey. 1994. Organic Contaminants and Trace Metals in the Tissues of Green Turtles (*Chelonia mydas*) Afflicted with Fibropapillomas in the Hawaiian Islands. Marine Pollution Bulletin 28(2):109-114.
- Armstrong, J. L., and J. E. Hightower. 2002. Potential for restoration of the Roanoke River population of Atlantic sturgeon. Journal of Applied Ichthyology 18(4-6):475-480
- ASMFC. 1998. American shad and Atlantic sturgeon stock assessment peer review: Terms of reference and advisory report. Atlantic States Marine Fisheries Commission, Washington, D. C.
- ASMFC. 2007. Special Report to the Atlantic Sturgeon Management Board: Estimation of Atlantic sturgeon bycatch in coastal Atlantic commercial fisheries of New England and the Mid-Atlantic. Atlantic States Marine Fisheries Commission, Arlington, Virginia.
- ASMFC. 2010. Atlantic States Marine Fisheries Commission Annual Report. Atlantic States Marine Fisheries Commission, Arlington, Virginia.
- ASSRT. 2007. Status Review of Atlantic Sturgeon (*Acipenser oxyrinchus oxyrinchus*). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Regional Office, Atlantic Sturgeon Status Review Team, Gloucester, Massachusetts.
- Bain, M. B. 1997. Atlantic and shortnose sturgeons of the Hudson River: Common and divergent life history attributes. Environmental Biology of Fishes 48(1-4):347-358.
- Bain, M. B., N. Haley, D. Peterson, J. R. Waldman, and K. Arend. 2000. Harvest and habitats of Atlantic sturgeon Acipenser oxyrinchus Mitchill, 1815 in the Hudson River estuary: Lessons for sturgeon conservation. Boletín. Instituto Español de Oceanografía 16:43-53.
- Balazik, M. T., G. C. Garman, J. P. Van Eenennaam, J. Mohler, and L. C. Woods. 2012. Empirical Evidence of Fall Spawning by Atlantic Sturgeon in the James River, Virginia. Transactions of the American Fisheries Society 141(6):1465-1471.
- Balazs, G. H. 1982. Growth rates of immature green turtles in the Hawaiian Archipelago. Pages 117-125 in K. A. Bjorndal, editor. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington D.C.
- Balazs, G. H. 1983. Recovery records of adult green turtles observed or originally tagged at French Frigate Shoals, Northwestern Hawaiian Islands. National Oceanographic and

Atmospheric Administration, National Marine Fisheries Service, NOAA-TM-NMFS-SWFC-36.

- Barber, N. L., and T. C. Stamey. 2000. Droughts in Georgia. Open-File Report 00-380, modified from U.S. Geological Survey Water-Supply Paper 2375. Pages 2 in. U.S. Geologic Survey.
- Bass, A. L., and W. N. Witzell. 2000. Demographic composition of immature green turtles (*Chelonia mydas*) from the east central Florida coast: Evidence from mtDNA markers. Herpetologica 56(3):357-367.
- Beauvais, S. L., S. B. Jones, S. K. Brewer, and E. E. Little. 2000. Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures. Environmental Toxicology and Chemistry 19(7):1875-1880.
- Belovsky, G. E. 1987. Extinction models and mammalian persistence. Chapter 3 *In*: Soulé, M.E. (ed), Viable Populations for Conservation. Cambridge University Press, pp.35-57.
- Berlin, W. H., R. J. Hesselberg, and M. J. Mac. 1981. Chlorinated hydrocarbons as a factor in the reproduction and survival of Lake Trout (Salvelinus namaycush) in Lake Michigan. Technical Paper 105. U.S. Fish and Wildlife Service.
- Berry, R. J. 1971. Conservation aspects of the genetical constitution of populations. Pages 177-206 in E. D. Duffey, and A. S. Watt, editors. The Scientific Management of Animal and Plant Communities for Conservation, Blackwell, Oxford.
- Billsson, K., L. Westerlund, M. Tysklind, and P.-e. Olsson. 1998. Developmental disturbances caused by polychlorinated biphenyls in zebrafish (*Brachydanio rerio*). Marine Environmental Research 46(1–5):461-464.
- Bjorndal, K. A. 1982. The consequences of herbivory for life history pattern of the Caribbean green turtle, *Chelonia mydas*. Pages 111-116 *in* Biology and Conservation of Sea Turtles. Smithsonian Institution, Washington, D. C.
- Bjorndal, K. A., J. A. Wetherall, A. B. Bolten, and J. A. Mortimer. 1999. Twenty-six years of green turtle nesting at Tortuguero, Costa-Rica: An encouraging trend. Conservation Biology 13(1):126-134.
- Boreman, J. 1997. Sensitivity of North American sturgeons and paddlefish to fishing mortality. Environmental Biology of Fishes 48(1-4):399-405.
- Borodin, N. 1925. Biological Observations on the Atlantic Sturgeon (Acipenser sturio). Transactions of the American Fisheries Society 55(1):184-190.
- Bowen, B. W., and coauthors. 1992. Global population structure and natural history of the green turtle (*Chelonia mydas*) in terms of matriarchal phylogeny. Evolution 46(4):865-881.

- Bresette, M., R. A. Scarpino, D. A. Singewald, and E. P. de Maye. 2006. Recruitment of post-pelagic green turtles (*Chelonia mydas*) to nearshore reefs on Florida's southeast coast.
 Pages 288 *in* M. Frick, A. Panagopoulou, A. F. Rees, and K. Williams, editors. Twenty-Sixth Annual Symposium on Sea Turtle Biology and Conservation. International Sea Turtle Society, Athens, Greece.
- Broderick, A. C., and coauthors. 2006. Are green turtles globally endangered? Global Ecology and Biogeography 15(1):21-26.
- Brundage, H. M., and J. C. O. Herron. 2003. Population estimate for shortnose sturgeon in the Delaware River. Presented at the 2003 Shortnose Sturgeon Conference, 7-9 July 2003.
- Buckley, J., and B. Kynard. 1985. Habitat use and behavior of pre-spawning and spawning shortnose sturgeon (Acipenser brevirostrum), in the Connecticut River. North American Sturgeons:111-117.
- Bushnoe, T., J. Musick, and D. Ha. 2005. Essential spawning and nursery habitat of Atlantic sturgeon (*Acipenser oxyrinchus*) in Virginia. Virginia Institute of Marine Science, Gloucester Point, Virigina.
- Caldwell, D. K., and A. Carr. 1957. Status of the sea turtle fishery in Florida. Pages 457-463 in J.
 B. Trefethen, editor Twenty-Second North American Wildlife Conference. Wildlife Management Institute, Statler Hotel, Washington, D. C.
- Cameron, P., J. Berg, V. Dethlefsen, and H. Von Westernhagen. 1992. Developmental defects in pelagic embryos of several flatfish species in the Southern North sea. Netherlands Journal of Sea Research 29(1–3):239-256.
- Campell, C. L., and C. J. Lagueux. 2005. Survival probability estimates for large juvenile and adult green turtles (*Chelonia mydas*) exposed to an artisanal marine turtle fishery in the western Caribbean. Herpetologica 61(2):91-103.
- Carballo, J. L., C. Olabarria, and T. G. Osuna. 2002. Analysis of four macroalgal assemblages along the Pacific Mexican coast during and after the 1997-98 El Niño. Ecosystems 5(8):749-760.
- Carlson, J. K., and P. M. Richards. 2011. Takes of Protected Species in the Northwest Atlantic Ocean and Gulf of Mexico Shark Bottom Longline and Gillnet Fishery 2007-2010.
- Caron, F., D. Hatin, and R. Fortin. 2002. Biological characteristics of adult Atlantic sturgeon (*Acipenser oxyrinchus*) in the St Lawrence River estuary and the effectiveness of management rules. Journal of Applied Ichthyology 18(4-6):580-585.
- Carr, T., and N. Carr. 1991. Surveys of the sea turtles of Angola. Biological Conservation 58(1):19-29.

- Catry, P., and coauthors. 2002. First census of the green turtle at Poilifilo, Bijagos Archipelago, Guinea-Bissau: The most important nesting colony on the Atlantic coast of Africa. Oryx 36(4):400-403.
- Catry, P., and coauthors. 2009. Status, ecology, and conservation of sea turtles in Guinea-Bissau. Chelonian Conservation and Biology 8(2):150-160.
- Caurant, F., P. Bustamante, M. Bordes, and P. Miramand. 1999. Bioaccumulation of cadmium, copper and zinc in some tissues of three species of marine turtles stranded along the French Atlantic coasts. Marine Pollution Bulletin 38(12):1085-1091.
- Chaloupka, M., and C. Limpus. 2005. Estimates of sex- and age-class-specific survival probabilities for a southern Great Barrier Reef green sea turtle population. Marine Biology 146(6):1251-1261.
- Chaloupka, M., T. M. Work, G. H. Balazs, S. K. K. Murakawa, and R. Morris. 2008. Causespecific temporal and spatial trends in green sea turtle strandings in the Hawaiian Archipelago (1982-2003). Marine Biology 154(5):887-898.
- Chaloupka, M. Y., and J. A. Musick. 1997. Age growth and population dynamics. Pages 233-276 *in* P. L. Lutz, and J. A. Musick, editors. The Biology of Sea Turtles. CRC Press, Boca Raton, Florida.
- Chytalo, K. 1996. Summary of Long Island Sound Dredging Windows Strategy Workshop. Management of Atlantic Coastal Marine Fish Habitat: Proceedings of a workshop for habitat managers. ASMFC Habitat Management Series #2. Atlantic States Marine Fisheries Commission.
- Collette, B., and G. Klein-MacPhee. 2002. Fishes of the Gulf of Maine, 3rd edition. Smithsonian Institution Press.
- Collins, M. R., W. C. Post, D. C. Russ, and T. I. J. Smith. 2002. Habitat Use and Movements of Juvenile Shortnose Sturgeon in the Savannah River, Georgia–South Carolina. Transactions of the American Fisheries Society 131:975-979.
- Collins, M. R., S. G. Rogers, and T. I. J. Smith. 1996. Bycatch of sturgeons along the southern Atlantic coast of the USA. North American Journal of Fisheries Management 16(1):24-29.
- Collins, M. R., S. G. Rogers, T. I. J. Smith, and M. L. Moser. 2000a. Primary factors affecting sturgeon populations in the southeastern United States: fishing mortality and degradation of essential habitats. Bulletin of Marine Science 66(3):917-928.
- Collins, M. R., and T. Smith. 1993. Characteristics of the Adult Segment of the Savannah River Population of Shortnose Sturgeon.

- Collins, M. R., T. I. J. Smith, W. C. Post, and O. Pashuk. 2000b. Habitat Utilization and Biological Characteristics of Adult Atlantic Sturgeon in Two South Carolina Rivers. Transactions of the American Fisheries Society 129(4):982-988.
- Cooper, K. 1989. Effects of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans on aquatic organisms. Reviews in Aquatic Sciences 1(2):227-242.
- Corsolini, S., S. Aurigi, and S. Focardi. 2000. Presence of polychlorobiphenyls (PCBs) and coplanar congeners in the tissues of the Mediterranean loggerhead turtle *Caretta caretta*. Marine Pollution Bulletin 40(11):952-960.
- Crance, J. H. 1987. Habitat suitability index curves for anadromous fishes. In: Common strategies of anadromous and catadromous fishes: proceedings of an International Symposium held in Boston, Massachusetts, USA, March 9-13, 1986. Pages 554 *in* M. J. Dadswell, editor. American Fisheries Society, Bethesda, Maryland.
- Dadswell, M. J. 1979. Biology and population characteristics of the shortnose sturgeon, *Acipenser brevirostrum* LeSueur 1818 (Osteichthyes: Acipenseridae), in the Saint John River Estuary, New Brunswick, Canada. Canadian Journal of Zoology 57:2186-2210.
- Dadswell, M. J. 2006. A review of the status of Atlantic sturgeon in Canada, with comparisons to populations in the United States and Europe. Fisheries 31(5):218-229.
- Dadswell, M. J., B. D. Taubert, T. S. Squiers, D. Marchette, and J. Buckley. 1984. Synopsis of biological data on shortnose sturgeon, Acipenser brevirostrum LeSueur 1818. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, [Seattle, Wash.].
- Damon-Randall, K., M. Colligan, and J. Crocker. 2013. Composition of Atlantic sturgeon in rivers, estuaries, and in marine waters (White paper).
- DeVries, R. J. 2006. Population dynamics, movements, and spawning habitat of the shortnose sturgeon, Acipenser brevirostrum, in the Altamaha River. Thesis. University of Georgia.
- Dickerson, D. 2011. Observed takes of sturgeon and turtles from dredging operations along the Atlantic Coast. U.S. Army Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS.
- Doughty, R. W. 1984. Sea turtles in Texas: A forgotten commerce. Southwestern Historical Quarterly 88:43-70.
- Dovel, W., A. Pekovitch, and T. Berggren. 1992a. Biology of the shortnose sturgeon (*Acipenser brevirostrum* Lesueur, 1818) in the Hudson River estuary, New York. Pages 187-216 in C. L. Smith, editor. Estuarine Research in the 1980s. State University of New York Press, Albany, New York.
- Dovel, W. L., and T. J. Berggren. 1983. Atlantic sturgeon of the Hudson River estuary, New York. New York. Fish and Game Journal 30:140-172.

- Dovel, W. L., A. W. Pekovitch, and T. J. Berggren. 1992b. Biology of the shortnose sturgeon (Acipenser brevirostrum Lesueur, 1818) in the Hudson River estuary, New York. Pages 187-216 in C. L. Smith, editor. In: Estuarine Research in the 1980s. State University of New York Press, Albany, New York.
- Dow, W., K. Eckert, M. Palmer, and P. Kramer. 2007. An atlas of sea turtle nesting habitat for the wider Caribbean region. The Wider Caribbean Sea Turtle Conservation Network and The Nature Conservancy, Beaufort, North Carolina.
- Drevnick, P. E., and M. B. Sandheinrich. 2003. Effects of dietary methylmercury on reproductive endocrinology of fathead minnows. Environmental Science and Technology 37(19):4390-4396.
- DWH Trustees. 2015. DWH Trustees (Deepwater Horizon Natural Resource Damage Assessment Trustees). 2015. Deepwater Horizon Oil Spill: Draft Programmatic Damage Assessment and Restoration Plan and Draft Programmatic Environmental Impact Statement. Retrieved from http://www.gulfspillrestoration.noaa.gov/restorationplanning/gulf-plan/.
- Dwyer, F. J., D. K. Hardesty, C. G. Ingersoll, J. L. Kunz, and D. W. Whites. 2000. Assessing contaminant sensitivity of American shad, Atlantic sturgeon and shortnose sturgeon. Final report - February 2000. U.S. Geological Survey, Columbia Environmental Research Center Columbia, Missouri.
- Dwyer, K. L., C. E. Ryder, and R. Prescott. 2003. Anthropogenic mortality of leatherback turtles in Massachusetts waters. Pages 260 in J. A. Seminoff, editor Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation, Miami, Florida.
- Ehrhart, L. M. 1983. Marine turtles of the Indian River Lagoon System. Florida Scientist 46(3/4):337-346.
- Ehrhart, L. M., W. E. Redfoot, and D. A. Bagley. 2007. Marine turtles of the central region of the Indian River Lagoon System, Florida. Florida Scientist 70(4):415-434.
- EPA. 2005. National Coastal Condition Report II. U.S. Environmental Protection Agency.
- Epperly, S. P., and W. G. Teas. 2002. Turtle excluder devices Are the escape openings large enough? Fishery Bulletin 100(3):466-474.
- Erickson, D. L., and coauthors. 2011. Use of pop-up satellite archival tags to identify oceanicmigratory patterns for adult Atlantic Sturgeon, Acipenser oxyrinchus oxyrinchus Mitchell, 1815. Journal of Applied Ichthyology 27(2):356-365.
- Evermann, B. W., and B. A. Bean. 1898. Indian River and its fishes.
- Fisher, M. 2009. Atlantic Sturgeon Progress Report. Delaware State Wildlife Grant, Project T 4-1. December 16, 2008 to December 15, 2009.

- Fisher, M. 2011. Atlantic Sturgeon Progress Report. Delaware State Wildlife Grant, Project T 4-1, October 1, 2006 to October 15, 2010.
- FitzSimmons, N. N., L. W. Farrington, M. J. McCann, C. J. Limpus, and C. Moritz. 2006. Green turtle populations in the Indo-Pacific: A (genetic) view from microsatellites. Pages 111 in N. Pilcher, editor Twenty-Third Annual Symposium on Sea Turtle Biology and Conservation.
- Flournoy, P. H., S. G. Rogers, and P. S. Crawford. 1992. Restoration of shortnose sturgeon in the Altamaha River, Georgia. Final Report to the United States Fish and Wildlife Service.
- Foley, A. M., B. A. Schroeder, A. E. Redlow, K. J. Fick-Child, and W. G. Teas. 2005. Fibropapillomatosis in stranded green turtles (*Chelonia mydas*) from the eastern United States (1980-98): Trends and associations with environmental factors. Journal of Wildlife Diseases 41(1):29-41.
- Foley, A. M., and coauthors. 2007. Characteristics of a green turtle (*Chelonia mydas*) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf of Mexico Science 25(2):131-143.
- Formia, A. 1999. Les tortues marines de la Baie de Corisco. Canopee 14: i-ii.
- Frazer, N. B., and L. M. Ehrhart. 1985. Preliminary growth models for green, (*Chelonia mydas*) and loggerhead, (*Caretta caretta*), turtles in the wild. Copeia 1985(1):73-79.
- Fretey, J. 2001. Biogeography and Conservation of Marine Turtles of the Atlantic Coast of Africa. CMS Technical Series Publication No. 6. Convention on Migratory Species Secretariat, Bonn, Germany.
- Gearhart, J. L. 2010. Evaluation of a turtle excluder device (TED) designed for use in the U.S. mid-Atlantic Atlantic croaker fishery. NOAA Technical Memorandum NMFS-SEFSC-606.
- Giesy, J. P., J. Newsted, and D. L. Garling. 1986. Relationships Between Chlorinated Hydrocarbon Concentrations and Rearing Mortality of Chinook Salmon (Oncorhynchus Tshawytscha) Eggs from Lake Michigan. Journal of Great Lakes Research 12(1):82-98.
- Gilbert, C. R. 1989. Species profiles : life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic Bight) : Atlantic and shortnose sturgeons. Coastal Ecology Group, Waterways Experiment Station, U.S. Dept. of the Interior, Fish and Wildlife Service, Research and Development, National Wetlands Research Center, Vicksburg, MS, Washington, DC.
- Glen, F., A. C. Broderick, B. J. Godley, and G. C. Hays. 2006. Thermal control of hatchling emergence patterns in marine turtles. Journal of Experimental Marine Biology and Ecology 334(1):31-42.

- Gonzalez Carman, V., and coauthors. 2011. Argentinian coastal waters: A temperate habitat for three species of threatened sea turtles. Marine Biology Research 7:500-508.
- Goodyear, C. P. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Special Publication of Fisheries and Aquatic Sciences:67-82.
- Green, D. 1993. Growth rates of wild immature green turtles in the Galápagos Islands, Ecuador. Journal of Herpetology 27(3):338-341.
- Greene, K. E., J. L. Zimmerman, R. W. Laney, and J. C. Thomas-Blate. 2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Atlantic States Marine Fisheries Commission Washington, D.C.
- Grunwald, C., L. Maceda, J. Waldman, J. Stabile, and I. Wirgin. 2008. Conservation of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: Delineation of stock structure and distinct population segments. Conservation Genetics 9(5):1111-1124.
- Guseman, J. L., and L. M. Ehrhart. 1992. Ecological geography of western Atlantic loggerheads and green turtles: Evidence from remote tag recoveries. Pages 50 *in* M. Salmon, and J. Wyneken, editors. Eleventh Annual Workshop on Sea Turtle Biology and Conservation. U.S. Department of Commerce, Jekyll Island, Georgia.
- GWC. 2006. Interbasin Transfer Fact Sheet. Georgia Water Coalition, http://www.garivers.org/gawater/pdf%20files/IBT%20fact%20sheet02-06.pdf.
- Hager, C., J. Kahn, C. Watterson, J. Russo, and K. Hartman. 2014. Evidence of Atlantic Sturgeon Spawning in the York River System. Transactions of the American Fisheries Society 143(5):1217-1219.
- Hall, J. W., T. I. J. Smith, and S. D. Lamprecht. 1991. Movements and habitats of shortnose sturgeon, Acipenser brevirostrum, in the Savannah River Copeia 1991(3):695-702.
- Hammerschmidt, C. R., M. B. Sandheinrich, J. G. Wiener, and R. G. Rada. 2002. Effects of dietary methylmercury on reproduction of fathead minnows. Environmental Science and Technology 36(5):877-883.
- Hays, G. C., and coauthors. 2001. The diving behavior of green turtles undertaking oceanic migration to and from Ascension Island: Dive durations, dive profiles, and depth distribution. Journal of Experimental Biology 204:4093-4098.
- Heidt, A. R., and R. J. Gilbert. 1978. The shortnose sturgeon in the Altamaha River drainage.
 Pages 54-60 *in* R. R. Odum, and L. Landers, editors. Proceedings of the Rare and Endangered Wildlife Symposium: August 3-4, 1978, Athens, Georgia. Georgia
 Department of Natural Resources, Game and Fish Division.
- Herbst, L. H. 1994. Fibropapillomatosis of marine turtles. Annual Review of Fish Diseases 4:389-425.

- Herbst, L. H., and coauthors. 1995. An infectious etiology for green turtle fibropapillomatosis. Proceedings of the American Association for Cancer Research Annual Meeting 36:117.
- Hildebrand, H. H. 1982. A historical review of the status of sea turtle populations in the western Gulf of Mexico. Pages 447-453 *in* K. A. Bjorndal, editor. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington, D. C.
- Hirth, H. F. 1971. Synopsis of biological data on the green turtle *Chelonia mydas* (Linnaeus) 1758. Food and Agriculture Organization.
- Hirth, H. F. 1997. Synopsis of the biological data on the green turtle *Chelonia mydas* (Linnaeus 1758). Biological Report 91(1):120.
- Holton, J. W. J., and J. B. Walsh. 1995. Long-term dredged material management plan for the upper James River, Virginia. Waterway Surveys and Engineering, Ltd, Virginia Beach, VA.
- IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
- IPCC. 2008. Climate Change and Water. IPCC Technical Paper VI. Intergovernmental Panel on Climate Change Secretariat, Geneva, Switzerland.
- Jacobson, E. R. 1990. An update on green turtle fibropapilloma. Marine Turtle Newsletter 49:7-8.
- Jacobson, E. R., and coauthors. 1989. Cutaneous fibropapillomas of green turtles (*Chelonia mydas*). Journal Comparative Pathology 101:39-52.
- Jacobson, E. R., S. B. Simpson Jr., and J. P. Sundberg. 1991. Fibropapillomas in green turtles. Pages 99-100 in G. H. Balazs, and S. G. Pooley, editors. Research Plan for Marine Turtle Fibropapilloma, volume NOAA-TM-NMFS-SWFSC-156.
- Jarvis, P. L., J. S. Ballantyne, and W. E. Hogans. 2001. The Influence of Salinity on the Growth of Juvenile Shortnose Sturgeon. North American Journal of Aquaculture 63:272-276.
- Jenkins, W. E., T. I. J. Smith, L. D. Heyward, and D. M. Knott. 1993. Tolerance of shortnose sturgeon, Acipenser brevirostrum, juveniles to different salinity and dissolved oxygen concentrations. Pages 476-484 in E. A.G. Eversole, editor Proceedings of the 47th Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, Atlanta, Georgia.
- Johnson, S. A., and L. M. Ehrhart. 1994. Nest-site fidelity of the Florida green turtle. Pages 83 in B. A. Schroeder, and B. E. Witherington, editors. Thirteenth Annual Symposium on Sea Turtle Biology and Conservation.

- Johnson, S. A., and L. M. Ehrhart. 1996. Reproductive ecology of the Florida green turtle: Clutch frequency. Journal of Herpetology 30(3):407-410.
- Jorgensen, E. H., O. Aas-Hansen, A. G. Maule, J. E. T. Strand, and M. M. Vijayan. 2004. PCB impairs smoltification and seawater performance in anadromous Arctic charr (*Salvelinus alpinus*). Comparative Biochemistry and Physiology C Toxicology and Pharmacology 138(2):203-212.
- Kahnle, A. W., K. A. Hattala, and K. A. McKown. 2007. Status of Atlantic sturgeon of the Hudson River Estuary, New York, USA. American Fisheries Society Symposium 56:347-363.
- Kahnle, A. W., and coauthors. 1998. Stock Status of Atlantic Sturgeon of Atlantic Coast Estuaries. Atlantic States Marine Fisheries Commission, Washington, D.C.
- Kieffer, M. C., and B. Kynard. 1993. Annual Movements of Shortnose and Atlantic Sturgeons in the Merrimack River, Massachusetts. Transactions of the American Fisheries Society 122(6):1088-1103.
- Kieffer, M. C., and B. Kynard. 1996. Spawning of shortnose sturgeon in the Merrimack River, Massachusetts. Transactions of the American Fisheries Society 125:179-186.
- King, T. L., B. A. Lubinski, and A. P. Spidle. 2001. Microsatellite DNA variation in Atlantic sturgeon (*Acipenser oxyrinchus oxyrinchus*) and cross-species amplification in the Acipenseridae. Conservation Genetics 2(2):103-119.
- KRRMP. 1993. Kennebec River Resource Management Plan: Balancing Hydropower Generation and Other Uses. Final Report to the Maine State Planning Office, Augusta, ME.
- Kynard, B. 1997. Life history, latitudinal patterns, and status of the shortnose sturgeon, *Acipenser brevirostrum*. Environmental Biology of Fishes 48(1-4):319-334.
- Kynard, B., and M. Horgan. 2002. Ontogenetic behavior and migration of Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, and shortnose sturgeon, A. brevirostrum, with notes on social behavior. Environmental Behavior of Fishes 63:137-150.
- Lagueux, C. J. 2001. Status and distribution of the green turtle, *Chelonia mydas*, in the wider Caribbean region. Pages 32-35 in K. L. Eckert, and F. A. Abreu Grobois, editors. Marine Turtle Conservation in the Wider Caribbean Region - A Dialogue for Effective Regional Management, Santo Domingo, Dominican Republic.
- Law, R. J., and coauthors. 1991. Concentrations of Trace-Metals in the Livers of Marine Mammals (Seals, Porpoises and Dolphins) from Waters around the British-Isles. Marine Pollution Bulletin 22(4):183-191.
- Leland, J. G. 1968. A survey of the sturgeon fishery of South Carolina. Bears Bluff Laboratories, Wadmalaw Island, S.C.

- Lezama, C. 2009. impacto de la pesqueria artesanal sobre la tortoga verde (*Chelonia mydas*) en las costas del Rio de la Plata exterior. Universidad de la República.
- Lima, E. H. S. M., M. T. D. Melo, and P. C. R. Barata. 2010. Incidental capture of sea turtles by the lobster fishery off the Ceará Coast, Brazil. Marine Turtle Newsletter 128:16-19.
- Longwell, A., S. Chang, A. Hebert, J. Hughes, and D. Perry. 1992. Pollution and developmental abnormalities of Atlantic fishes. Environmental Biology of Fishes 35(1):1-21.
- López-Barrera, E. A., G. O. Longo, and E. L. A. Monteiro-Filho. 2012. Incidental capture of green turtle (*Chelonia mydas*) in gillnets of small-scale fisheries in the Paranaguá Bay, Southern Brazil. Ocean and Coastal Management 60:11-18.
- López-Mendilaharsu, M., A. Estrades, M. A. C. Caraccio, V., M. Hernández, and V. Quirici. 2006. Biología, ecología yetología de las tortugas marinas en la zona costera uru-guaya, Montevideo, Uruguay: Vida Silvestre, Uruguay.
- Mac, M. J., and C. C. Edsall. 1991. Environmental contaminants and the reproductive success of Lake Trout in the Great Lakes: an epidemiological approach. Journal of Toxicology and Environmental Health 33:375-394.
- MAFMC. 2010. Spiny Dogfish Specifications, Environmental Assessment, Regulatory Impact Review, and Initial Regulatory Flexibility Analysis. Mid-Atlantic Fishery Management Council
- MAFMC. 2013. 2013 and 2014 Bluefish Specifications, Environmental Assessment, and Initial Regulatory Flexibility Analysis. Mid-Atlantic Fishery Management Council. April 2013.
- MAFMC and ASMFC. 1998. Amendment 1 to the Bluefish Fishery Management Plan with a Supplemental Environmental Impact Statement and Regulatory Impact Review. Mid-Atlantic Fishery Management Council. October 1998. Mid-Atlantic Fishery Management Council and Atlantic States Marine Fisheries Commission
- Marcovaldi, N., B. B. Gifforni, H. Becker, F. N. Fiedler, and G. Sales. 2009. Sea Turtle Interactions in Coastal Net Fisheries in Brazil. U.S. National Marine Fisheries Service, Southeast Fisheries Science Center: Honolulu, Gland, Switze, Honolulu, Hawaii, USA.
- Matta, M. B., C. Cairncross, and R. M. Kocan. 1997. Effect of a polychlorinated biphenyl metabolite on early life stage survival of two species of trout. Bulletin of Environmental Contamination and Toxicology 59:146-151.
- McKenzie, C., B. J. Godley, R. W. Furness, and D. E. Wells. 1999. Concentrations and patterns of organochlorine contaminants in marine turtles from Mediterranean and Atlantic waters. Marine Environmental Research 47:117-135.
- McMichael, E., R. R. Carthy, and J. A. Seminoff. 2003. Evidence of homing behavior in juvenile green turtles in the northeastern Gulf of Mexico. Pages 223-224 *in* J. A. Seminoff, editor Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation.

- Meylan, A., B., B. Schroeder, and A. Mosier. 1994. Marine turtle nesting activity in the State of Florida, 1979-1992. Pages 83 *in* K. A. Bjorndal, A. B. Bolten, D. A. Johnson, and P. J. Eliazar, editors. Fourteenth Annual Symposium on Sea Turtle Biology and Conservation.
- Meylan, A. B., B. A. Schroeder, and A. Mosier. 1995. Sea turtle nesting activity in the State of Florida 1979-1992. Florida Department of Environmental Protection (52):63.
- Meylan, A. B., B. E. Witherington, B. Brost, R. Rivera, and P. S. Kubilis. 2006. Sea turtle nesting in Florida, USA: Assessments of abundance and trends for regionally significant populations of *Caretta, Chelonia*, and *Dermochelys* [abstract]. Pages 306-307 in 26th Annual Symposium on Sea Turtle Biology and Conservation, 3-8 April 2006, Island of Crete, Greece, Book of Abstracts. International Sea Turtle Society, Athens, Greece.
- Miller, T., and G. Shepherd. 2011. Summary of Discard Estimates for Atlantic Sturgeon. Population Dynamics Branch, Northeast Fisheries Science Center.
- Milton, S. L., and P. L. Lutz. 2003. Physiological and genetic responses to environmental stress. Pages 163-197 in P. L. Lutz, J. A. Musick, and J. Wyneken, editors. The Biology of Sea Turtles, volume II. CRC Press, Boca Raton, Florida.
- Monzón-Argüello, C., and coauthors. 2010. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. Journal of Biogeography 37(9):1752-1766.
- Moore, A., and C. P. Waring. 2001. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquatic Toxicology 52(1):1-12.
- Mortimer, J. A., and A. Carr. 1987. Reproduction and migrations of the Ascension Island green turtle (*Chelonia mydas*). Copeia 1987(1):103-113.
- Moser, M. L., and coauthors. 2000. A protocol for use of shortnose and Atlantic sturgeons. National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, NMFS-OPR-18.
- Moser, M. L., J. B. Bichy, and S. B. Roberts. 1998. Sturgeon Distibution in North Carolina. Center for Marine Science Research, Wilmington, North Carolina.
- Moser, M. L., and S. W. Ross. 1993. Distribution and movements of shortnose sturgeon (*Acipenser brevirostrum*) and other anadromous fishes of the lower Cape Fear River, North Carolina. U.S. Army Corps of Engineers, Wilmington, North Carolina.
- Moser, M. L., and S. W. Ross. 1995. Habitat use and movements of shortnose and Atlantic sturgeons in the lower Cape Fear River, North Carolina. Transactions of the American Fisheries Society 124(2):225.
- Murawski, S. A., A. L. Pacheco, and United States. National Marine Fisheries Service. 1977. Biological and fisheries data on Atlantic sturgeon, Acipenser oxyrhynchus (Mitchill).

Sandy Hook Laboratory, Northeast Fisheries Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, Highlands, N.J.

- Musick, J. A., R. E. Jenkins, and N. B. Burkhead. 1994. Sturgeons, Family Acipenseridae. R. E. Jenkins, and N. B. Burkhead, editors. Freshwater Fishes of Virginia. American Fisheries Society, Bethesda, MD.
- Musick, J. A., and C. J. Limpus. 1997. Habitat utilization and migration in juvenile sea turtles. Pages 137-163 *in* P. L. Lutz, and J. A. Musick, editors. The Biology of Sea Turtles. CRC Press, New York, New York.
- Naro-Maciel, E., J. H. Becker, E. H. S. M. Lima, M. A. Marcovaldi, and R. DeSalle. 2007. Testing dispersal hypotheses in foraging green sea turtles (*Chelonia mydas*) of Brazil. Journal of Heredity 98(1):29-39.
- Naro-Maciel, E., and coauthors. 2012. The interplay of homing and dispersal in green turtles: A focus on the southwestern atlantic. Journal of Heredity 103(6):792-805.
- NEFSC. 2003. Assessment of Spiny Dogfish. Pages 133-283 in 37th Northeast Regional Stock Assessment Workshop (37th SAW). NEFSC Reference Document 03-16. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, Massachusetts.
- NEFSC. 2005. 40th Northeast Regional Stock Assessment Workshop (40th SAW). NEFSC Reference Document 05-04. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, Massachusetts.
- NEFSC. 2006. 43rd Northeast Regional Stock Assessment Workshop (43rd SAW), Stock Assessment Review Committee (SARC) consensus summary of assessments. NEFSC Reference Document 06-25. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, Massachusetts.
- Niklitschek, E. J., and D. H. Secor. 2005. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 64(1):135-148.
- Niklitschek, E. J., and D. H. Secor. 2009a. Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: I. Laboratory results. Journal of Experimental Marine Biology and Ecology 381(Supplement 1):S150-S160.
- Niklitschek, E. J., and D. H. Secor. 2009b. Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: II.

Model development and testing. Journal of Experimental Marine Biology and Ecology 381(Supplement 1):S161-S172.

- Niklitschek, E. J., and D. H. Secor. 2010. Experimental and field evidence of behavioural habitat selection by juvenile Atlantic Acipenser oxyrinchus oxyrinchus and shortnose Acipenser brevirostrum sturgeons. Journal of Fish Biology 77(6):1293-1308.
- NMFS. 1997. Biological Opinion on the Continued Hopper Dredging of Channels and Borrow Areas in the Southeastern United States. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Protected Resources Division, Saint Petersburg, Florida.
- NMFS. 1998. Final Recovery Plan for the Shortnose Sturgeon (*Acipenser brevirostrum*). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, Maryland.
- NMFS. 2002. Biological Opinion on Shrimp Trawling in the Southeastern United States, under the Sea Turtle Conservation Regulations and as Managed by the Fishery Management Plans for Shrimp in the South Atlantic and Gulf of Mexico. Submitted on December 2, 2002. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Saint Petersburg, Florida.
- NMFS. 2003a. Biological Opinion on the continued operation of Atlantic shark fisheries (commercial shark bottom longline and drift gillnet fisheries and recreational shark fisheries) under the fishery management plan for Atlantic tunas, swordfish, and sharks (HMS FMP) and the proposed rule for draft amendment 1 to the HMS FMP. Submitted on July 2003. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida.
- NMFS. 2003b. Biological Opinion on the review of January 2003 FMP for 2003 Dolphin and Wahoo Fishery of the Atlantic. Submitted on August 27, 2003 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, SER-2002-1305, St. Petersburg, Florida.
- NMFS. 2004. Biological Opinion on Reinitiation of Consultation on Atlantic Pelagic Longline Fishery for Highly Migratory Species. Submitted on June 1, 2004. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, SER-2004-80, Saint Petersburg, Florida.
- NMFS. 2007. Biological Opinion on the reinitiation of consultation on Atlantic Pelagic Longline Fishery for Highly Migratory Species. Submitted on March 2, 2007. National Marine Fisheries Service, SER-2004-2590, St. Petersburg, Florida.
- NMFS. 2008. Biological Opinion on the Continued Authorization of Shark Fisheries (Commercial Shark Bottom Longline, Commercial Shark Gillnet and Recreational Shark Handgear Fisheries) as Managed under the Consolidated Fishery Management Plan for Atlantic Tunas, Swordfish, and Sharks (Consolidated HMS FMP), including Amendment

2 to the Consolidated HMS FMP. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Protected Resources Division, St. Petersburg, Florida.

- NMFS. 2010. A Biological Assessment of Shortnose Sturgeon (*Acipenser brevirostrum*). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Regional Office, Woods Hole, Massachusetts.
- NMFS. 2012a. Reinitiation of Endangered Species Act (ESA) Section 7 Consultation on the Continued Authorization of the Atlantic Shark Fisheries via the Consolidated HMS Fishery Management Plan as Amended by Amendments 3 and 4 and the Federal Authorization of a Smoothhound Fishery. Biological Opinion. NOAA, NMFS, SERO, Protected Resources Division (F/SER3) and Sustainable Fisheries Division (F/SER2).
- NMFS. 2012b. Reinitiation of Endangered Species Act (ESA) Section 7 Consultation on the Continued Implementation of the Sea Turtle Conservation Regulations, as Proposed to Be Amended, and the Continued Authorization of the Southeast U.S. Shrimp Fisheries in Federal Waters under the Magnuson-Stevens Act. Biological Opinion. NOAA, NMFS, SERO, Protected Resources Division (F/SER3) and Sustainable Fisheries Division (F/SER2).
- NMFS. 2013a. Biological Opinion on the Continued Implementation of Management Measures for the Northeast Multispecies, Monkfish, Spiny Dogfish, Atlantic Bluefish, Northeast Skate Complex, Mackerel/Squid/Butterfish, and Summer Flounder/Scup/Black Sea Bass Fisheries [Consultation No. NER-2012-01956], Submitted on December 16, 2013. National Marine Fisheries Service, Northeast Regional Office, Protected Resources Division.
- NMFS. 2013b. Permit 16645 for Take of Listed Sturgeon Incidental to the Georgia Commercial Shad Fishery. National Marine Fisheries Service, Silver Spring, MD.
- NMFS. 2014a. Biological Opinion on the Continued Implementation of the Sea Turtle Conservation Regulations under the ESA and the Continued Authorization of the Southeast U.S. Shrimp Fisheries in Federal Waters under the Magnuson-Stevens Fishery Management and Conservation Act. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Saint Petersburg, Florida.
- NMFS. 2014b. Biological Opinion on the Office of Protected Resources Proposal to Issue an Incidental Take Permit for Atlantic Sturgeon Affected by North Carolina's Inshore Anchored Gill Net Fishery, Pursuant to section 10(a)(1)(B) of the Endangered Species Act of 1973. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, MD.
- NMFS. 2015. Biological Opinion on the Reinitiation of the Continued Authorization of the Fishery Management Plan for Coastal Migratory Pelagic Resources in the Atlantic and Gulf of Mexico under the Magnuson-Stevens Fishery Management and Conservation Act. Submitted on June 18, 2015. National Oceanic and Atmospheric Administration,

National Marine Fisheries Service, Southeast Regional Office, Protected Resources Division (F/SER3), and Sustainable Fisheries Division (F/SER2), St. Petersburg, Florida.

- NMFS. 2016. Continued Authorization and Implementation of National Marine Fisheries Service's Integrated Fisheries Independent Monitoring Activities in the Southeast Region (SER-2009-07541). National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Protected Resources Division (F/SER3), St. Petersburg, Florida.
- NMFS and USFWS. 1991. Recovery plan for U.S. Population of Atlantic Green Turtle (*Chelonia mydas*). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland.
- NMFS and USFWS. 2007. Green Sea Turtle (*Chelonia mydas*) 5-year review: Summary and Evaluation. National Marine Fisheries Service, Silver Spring, Maryland.
- NRC. 1990. Decline of the sea turtles: Causes and prevention. National Research Council, Washington, D. C.
- Ogren, L. H. 1989. Status report of the green turtle. Pages 89-94 in L. H. Ogren, and coeditors, editors. Proceedings of the Second Western Atlantic Turtle Symposium, October 12-16, 1987, Mayaguez, Puerto Rico. NOAA Technical Memorandum NMFS-SEFSC-226. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Panama City Laboratory, Panama City, Florida.
- Post, G. W. 1987. Revised and Expanded Textbook of Fish Health. T.F.H. Publications, New Jersey.
- Post, W. C., S. C. Holbrook, C. Norwood, and J. Grigsby. 2016. Evaluating Atlantic and Shortnose Sturgeon Behavior Related to Savannah Harbor Expansion Project. Annual Report for Cooperative Agreement Numbers W912EP-13-2-0002-0004 & W912EP-13-2-0002-0003). U.S. Army Corps of Engineers, Savannah District, Planning Division, Savannah, Georgia.
- Pottle, R., and M. J. Dadswell. 1979. Studies on larval and juvenile shortnose sturgeon (Acipenser brevirostrum). Report to the Northeast Utilities Service Company, Hartford, Connecticut.
- Prosdocimi, L., V. González Carman, D. A. Albareda, and M. I. Remis. 2012. Genetic composition of green turtle feeding grounds in coastal waters of Argentina based on mitochondrial DNA. Journal of Experimental Marine Biology and Ecology 412:37-45.
- Pyzik, L., J. Caddick, and P. Marx. 2004. Chesapeake Bay: Introduction to an Ecosystem. EPA 903-R-04-003, CBP/TRS 232100. U.S. Environmental Protection Agency Region III, Regional Center for Environmental Information, Philadelphia, Pennsylvania.

- Randall, M. T., and K. J. Sulak. 2012. Evidence of autumn spawning in Suwannee River gulf sturgeon, *Acipenser oxyrinchus desotoi* (Vladykov, 1955). Journal of Applied Ichthyology 28(4):489-495.
- Rebel, T. P. 1974. Sea Turtles and the Turtle Industry of the West Indies, Florida and the Gulf of Mexico. University of Miami Press, Coral Gables, Florida.
- Rivas-Zinno, F. 2012. Captura incidental de tortugas marinas en Bajos del Solis, Uruguay. Universidad de la Republica Uruguay, Departamento de Ecologia y Evolucion.
- Rogers, S. G., and W. Weber. 1995a. Status and restoration of Atlantic and shortnose sturgeons in Georgia, Final Report. National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida.
- Rogers, S. G., and W. Weber. 1995b. Status and Restoration of Atlantic and Shortnose Sturgeons in Georgia. Final Report for Anadromous Grants Program Project Award Number NA46FA102-01. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida.
- Rosenthal, H., and D. F. Alderdice. 1976. Sub-lethal effects of environmental stressors, natural and pollutional, on marine fish eggs and larvae. Journal of the Fisheries Research Board of Canada 33:2047-2065.
- Ruben, H. J., and S. J. Morreale. 1999. Draft Biological Assessment for Sea Turtles in New York and New Jersey Harbor Complex. Unpublished biological assessment submitted to National Marine Fisheries Service. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland.
- Ruelle, R., and C. Henry. 1992. Organochlorine compounds in pallid sturgeon. Contaminant Information Bulletin.
- Ruelle, R., and K. D. Keenlyne. 1993. Contaminants in Missouri River pallid sturgeon. Bulletin of Environmental Contamination and Toxicology 50(6):898-906.
- Ruhl, J. B. 2003. Equitable Apportionment of Ecosystem Service: New Water Law for a New Water Age. Florida State University College of Law forum on "The Future of the Appalachicola-Chattahoochee-Flint River System: Legal, Policy, and Scientific Issues".
- Sakai, H., H. Ichihashi, H. Suganuma, and R. Tatsukawa. 1995. Heavy metal monitoring in sea turtles using eggs. Marine Pollution Bulletin 30:347-353.
- Salwasser, H., S. P. Mealey, and K. Johnson. 1984. Wildlife population viability: a question of risk. Pages 421-439 *in* Transactions of the North American Wildlife and Natural Resources Conference.

- Savoy, T. 2007. Prey eaten by Atlantic sturgeon in Connecticut waters. American Fisheries Society Symposium 56:157.
- Scholz, N. L., and coauthors. 2000. Diazinon disrupts antipredator and homing behaviors in chinook salmon (*Oncorhynchus tshawytscha*). Canadian Journal of Fisheries and Aquatic Sciences 57(9):1911-1918.
- Schroeder, B. A., and A. M. Foley. 1995. Population studies of marine turtles in Florida Bay. J. I. Richardson, and T. H. Richardson, editors. Twelfth Annual Workshop on Sea Turtle Biology and Conservation.
- Schueller, P., and D. L. Peterson. 2010. Abundance and recruitment of juvenile Atlantic sturgeon in the Altamaha River, Georgia. Transactions of the American Fisheries Society 139(5):1526-1535.
- Schulz, J. P. 1982. Status of sea turtle populations nesting in Surinam with notes on sea turtles nesting in Guyana and French Guiana. Pages 435-438 in K. A. Bjorndal, editor. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington, D. C.
- Scott, W. B., and E. J. Crossman. 1973. Freshwater Fishes of Canada. Bulletin 184 of the Fisheries Research Board of Canada, Ottawa, Ontario.
- SCSCO. 2008. South Carolina Current Drought Status. South Carolina State Climatology Office, <u>http://www.dnr.sc.gov/climate/sco/Drought/drought_current_info.php</u>, accessed October 12, 2017.
- Secor, D. H. 1995. Chesapeake Bay Atlantic sturgeon: current status and future recovery. Summary of findings and recommendations from a workshop convened 8 November 1994 at Chesapeake Biological Laboratory. Chesapeake Bay Biological Laboratory, Center for Estuarine and Environmental Studies, University of Maryland System, Solomons, MD.
- Secor, D. H. 2002. Atlantic sturgeon fisheries and stock abundances during the late Nineteenth Century. Pages 89-98 *in* American Fisheries Society Symposium.
- Secor, D. H., and T. E. Gunderson. 1998. Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgeon (*Acipenser oxyrinchus*). Fishery Bulletin U.S. 96:603-613.
- Secor, D. H., and J. R. Waldman. 1999. Historical Abundance of Delaware Bay Atlantic Sturgeon and Potential Rate of Recovery. Pages 203-216 in American Fisheries Society Symposium.
- Seminoff, J. A., and coauthors. 2015. Status review of the green turtle (*Chelonia Mydas*) under the endangered species act. NOAA Technical Memorandum, NMFS-SWFSC-539.
- Shaffer, M. L. 1981. Minimum Population Sizes for Species Conservation. BioScience 31(2):131-134.

- Shaver, D. J. 1994. Relative abundance, temporal patterns, and growth of sea turtles at the Mansfield Channel, Texas. Journal of Herpetology 28(4):491-497.
- Shepherd, G., and coauthors. 2007. Estimation of Atlantic Sturgeon bycatch in coastal Atlantic commercial fisheries of New England and the mid-Atlantic. Atlantic States Marine Fisheries Commission, Special Report to the Atlantic Sturgeon Management Board, Woods Hole, Massachusetts.
- Sindermann, C. J. 1994. Quantitative effects of pollution on marine and anadromous fish populations. NOAA Technical Memorandum NMFS-F/NEC-104. National Marine Fisheries Service, Woods Hole, Massachusetts.
- Smith, T. I. J. 1985. The fishery, biology, and management of Atlantic sturgeon, *Acipenser* oxyrhynchus, in North America. Environmental Biology of Fishes 14(1):61-72.
- Smith, T. I. J., and J. P. Clugston. 1997. Status and management of Atlantic sturgeon, *Acipenser* oxyrinchus, in North America. Environmental Biology of Fishes 48(1-4):335-346.
- Smith, T. I. J., E. K. Dingley, and E. E. Marchette. 1980. Induced spawning and culture of Atlantic sturgeon Progressive Fish Culturist 42:147-151.
- Smith, T. I. J., D. E. Marchette, and R. A. Smiley. 1982. Life history, ecology, culture and management of Atlantic sturgeon, Acipenser oxyrhynchus, Mitchill, in South Carolina. Final Report to U.S. Fish and Wildlife Service Resources Department.
- Soulé, M. E. 1980. Thresholds for survival: maintaining fitness and evolutionary potential. Pages 151-170 in M. E. Soulé, and B. A. Wilcox, editors. Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, MA.
- Soulé, M. E. 1987. Where do we go from here? Chapter 10 *In*: Soulé, M.E. (ed), Viable Populations for Conservation. Cambridge University Press, pp.175-183.
- Spalding, M. D., H. E. Fox, G. R. Allen, and N. Davidson. 2007. Marine ecoregions of the world. Pages Companion publication: Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., Robertson, J. (2007) Marine Ecoregions of the World: a bioregionalization of coast and shelf areas. BioScience 57: 573-583 *in*. The Nature Conservancy, Arlington, Virginia.
- Squiers, T. 2004. State of Maine 2004 Atlantic sturgeon compliance report to the Atlantic States Marine Fisheries Commission. Report submitted to Atlantic States Marine Fisheries Commission, December 22, 2004, Washington, D.C.
- Stein, A. B., K. D. Friedland, and M. Sutherland. 2004a. Atlantic sturgeon marine bycatch and mortality on the continental shelf of the Northeast United States. North American Journal of Fisheries Management 24(1):171-183.

- Stein, A. B., K. D. Friedland, and M. Sutherland. 2004b. Atlantic Sturgeon Marine Distribution and Habitat Use along the Northeastern Coast of the United States. Transactions of the American Fisheries Society 133(3):527-537.
- Stevenson, J. C., and D. H. Secor. 1999. Age determination and growth of Hudson River Atlantic sturgeon (*Acipenser oxyrinchus*). Fishery Bulletin 97:153-166.
- Storelli, M. M., G. Barone, A. Storelli, and G. O. Marcotrigiano. 2008. Total and subcellular distribution of trace elements (Cd, Cu and Zn) in the liver and kidney of green turtles (Chelonia mydas) from the Mediterranean Sea. Chemosphere 70:908-913.
- Storelli, M. M., E. Ceci, and G. O. Marcotrigiano. 1998. Distribution of heavy metal residues in some tissues of *Caretta caretta* (Linnaeus) specimen beached along the Adriatic Sea (Italy). Bulletin of Environmental Contamination and Toxiocology 60:546-552.
- Sweka, J., and coauthors. 2007. Juvenile Atlantic sturgeon habitat use in Newburgh and Haverstraw Bays of the Hudson River: Implications for Population Monitoring. North American Journal of Fisheries Management 27:1058-1067.
- Taubert, B. D., and M. J. Dadswell. 1980. Description of some larval shortnose sturgeon (Acipenser brevirostrum) from the Holyoke Pool, Connecticut River, Massachusetts, U.S.A., and the Saint John River. New Brunswick, Canada. Canadian Journal of Zoology 58(6):1125-8.
- Thomas, C. D. 1990. What Do Real Population Dynamics Tell Us About Minimum Viable Population Sizes? Conservation Biology 4(3):324-327.
- Troëng, S. 1998. Poaching threatens the green turtle rookery at Tortuguero, Costa Rica. Marine Turtle Newsletter 80(11-12).
- Troëng, S., and E. Rankin. 2005. Long-term conservation efforts contribute to positive green turtle *Chelonia mydas* nesting trend at Tortuguero, Costa Rica. Biological Conservation 121:111-116.
- USGRG. 2004. U.S. National Assessment of the Potential Consequences of Climate Variability and Change, Regional Paper: The Southeast. U.S. Global Research Group. Washington, D.C., August 20, 2004.
- USGS. 2007. Drought Worsens for September with Many Streams Setting New Record Lows. Prepared by the Georgia Water Science Center.
- Van Eenennaam, J. P., and S. I. Doroshov. 1998. Effects of age and body size on gonadal development of Atlantic sturgeon. Journal of Fish Biology 53(3):624-637.
- Van Eenennaam, J. P., and coauthors. 1996. Reproductive Conditions of the Atlantic Sturgeon (Acipenser oxyrinchus) in the Hudson River. Estuaries 19(4):769-777.

- Vladykov, V. D., and J. R. Greely. 1963. Order Acipenseroidei. Pages 1630 pp *in* Fishes of Western North Atlantic, Sears Foundation. Marine Research, Yale University.
- Von Westernhagen, H., and coauthors. 1981. Bioaccumulating substances and reproductive success in baltic flounder platichthys flesus. Aquatic Toxicology 1(2):85-99.
- Waldman, J. R., C. Grunwald, J. Stabile, and I. Wirgin. 2002a. Impacts of life history and biogeography on the genetic stock structure of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A-oxyrinchus desotoi, and shortnose sturgeon A-brevirostrum. Journal of Applied Ichthyology 18(4-6):509-518.
- Waldman, J. R., C. Grunwald, J. Stabile, and I. Wirgin. 2002b. Impacts of life history and biogeography on the genetic stock structure of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon A. brevirostrum. Journal of Applied Ichthyology 18:509-518.
- Waldman, J. R., and I. I. Wirgin. 1998. Status and Restoration Options for Atlantic Sturgeon in North America. Conservation Biology 12(3):631-638.
- Waring, C. P., and A. Moore. 2004. The effect of atrazine on Atlantic salmon (Salmo salar) smolts in fresh water and after sea water transfer. Aquatic Toxicology 66(1):93-104.
- Weber, W. 1996. Population size and habitat use of shortnose sturgeon, *Acipenser brevirostrum*, in the Ogeechee River system, Georgia. University of Georgia, Athens, Georgia.
- Weber, W., and C. A. Jennings. 1996. Endangered species management plan for the shortnose sturgeon, *Acipenser brevirostrum*. Final Report to Port Stewart Military Reservation, Fort Stewart, GA.
- Weijerman, M. L., H. G. V. Tienen, A. D. Schouten, and W. E. J. Hoekert. 1998. Sea turtles of Galibi, Suriname. Pages 142-144 in R. Byles, and Y. Fernandez, editors. Sixteenth Annual Symposium on Sea Turtle Biology and Conservation.
- Weishampel, J. F., D. A. Bagley, L. M. Ehrhart, and B. L. Rodenbeck. 2003. Spatiotemporal patterns of annual sea turtle nesting behaviors along an East Central Florida beach. Biological Conservation 110(2):295-303.
- Wershoven, J. L., and R. W. Wershoven. 1992. Juvenile green turtles in their nearshore habitat of Broward County, Florida: A five year review. Pages 121-123 *in* M. Salmon, and J. Wyneken, editors. Eleventh Annual Workshop on Sea Turtle Biology and Conservation.
- Winger, P. V., P. J. Lasier, D. H. White, and J. T. Seginak. 2000. Effects of Contaminants in Dredge Material from the Lower Savannah River. Archives of Environmental Contamination and Toxicology 38(1):128-136.
- Wirgin, I., and coauthors. 2005. Range-wide population structure of shortnose sturgeonAcipenser brevirostrum based on sequence analysis of the mitochondrial DNA control region. Estuaries and Coasts 28(3):406-421.

- Wirgin, I., C. Grunwald, J. Stabile, and J. Waldman. 2007. Genetic evidence for relict Atlantic sturgeon stocks along the mid-Atlantic coast of the USA. North American Journal of Fisheries Management 27(4):1214-1229.
- Wirgin, I., C. Grunwald, J. Stabile, and J. Waldman. 2009. Delineation of discrete population segments of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequence analysis Conservation Genetics:22.
- Wirgin, I., and T. King. 2011. Mixed stock analysis of Atlantic sturgeon from coastal locales and a non-spawning river. NMFS Sturgeon Workshop, Alexandria, VA.
- Wirgin, I., J. Waldman, J. Stabile, B. Lubinski, and T. King. 2002. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus. Journal of Applied Ichthyology 18(4-6):313-319.
- Wirgin, I., and coauthors. 2000. Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Transactions of the American Fisheries Society 129(2):476-486.
- Witherington, B., M. Bresette, and R. Herren. 2006. *Chelonia mydas* Green turtle. Chelonian Research Monographs 3:90-104.
- Witherington, B. E., and L. M. Ehrhart. 1989a. Hypothermic stunning and mortality of marine turtles in the Indian River Lagoon System, Florida. Copeia 1989(3):696-703.
- Witherington, B. E., and L. M. Ehrhart. 1989b. Status, and reproductive characteristics of green turtles (*Chelonia mydas*) nesting in Florida. Pages 351-352 *in* L. Ogren, and coeditors, editors. Second Western Atlantic Turtle Symposium. .
- Young, J. R., T. B. Hoff, W. P. Dey, and J. G. Hoff. 1988. Management recommendations for a Hudson River Atlantic sturgeon fishery based on an age-structured population model. Fisheries Research in the Hudson River. State of University of New York Press, Albany, New York.
- Ziegeweid, J., C. Jennings, and D. Peterson. 2008. Thermal maxima for juvenile shortnose sturgeon acclimated to different temperatures. Environmental Biology of Fishes 82(3):299-307.
- Zug, G. R., and R. E. Glor. 1998. Estimates of age and growth in a population of green sea turtles (*Chelonia mydas*) from the Indian River lagoon system, Florida: A skeletochronological analysis. Canadian Journal of Zoology 76(8):1497-1506.

Appendix A - Sea Turtle, Smalltooth Sawfish, and Sturgeon Safe Handling and Release

In the event of any sea turtle, sawfish, and/or sturgeon entanglement, hooking, or trawling capture, please do the following:

For Live Entanglements/Hookings/Trawl Captures:

Sea Turtles:

- Upon sighting an entangled or hooked sea turtle, slow the vessel and move in the direction of the sea turtle. Once the animal is alongside the vessel, place the vessel's engines in neutral. Minimize tension on the line and avoid pulling up the sea turtle by the gear.
- 2) Do not use gaffs or other sharp objects to retrieve or control the sea turtle, although a gaff may be used to control the line.
- 3) Researchers that have taken the Southeast Fishery Science Center Sea Turtle Training class should follow the sea turtle handling instructions found in Chapter 2 of the Sea Turtle Research Techniques Manual (http://www.sefsc.noaa.gov/turtles/TM_579_SEFSC_STRTM.pdf) when working to release animals. All researchers and GADNR participants should handle incidentally captured sea turtles in a manner consistent with those described in NOAA's Careful Release Protocols for Sea Turtle Release with Minimal Injury (NOAA Technical Memorandum NMFS-SEFSC-580 (http://www.sefsc.noaa.gov/turtles/TM_NMFS_SEFSC_580.pdf) to remove as much gear from the animal as possible.
- 4) If can be done so immediately without further harming the animal, photograph the hooking/entanglement location prior to gear removal. After the gear is removed, please photograph the head, carapace, and plastron of all captured sea turtles.
- 5) Remove all externally embedded hooks. REMOVING AS MUCH LINE AS POSSIBLE IF THE HOOK CANNOT BE REMOVED SHOULD BE THE HIGHEST PRIORITY IN ALL CASES. If unsure whether hook removal will cause injury to the sea turtle, do not remove the hook.
- 6) Only remove hooks when the insertion point of the barb is clearly visible, and exercise extreme caution during hook removal. Never remove a hook that has been swallowed when the insertion point is not visible.
- 7) The easiest way to remove a hook may be to cut off the eye or barb so that the hook can be pushed through or backed out without causing further injury to the sea turtle. If hook is visible and accessible, but cannot be removed, bolt cutters should be used to cut off as much of the hook as possible. If the hook cannot be cut or removed, cut the line close to the eye of the hook, removing all line if possible.
- 8) Once gear is removed, check the animal for flipper tags and scan for PIT tags.

- 9) Release the animal by lowering it over the aft portion of the vessel, close to the water's surface. Make sure fishing gear is not in use and the engines are in neutral. Release in an area where it is unlikely to be recaptured or injured by vessels.
- 10) If captured in trawl gear, take care not to drop the turtle from the net onto the deck below or allow the bag to slam into the side of the vessel. If the sea turtle requires resuscitation, follow the guidance described on the following page(s).
- 11) If the animal is seriously injured, and could feasibly be returned to shore, call 1-877-942-5343 to coordinate with local sea turtle stranding responders.

Smalltooth Sawfish:

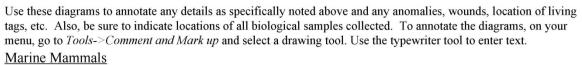
- 12) Leave the sawfish, especially the gills, in the water as much as possible.
- 13) Do not remove the saw (rostrum) or injure the animal in any way.
- 14) Remove as much fishing gear as safely possible from the body of the animal.
- 15) If can be done safely, untangle any net or line from the animal's saw. Remove gear with a boat hook or line-cutting pole. Cut gear tangled around the saw by cutting along the length of the saw. Once gear is cut, work it free with a boat hook or line-cutting pole.
- 16) If can be done so immediately without further harming the animal, photograph the hooking/entanglement location prior to release. Take multiple photographs of the body, if possible.
- 17) Use extreme caution when handling and releasing sawfish as the saw can thrash violently from side to side.

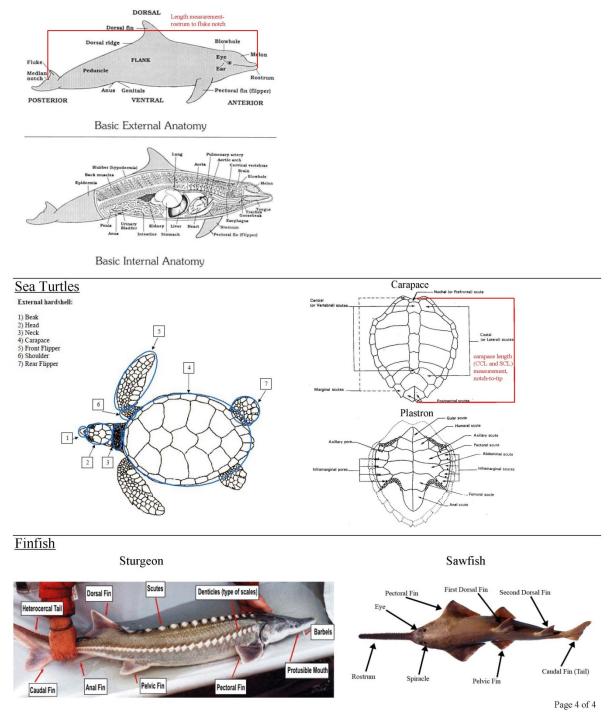
Sturgeon (Atlantic, Gulf, and Shortnose):

- 18) Ensure animals are handled rapidly, but with care and kept underwater to the maximum extent possible during handling.
- 19) If can be done so immediately without further harming the animal, photograph the hooking/entanglement location prior to release. Take multiple photographs of the body, if possible.
- 20) Release the animal as soon as possible, near the capture area, but in a manner that minimizes the likelihood of recapture if sampling continues.
- 21) If the fish has air in its bladder, efforts must be made to return the fish to neutral buoyancy prior to and during release. Release air by gently applying pressure to the animal's stomach, moving from the tail toward the head.
- 22) Before releasing the animal it should be held underwater, gently moving the tail fin back and forth to aid water passage over the gills.
- 23) The fish should be released when it shows signs of increased activity and is able to swim away under its own power.

- 24) The fish should be watched to make sure it stays underwater and does not float to the surface. If it does resurface, make one additional attempt to recapture the animal and repeat steps 21-24.
- 25) For help with any questions relating to sturgeon, researchers should contact Stephania Bolden, Protected Resources, Southeast Regional Office, NMFS, at (727) 824-5312 (Fax: 727-824-5309).

For Comatose/Inactive or Otherwise Unresponsive Sea Turtles:


- 26) A sea turtle is determined to be dead if the muscles are stiff (rigor mortis) and/or the flesh has begun to rot; otherwise, the turtle is determined to be comatose or inactive and resuscitation attempts are necessary.
- 27) Place the sea turtle on its bottom shell (plastron) so that the turtle is right side up and elevating its hindquarters 15-30 degrees for a period of 4 hours up to 24 hours.
- 28) Periodically, rock the sea turtle gently left to right and right to left by holding the outer edge of the shell (carapace) and lifting one side about 3 inches (7.6 cm), then alternate to the other side. Gently touch the eye and pinch the tail and flippers (reflex tests) periodically to see if there is a response.
- 29) The sea turtle must be shaded and kept damp or moist but should not be placed into a container holding water. A water-soaked towel placed over the head, carapace, and flippers is recommended. Do not cover the sea turtle's nostrils.
- 30) Sea turtles that revive and become active must be released in the manner described in #9 above.
- 31) Please photograph the head and carapace of all captured turtles. If can be done so without further harming the animal, photograph the hooking/entanglement location.
- 32) If the animal is seriously injured and could feasibly be returned to shore, call 1-877-942-5343 to coordinate with local sea turtle stranding responders.


Appendix B - Protected Species Incidental Take Form

NOAA F Southeast Region Protected Species					
REPORTER INFORMATION					
Reporting Agency: Project/Survey Name:					
VESSEL/TRIP INFORMATION					
Vessel Name/ID Cruise/Trip# Station/Site# Collection #	Specimen # Vessel Size Unique Identifier (generated):				
If vessel strike, also complete the SER Vessel Strike form and immediately contact 877-433-	-8299.				
GEAR CHARACTERISTICS					
Trawl Type Other Net Types					
Headrope length (ft) # of nets TED present?	Seine/Gillnet/Trammel: Fyke: Floatline length (ft) diameter (in) Leader length (ft) Leadline length (ft) diameter (in) Leader length (ft)				
Trawl Body Cod End Ground Gear	All Net Types: mesh material type twine size (in)				
material type	Gillnet: net sampling location mode of fishing (water column)				
Doors Lazy Line	Panels/bags in net				
type material type	# of panels mesh size (in): panel 1 panel 4 length (ft) panel 2 panel 5				
net sampling location net sampling depth (m)	height (ft) panel 3 panel 6 panel 6				
Longline/Hook and Line Type					
Mainline length (m) test (lb) line type Gangion length (m) test (lb) line type	$ \begin{array}{ c c c c c } \hline Hook size (s): & \\ \hline (deck all that applie) \\ \hline 4/0 & 11/0 \\ \hline 11/0 \\ \hline \end{array} hook type \\ \hline hooks/line \\ (rod and reel only) \\ \hline \end{array} $				
Backbone length (m) test (lb) line type	□ 6/0 □ 12/0 # gangions				
bait type	100 15/0 100 15/0				
All Other Gear (describe):					
CAPTURE INFORMATION					
Date Time (24hr) Zone Start of Set:	d Soak Time (min) Water Depth (m) ime 0 Surface Water Temp (°C) d) Page 1 of 4				

CAPTURE INFORMATION (Co	ont.)		
(DD.DDDD)(DD.	DDDD)		
Latitude: Longitude:	Marine Jurisd	iction Animal Boarded?	
Date Time (24hr) Zone	Condition of a	animal at time of capture	
	If comatose/u	nresponsive, attempted resuscitation?	
IDENTIFICATION			
Species	Confidence in species ID		
Photographs taken? # of Photos Vide	o taken? Contact Info for	photo/video (person, email)	
GEAR INTERACTION			
ALL NET GEAR:		Gear left	
Capture Location in Gear (check all that applies)	Entanglement Location on An (check all that applies)	imal on Animal? How Much?	
C cod end	beak/neck/head/saw/rostrun	n	
□ lazy line	rear flipper/groin/peduncle		
wing extension	front flipper/shoulder/armpi	it	
in the body mesh size(in)	carapace/plastron/body		
near lead line	pectoral flipper		
near float line	dorsal fin		
other (describe):	tail/fluke		
	other (describe):		
ALL LONGLINE/HOOK AND LINE GEA	1 <i>R</i> :		
Capture Location in Gear	Entanglement Location on An	Gear left imal on Animal? How Much?	
(check all that applies) centangled in mainline	(check all that applies) beak/neck/head/saw/rostrun		
entangled in floatline	rear flipper/groin/peduncle		
<pre>entangled in gangion</pre>	front flipper/shoulder/armpi	it	
entangled in float	carapace/plastron/body		
hooked (size)	pectoral flipper		
other (describe):	dorsal fin		
	tail/fluke		
	other (describe):		
If Hooked, Hook Location on Animal Internal: (check all that applies)		External: (check all that applies)	
beak/mouth jaw location: upper low	ver 🔲 side (mouth only)	beak/neck/head/saw/rostrum	
mouth location: tongue	🔲 jaw joint	rear flipper/groin/peduncle	
☐ glottis/throat	roof of mouth	front flipper/shoulder/armpit	
swallowed/esophagus (hook visible)		carapace/plastron/body	
swallowed/esophagus (hook not visible)		pectoral flipper	
🔲 unknown		🔲 dorsal fin	
other (describe):	_	tail/fluke	
		other (describe): Page 2 c	of 4

BIOLOGICAL INFORMA	ΓΙΟΝ		
Measurements			
Finfish total length □ estimated fork length □ estimated Marine Mammals □ estimated	Sea Turtles curved carapace length (cm) curved carapace width (cm) straight carapace length (cm)	estimated	All Incidentally Captured Animals Weight estimated Sex
Tag/ID #			Tags
Tag/ID #1 Tag/ID #2 Tag/ID #3 Tag/ID #4 Other tag (describe)	Tag/ID Presence Tag/ID		or Tag/ID Position Removed?
Samples	111 Scan:		Final Disposition
Samples Taken Type blood fin clip tissue carcass other (describe): RELEASE INFORMATION (DD.DDDD) Latitude: Longitude Date Time (24hr) Zone	(DD.DDDD)	as animal released?	son Affiliation
Final Disposition: discarded dead/comatose/unresponsive salvaged carcass/parts (list all): released alive taken to holding facility (location): unknown (explain):	carcass (marked?)	Behavior upon rele swam away via swam away slo remained at su surfaced to bre other (describ	gorously 🔲 dove quickly owly 📄 dove slowly rface 📄 sank athe
Describe the nature of any injuries caused by cap location of bleeding, how much bleeding, cuts/lag			
Data Recorder	Tagger		
Mitigation Measures in place at time of capture:			
Additional Comments:			
			Print Form Reset Form Page 3 of 4

General Handling and Holding of Sturgeon

- 1. All handling procedures (i.e., measuring, weighing, PIT tagging, and tissue sampling) should be completed as quickly as possible, and should not exceed 15 minutes.
- 2. Fish should be handled rapidly, but with care and kept in water to the maximum extent possible during handling. During handling procedures, each fish should be immersed in a continuous stream of ambient water passing over the sturgeon's gills. Because sturgeon are sensitive to direct sunlight, they should be covered and kept moist.
- 3. When the water temperature is above 25°C, sturgeon should be held for as little time as possible. Holding time includes the time to remove any other captured sturgeon, time to process other fish, and time necessary for recovery ensuring the safety of the fish.
- 4. Prior to release, sturgeon should be examined and, if necessary, recovered by holding fish upright and immersed in river water, gently moving the fish front to back, aiding freshwater passage over the gills to stimulate it. The fish should be released when showing signs of increased activity and is able to swim away under its own power.
- 5. When possible, researchers should also attempt to support larger sturgeon in slings preventing struggle during transfer. Sturgeon should be weighed using hand held sling scales or a platform scale for larger sturgeon.
- 6. When sturgeon are held on-board research vessels, they should be placed in flow through tanks where the total volume of water is replaced every 15-20 minutes.

PIT Tagging

- 7. Every sturgeon should be scanned for PIT tags along its entire body surface ensuring it has not been previously tagged.
- 8. Untagged sturgeon should then be a PIT tagged and the identifying number recorded. The recommended frequency for PIT tags is 134.2 kHz.
- 9. PIT tags should be placed to the left of the spine, immediately anterior to the dorsal fin, and posterior to the dorsal scutes (Figure E.1). This positioning optimizes the PIT tag's readability over the animal's lifetime.

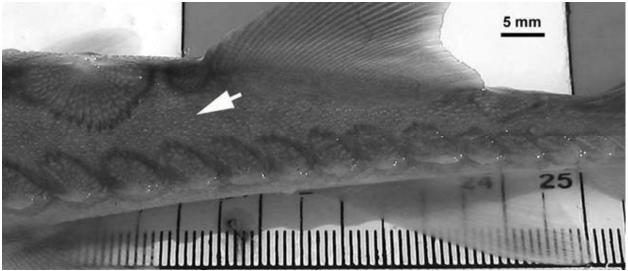


Figure E1. Standardized Location for PIT Tagging all Gulf, Atlantic, and shortnose sturgeon (Photo Credit: J. Henne, USFWS)

- 10. Scan the tag following insertion to ensure it is readable before the fish is released. If necessary, to ensure tag retention and prevent harm or mortality to small juvenile sturgeon of all species, the PIT tag can also be inserted at the widest dorsal position just to the left of the 4th dorsal scute.
- 11. Only sturgeon over 300 mm shall receive PIT tags, and tags can be no larger than 11.5mm.

Genetic Tissue Sampling

- 12. Tissue samples should be a small (1.0 cm²) fin clip collected from soft pelvic fin tissue. Use a knife, scalpel, or scissors that has been thoroughly cleaned and wiped with alcohol. Tissue samples should be preserved in individually labeled vials containing either non-denatured ethanol (95%) or SDS-UREA. Due to the rate of ethanol evaporation, only vials with lids that are intended to prevent evaporation should be used (e.g., vial with a ring-sealed, screw-on lid). Vials must then be gently shaken to ensure the solution covers the fin clip. Once the fin clip is in buffer, refrigeration/freezing is not required. Once in the solution, care should be taken not to expose the sample to excessive heat or intense sunlight, but refrigeration is not necessary.
- 13. NMFS strongly recommends genetic tissue samples be taken from every sturgeon captured unless, due to marks or tags, the researcher knows a genetic sample has already been obtained, or the sampling cannot be done safely.

Transport of Samples

14. For instruction on where to send Atlantic and shortnose sturgeon tissue samples contact:

Barb Lubinski U.S. Geological Survey Leetown Science Center, Aquatic Ecology Branch 11649 Leetown Road Kearneysville, West Virginia 25430 PH: 304-724-4450

	TTC	Sea Turtle Species				
Fishery	ITS Authorization Period	Loggerhead (NWA DPS)	Leatherback	Kemp's ridley	Green (NA DPS)	Hawksbill
Batched Consultation* (gillnet) [NER]	1 Year	269-No more than 167 lethal (Takes based on a 5- yr average)	4-No more than 3 lethal	4-No more than 3 lethal	4-No more than 3 lethal	None
Batched Consultation* (bottom trawl) [NER]	1 Year	213-No more than 71 lethal (Takes based on a 4-yr average)	4-No more than 2 lethal	3-No more than 2 lethal	3-No more than 2 lethal	None
Batched Consultation* (trap/pot) [NER]	1 Year	1-Lethal or non-lethal	4-Lethal or non-lethal	None	None	None
Coastal Migratory Pelagics [SER]	3 Years	27 Total, 7 lethal	1- Lethal	8- Total, 2 lethal	31-Total, 9 lethal	1- Lethal
Dolphin-Wahoo [SER]	1 Year	12-No more than 2 lethal	12-No more than 1 lethal	3 for all species in combination-no more than 1 lethal take		
HMS-Pelagic Longline [SER]	3 Years	1,905-No more than 339 lethal	1,764-No more than 252 lethal		ore than 18 let eies in combir	
HMS-Shark Fisheries [SER]	3 Years	126-No more than 78 lethal	18-No more than 9 lethal	36-No more than 21 lethal	57-No more than 33 lethal	18-No more than 9 lethal
Red Crab [NER]	1 Year	1-Lethal or non-lethal	1-Lethal or non-lethal	None	None	None

Anticipated Take of Sea Turtles

	ITS	Sea Turtle Species				
Fishery	Authorizatio n Period	Loggerhead	Leatherback	Kemp's ridley	Green	Hawksbil l
South Atlantic Snapper-Grouper [SER]	3 Years	613-No more than 192 lethal	7-No more than 5 lethal	177-No more than 8 lethal	103 NA DPS-No more than 35 lethal; 6 SA DPS- No more than 2 lethal	7-No more than 3 lethal
Southeastern U.S. Shrimp [SER]	1 Year	Anticipated shrimp trawl effort (i.e., 132,900 days fished in the Gulf of Mexico and 14,560 trips in the south Atlantic) and fleet TED compliance (i.e., compliance resulting in overall average sea turtle catch rates in the shrimp otter trawl fleet at or below 12%) are used as surrogates for numerical sea turtle take levels.				
Atlantic Sea Scallop – Dredge [NER]	1 Year	161 – No more than 46 lethal	2 –Lethal	s (gears Lethal	2 - Lethal takes (gears combined)	None
Atlantic Sea Scallop – Trawl [NER]	1 Year	140 – No more than 66 lethal	Takes (gears combined)			None
USFWS-Funded GADNR studies of Rec Fish	5 Years	8 non-lethal	None	14 non- lethal	11 NA DPS non- lethal; 2 SA DPS non-lethal	None

Anticipated Incidental Takes of Sea Turtles, continued

	ITS	Atlantic Sturgeon DPS					
Fishery	Authorization Period	Gulf of Maine	New York Bight	Chesapeake Bay	Carolina	South Atlantic	
Southeastern U.S. Shrimp [SER]	3 years	Up to 162 interactions - including 27 captures, no more than 3 lethal	Up to 465 interactions – including 66 captures, no more than 9 lethal	Up to 312 interactions – including 54, no more than 6 lethal	Up to 519 interactions – including 87 captures, no more than 9 lethal	Up to 1,404 interactions – including 228 captures, no more than 21 lethal	
HMS Shark and Smoothhound [SER]	3 years	36-No more than 9 lethal	159-No more than 30 lethal	45-No more than 9 lethal	63-No more than 12 lethal	18-No more than 6 lethal	
Batched Consultation* (gillnet) [NER]	1 year (Takes based on a 5-yr average)	137-No more than 17 lethal A.E.s	632-No more than 79 lethal A.E.s	162-No more than 21 lethal A.E.s	25-No more than 4 lethal A.E.s	273-No more than 34 lethal A.E.s	
Batched Consultation* (bottom trawl) [NER]	1 year (Takes based on a 5-yr average)	148-No more than 5 lethal A.E.s	685-No more than 21 lethal A.E.s	175-No more than 6 lethal A.E.s	27-No more than 1 lethal A.E.s	296-No more than 6 lethal A.E.s	
Coastal Migratory Pelagic	3 years	2 non-lethal	4 non-lethal	3 non-lethal	4 non-lethal	10- non- lethal	
Atlantic Sea Scallop Dredge [NER]	20 years		1 – 1	Lethal (any DPS))		
USFWS- Funded GADNR studies of Rec Fish	5 years	9 –No more than 2 lethal adults/A.E.s	35 –No more than 3 lethal adults/A.E.s	11 –No more than 2 lethal adults/A.E.s	3 –No more than 2 lethal adults/A.E.s	16 –No more than 2 lethal adults/A.E.s	

Anticipated Incidental Take of Atlantic Stur	geon by DPS
--	-------------

A.E. = Adult equivalents

* Batched consultation includes the Northeast Multispecies, Monkfish, Spiny Dogfish, Atlantic Bluefish, Northeast Skate Complex, Mackerel/Squid/Butterfish, and Summer Flounder/Scup/Black Sea Bass Fisheries

Appendix D5

 Savannah Harbor Expansion Project Savannah Harbor Expansion Project, Fish Passage at New Savannah Bluff Lock and Dam Cultural Resources Memorandum of Agreement

DRAFT MEMORANDUM OF AGREEMENT

AMONG

THE U. S. ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT, THE GEORGIA STATE HISTORIC PRESERVATION OFFICER, THE SOUTH CAROLINA STATE HISTORIC PRESERVATION OFFICER, AND THE ADVISORY COUNCIL ON HISTORIC PRESERVATION REGARDING THE FISH PASSAGE FOR THE SAVANNAH HARBOR EXPANSION PROJECT.

NEW SAVANNAH BLUFF LOCK AND DAM, AIKEN COUNTY SOUTH CAROLINA AND RICHMOND COUNTY, GEORGIA

(GA Project # HP-911120-001 and SC Project No. 14-ED0108/03-VM0063)

WHEREAS, the U. S. Army Corps of Engineers (USACE), Savannah District (District), is undertaking a project to expand the Savannah Harbor Navigation Project by deepening the existing navigation channel between station 103+000 and -60+000 by up to 6 feet, extending the bar channel seaward, constructing bend wideners in selected areas along the existing channel, deepening the existing Kings Island Turning Basin, constructing passing lanes, disposing of dredged material in existing disposal areas and possible new sites, creating fish and wildlife mitigation lands, and constructing mitigation features to offset environmental impacts (Undertaking), and one environmental feature, a fish passage, is located at the New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia and Aiken County, South Carolina (Figure 1); and

WHEREAS, the District is proposing to construct an in-channel weir and fish ramp with a floodplain bench. The fixed weir will have a rock ramp at the existing NSBLD site (Figure 2). Construction of the weir and rock ramp will require the demolition of the NSBLD structure down to elevation 91.29 NAVD88; and

WHEREAS, the Area of Potential Effect (APE) for the Undertaking is defined as the NSBLD structure, the adjacent 50-acre park and recreation area owned by USACE, areas required for construction access and lay down outside of the 50acre park, and shoreline and in-channel navigation features that may be exposed due to lower pool elevations. The viewshed of the proposed fish passage is also included as part of the APE; and

WHEREAS, the NSBLD structure, located within the APE, consisting of a lock chamber, dam with gates and operation building, is eligible for the National Register of Historic Places under Criterion A (transportation history) and Criterion C (engineering) (Figures 3 and 4); and

WHEREAS, the District has determined that the demolition of the structure as part of the SHEP fish passage project is an adverse effect to the NSBLD structure; and

WHEREAS, the District executed a Programmatic Agreement (PA) for expanding the Savannah Harbor Navigation Project (Undertaking) in 2012 which addresses compliance and mitigation strategies for archaeological resources but does not include historic resources. The District intends to use the PA for investigations and mitigation for archaeological resources that are within the APE for this Undertaking; and

WHEREAS, the District has consulted with the Georgia Historic Preservation Office (GA SHPO), and the South Carolina State Historic Preservation (SC SHPO) pursuant to 36 CFR Part 800, regulations implementing Section 106 of the National Historic Preservation Act (54 U.S.C. 306108); and

WHEREAS, signature of this PA by the GA SHPO and the SC SHPO does not constitute approval of the proposed undertaking, but is for agreement with the terms for resolution of adverse effects to historic properties in accordance with 36 CFR Part 800 only; and

WHEREAS, the District has notified the Advisory Council on Historic Preservation (Council) in accordance with 36 CFR 800.10.c regarding the adverse effect on the NSBLD structure; and

WHEREAS, the District consulted with nineteen federally recognized Native American Tribes in March 2006 and November 2010, informing them of the status of SHEP and inviting comments; and

WHEREAS the Catawba Indian Nation requested they be added to the PA for SHEP as a concurring party and asked to be notified if prehistoric artifacts were encountered; and

WHEREAS public meetings regarding the undertaking where held in the Augusta, Georgia area in May 2017, June 2018, November 2018 and March 2019, and no issues or concerns regarding cultural resources were raised at these meetings; and

WHEREAS during the public comment period for the draft Post Authorization Analysis Report and Supplemental Environmental Assessment from February 15, 2019 – April 16, 2019 Savannah District received one comment that asked

Savannah District to select an alternative that would retain and rehabilitate the New Savannah Bluff Lock and Dam due to its historic significance, and Savannah District responded that rehabilitation would not meet the requirements of the Water Infrastructure Improvements for the Nation Act of 2016, was too costly, and would not allow for threatened and endangered species to pass the location; and

NOW, THEREFORE, the Savannah District, the GA SHPO, and the SC SHPO agree that the undertaking shall be administered in accordance with the following stipulations to satisfy the District's Section 106 responsibility for this undertaking. The adverse effect caused as a result of this project will be mitigated through the following stipulations:

STIPULATIONS

The Savannah District shall ensure that the following measures are carried out by a professional meeting the applicable Secretary of the Interior's Professional Qualifications Standards to mitigate adverse effects to the NSBLD structure:

I. RECORDATION OF NSBLD

A. Prior to authorizing any demolition or other activity that could damage any building, structure or landscape, the USACE will ensure that the resources are documented in accordance with the standards and guidelines of the Historic American Engineer Record (HAER) (www.nps.gov/hdp/standards/index.htm). Unless otherwise agreed to by the National Park Service (NPS) and the GA and SC SHPOs, the USACE will ensure that all documentation is completed and accepted in writing by the NPS and SHPOs prior to demolition.

B. The USACE will provide NPS and the GA and SC SHPOs a copy of the Draft HAER documentation for review and comment. The USACE will submit Final HAER documentation to the NPS in accordance with requirements in the Secretary of the Interior's Guidelines for Architectural and Engineering Documentation (Federal Register, Vol. 68, No. 139, pp. 43159-43162, July 21, 2003). Once completed and accepted, the documentation will be placed in the Historic American Buildings Survey/Historic American Engineering Record/Historic American Landscapes Survey Collection at the Library of Congress where it will be available to the public.

C. The GA SHPO, SC SHPO and the USACE will also receive a copy of the documentation for their files.

D. HAER documentation for the resources to be demolished or altered will include, but is not limited to:

1. The written historical and descriptive data prepared in accordance with outline format guidelines containing:

a) A general history of the transportation and trade along the Savannah River

b) A construction history of the dam and lock including the history of the engineering features

c) An architectural description of the resource including alterations

d) A description of the site and changes

e) Any historical photographs should be reproduced in the supplementary materials section

f) A site plan

2. Reproduction of as built drawings

3. Large-format (4" x 5" or larger negative size) photographs processed for archival permanence in accordance with HAER photographic specifications (www.nps.gov/hdp/standards/photoguidelines.pdf). Views will include but are not limited to:

a) At least one view that shows the overall resource in context.

b) One photograph of both faces.

- c) General and detailed photographs of the lock including at high and low water levels.
- d) Views of any detail unique to the resource including railings or date stamps/plaques.

4. At least one color digital photograph of each resource and its setting. The digital format should meet the NPS NRHP's 75-year permanence standard and higher resolution digital files

(www.nps.gov/NR/PUBLICATIONS/bulletins/photopolicy/index.htm).

5. Photo locations keyed to the site plan and included with the "Index to Photographs."

II. INTERPRETIVE DISPLAYS AND PROGRAMS

A. Savannah District, in consultation with the GA SHPO and SC SHPO will develop and install a professionally-designed online exhibit that will communicate the structure's history and meaning to the general public. The exhibit shall utilize historic photographs that document the construction and use of the structure, period newspaper articles and renderings of the lock and dam, tied to a timeline of events for the structure. (Deadline: within two years of the start of the project's final design, which is scheduled to start in October 2019.)

1. Materials that will be used to develop the exhibit include, but are not limited to, black and white photographs from 1934-35 which illustrate the early stages of construction, newspaper articles and drawings of the structure from local newspapers, HAER photographs, and information from the HAER documentation regarding the historic significance and history of the structure.

2. USACE shall provide the GA SHPO and SC SHPO a copy of the 65% complete design for review and comment and also at 95% design complete.

3. The online exhibit will be hosted on the USACE Savannah District web site and other appropriate websites such as the USACE history website (<u>https://www.usace.army.mil/About/History/exhibits.aspx</u>). Savannah District shall offer a link to the exhibit to local history museums such as, but not limited to, the Augusta History Museum and other local historical societies and preservation organizations who may request a link on their respective website.

B. The District shall provide archival quality copies of the black and white photographs and the HAER documentation to local history museums, historical societies and preservation organizations, for permanent curation without restrictions for future use. (Deadline: within two years of the start of the project's final design, which will begin in October 2019).

C. The District shall create a tri-fold or similar brochure that includes the history of the NSBLD, copies of drawing and plans, and photographs of the structure. Information from the HAER documentation will be used to create most of the text.

1. USACE shall provide the GA SHPO and SC SHPO a copy of the 65% complete design for review and comment and also at 95% design complete.

2. This brochure will be made available to all local history museums, historical societies and preservation organizations. The brochure will also be distributed at the J. Strom Thurmond Visitor Center. A PDF version of the brochure will be placed on the District's website. Both the GA SHPO and SC SHPO shall receive a copy of the final product.

III. ADMINISTRATIVE TERMS

A. DURATION

This MOA will continue in full force and effect for four years after signature or until the construction of the Project is complete and all terms of this Memorandum of Agreement (MOA) are met, whichever comes first, unless the Project is terminated or authorization is rescinded.

B. UNANTICIPATED DISCOVERY

During the construction of this project, the District will treat unanticipated discoveries in a manner that is in accordance with 36 CFR Part 800.13 "Post Review Discoveries" and in the case of the discovery of human remains, treatment shall follow protocols developed by the GA SHPO, unless remains are discovered on lands managed by USACE. If any human skeletal remains are discovered on USACE-managed lands Savannah District shall follow procedures for Inadvertent Discovery of Human Remains on Federal Lands in accordance with 43 CFR 10.4(a) – (d).

C. MONITORING

The GA SHPO and the SC SHPO may monitor activities carried out pursuant to this Agreement, if so requested. The Savannah District will cooperate with the GA SHPO and the SC SHPO in carrying out their monitoring and review responsibilities.

D. REPORTING

Until such time as Stipulations I-II have been completed in accordance with the terms of this agreement, USACE will provide status reports to the GA SHPO and SC SHPO to review implementation of the terms of this agreement. The report shall summarize the work undertaken pursuant to this Agreement, any problems encountered and any disputes or objections received in Savannah District's efforts to carry out the terms of this Agreement. The status report shall be submitted annually on the anniversary of the execution of this Agreement.

E. TERMINATION

If any signatory to this MOA determines that its terms will not or cannot be carried out, that party shall immediately consult with the other parties to attempt to develop an amendment per Stipulation III.F, below. If within thirty (30) days (or

another time period agreed to by all signatories) an amendment cannot be reached, any signatory may terminate the MOA upon written notification to the other signatories.

Once the MOA is terminated, and prior to work continuing on the undertaking, the Savannah District must either (a) execute an MOA pursuant to 36 CFR § 800.6 or (b) request, take into account, and respond to the comments of the Council under 36 CFR § 800.7. The District shall notify the signatories as to the course of action it will pursue.

F. AMENDMENT

This MOA may be amended upon agreement in writing by all signatories. The amendment will be effective on the date a copy signed by all of the signatories is filed with the Council.

G. ANTI-DEFICIENCY ACT

All requirements set forth in this MOA requiring expenditure of funds by the District are expressly subject to the availability of appropriations and the requirements of the Anti- Deficiency Act (31 U.S.C. 1341). No obligation undertaken by the District under the terms of this MOA shall require or be interpreted to require a commitment to extend funds not appropriated for a particular purpose. If the District cannot perform any obligation set forth in this MOA because of unavailability of funds, that obligation must be renegotiated among the District, the GA SHPO, SC SHPO, and the Council as necessary.

H. DISPUTE RESOLUTION

Should the signatories to this agreement object at any time to any actions proposed or the manner in which the terms of this MOA are implemented, the District shall consult with the signatories to resolve the objection. If the District determines that such objection cannot be resolved, the District will:

 Forward all documentation relevant to the dispute, including the District's proposed resolution, to the Council. The Council shall provide the District with its advice on the resolution of the objection within 30 calendar days of receiving adequate documentation. Prior to reaching a final decision on the dispute, the District shall prepare a written response that takes into account any timely advice or comments regarding the dispute from the Council, signatories and concurring parties, and provide them with a copy of this written response. The District will then proceed according to its final decision.

- 2. If the Council does not provide its advice regarding the dispute within the thirty (30) calendar day time period, the District may make a final decision on the dispute and proceed accordingly. Prior to reaching such a final decision, the District shall prepare a written response that takes into account any timely comments regarding the dispute from the signatories to the MOA, and provide them and the Council with a copy of such written response.
- 3. The District's responsibilities to carry out all other actions subject to the terms of this MOA that are not the subject of the dispute remain unchanged.

I. EXECUTION OF THIS AGREEMENT

This Agreement may be executed in counterparts, with a separate signature page for each party. The Savannah District shall ensure that each party is provided with a copy of the fully executed Agreement.

Execution of this MOA by the Savannah District, GA SHPO, and SC SHPO, its submission to the Council in accordance with 36 CFR 800.6(b)(1)(iv) and implementation of its terms evidence that the District has taken into account the effects of this undertaking on historic properties and afforded the Council an opportunity to comment.

SHEP Fish Passage NSBLD, Richmond Co., GA Aiken Co., SC

SIGNATORY:

US ARMY CORPS OF ENGINEERS, SAVANNAH DISTRICT

By: _____ Daniel H. Hibner Colonel, US Army Commanding

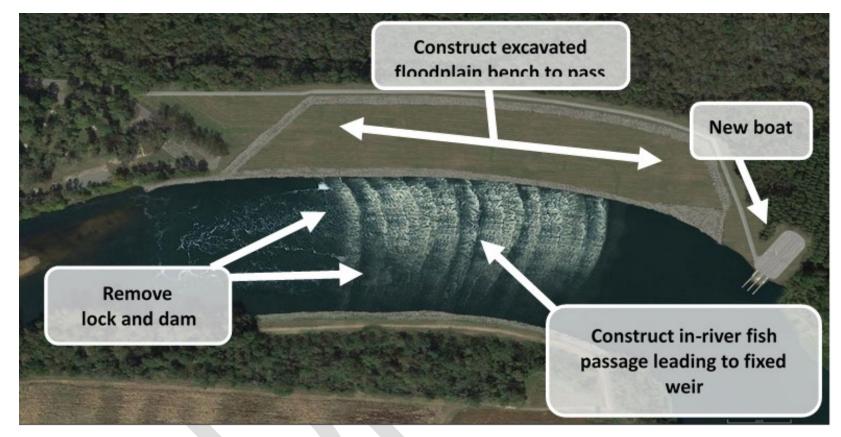
DATE:

SIGNATORY:

GEORGIA STATE HISTORIC PRESERVATION OFFICER

By: _____ DATE: _____ David Crass, Ph.D. Division Director and Deputy State Historic Preservation Officer

SIGNATORY:


SOUTH CAROLINA STATE HISTORIC PRESERVATION OFFICER

By: _____ DATE: _____ Elizabeth Johnson Deputy State Historic Preservation Officer

Figure 1. General Location Map, Savannah Harbor Expansion Project, Fish Passage at New Savannah Bluff Lock and Dam

Figure 2. Artist Rendering of Fish Passage Design

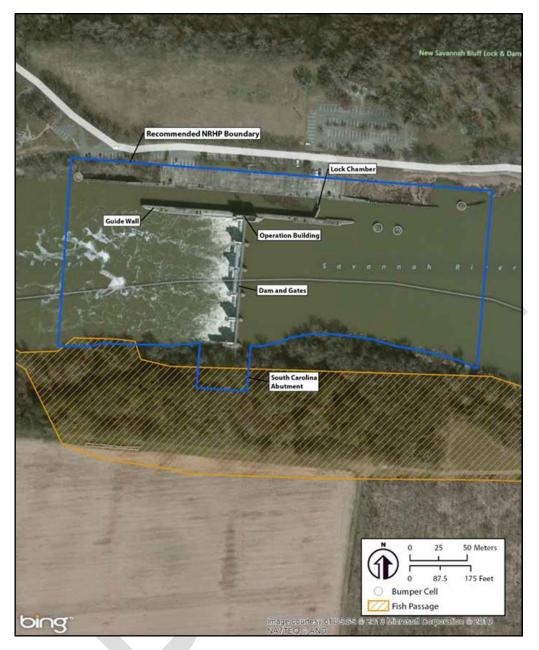


Figure 3. National Register Boundary for New Savannah Bluff Lock and Dam (in blue).

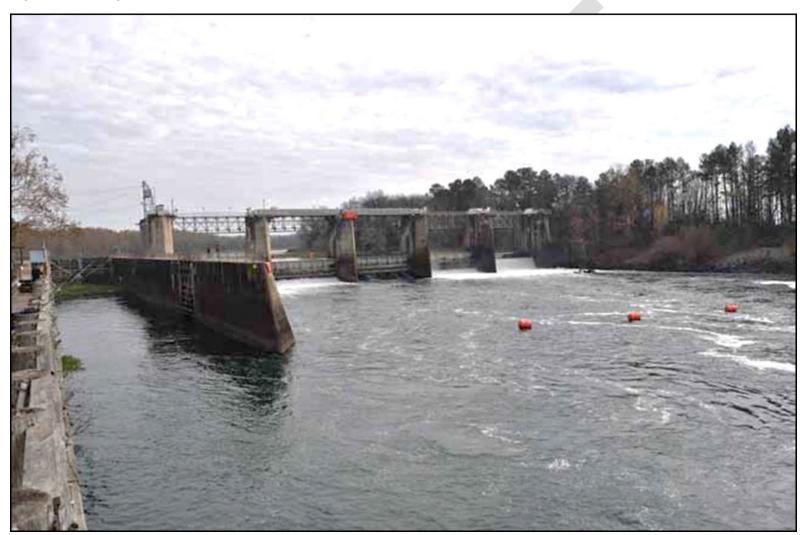


Figure 4. Photograph of downstream side of New Savannah Bluff Lock and Dam

Appendix D6: Correspondance with Agencies

From:	Morgan-Ryan, Julie A CIV USARMY CESAS (US)
To:	"e106@achp.gov"
Subject:	Savannah Harbor Expansion Project Fish Passage US Army Corps Engineers Savannah
Date:	Tuesday, November 13, 2018 9:51:00 AM
Attachments:	Appendix G Programmatic Agreement SHEP FINAL EIS JAN 2012.pdf Chatham HP 911120-001 Mar 1 2018.pdf Chatham HP911120-001 Aug 26 2013.pdf SC DAH comments.pdf AIKE_New Savannah Bluff Lock and Dam Fish Passage Construction 14-ED0108+03-VM0063 AE_signed.pdf Assessment of Effects.docx Savannah Harbor Expansion Project Fish Passage USACE Savannah DIstrict.docx

Sir/Madam:

Attached please find a copy of the e106 review form for a project that USACE Savannah District will be undertaking in Aiken County, South Carolina and Richmond County, Georgia. This information is to inform your agency of an adverse effect to a historic property and to invite the ACHP to participate in the Section 106 process.

Please review the attached materials and provide your comments within 15 calendar days of receipt.

Please contact me should you have any questions. Thank you.

Respectfully,

Julie A. Morgan Archaeologist, Planning Branch U.S. Army Corps of Engineers, Savannah District Office: 706-856-0378 Email: julie.a.morgan@usace.army.mil

November 27, 2018

Ms. Julie Morgan Archaeologist U.S. Army Corps of Engineers Savannah District Hartwell Project Office 5625 Anderson Highway Hartwell, GA 30643

Ref: Proposed Savannah Harbor Expansion Project Fish Passage Aiken County, South Carolina and Richmond County, Georgia

Dear Ms. Morgan:

The Advisory Council on Historic Preservation (ACHP) has received your notification and supporting documentation regarding the adverse effects of the referenced undertaking on a property or properties listed or eligible for listing in the National Register of Historic Places. Based upon the information provided, we have concluded that Appendix A, *Criteria for Council Involvement in Reviewing Individual Section 106 Cases*, of our regulations, "Protection of Historic Properties" (36 CFR Part 800), does not apply to this undertaking. Accordingly, we do not believe that our participation in the consultation to resolve adverse effects is needed. However, if we receive a request for participation from the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (THPO), affected Indian tribe, a consulting party, or other party, we may reconsider this decision. Additionally, should circumstances change, and it is determined that our participation is needed to conclude the consultation process, please notify us.

Pursuant to 36 CFR §800.6(b)(1)(iv), you will need to file the final Memorandum of Agreement (MOA), developed in consultation with the South Carolina and Georgia State Historic Preservation Offices (SHPO), and any other consulting parties, and related documentation with the ACHP at the conclusion of the consultation process. The filing of the MOA, and supporting documentation with the ACHP is required in order to complete the requirements of Section 106 of the National Historic Preservation Act.

Thank you for providing us with the notification of adverse effect. If you have any questions or require further assistance, please contact Mr. Christopher Daniel at 202-517-0223 or via e-mail at cdaniel@achp.gov.

Sincerely,

Artisha Thompson Historic Preservation Technician Office of Federal Agency Programs

ADVISORY COUNCIL ON HISTORIC PRESERVATION

401 F Street NW, Suite 308 • Washington, DC 20001-2637 Phone: 202-517-0200 • Fax: 202-517-6381 • achp@achp.gov • www.achp.gov

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT 100 W. OGLETHORPE AVENUE SAVANNAH, GEORGIA 31401-3604

Planning Branch

November 9, 2018

David Crass, Ph.D. Georgia Department of Natural Resources Director, Historic Preservation Division Jewett Center for Historic Preservation 2610 Georgia Highway 155, SW Stockbridge, Georgia 30281

Dear Dr. Crass:

The U.S. Army Corps of Engineers (USACE), Savannah District, notified your agency in February 2018 of changes to the fish passage that will be constructed at New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia and Aiken County South Carolina as part of the Savannah Harbor Expansion Project (HP-911120-001). The information was sent to you for your review and comment pursuant to Section 106 of the National Historic Preservation Act. In response to that letter, your agency requested additional information pertaining to effects on archaeological resources.

USACE conducted a bank line assessment in November 2017 to assess the current condition of previously recorded archaeological sites that are located within the Area of Potential Effects. A remote sensing survey was also conducted. The results of those investigations are included for your review and comment. Based on that information USACE determined that there will be **no effect** on previously recorded archaeological sites. An archaeological survey of the 50-acre tract and privately owned parcels where construction will occur will be conducted in accordance with the existing Programmatic Agreement that was prepared for SHEP in 2012. The results of those surveys will be provided for your review and comment. The anomalies that were identified during the remote sensing survey will be avoided and no further investigations are needed for those resources.

Your office concurred that fish passage designs under consideration will have an **adverse effect** on the NSBLD structure. USACE has drafted a Memorandum of Agreement (MOA) to address the adverse effects. At this time I would like to ask you to review the MOA and provide any comments within 30 calendar days of receipt of this letter.

If you have any questions or concerns regarding the project, please contact Ms. Julie Morgan, Archaeologist, Planning Branch, at 706-856-0378, or email, Julie.a.morgan@usace.army.mil.

Sincerely,

Steve G. Frank

Steve Fischer Chief, Planning Branch

Enclosure

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT 100 W. OGLETHORPE AVENUE SAVANNAH, GEORGIA 31401-3604

Planning Branch

November 9, 2018

Mr. Erick Montgomery Executive Director Historic Augusta, Incorporated Post Office Box 37 Augusta, Georgia 30903-0037

Dear Mr. Montgomery:

The U.S. Army Corps of Engineers (USACE), Savannah District, notified your organization in January 2018 of plans to construct a fish passage at New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia and Aiken County, South Carolina as part of the Savannah Harbor Expansion Project. Pursuant to Section 106 of the National Historic Preservation Act (NHPA), it has been determined that construction of the fish passage will have an adverse effect on the NSBLD structure, which is eligible for the National Register of Historic Places under Criteria A and D.

Your agency expressed interest in being included in the Section 106 process as an interested party. In consultation with the Georgia and South Carolina State Historic Preservation Offices, USACE has drafted a Memorandum of Agreement (MOA) to mitigate the adverse effects caused by the fish passage construction. A copy of the document is enclosed for your review and information.

USACE appreciates your interest in this project and welcomes comments that your organization may have. Feel free to contact Ms. Julie Morgan, Archaeologist, Planning Branch, with any questions you may have regarding this undertaking and your role in the Section 106 process as an interested party. You may contact her by phone at (706) 856-3078, or email, julie.a.morgan@usace.army.mil.

Sincerely,

Atwe G. Fim

Steve Fischer Chief, Planning Branch

Enclosure

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT 100 W. OGLETHORPE AVENUE SAVANNAH, GEORGIA 31401-3604

Planning Branch

November 9, 2018

W. Eric Emerson, Ph.D.
South Carolina Department of Archives and History Director
8301 Parklane Road
Columbia, South Carolina 29223

Dear Dr. Emerson:

The U.S. Army Corps of Engineers (USACE), Savannah District, notified your agency in February 2018 of changes to the fish passage that will be constructed at New Savannah Bluff Lock and Dam (NSBLD), Richmond County, Georgia and Aiken County South Carolina as part of the Savannah Harbor Expansion Project (SHEP) (SHPO Numbers 14-ED0108 and 03-VM0063). The information was sent to you for your review and comment pursuant to Section 106 of the National Historic Preservation Act.

USACE conducted a bank line assessment in November 2017 to assess the current condition of previously recorded archaeological sites that are located within the Area of Potential Effects. A remote sensing survey was also conducted. The results of those investigations are included for your review and comment. Based on that information USACE determined that there will be **no effect** on previously recorded archaeological sites. An archaeological survey of the 50-acre tract and privately owned parcels where construction will occur will be conducted in accordance with the existing Programmatic Agreement that was prepared for SHEP in 2012. The results of those surveys will be provided for your review and comment. The anomalies that were identified during the remote sensing survey will be avoided and no further investigations are needed for those resources.

Your office concurred that fish passage designs under consideration will have an **adverse effect** on the NSBLD structure. USACE has drafted a Memorandum of Agreement (MOA) to address the adverse effects. At this time I would like to ask you to review the MOA and provide any comments within 30 calendar days of receipt of this letter.

If you have any questions or concerns regarding the project, please contact Ms. Julie Morgan, Archaeologist, Planning Branch, at 706-856-0378, or email, Julie.a.morgan@usace.army.mil.

Sincerely,

Sture G. Frank

Steve Fischer Chief, Planning Branch

Enclosure

From:	Imm, Donald
To:	Armetta, Robin E CIV USARMY CESAS (USA)
Cc:	Wikoff, Bill; Brett Towler; thomas mccoy@fws.gov; Mark caldwell@fws.gov; Dayan, Nathan S CIV USARMY CESAS (US)
Subject:	[Non-DoD Source] Re: [EXTERNAL] Final FWCAR for Fish Passage
Date:	Wednesday, July 31, 2019 3:28:20 PM

Hi Robin,

The Service is thankful for all of your coordination and redesign efforts to improve and finalize this important project. With that in mind, the Service has concluded in the same fashion as NMFS; namely, we ask that the final design, selection of preferred alternative and implementation of a safe and effective fish passage shall be coordinated by the USACE in consultation with NMFS and USFWS, We also ask that USACE coordinate directly with NMFS and USFWS. An for similar reasons outlined by NMFS, the Service (USFWS) will need a minimum of 30 days to review the final fish passage design. With this, we ask that USACE will provide NMFS and USFWS with final design and performance information for the selected fish passage alternative, including data on variance of velocity fields under different river flow scenarios. And, the final design shall require USFWS and NMFS' final review to validate the design meets the requirements specified in the Biological Opinion. The Service (USFWS) will coordinate directly with NMFS during this process. Thanks, and let us know if you need any additional assistance, Don

On Wed, Jul 3, 2019 at 9:15 AM Armetta, Robin E CIV USARMY CESAS (USA) <Robin.E.Armetta@usace.army.mil <<u>mailto:Robin.E.Armetta@usace.army.mil</u>> > wrote:

Good Morning Don, Bill, Brett, Thomas, and Mark!

I hope you are all doing well!

I just wanted to touch base with you on what we will need to do to work with USFWS to obtain a final FWCAR for the Fish Passage Project at New Savannah Bluff Lock and Dam. At the end of your letter, it states "Due to the lack of design detail and analysis regarding design at this time, we cannot provide our comments in complete fulfillment of 2(b) of the FWCA."

Knowing that we will not get to the more detailed design phase until we get an approved NEPA document/signed FONSI, would it be possible to get a final FWCAR from you all that has a recommendation that USFWS and NOAA NMFS be part of the review process of the detailed designs similar to the following language NOAA NMFS provided as part as our Second Amendment of our BiOp from October 13 2017:

" The final design, selection of preferred alternative and implementation of a safe and effective fish passage shall be coordinated by the USACE in consultation with NMFS, USACE will coordinate directly with NMFS and NMFS will need a minimum of 30 days to review the final fish passage design. USACE will provide NMFS with final design and performance information for the selected fish passage alternative, including data on variance of velocity fields under different river flow scenarios. The proposed final design shall require NMFS' final review to validate the design meets the requirements specified in the Biological Opinion."

Please let me know what you all think and if a conference call to discuss would be helpful! I am here today until 3:00 and then will be off until Monday!

Sincerely, Robin

Robin Armetta Biologist USACE, Savannah District, Planning Branch Phone: 912-652-6148 Email: Robin.E.Armetta@usace.army.mil <<u>mailto:Robin.E.Armetta@usace.army.mil</u>>

-----Original Message-----

From: Imm, Donald [mailto:donald_imm@fws.gov <mailto:donald_imm@fws.gov>] Sent: Wednesday, April 17, 2019 10:11 AM

To: Armetta, Robin E CIV USARMY CESAS (US) <Robin.E.Armetta@usace.army.mil <<u>mailto:Robin.E.Armetta@usace.army.mil</u>>>

Cc: Litts, Thom <Thom.Litts@dnr.ga.gov <<u>mailto:Thom.Litts@dnr.ga.gov</u>>; Marcinek, Paula <Paula.Marcinek@dnr.ga.gov <mailto:Paula.Marcinek@dnr.ga.gov>>; Albanese, Brett <Brett.Albanese@dnr.ga.gov <mailto:Brett.Albanese@dnr.ga.gov>>; Rohde Fritz (fritz.rohde@noaa.gov <<u>mailto:fritz.rohde@noaa.gov</u>>) <Fritz.Rohde@noaa.gov <<u>mailto:Fritz.Rohde@noaa.gov</u>>>; Twyla Cheatwood -NOAA Federal <twyla.cheatwood@noaa.gov <<u>mailto:twyla.cheatwood@noaa.gov</u>>>; Pace Wilber - NOAA Federal <pace.wilber@noaa.gov <<u>mailto:pace.wilber@noaa.gov</u>>; Bill Post <postb@dnr.sc.gov <<u>mailto:postb@dnr.sc.gov</u>> ;; Lorianne Riggin <<u>RigginL@dnr.sc.gov</u> <<u>mailto:RigginL@dnr.sc.gov</u>> ;; Brett Towler

brett towler@fws.gov <mailto:brett towler@fws.gov >>; Carrie Straight <carrie straight@fws.gov <<u>mailto:carrie_straight@fws.gov</u>>>; Heather Preston cprestohs@dhec.sc.gov <<u>mailto:prestohs@dhec.sc.gov</u>>>; Kelie Moore <kelie.moore@dnr.ga.gov <<u>mailto:kelie.moore@dnr.ga.gov</u>>>; Chris Stout <stoutcm@dhec.sc.gov <<u>mailto:stoutcm@dhec.sc.gov</u>>; Ellen Waldrop <<u>WaldropE@dnr.sc.gov</u>>; Ross Self <SelfR@dnr.sc.gov <<u>mailto:SelfR@dnr.sc.gov</u>>; Lynn Quattro <QuattroL@dnr.sc.gov <<u>mailto:QuattroL@dnr.sc.gov</u>>>; Dayan, Nathan S CIV USARMY CESAS (US) <Nathan.S.Dayan@usace.army.mil <<u>mailto:Nathan.S.Dayan@usace.army.mil</u>>>; Andrew Herndon - NOAA Federal <andrew.herndon@noaa.gov <mailto:andrew.herndon@noaa.gov> >; Cynthia Cooksey - NOAA Federal <cynthia.cooksey@noaa.gov <<u>mailto:cynthia.cooksey@noaa.gov</u>>>; Higgins, Jamie <<u>Higgins.Jamie@epa.gov</u> <<u>mailto:Higgins.Jamie@epa.gov</u>>>; Smith, Bradley <<u>Bradley.Smith@dnr.ga.gov</u>

<<u>mailto:Bradley.Smith@dnr.ga.gov</u>>>; Bill Wikoff <bill_wikoff@fws.gov <<u>mailto:bill_wikoff@fws.gov</u>>>; Alice Lawrence <alice_lawrence@fws.gov <<u>mailto:alice_lawrence@fws.gov</u>>>

Subject: [Non-DoD Source] Re: New Savannah Bluff Lock & Dam: Draft Integrated Post Authorization Analysis Report (PAAR) and Supplemental Environmental Assessment (SEA)

Hi Robin, please see attached, I'm sorry it's a day late. Thanks everyone for your comments. Don

On Wed, Mar 6, 2019 at 9:48 AM Lawrence, Alice <alice_lawrence@fws.gov <<u>mailto:alice_lawrence@fws.gov</u>> <<u>mailto:alice_lawrence@fws.gov</u>> > wrote:

Hi everyone- I know some, if not all, of you are reviewing the latest documentation for the NSBLD fish passage project:

Blockedhttps://Blockedwww.sas.usace.army.mil/Missions/Regulatory/Public-Notices/Article/1769672/shep-fonsi-review/ <Blockedhttp://www.sas.usace.army.mil/Missions/Regulatory/Public-Notices/Article/1769672/shep-fonsi-review/>

I'm attaching the lastest FWCAR that we had sent the Corps back in 2018 as a refresher. We are going to review the latest information and provide comments to the Corps. Please let Don and I know if you have any comments that you would like us to include in our response back to the Corps. Thanks! Alice

Alice P. Lawrence United States Fish and Wildlife Service 355 East Hancock Avenue, Room 320 Athens, Georgia 30601 706.208.7507 Donald W. Imm, PhD. State Supervisor/Project Leader U.S.Fish & Wildlife Service, Georgia Ecological Service 355 East Hancock Avenue, Room 320 <Blockedhttps://maps.google.com/? q=355+East+Hancock+Avenue,+Room+320+Athens,+GA+30601&entry=gmail&source=g> Box 7 Athens, GA 30601 <Blockedhttps://maps.google.com/? q=355+East+Hancock+Avenue,+Room+320+Athens,+GA+30601&entry=gmail&source=g> cell: 850/532-2046 office: 706/208-7501

fax: 706/613-6059

NOTE: This email correspondence and any attachments to and from this sender are subject to the Freedom of Information Act and may be disclosed to third parties.

=

 Donald W. Imm, PhD.

 State Supervisor/Project Leader

 U.S.Fish & Wildlife Service, Georgia Ecological Service

 355 East Hancock Avenue, Room 320 <Blockedhttps://maps.google.com/?</td>

 q=355+East+Hancock+Avenue,+Room+320+Athens,+GA+30601&entry=gmail&source=g> Box 7

 Athens, GA 30601 <Blockedhttps://maps.google.com/?</td>

 q=355+East+Hancock+Avenue,+Room+320+Athens,+GA+30601&entry=gmail&source=g>

cell: 850/532-2046

office: 706/208-7501 fax: 706/613-6059

NOTE: This email correspondence and any attachments to and from this sender are subject to the Freedom of Information Act and may be disclosed to third parties.

From:	Moore, Kelie
То:	Armetta, Robin E CIV USARMY CESAS (US)
Cc:	Dayan, Nathan S CIV USARMY CESAS (US); Imm, Donald; Lorianne Riggin; Preston, Heather; Stout, Christopher; Andrew Herndon - NOAA Federal; Pace Wilber - NOAA Federal; Cynthia Cooksey - NOAA Federal; Higgins, Jamie; Smith, Bradley
Subject:	[Non-DoD Source] RE: Public Notice for Fish Passage EA
Date:	Thursday, March 14, 2019 9:22:03 AM

The Georgia Coastal Management Program (GCMP) concurs that construction and operation of a fish passage at the New Savannah Bluff Lock and Dam site will not have reasonably foreseeable negative impacts to coastal uses or resources in Georgia's coastal zone and is fully consistent with the GCMP.

Kelie Moore Federal Consistency Coordinator Coastal Resources Division (912) 264-7218 | (912) 262-2334 Follow us on Facebook Buy a fishing license today! -------A division of the GEORGIA DEPARTMENT OF NATURAL RESOURCES

-----Original Message-----

From: Armetta, Robin E CIV USARMY CESAS (US) [mailto:Robin.E.Armetta@usace.army.mil] Sent: Wednesday, February 20, 2019 2:23 PM

To: Imm, Donald <donald_imm@fws.gov>; Lorianne Riggin <RigginL@dnr.sc.gov>; Preston, Heather <PRESTOHS@dhec.sc.gov>; Stout, Christopher <stoutcm@dhec.sc.gov>; Andrew Herndon - NOAA Federal <andrew.herndon@noaa.gov>; Moore, Kelie <Kelie.Moore@dnr.ga.gov>; Pace Wilber - NOAA Federal <pace.wilber@noaa.gov>; Cynthia Cooksey - NOAA Federal <cynthia.cooksey@noaa.gov>; Higgins, Jamie <Higgins.Jamie@epa.gov>; Smith, Bradley <Bradley.Smith@dnr.ga.gov> Cc: Dayan, Nathan S CIV USARMY CESAS (US) <Nathan.S.Dayan@usace.army.mil>

Subject: FW: Public Notice for Fish Passage EA

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi All,

I just wanted to let you know that we are working on getting you all official letters from Savannah District with regards to the release of the draft report hopefully by the end of the week. I will send you each the scanned copy of the signed letters as well as place them in the snail mail.

Sincerely, Robin

Robin Armetta Biologist USACE, Savannah District, Planning Branch Phone: 912-652-6148 Email: Robin.E.Armetta@usace.army.mil

-----Original Message-----From: Dayan, Nathan S CIV USARMY CESAS (US) Sent: Wednesday, February 20, 2019 2:07 PM To: Alicia Farrell (FarrellA@dnr.sc.gov) <FarrellA@dnr.sc.gov>; Andrew Herndon - NOAA Federal <andrew.herndon@noaa.gov>; Andrews, Jill <Jill.Andrews@dnr.ga.gov>; Anthony Sowers <anthony sowers@fws.gov>; Arega, Feleke <aregaf@dhec.sc.gov>; Bennett Weinstein (Bennett.Weinstein1@dnr.ga.gov) <Bennett.Weinstein1@dnr.ga.gov>; Booth, Elizabeth <Elizabeth.Booth@dnr.state.ga.us>; Bradley smith (Bradley.Smith@dnr.ga.gov) <Bradley.Smith@dnr.ga.gov>; Chuck Hayes <Chuck Hayes@fws.gov>; Claude Jackson (CJackson@dot.ga.gov) <CJackson@dot.ga.gov>; Curtis Joyner (JOYNERCM@dhec.sc.gov) <JOYNERCM@dhec.sc.gov>; Cynthia Cooksey <Cynthia.Cooksey@noaa.gov>; Dean Harrigal <HarrigalD@dnr.sc.gov>; 'donald imm@fws.gov'; Felicia Sanders <SandersF@dnr.sc.gov>; Fischer, Steven A CIV USARMY CESAS (US) <Steven.A.Fischer@usace.army.mil>; Fritz Rohde - NOAA Federal <fritz.rohde@noaa.gov>; Heather Preston (prestohs@dhec.sc.gov) cprestohs@dhec.sc.gov>; Higgins, Jamie <Higgins.Jamie@epa.gov>; hmoorer@gaports.com; Holliman, Daniel <Holliman.Daniel@epa.gov>; Holly Gaboriault <holly t gaboriault@fws.gov>; Jenna Stockton (jenna.stockton@dnr.ga.gov) <jenna.stockton@dnr.ga.gov>; Jennifer Welte <Jennifer.Welte@dnr.state.ga.us>; Lorianne Riggin (RigginL@dnr.sc.gov) <RigginL@dnr.sc.gov>; McCallum, Brian <bemccall@usgs.gov>; Moore, Kelie <Kelie.Moore@dnr.ga.gov>; Pace.Wilber@noaa.gov; Parkin Hunter <phunter@scag.gov>; "Paul Lamarre' (E-mail)' <Paul Lamarre@dnr.state.ga.us>; rlowell@willoughbyhoefer.com; Russell Webb <russell webb@fws.gov>; Shaw Davis@fws.gov; 'Somerville, Eric' <Somerville.Eric@epa.gov>; Stacie Crowe <CroweS@dnr.sc.gov>; Stephen Wiedl (stephen.wiedl@dnr.ga.gov) <stephen.wiedl@dnr.ga.gov>; Stout, Christopher <stoutcm@dhec.sc.gov>; Tom Gallo <tomgallo@wqr-inc.com>; Trey Daniell (rdaniell@dot.ga.gov) <rdaniell@dot.ga.gov>; Wade Cantrell <CANTREWM@dhec.sc.gov>; 'wdmossjr@gmail.com'; Wikoff, Bill
<bill wikoff@fws.gov>; Williams, Blair N. <williabn@dhec.sc.gov> Cc: Armetta, Robin E CIV USARMY CESAS (US) <Robin.E.Armetta@usace.army.mil> Subject: Public Notice for Fish Passage EA

Sorry all,

I forgot to send this to the group. You can send comments to the e-mail address or physical address in the Public Notice or to Robin.E.Armetta@usace.army.mil.

Thank You Nathan Dayan Environmental Team Leader Planning Branch - Planning, Programs, and Project Management Division USACE - Savannah District 912-652-5172 From: To: Cc: Subject: Date: szenes-maintikul Samih, Bending: Dayan, Nathan S. CTV USARMY CESAS (USS): Amerita. Bobin F. CTV USARMY CESAS (USA) Facher, Steven A. CTV USARMY CESAS (US): Zeno, Weis: Banyas, Madeline: Gossett, Kaela (Non-NDO Source) RE: SHEP Finit Passage at New Savannah Lock and Dam - No New Issuance of 401 WQC Intended by GaEPO Wenchesdy, June 25, 2019 327:33 BM

Yes, Nathan. Based on the understanding conveyed in the Post Authorization Analysis Report (PAAR) and the Supplemental Environmental Assessment (SEA) that materials as would be employed at the currently planned fish passage and placed into waters of the U.S. are essentially the same as had been embraced by the earlier 2012 Final Environmental Impact Statement (FEIS), GaEPD does not plan to require reissuance of 401 water quality certification for the subject fish passage at New Savannah Bluff Lock & Dam.

Additional formal statement to this effect is as follows:

The Georgia EPD Wetlands Unit has reviewed the Corps' proposal to install a fish passage in the Savannah River at the location of the New Savannah Bluff Lock and Dam consisting of a series of full width fixed crest weirs to replace the dilapidated lock and dam structure. The Corps also proposes the construction of a fish passage at the New Savannah Bluff Lock and Dam site will not have a reasonably foreseeable degradation to water quality. Furthermore, a new 401 water quality certification will not be required.

Stephen C. Wiedl, PWS Manager - Wetlands Unit Georgia Environmental Protection Division 7 Martin Luther King, Jr. Drive, Suite 450 Atlanta, GA 30334

404-452-5060 Stephen.Wiedl@dnr.ga.gov

Nathan, I believe that is correct, but I've copied my manager Stephen Wiedl for the final say so. Thanks, Bradley Smith GA EPD - Wetlands Unit

GA EPD - Wettands Unit Watershed Protection Branch Coastal District Office 400 Commerce Center Drive Brunswick, Georgia 31523

Office: 912.262.3196 Mobile: 912.399.6680 Email: Bradley.Smith@DNR.GA.GOV

-----Original Message-----From: Dayan, Nathan S CIV USARMY CESAS (US) [mailto:Nathan S. Dayan@usace.army.mi]] Sent: Wednesday, June 26, 2019 1:58 PM To: Smith, Bradley, Armetta, Robin E CIV USARMY CESAS (USA) Cc: Fisherb, Steven A CIV USARMY CESAS (US) Subject: SHEP Fish Passage at New Savannah Lock and Dam

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Bradley, From the conversation I had with Robin, after she talked to you, it is my understanding that GA DNR is not planning on informing USACE Savannah District that the existing 401 WQ certification from 2012 for SHEP does not cover the planned fish passage (Alternative 2-6d) that was described in the PAASEA (Blockedhtps//gcol) astellniks.protection.outlook.com? url=https/iSAN22Ps/2Fwww.ass.usace.amy.ml/APFortals/02F01/02F0ord/02FPIannadReports2019/42FFishPassage/42FPUBLIC_REVIEW_DRAFT_SHEP_fish_Passage_at_NSBLD_15_Feb_19v2.pdf%3Fvcrf/s1D2019-02-15-192121-343&:data=-vpl*/2CDV/37C5bp/37C5bp/37C5bp/37C5b0772452063502&:data=-vpl%2BvEFICRV1h1/151Ps/KKo8UWbGQG2mMtviAtePSNA%3D&:rserved=0). Please confirm that this is a true statement? And that GA DNR is not planning on requesting USACE Savannah District to request and new or an update to the existing 401 WQ certification?

If you have any questions please contact Robin or myself.

Thank You Trans Tou Nathan Dayan Environmental Team Leader Planning Branch - Planning, Frograms, and Project Management Division USACE - Savannah District 912-652-5172

From:	<u>ePermitting</u>
То:	Armetta, Robin E CIV USARMY CESAS (USA)
Subject:	[Non-DoD Source] SC ePermittingSubmission Status Change Notification - HNN-CF2Y-XR4RM, Draft Integrated Post Authorization Analysis Report and Supplemental Environmental Assessment
Date:	Wednesday, July 24, 2019 10:06:54 PM

SCDHEC ePermitting User,

This notification is to inform you of a status change on your submission of "OCRM Federal Coastal Zone Consistency Certification Request" (submission HNN-CF2Y-XR4RM) for Draft Integrated Post Authorization Analysis Report and Supplemental Environmental Assessment. The status has been updated to status "Withdrawn" on 3/29/2019 12:00:00 AM.

?Reason for Status Change: Project is outside of the Coastal Zone and is to enhance fish passage along the Savannah River. There are no reasonable foreseeable coastal effects for this project.

?The processor assigned to your submission is Christopher M Stout.

This is an automated notification generated by the SCDHEC ePermitting system.

Thank you,

<Blockedhttp://www.dhec.sc.gov/images/logo 4c-(2).jpg>

SC Department of Health and Environmental Control

Connect: Blockedwww.scdhec.gov <Blockedhttp://www.scdhec.gov> Facebook <Blockedhttps://www.facebook.com/SCDHEC> Twitter <Blockedhttps://twitter.com/scdhec>

PRIVACY NOTICE: The information contained in this message and all attachments transmitted with it may contain legally privileged and/or confidential information intended solely for the use of the individual or entity to whom it is addressed. Access to this information by any other individual is unauthorized and may be unlawful. If the reader of this message is not the intended recipient, you are hereby notified that any reading, dissemination, distribution, copying, or other use of this message or its attachments is strictly prohibited. If you have received this message in error, please notify the sender immediately and delete the information without retaining any copies. Thank you.