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Abstract
The City of Savannah operates an industrial and domestic 

water-supply intake on Abercorn Creek approximately 2 miles 
from the confluence with the Savannah River upstream from 
the Interstate 95 bridge. Chloride concentrations are a major 
concern for the city because industrial customers require 
water with low chloride concentrations, and elevated chloride 
concentrations require additional water treatment in order 
to meet those needs. The proposed deepening of Savannah 
Harbor could increase chloride concentrations (the major ion 
in seawater) in the upper reaches of the lower Savannah River 
estuary, including Abercorn Creek. 

To address this concern, mechanistic and empirical 
modeling approaches were used to simulate chloride concen-
trations at the city’s intake to evaluate potential effects from 
deepening the Savannah Harbor. The first approach modified 
the mechanistic Environmental Fluid Dynamics Code (EFDC) 
model developed by Tetra Tech and used for evaluating 
proposed harbor deepening effects for the Environmental 
Impact Statement. Chloride concentrations were modeled 
directly with the EFDC model as a conservative tracer. This 
effort was done by Tetra Tech under a separate funding agree-
ment with the U.S. Army Corps of Engineers and documented 
in a separate report. The second approach, described in this 
report, was to simulate chloride concentrations by developing 
empirical models from the available data using artificial neural 
network (ANN) and linear regression models. The empirical 
models used daily streamflow, specific conductance (field 
measurement for salinity), water temperature, and water color 
time series for inputs. 

Because there are only a few data points that describe 
the relation between high specific conductance values at the 
Savannah River at Interstate 95 and the water plant intake, 
there was a concern that these few data points would deter-
mine the extrapolation of the empirical model and potentially 
underestimate the effect of deepening the harbor on chloride 

concentrations at the intake. To accommodate these concerns, 
two ANN chloride models were developed for the intake. The 
first model (ANN M1e) used all the data. The second model 
(ANN M2e) only used data when specific conductance at 
Interstate 95 was less than 175 microsiemens per centimeter 
at 25 degrees Celsius. Deleting the conductivity data greater 
than 175 microsiemens per centimeter removed the “plateau” 
effect observed in the data. The chloride simulations with the 
ANN M1 model have a low sensitivity to specific conductance 
(salinity) at Interstate 95, whereas the chloride simulations 
with the ANN M2 model have a high sensitivity to salinity at 
Interstate 95.

The two modeling approaches (Tetra Tech’s EFDC model 
and the one described in this report) were integrated into a 
decision support system (DSS) that combines the historical 
database, output from EFDC, ANN models, ANN model 
simulation controls, streaming graphics, and model output. 
The DSS was developed as a Microsoft Excel™/Visual 
Basic for Applications program, which allowed the DSS to 
be prototyped, easily modified, and distributed in a familiar 
spreadsheet format. The EFDC and ANN models were used to 
simulate various harbor deepening scenarios. To accommodate 
the geometry changes in the harbor, the ANN models used 
the EFDC model-simulated salinity changes for a historical 
condition as input. The DSS uses a graphical user interface 
and allows the user to interrogate the ANN models and EFDC 
output. 

Two scenarios were simulated using the Savannah 
Chloride Model DSS to demonstrate different input options. 
One scenario decreased winter streamflows to a constant 
streamflow for 45 days. Streamflows during the period 
January 1 to February 15 were set to a constant 3,600 cubic 
feet per second for the simulation period of October 1, 2006, 
to October 1, 2009. The decreased winter streamflow resulted 
in predictions of increased specific conductance by as much as 
50 microsiemens per centimeter and chloride concentrations 
by as much as 4.8 milligrams per liter during the periods 
of decreased streamflows. The second scenario used EFDC 
output for a 4-foot deepening of the harbor and streamflow 
configurations to mitigate for salinity increases in the vicinity 
of an extensive freshwater tidal marsh. A 4-foot harbor 
deepening scenario was simulated for the 7-year period from 
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January 2003 to October 2009. The ANN M2e model is more 
sensitive than the ANN M1e model to changes in specific 
conductance resulting from a 4-foot deepening and simulates 
chloride concentrations as high as 40 milligrams per liter. The 
ANN M1e model, which used all the data, simulated chloride 
concentration as high as 20.3 milligrams per liter.

Introduction 
The City of Savannah owns and operates an industrial 

and domestic (I&D) water treatment plant. The raw water 
intake for this facility is on Abercorn Creek, a tributary of the 
Savannah River (fig. 1). The conventional water treatment 
plant was constructed in 1947 to treat 35 million gallons of 
water per day (Mgal/d). The plant originally served many 
industries in the area that required water with a chloride 
concentration of less than 12 milligrams per liter (mg/L). 
Historically, the water plant withdrew groundwater and 
surface water to meet its quantity and quality water demands. 
As the population of Savannah increased, the treatment plant 
and its associated processes have been upgraded to its current 
75-Mgal/d maximum capacity. Because of groundwater 
salinity intrusion in the Savannah area, a capacity-use restric-
tion has been imposed on groundwater withdrawals, and the 
plant has expanded its use of surface-water supplies (Georgia 
Environmental Protection Division, 2001). 

Abercorn Creek is tidally affected by the Savannah River 
estuary (fig. 2); thus, the daily tidal fluctuations cause the 
continuous change in the physical and chemical characteristics 
of the source water and add to the complexity of the treatment 
process. Chloride is the major ion in seawater, and although 
Abercorn Creek is a freshwater system with salinity less 
than 0.5 practical salinity unit (psu), there is concern that the 
proposed deepening of Savannah Harbor will increase salinity 
in the lower Savannah River estuary and ultimately chloride 
concentrations at the intake.

The U.S. Geological Survey (USGS) and the U.S. Army 
Corps of Engineers (USACE) determined that this concern 
presented an opportunity to develop an empirical model using 
data-mining techniques, including artificial neural network 
(ANN) models, to simulate specific conductance and chloride 
concentrations in Abercorn Creek using the real-time gaging 
network and water-quality data for Abercorn Creek and the 
lower Savannah River estuary. The USGS, in cooperation with 
the USACE–Savannah District, initiated a study to (1) develop 
empirical models to simulate chloride concentrations at 
the City of Savannah intake and (2) develop a spreadsheet 
application that integrates historical data, empirical chloride 
models, and output from the three-dimensional (3D) mecha-
nistic model of Savannah Harbor that is easy to use and can be 
readily disseminated. The USGS collaborated with Tetra Tech 
and Advanced Data Mining (contractors to USACE–Savannah 
District) on this study. 

The USGS entered into a Cooperative Research and 
Development Agreement (CRADA) with Advanced Data 
Mining in 2002 to collaborate on applying data-mining 
techniques and ANN models to water-resources investiga-
tions. The emerging field of data mining addresses the issue 
of extracting information from large databases (Weiss and 
Indurkhya, 1998). Data-mining methods come from different 
technical fields, such as signal processing, statistics, artificial 
intelligence, and advanced visualization. Data mining uses 
methods for maximizing the information content of data, 
determining which variables have the strongest correlations 
to the problems of interest, and developing models that 
predict future outcomes. This knowledge encompasses both 
understanding of cause-effect relations and predicting the 
consequences of alternative actions. 

Purpose and Scope

This report presents the results of an investigation in 
which the relation between specific conductance and chloride 
concentrations in the Abercorn Creek as a result of changing 
streamflow and tidal conditions was analyzed. This report 
documents the development of the Savannah Cloride Model 
Decision Support System (SCM DSS) and provides examples 
of applying the SCM DSS to simulate chloride response 
caused by modifications to Savannah Harbor.

An important part of the USGS mission is to provide 
scientific information for the effective water-resources 
management of the Nation. To assess the quantity and quality 
of the Nation’s surface water, the USGS collects hydrologic 
and water-quality data from rivers, lakes, and estuaries by 
using standardized methods (Rantz and other, 1982; Wagner 
and others, 2000) and maintains the data from these stations in 
national databases. Often these databases are underutilized for 
addressing contemporary hydrologic issues. The techniques 
presented in this report demonstrate how information can be 
extracted from disparate databases and used to assist local, 
State, and Federal agencies. The application of data-mining 
techniques, including the application of ANN models, 
to simulate chloride concentrations in Abercorn Creek 
demonstrates how empirical models of complex hydrologic 
systems can be developed, disparate databases and models can 
be integrated, and study results can be easily disseminated to 
meet the needs of a broad range of end users. The results of 
this investigation also demonstrate how the extrapolation of 
models to conditions much greater than historical conditions 
can have substantial effects on predicted results and how the 
need for extrapolation can be accommodated in the model 
development. 
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Figure 1.  The Abercorn Creek study area, Effingham County, Georgia.
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Description of the Study Area

Complex estuarine and freshwater tidal systems are 
constantly responding to changing hydrologic, tidal, and 
meteorological conditions. Dyer (1997) stated that the 
challenge of studying estuaries is “… that river flow, tidal 
range, and sediment distribution are continually changing 
and this is exacerbated by the continually changing weather 
influences. Consequently, some estuaries may never really be 
steady-state systems; they may be trying to reach a balance 
they never achieve.”  The estuarine portions of the Savannah 
River (Interstate 95 [I–95] to the Atlantic Ocean) and the 
tidal freshwater Abercorn Creek are constantly integrating 
the changing streamflow of the Savannah River Basin, 
changing tidal conditions of the Atlantic Ocean, and changing 
meteorological conditions, including wind direction and speed, 
rainfall, low- and high-pressure systems, and hurricanes. The 
location of the saltwater-freshwater interface is a balance 
between upstream river flows and downstream tidal forcing 
(fig. 3). During periods of high streamflow, it is difficult for 
salinity to intrude upstream, and the saltwater-freshwater 
interface is moved downstream toward the ocean. During 
periods of low streamflow, salinity is able to intrude upstream, 
and the saltwater-freshwater interface is moved upstream by 
tidal forcing—either by an increase in mean water levels or a 
change in tidal range, or a combination of the two. 

The Savannah River estuary is considered a partially 
stratified system with large differences in surface and bottom 
salinities occurring during neap and spring tides over the 
14- and 28-day cycles (fig. 3). During spring tides (tides with 
the largest tidal range), there is increased energy in the system 
and mixing of less dense freshwater of the river and denser 
saltwater of the harbor. The mixing results in smaller variation 
in vertical salinity concentrations. During neap tides (tides 
with the smallest tidal range), there is decreased energy in the 

system and less mixing between the freshwater and saltwater. 
The decreased mixing allows the freshwater to flow down-
stream over the saltwater intruding upstream. The decrease 
in mixing results in an increased salinity gradient from the 
surface to the bottom of the water column and increased 
salinity intrusion upstream. The partial stratification of the 
Savannah River estuary occurs downstream from the I–95 
bridge gage. In the upper reaches of the estuary and upstream 
from I–95, the system is well mixed.

Abercorn Creek is a tributary to the Savannah River 
located in the coastal plain of Georgia (figs. 1, 2). The 
confluence of Abercorn Creek with the Savannah River is 
approximately 1 mile upstream from the I–95 bridge. Water 
enters Abercorn Creek from Bear Creek, which receives 
streamflow from the Savannah River, approximately 13 river 
miles upstream from the confluence of Abercorn Creek and the 
Savannah River (fig. 1). In the reach of the Savannah River 
between the headwaters of Bear Creek and the confluence 
of Abercorn Creek, the tidal fluctuations are dampened out. 
The intake for the City of Savannah Water Plant is located 
approximately 2 miles from the confluence with the Savannah 
River. Abercorn Creek is a tidal freshwater system with 
semidiurnal tides and salinity concentration less than 0.5 psu. 
The USGS maintains a real-time gaging station near the intake 
(station 02198810; figs. 1, 2) that records gage height, stream 
velocity, specific conductance, temperature, and precipitation 
at 15-minute intervals (http://waterdata.usgs.gov/ga/nwis/
uv/?site_no=02198810). Gage heights at the intake vary 
between approximately –3.5 and 5.5 feet (ft North American 
Vertical Datum 1988), and reversing tidal streamflows are 
between –3,800 and 3,500 cubic feet per second (ft3/s; fig. 4). 
Specific conductance, a field measurement that can be used to 
compute salinity, typically is less than 150 microsiemens per 
centimeter (µS/cm) at 25 degrees Celsius. 

Figure 3.   Conceptual model of the location of the freshwater-saltwater interface and
salinity stratification–de-stratification cycle in estuarine rivers (from Conrads and
others, 2006).
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Figure 3.  Conceptual model of the location of the freshwater-saltwater interface and salinity 
stratification-de-stratification cycle in estuarine rivers (from Conrads and others, 2006).

http://waterdata.usgs.gov/ga/nwis/uv/?site_no=02198810
http://waterdata.usgs.gov/ga/nwis/uv/?site_no=02198810
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Figure 4.   (A) Gage heights and (B) streamflow for Abercorn Creek near Savannah, Georgia (station 02198810),
for the period June 14 to August 12, 2010.
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Figure 4.  (A) Gage heights and (B) streamflow for Abercorn Creek near Savannah, Georgia (station 02198810, 
Intake), for the period June 14 to August 12, 2010.
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Previous Studies
Numerous ecological and hydrologic studies have been 

conducted to evaluate the potential effects of the proposed 
deepening of Savannah Harbor (Collins and others, 2001; 
Will and Jennings, 2001; Conrads and others, 2006; Tetra 
Tech, 2006a; Welch and Kitchens, 2006). Tetra Tech (2006b) 
analyzed the available chloride data to predict chloride 
concentrations at the intake on Abercorn Creek in response 
to downstream harbor modifications. Results from the Tetra 
Tech (2006b) study were used to develop a relation between 
upstream flow and chloride measurements at the water plant 
intake, investigate the effect of past harbor deepening on 
chloride levels at the intake, identify other potential sources 
of chloride, and develop a predictive model for chloride 
concentrations. The scarcity of data was noted during the 
Tetra Tech study, and associated uncertainties in the modeling 
results were recognized by technical reviewers. 

Tetra Tech (2010) addressed technical reviewer’s con-
cerns with additional data and changes to the Environmental 
Fluid Dynamic Code (EFDC) model previously developed for 
evaluating harbor deepening scenarios (Hamrick, 1992; Tetra 
Tech, 2006a) to simulate chloride concentrations in Abercorn 
Creek. Tetra Tech (under a separate funding agreement with 
the USACE0–Savannah District) modified the EFDC model 
of the lower Savannah River to include Bear, Little Collis, Big 
Collis, Little Abercorn, and Abercorn Creeks (fig. 1). Chloride 
concentrations at the water plant intake were modeled as a 
conservative tracer directly with EFDC. The EFDC model 
uses boundary input data of streamflow, riverine and harbor 
chloride concentrations, and coastal water levels. Output from 
the EFDC model can be used as input for the ANN models in 
the DSS.

The emerging field of data mining involves extracting 
information from large databases. Data mining encompasses 
several technologies, including signal processing, advanced 
statistics, multidimensional visualization, chaos theory, and 
machine learning. Machine learning is a field of artificial 
intelligence in which computer programs are developed that 
automatically learn cause-effect relations from example cases 
and data. For numerical data, commonly used methods of 
machine learning include ANNs, genetic algorithms, multi-
variate adaptive regression splines, and partial and ordinary 
least squares. 

Previous studies by the authors and others have used 
data-mining techniques to predict hydrodynamic and water-
quality behaviors in the Beaufort, Cooper, Savannah, and 
Waccamaw River estuaries of South Carolina and Georgia 
(Roehl and others, 2000; Conrads and others, 2003; Conrads 
and others, 2006; Conrads and Roehl, 2007) and stream tem-
peratures in western Oregon (Risley and others, 2003). ANN 
models have also been used successfully over finite temporal 
resolutions (hourly or less) to simulate wind conditions 
and lake hydrodynamics (Buccola and Wood, 2010). These 
studies have demonstrated that ANN models, combined with 
data-mining techniques, can provide an effective approach for 
simulating complex hydrologic systems. 

Approach

The variability of specific conductance data and chloride 
concentrations in Abercorn Creek is a result of many factors, 
including streamflow and tidal conditions. Empirical and 
mechanistic modeling approaches were funded by the USACE 
to evaluate chloride dynamics on Abercorn Creek and to 
compare the results of the two modeling approaches. The 
empirical modeling approach was to develop ANN models to 
simulate specific conductance and chloride concentrations at 
the water plant intake. The empirical modeling approach used 
correlation functions that were synthesized directly from data 
to predict how specific conductance and chloride concentration 
at the City of Savannah intake respond to changing streamflow 
and tidal conditions. Continuous hydrologic datasets as well as 
sampling data collected at the water plant intake were avail-
able for Abercorn Creek and the Savannah River at the I–95 
bridge. Empirical specific-conductance and chloride models 
were developed directly from these data by using data-mining 
techniques, linear regression, and ANN models. 

The application of data-mining techniques to develop 
empirical models to simulate the specific conductance data 
and chloride concentration was undertaken in three phases: 
(1) obtaining and evaluating the suitability of the hydrologic 
and water-quality data for developing empirical models; 
(2) developing models to simulate the specific conductance 
and chloride concentration at the intake; and (3) developing 
a DSS that integrates historical databases, linear regression 
and ANN models, model controls, and model output into a 
spreadsheet application with a graphical user interface that 
allows the user to simulate scenarios of interest. Output from 
the EFDC model (Tetra Tech, 2010) can be used as input for 
the ANN models in the DSS.

Data-Collection Networks 
Many resource entities have collected data in the lower 

Savannah River, including the USGS, National Oceanic 
Atmospheric Administration, U.S. Environmental Protection 
Agency, Georgia Environmental Protection Division, South 
Carolina Department of Health and Environmental Control, 
the City of Savannah, the Georgia Ports Authority, and local 
colleges and universities. For this study, continuous data 
from the USGS network and discrete water-quality samples 
collected by the City of Savannah were used for analysis and 
to develop an empirical model and to calibrate mechanistic 
models. 

The USGS has maintained a network of continuous 
streamflow, water-level, and water-quality monitors in the 
lower Savannah River since the mid-1980s. The current 
(2010) monitoring network is shown in figure 2, and stations 
are listed in table 1. In October 2009, a continuous monitoring 
station was installed on Abercorn Creek near the water plant 
intake (station 02198810) to record water level, velocity 
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(used to compute tidal streamflow), temperature, and specific 
conductance data. In addition to the continuous monitoring 
data, water samples for analysis of chloride concentrations 
and other water-quality ions have been collected. The City of 
Savannah has sampled the source water at the intake on a daily 
basis since the 1980s. Beginning in 2003, these samples were 
collected at hourly intervals and then composited as a daily 
sample for analysis of chloride concentrations and analytes 
(table 2) at the water treatment facility. 

Discrete water-quality samples have been collected in the 
upper portion of the lower Savannah River by the USGS in 
response to the interest in the salinity and chloride dynamics 
near the water plant intake. Automatic samplers were installed 
in the spring of 2009 to collect water samples for chloride and 
specific conductance analysis at stations 02198745, 02198810, 
02198840, and 02198920 (fig. 2). These data were used to 
evaluate the EFDC model chloride simulations (Tetra Tech, 
2010).

Table 1.  U.S. Geological Survey continuous river gaging network (2011) for the lower Savannah River.

[NAD 83, North American Datum of 1983; Q, flow; DOR, date of report; WL, water level; SC, specific conductance; T, temperature; V, velocity; I, Interstate 
Highway; GA, Georgia; Precip, precipitation; USACE, U.S. Army Corps of Engineers; bold text are the station names used in this study]

Station 
number

Station name
Recorded  
physical  

properties
Period of record

Longitude 
(decimal  
degrees,  
NAD 83)

Latitude  
(decimal  
degrees,  
NAD 83)

02198500 Savannah River near Clyo, Georgia (Clyo) Q October 1929 – DOR –81.269 32.528
02198745 Savannah River near Rincon, Georgia WL, SC , T April 2009 – June 2010 –81.162 32.353
02198760 Savannah River above Hardeeville,  

South Carolina
WL October 1987 – DOR –81.129 32.339

02198810 Abercorn Creek near Savannah, Georgia 
(Intake)

V, SC, WL, Q October 2009 – DOR –81.178 32.256

02198840 Savannah River near Port Wentworth,  
Georgia (I–95)

WL, SC, T, 
Precip

June 1986 – DOR –81.151 32.236

02198920 Savannah River at GA 25  
at Port Wentworth, Georgia

WL, SC October 1987 – DOR –81.154 32.166

02198950 Middle River at GA 25 at  
Port Wentworth, Georgia

V, SC, WL, Q November 2008 – DOR –81.138 32.166

021989773 Savannah River at USACE Dock,  
at Savannah, Georgia

V, SC, WL, Q May 2007 – DOR –81.081 32.081

021989784 Little Back River above Lucknow Canal, 
near Limehouse, South Carolina

SC, WL May 1990 – DOR –81.118 32.186

021989792 Little Back River at GA 25 at Port  
Wentworth, Georgia

V, SC , WL , Q November 2008 – DOR –81.1300 32.166

02198980 Savannah River at Fort Pulaski, Georgia WL October 1987 – DOR –80.903 32.034
02199000 South Channel Savannah River near  

Savannah, Georgia
WL October 2009 – DOR –80.003 32.083

Table 2.   Water-quality constituents analyzed daily by the City 
of Savannah at the Abercorn Creek intake.

Alkalinity Nitrate
Aluminum Nitrite
Bicarbonate alkalinity pH
Calcium hardness Phenolphthalein alkalinity
Carbon dioxide Phosphate
Carbonate alkalinity Silica
Chloride Sodium
Color Specific conductance
Dissolved oxygen Sulfates
Fluoride Total dissolved solids
Hydroxide alkalinity Temperature
Iron Total organic carbon
Langelier Saturation Index Total hardness
Magnesium hardness Total suspended sediment
Manganese Turbidity
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Limitation of the Datasets

As with any modeling effort, empirical or mechanistic, 
the reliability of the model is dependent on the quality of the 
data and range of measured conditions used for training or 
calibrating the model. The available period of record for the 
river data-collection networks and the discrete water-quality 
data can limit the range of streamflow, water-level, tidal 
range, salinity, and chloride conditions that the models can 
accurately simulate. A long period of continuous record and 
large range of historical conditions are critical for developing 
accurate empirical models. For these reasons, the long-term, 
water-quality data collected at the intake by the City of 
Savannah were used for the empirical model development 
rather than the short-term data collected in 2009. Although the 
intake data provide the longest continuous record of chloride 
concentrations at the intake, these data were not collected 
for the purpose of analyzing chloride dynamics in the tidally 
affected Abercorn Creek.

 Proposed depths for deepening the shipping channel of 
the harbor range from 2 to 6 feet. The proposed mitigation 
plan to minimize the salinity effects associated with the 
proposed deepening of Savannah Harbor involves major 
changes to the channel geometries and channel connections 
of the lower Savannah River estuary below the I–95 bridge 
(Plan 6A, fig. 5). Although the proposed channel deepening is 
2–6 ft, the mitigation plan includes the deepening of channel 
connections to –14 feet NAVD 1988. These changes would 
likely affect the correlation between water-quality conditions 
below the I–95 bridge and the water plant intake. To avoid 
potential changes in the correlation between stations on the 
Savannah River and the water quality at the intake, only two 
long-term stations, which are at or upstream from the I–95 
bridge, were used in the development of the empirical models. 
Streamflow data from station 02198500, Savannah River near 
Clyo, GA, (referred to as Clyo in this report) and water-level, 
specific conductance, temperature, and precipitation data from 
station 02198840, Savannah River near Port Wentworth, GA, 

95

Plan 6A

•   McCoy cut diversion structure

•   Channel deepening on McCoy cut
     to –14.0 feet NAVD and Upper Middle
     and Little Back River to –10.8 feet NAVD

•   Fill entire sediment basin to –13.6 feet NAVD

•   Close rifle cut

•   Remove tidegate abutments and piers

•   Close Lower Arm at McCoy cut

Figure 5.   Mitigation Plan 6A (modified from U.S. Army Corps of Engineers, 2010).
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Figure 5.  Mitigation Plan 6A (modified from U.S. Army Corps of Engineers, 2010).
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(referred to as I–95 in this report) were used for developing 
empirical models to predict specific conductance data and 
chloride concentration at the intake. 

Data Preparation

The USGS and City of Savannah databases needed to be 
merged into one database for analysis and model development. 
The principal chloride dataset is the City of Savannah daily 
monitoring data for the water plant intake. The hourly and 
15-minute streamflow data from the USGS Clyo gage and 
water level, specific conductance, and temperature from the 
USGS I–95 gage needed to be reduced to daily values and 
merged with the City of Savannah daily data. Tidal systems, 
such as Abercorn Creek and the lower Savannah River estuary, 
are highly dynamic and exhibit complex behaviors that evolve 
over multiple time scales. The complex behaviors of the 
variables in a natural system result from interactions between 
multiple physical forces. The semidiurnal tide is dominated 
by the lunar cycle, which is more influential than the 24-hour 
solar cycle; thus, a 24-hour average is inappropriate to use 
to reduce tidal data to daily values. For analysis and model 
development, the USGS data were digitally filtered to remove 
semidiurnal and diurnal tidal variability by using nested 
moving-window averages of 25 and 13 hours. Removing the 
semidiurnal tidal frequency allows a signal component that 
lies within a window of frequencies (for example, the  
12.4-hour tidal cycle lies between periods of 12.0 to 
13.0 hours) to be excised, analyzed, and modeled indepen-
dently of other components. Digital filtering also can diminish 
the effect of noise in a signal to improve the amount of useful 
information that it contains. Working with filtered signals 
makes the modeling process more efficient, precise, and 
accurate. The Savannah River at Clyo is not tidally affected, 
and the daily mean streamflow values were used.

Tidal range (XWL) was computed from the field 
measurements of the physical properties. Tidal dynamics are 
a dominant force for estuarine systems, and the tidal range is 
a significant variable for determining the lunar phase of the 
tide and flushing dynamics of coastal rivers. Tidal range is 
calculated from water level (or gage height) and is defined as 
the water level at high tide minus the water level at low tide 
for each semidiurnal tidal cycle. 

Characterization of Specific 
Conductance and Chloride 
Concentration

Chloride is a naturally occurring ion deposited in the 
earth’s soils or dissolved in the oceans. Concentrations found 
in freshwater can be from weathering of rocks containing 
chloride ion or from byproducts in anthropogenic sources, 
such as road salts, fertilizers, and industrial generation. 
Chloride makes up 1.9 percent of seawater by mass. Tetra 
Tech (2006b) obtained chloride data from 10 USGS sampling 
stations (table 3; fig. 6) in the Savannah River Basin to 
evaluate potential sources of chloride in Abercorn Creek. 
Chloride concentrations from the six freshwater sites varied 
from 0.2 to 6.5 mg/L (table 4). Chloride concentrations at two 
stations in the lower Savannah River estuary were as high as 
11,000 mg/L. 

Salinity intrudes into the lower Savannah River estuary 
from the ocean. The location of the saltwater-freshwater 
interface is determined by a balance between upstream river 
flows and downstream tidal forcing. During periods of high 
streamflow, it is difficult for salinity to intrude upstream, and 
thus, the saltwater-freshwater interface is moved downstream 
toward the ocean. During periods of low streamflow, salinity 

Table 3.  U.S. Geological Survey stations used for chloride surface-water 
assessment in Tetra Tech, 2005.

[Stations in bold font were used in this study. Station locations are shown in figure 6]

Station Station description

02187500 Savannah River near Iva, South Carolina
02189000 Savannah River near Calhoun Falls, South Carolina
02192500 Little River near Mt. Carmel, South Carolina
02196000 Stevens Creek near Modoc, South Carolina
02196838 Butler Creek Reservoir at Fort Gordon, Georgia
02197300 Upper Three Runs near New Ellenton, South Carolina
02198500 Savannah River near Clyo, Georgia (Clyo)
02198840 Savannah River near Port Wentworth, Georgia (I–95)
02198920 Savannah River at GA 25 at Port Wentworth, Georgia
02198980 Savannah River at Fort Pulaski, Georgia
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Figure 6.   Locations of U.S. Geological Survey water-quality sampling stations used for surface-water assessment
in Tetra Tech 2006b.
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is able to intrude upstream, and subsequently, the saltwater-
freshwater interface is moved upstream. Historically, stream-
flows at Clyo range from 5,000 to 50,000 ft3/s (U.S. Geologi-
cal Survey, 2011). Salinity in the Savannah River estuary 
varies in response to changing streamflow and tidal conditions. 
The daily maximum specific conductance at the I–95 gage and 
daily mean streamflow for the Clyo gage and the dates of the 
new moon for the summer of 2009 are shown in figure 7. The 
data show that there is a convergence of conditions needed 
for the elevated specific conductance (the field measurement 
for computing salinity): Savannah River streamflow must be 
less than 6,000 ft3/s at the occurrence of spring tide of the 

new moon. During the new moon, tidal ranges are greatest 
when the gravitation attraction of the sun and moon are 
aligned. The increased tidal energy under these conditions 
typically leads to a salinity intrusion event. Meteorological 
conditions, such as tropical storms and high winds, may 
exacerbate salinity intrusion.

The salinity dynamics at the City of Savannah’s 
intake, approximately 3 miles from the I–95 gage, differ 
substantially from the dynamics at the I–95 bridge. The 
spikes in salinity intrusions at I–95 are dampened at the 
intake. Figure 8 shows 9 years of streamflow at the Clyo 
gage and specific conductance data at the I–95 gage and 
the intake. The specific conductance at the I–95 gage 
shows rapid increases when streamflow decreases below 
6,000 ft3/s. The specific conductance at the intake does 
not show rapid increases but rather gradual increases. The 
dampening of the salinity intrusion also can be seen in a 
3D scatter plot of streamflow at the Clyo gage and specific 
conductance at the I–95 gage and the intake (fig. 9). 
Specific conductance at the intake is shown on the vertical 
z-axis, and Clyo streamflow and specific conductance at 
I–95 are shown on the horizontal x- and y-axes. The scatter 
plot on the right is a rotation of the scatter plot on the 
left. The plots show that as streamflow at Clyo decreases, 
specific conductance at I–95 increases to nearly  
800 µS/cm, whereas at the intake the specific conductance 
values are less than 200 µS/cm. Visually, the specific 
conductance response to low flows at the intake also shows 
a substantial nonlinear component with a “plateau” of 
specific conductance values with decreased streamflow. 
The red arrows in figure 9 are a visual 3D approximation 
of the nonlinear component. A scatter plot of the specific 
conductance at I–95 and the intake provide a two-
dimensional view of the nonlinear relation between specific 
conductance at the two sites (fig. 10). Linear and nonlinear 
(logarithmic) trendlines were fit to the data and show the 

Table 4.  Minimum, maximum, and mean chloride concentration at selected U.S. Geological Survey 
stations.

[Modified from Tetra Tech, 2005]

Station 
 number 
 (fig. 6)

Number of 
observations

First year of 
collection

Last year of 
collection

Minimum Maximum Mean

milligrams per liter

02187500 34 1957 1972 1.4 4.7 2.44
02189000 21 1956 1972 1.2 4.4 2.54
02192500 2 1959 1961 2 2 2
02196000 1 1961 1961 6.5 6.5 6.5
02196838 1 1999 1999 3.68 3.68 3.68
02197300 150 1967 1993 0.2 3.7 2.22
02198920* 33 1958 2003 3.2 6,900 2,239
02198980* 209 1960 1960 3.8 11,000 4,848
 * Stations are located in the estuary.
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Figure 7.   Daily streamflow at Savannah River near Clyo
(station 02198500) and daily maximum specific conductance
at the Savannah River near Port Wentworth, Georgia
(station 02198840, I-95 Bridge),  for the period May to
October 2009, including dates of the new moon.

Figure 7.  Daily streamflow at Savannah River near Clyo (station 
02198500) and daily maximum specific conductance at the Savannah 
River near Port Wentworth, Georgia (station 02198840, I–95 bridge), 
for the period May to October 2009, including dates of the new moon.
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Figure 8.   Flows from Savannah River at Clyo, Georgia, and specific conductance at Savannah River
near Port Wentworth, Georgia, (I-95 Bridge) and water-supply intake on Abercorn Creek for the
period February 2000 to October 2009.
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Figure 8.  Flows from Savannah River at Clyo, Georgia, and specific conductance at Savannah River near Port Wentworth, 
Georgia (I–95 bridge), and water-supply intake on Abercorn Creek for the period February 2000 to October 2009.

Figure 9.   Three dimensional scatter plots of specific conductance at the intake (SCintake)
on Abercorn Creek, Savannah River at the I-95 Bridge (SCI-95), and flows at Savannah River
at Clyo, Georgia (QClyo). Scatter plot on the right is a 90 degree rotation of the scatter plot
on the left. The red arrow is an approximation of the trend of the specific conductance
trend in relation to specific conductance at the I-95 Bridge and streamflow.
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Figure 9.  Three-dimensional scatter plots of specific conductance at the intake (SCIntake) on Abercorn 
Creek, Savannah River at the I–95 bridge (SCI-95), and flows at Savannah River at Clyo, Georgia (QClyo). 
Scatter plot on the right is a 90-degree rotation of the scatterplot on the left. The red arrow is an 
approximation of the trend of the specific conductance trend in relation to specific conductance at the 
I–95 bridge and streamflow. [µS/cm, microsiemens per centimeter; ft3/s, cubic feet per second]
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influence of the few data points where specific conductance is 
greater than 300 µS/cm at the I–95 gage.

Specific conductance probes were deployed at two sites 
near the confluence of Abercorn Creek and the Savannah River 
to collect data during the salinity intrusion event in September 
2010 (fig. 1; John Joiner, U.S. Geological Survey, unpub. 
data, 2010). The data show that there is substantial dampening 
of the specific conductance intrusion in the Savannah River 
between I–95 and Station Sav-3 and additional dampening 
between the Savannah River and the mouth of Abercorn Creek 
(fig. 11). An aerial photograph (date of photograph unknown) 
of the confluence of Abercorn Creek and the Savannah River 
shows a color difference between the two reaches and that 
there is not complete mixing of Abercorn Creek and Savannah 
River waters (fig. 12). The natural dampening of the salinity 
intrusion in Abercorn Creek may be due to differences in 
channel geometries and channel depths at the confluence of 
Abercorn Creek and the Savannah River, watershed dynamics 

in Abercorn and Bear Creeks, differences in slopes between 
Abercorn Creek and the Savannah River, or differences in 
water temperature between Abercorn Creek and the Savannah 
River. 

Chloride concentration at the water treatment plant 
appears to follow a similar dynamic to specific conductance 
with increasing concentration during periods of low 
streamflow and decreasing concentration during periods of 
high streamflow (fig. 13). However, a scatter plot of specific 
conductance and chloride concentration at the intake shows 
substantial variability between the two parameters (fig. 14). 
The correlation between the two parameters is low with a 
coefficient of determination (R2) of 0.57, indicating that 
only 57 percent of the variability in chloride concentrations 
is explained by specific conductance and a large portion of 
the variability in chloride concentration is not explained by 
salinity intrusion in the upper reaches of the lower Savannah 
River estuary.
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Figure 10.   Scatter plots of the specific conductance at the City of Savannah’s
intake and at the Savannah River near Port Wentworth, Georgia (I-95) gage.

Figure 10.  Scatter plots of the specific conductance at the City of Savannah’s intake and 
at the Savannah River near Port Wentworth, Georgia (I–95) gage.
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Savannah River showing the difference in water color of the two streams.
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Abercorn Creek and the Savannah River showing the 
difference in water color of the two streams.
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Figure 13.   Specific conductance and chloride values at the intake on
Abercorn Creek for the period January 2003 to October 2009.
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Figure 14.   Scatter plot of chloride and specific conductance
values at the City of Savannah’s intake on Abercorn Creek.

Figure 13.  Specific conductance and chloride values at the intake on Abercorn Creek 
for the period January 2003 to October 2009.

Figure 14.  Scatter plot of chloride and specific conductance 
values at the intake on Abercorn Creek.
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Simulation of Specific Conductance 
and Chloride Concentrations

Simulating riverine and estuarine systems often is done 
by using dynamic mechanistic (or deterministic) models that 
incorporate the mathematical descriptions of the physics of the 
hydrodynamics and water chemistry of surface-water systems. 
These 1-, 2-, or 3D models generally require extensive data 
collection and are time consuming to apply to estuarine 
systems. Although mechanistic models have been the state 
of the practice for regulatory evaluations of anthropogenic 
effects on hydrologic systems, developments in the field of 
advanced statistics, machine learning, and data mining offer 
opportunities to develop empirical ANN models that often 
are more accurate than multidimensional mechanistic models.  
Conrads and Roehl (1999) compared the application of a 
mechanistic model and an ANN model to simulate dissolved-
oxygen concentrations in the tidally affected Cooper River in 
South Carolina. They found that the ANN models offer some 
advantages, including faster development time, utilization 
of larger amounts of data, the incorporation of optimization 
routines, and model dissemination in spreadsheet applications. 

Artificial Neural Network Models

Models generally fall into one of two categories: mecha-
nistic (or deterministic) or empirical. Mechanistic models are 
created from first-principles equations, whereas empirical 
modeling adapts generalized mathematical functions to fit a 

line or surface through data from one or more variables. The 
most common empirical approach is ordinary least squares, 
which relates variables using straight lines, planes, or hyper-
planes, whether the actual relations are linear or not. Calibra-
tion of either type of model attempts to optimally synthesize a 
line or surface through the measured data. Calibrating models 
is difficult when data have substantial measurement error 
or are incomplete, or when the variables for which data are 
available provide only a partial explanation of the sources 
of variability. The principal advantages of empirical models, 
such as ANN models, over mechanistic models are that they 
can be developed faster and are more accurate provided that 
the modeled systems are well characterized by data. Empirical 
models, however, are prone to problems when poorly applied. 
Overfitting and multicollinearity caused by correlated input 
variables can lead to invalid mappings between input and 
output variables (Roehl and others, 2003). 

An ANN model is a flexible mathematical structure 
capable of describing complex nonlinear relations between 
input and output datasets. The structure of ANN models is 
loosely based on the biological nervous system with intercon-
nections of neurons and synapses (Hinton, 1992). Although 
numerous types of ANN models exist, the most commonly 
used type of ANN is the multilayer perceptron (Rosenblatt, 
1958). As shown in figure 15, multilayer perceptron ANNs 
are constructed from layers of interconnected processing 
elements called neurons with each executing a simple “transfer 
function.” All input layer neurons are connected to all hidden 
layer neurons, and all hidden layer neurons are connected to 
all output neurons. Multiple hidden layers are possible, but a 
single layer is sufficient for most problems.
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Figure 15.   Multi-layer perceptron artificial network architecture (from Conrads and Roehl, 2007).

Figure 15.  Multilayer perceptron 
artificial network architecture (from 
Conrads and Roehl, 2007).
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Typically, linear transfer functions are used to scale input 
values from the input layer to the hidden layer and generally 
fall within the range that corresponds to the most linear part 
of the s-shaped sigmoid transfer functions used from the 
hidden layer to the output layer (fig. 15). Each connection 
has a “weight” wi associated with it, which scales the output 
received by a neuron from a neuron in an antecedent layer. 
The output of a neuron is a simple combination of the values 
it receives through its input connections and the associated 
weights, as well as the neuron’s transfer function. 

An ANN is “trained” by iteratively adjusting its weights 
to minimize the error by which it maps inputs to outputs for 
a dataset composed of input/output vector pairs. Prediction 
accuracy during and after training can be measured by a 
number of metrics, including coefficient of determination 
(R2) and root mean square error (RMSE). An algorithm that 
is commonly used to train multilayer perceptron ANNs is 
the back error propagation training algorithm (Rumelhart 
and others, 1986). Jensen (1994) describes the details of the 
multilayer perceptron ANN, the type of ANN used in this 
study. Multilayer perceptron ANNs can synthesize functions 
to fit high-dimension, nonlinear multivariate data. Devine 
and others (2003) and Conrads and Roehl (2005) describe the 
use of multilayer perceptron ANN in multiple applications to 
model and control combined manmade and natural systems, 
including disinfection byproduct formation, industrial air 
emissions monitoring, and surface-water systems affected by 
point- and nonpoint-source pollution. 

Experimentation with a number of ANN model architec-
tural and training parameters is a routine part of the modeling 
process. For correlation analysis or predictive modeling 
applications, a number of potential ANN models are trained 
and evaluated for their statistical accuracy and their represen-
tation of process physics. Interactions between combinations 
of variables also are considered in addition to the selection 
of the training dataset from the overall dataset. For models 
with a large dataset with good representation over the range 
of historical behaviors, a small percentage of the dataset 
(10–25 percent) may be selected for the training dataset. For 
models with limited data, a larger percentage (75–100 percent) 
may be used in the training dataset. In general, a high-quality 
predictive model can be obtained when:

•	 The data ranges are well distributed throughout the 
state space of variables describing the physical system 
of interest,

•	 The input variables selected by the modeler share 
“mutual information” about the output variables,

•	 The functional form “prescribed” or “synthesized” 
by the model to “map” (correlate) input variables 
to output variables is a good one. Machine-learning 
techniques, like ANN models, synthesize a best fit to 
the data. Techniques such as ordinary least squares and 
finite-difference models prescribe the functional form 
of the model’s fit of the calibration data. 

Subdividing a complex modeling problem into sub-
problems and then addressing each is an effective means to 
achieving the best possible results. A collection of submodels 
whose calculations are coordinated by a computer program 
constitutes a “super-model.” For the Abercorn Creek study, 
daily ANN models (submodels) were developed for specific 
conductance and (or) chloride at the I–95 gage and at the 
water plant intake. These submodels were then incorporated 
into a super-model application that integrates the model 
controls, model database, and model outputs. The super-model 
for the project is Savannah River Chloride Decision Support 
System (SCM DSS). The ANN models described in this report 
were developed using the iQuest™ data-mining software4 
(Version 2.03C DM Rev31). The ANN models were deployed 
in the DSS using the Visual Basic run-time library of the 
iQuest R/T™ software. 

Development of Specific Conductance 
and Chloride Models

The USGS and City of Savannah data were used to 
develop empirical process models of Abercorn Creek and 
are included in SCM DSS to allow the user to run long-term 
simulations to evaluate permutations of the actual historical 
record. The SCM DSS models predict how Savannah River 
flow and specific conductance affect specific conductance and 
chloride concentrations at the water plant intake. A two-stage 
model was used (fig. 16). The first stage predicts specific 
conductance at the intake, and the second stage predicts 
chloride concentrations at the intake using the predicted 
specific conductance at the intake.

Both empirical and mechanistic models are more accurate 
when interpolating within the historical range of the data used 
to develop the model than when extrapolating to conditions 
beyond the range of the data used to develop the model. Salin-
ity simulations with the EFDC model of proposed deepening 
scenario simulations indicated that estimated maximum 
salinity concentration at the I–95 gage could be three times 
greater than the historical maximum. Thus, the development 
of empirical models to predict chloride concentrations at 
the intake needed to accommodate large extrapolation from 
historical conditions.

The 3D scatter plots of streamflow at the Clyo gage and 
specific conductance at the I–95 gage and the water plant 
intake provide an indication of how an empirical model may 
extrapolate (figs. 9, 10). If an ANN model were to fit the data 
well, it would capture the “plateau” effect wherein there is 
a large dampening of specific conductance values between 
I–95 and the intake. In this case, large increases in specific 

4 The iQuest™ software is exclusively distributed by Advanced Data Mining, 
LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615–5044, Phone:  
(864) 201–8679, e-mail: info@advdatamining.com, http://www.advdmi.com.

mailto:info@advdatamining.com
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conductance (salinity) at the I–95 gage resulting from a 
proposed deepening of the harbor would not equate to large 
increases in salinity and chloride concentrations at the intake.

Only a few data points describe the relation between high 
specific conductance values at the I–95 gage and the intake 
(figs. 9, 10). For example, there are less than 10 data points 
for which specific conductance values at the I–95 gage exceed 
300 µS/cm, and these points exhibit a large degree of scatter. 
The USACE was concerned that these few data points would 
determine the extrapolation of the model and potentially 
underestimate the effect that deepening the harbor could have 
on chloride concentrations at the intake. To accommodate 
these concerns, it was decided to develop two specific conduc-
tance models for the intake. The first model (ANN M1) would 
use all the data. The second model (ANN M2) would only use 
data when specific conductance at I–95 was less than  
175 µS/cm (figs. 17 and 18). Deleting these data from the 
training dataset for the second model removes the “plateau” 
effect, and extrapolation by a well-fitted ANN model would 
show a large increase in specific conductance at the intake 
with large increases of specific conductance at the I–95 gage. 

The trendlines shown in figure 10 are an analogous 
example of how the two models will differ in the results they 
provide. The ANN M1 model is analogous to the logarithmic 
trendline and captures the nonlinear relation between the 
specific conductance at the two sites. The ANN M2 model 
is analogous to the linear trendline and does not simulate the 
plateau effect. The ANN M1 model will have a low sensitivity 
to specific conductance at I–95, and the ANN M2 model will 
have a high sensitivity to specific conductance at I–95. The 

two models will provide two different results for simulating 
the effect of deepening Savannah Harbor. The models will 
have to extrapolate to conditions greater than the historical 
range of conditions. The two models provide a range of 
specific conductance outcome depending on the validity of the 
limited number of data points defining the plateau effect and 
the dampening of specific conductance between I–95 and the 
intake.

The ANN models used to predict specific conductance 
values at the intake are effective due to the ability to fit the 
nonlinear character of the specific conductance and streamflow 
data. Because of the sigmoid transformation used in ANN 
models (fig. 15), the ANN models are ineffective in extrapolat-
ing linear behaviors. The sigmoid transformation can produce 
nonlinearities at the predicted extremes of the range of data. 
The chloride model (stage 2 model, fig. 16) also will be used 
to extrapolate conditions exceeding the historical range of the 
data. Because the relation between chloride concentrations 
and specific conductance at the intake is linear (fig. 14), a 
linear regression model (fig. 18) was used to predict chloride 
concentrations at the intake. The linear model allows chloride 
concentrations to be predicted at highly extrapolated specific 
conductance values. Details on the inputs to the specific 
conductance and chloride models are described in subsequent 
sections of the report.
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SC_I-95

SC

SC_I-95

SC_Intake

SC_Intake

Cl_Intake

Cl

Cl_Intake

Figure 16.   Schematic showing
the two-stage model architecture
to predict chloride concentrations
(Cl_Intake) at the intake using flow
(Q_Clyo) and specific conductance
(SC_I-95) inputs. 
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I-95 specific conductance

Predicted specific conductance
   at the Intake
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Predicted chloride at the Intake
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EXPLANATION

Figure 16.  The two-stage model architecture 
to predict chloride concentrations (Cl_Intake) 
at the intake using flow (Q_Clyo) and specific 
conductance (SC_I–95) inputs.

Figure 17.   Three dimensional scatter plots of specific
conductance at the City of Savannah’s intake on Abercorn
Creek (SCintake), Savannah River near Port Wentworth,
Georgia (I-95 Bridge, SCI-95), flows at Savannah River at
Clyo, Georgia (QClyo). Green line shows the removed specific
conductance data (cut > 175) for the development of the
second ANN model (ANN M2).
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Figure 17.  Three-dimensional scatter plots of specific 
conductance at the City of Savannah’s intake on Abercorn Creek 
(SCIntake), Savannah River near Port Wentworth, Georgia (I–95 
bridge, SCI–95), flows at Savannah River at Clyo, Georgia (QClyo). 
Green line shows the removed specific conductance data  
(cut >175) for the development of the second ANN model  
(ANN M2). [µS/cm, microsiemens per centimeter; ft3/s, cubic feet 
per second]
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Statistical Measures of Prediction Accuracy

Statistical measures of prediction accuracy were 
computed for the specific conductance models (ANN M1 
and ANN M2) and the chloride model. The statistics for 
the stage 1 and stage 2 models provide model performance 
measures of the individual models in the cascading modeling 
approach to simulate chloride concentrations. Because several 
models are used, the statistics for the individual models may 
not be an indication of the quality of the final estimates. Thus, 
the specific conductance and chloride simulations should be 
evaluated by the statistics for the final simulation. 

Model accuracy typically is reported in terms of R2 and 
commonly is interpreted as the “goodness of the fit” of a 
model. A different interpretation poses the question, “How 
much information does one variable or a group of variables 
provide about the behavior of another variable?” For example, 
in the first context, an R2 = 0.6 might be disappointing, 

whereas in the latter, it is merely an accounting of how much 
information is shared by the variables being used. The mean 
error and RMSE statistics provide a measure of the prediction 
accuracy of the ANN models. The mean error is a measure of 
the bias of model predictions—whether the model over- or 
underpredicts the measured data. The mean error is presented 
as the adjustment to the simulated values to equal the 
measured values; therefore, a negative mean error indicates 
an oversimulation by the model, and a positive mean error 
indicates an underprediction by the ANN model. Mean errors 
near zero may be misleading because negative and positive 
discrepancies in the simulations can cancel each other. The 
root mean square error addresses the limitations of mean error 
by computing the magnitude, rather than the direction (sign) 
of the discrepancies. The units of the mean error and RMSE 
statistics are the same as the simulated variable of the model.

 The accuracy of the models, as given by RMSE, should 
be evaluated with respect to the measured range of the output 
variable. The percent model error is the ratio of the RMSE to 
the range of the output measured data. A model may have a 
low RMSE, but if the range of the output variable is small, the 
model may only be accurate for a small range of conditions 
and the model error may be a relatively large percentage of 
the model response. For example, if the RMSE for a model 
is 0.5 ft and the measured range is 0 to 2 ft, the percentage 
model error would be 25 percent. Likewise, a model may have 
a large RMSE, but if the range of the output variable is large, 
the model error may be a relatively small percentage of the 
total model response. For example, if the RMSE for a model is 
2 ft and the measured range is 0 to 20 ft, the percentage model 
error would be 10 percent. 

Specific Conductance Models

Explanatory variables typically have a strong relation 
to the behavior of a response variable. For example, specific 
conductance at the I–95 gage and the water plant intake, 
and chloride concentrations at the intake have a relation to 
the Savannah River streamflows at the Clyo gage. When 
using multiple explanatory variables, it is difficult, if not 
impossible, to understand the individual effects of variables 
(sometime referred to as confounded or correlated variables) 
on a response variable. Empirical models have no notion 
of process physics, nor the nature of interrelations between 
input variables. To be able to clearly analyze the effects of 
confounded variables, the unique informational content of 
each variable must be determined by “decorrelating” the 
confounded variables. 

The specific conductance data at the I–95 gage and the 
streamflow data at Clyo are highly correlated. The correlation 
coefficient of various moving window sizes of Clyo stream-
flows and I–95 specific conductance were computed. The 
window size yielding the highest correlation between the two 
signals, as measured by the Pearson coefficient (Helsel and 
Hirsch, 1995), was a 4-day moving window average (Q-Clyo_
A4). Decorrelation was accomplished by using a Single Input 
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Figure 18.   Schematic showing modifications
to the two-stage model architecture (fig. 16)
to accommodate large extrapolation  (ANN M2)
beyond the range of historical conditions to predict
chloride concentrations (Cl_Intake) at the Intake
using flow (Q_Clyo) and specific conductance
(SC_I-95) inputs.
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Figure 18.  Modifications to the two-stage model 
architecture (fig. 16) to accommodate large 
extrapolation (ANN M2) beyond the range of historical 
conditions to predict chloride concentrations  
(Cl_Intake) at the intake using flow (Q_Clyo) and 
specific conductance (SC_I–95) inputs. [µS/cm, 
microsiemens per centimeter]
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Single Output (SISO) ANN model with the 4-day moving 
average Clyo streamflow as the input and specific conductance 
data from the I–95 gage as the output (fig. 19). The residual 
error (the difference between predicted and measured values) 
is the “unshared” information between the two signals and the 
decorrelated signal for specific conductance at I–95. Figure 20 
shows the measured and predicted specific conductance 

at I–95 as well as the residual error from the decorrelation 
model. The SISO model simulated the low-frequency portion 
of the measured time series well but did not capture the higher 
frequencies as seen in the spikes in the measured time series. 
The spikes are due to the salinity intrusion events resulting 
from the combination of tidal forcing and low flow and are 
maintained in the decorrelated time series. 

SC_I-95predicted = F1[Q_Clyo_A4]

SC_I-95decorrelated

SC_I-95residual

SC_I-95measured

Figure 19.   Specific conductance (SC) decorrelation model. SC_I-95
is the specific conductance at the I-95 Bridge and Q_Clyo_A4 is the
4-day moving window of streamflow at Clyo, Georgia. F1 is a Single
Input Single Output Artificial Neural Network Model (SISO ANN).
The residual error from the SISO ANN is computed by subtracting
the SC_I-95 predicted values from the measured values.
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Figure 20.   Measured, predicted, and residual error from the Single Input Single
Output Artificial Neural Network used to decorrelate specific conductance at
I-95 from the streamflow at Cylo. The decorrelated specific conductance at
I-95 is the residual error time series.

Figure 19.  Specific conductance (SC) decorrelation model. 
SC_I–95 is the specific conductance at the I–95 bridge, and 
Q_Clyo_A4 is the 4-day moving window of streamflow at Clyo, 
Georgia. F1 is a Single Input Single Output Artificial Neural 
Network Model (SISO ANN). The residual error from the 
SISO ANN is computed by subtracting the SC_I–95 predicted 
values from the measured values.

Figure 20.  Measured, predicted, and 
residual error from the Single input 
Single Output Artificial Neural Network 
model used to decorrelate specific 
conductance at I–95 from the streamflow 
at Clyo. The decorrelated specific 
conductance at I–95 is the residual error 
time series.
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As discussed previously, two ANN models were 
developed to predict specific conductance at the intake: the 
ANN M1 model used the full range of specific conductance 
values at I–95, and the ANN M2 model only used specific 
conductance values at I–95 less than 175 µS/cm (fig. 18). The 
optimal moving window average of the decorrelated specific 
conductance time series was determined (2-day) by evaluating 
the correlation between the decorrelated time series and the 
specific conductance time series at the intake. The 2-day 
moving window average was used as input to the specific 
conductance ANN models for the intake (fig. 21). The com-
plete decorrelated specific conductance dataset was used for 
developing the ANN M1 model using the full range of specific 
conductance data and the computed 2-day moving window 
average computed (SC_I–95decor_A2). For the ANN M2 model, 
the dataset was truncated to include only specific conductance 
values less than 175 µS/cm (SC_I–95decor-C175_A2).

The performance of the ANN M1 and M2 models are 
similar as seen in the plots of the measured and simulated 
specific conductance values and performance statistics (fig. 22; 
table 5). The ANN M1 model captured more of the rapid 
increase in specific conductance during the last 3 years of the 
simulation (2006–2009) than the ANN M2 model, but also 
simulated rapid increases in specific conductance that were 
not in the measured record at the intake. The differences in the 
model simulations can be seen in the 3D response surfaces for 
each model (fig. 23). Three-dimensional response surfaces can 

ANN M1
(SC I-95 – full range)
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(SC I-95; SC < 175 µS/cm)
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Cl_Intakepred_M2
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SC_Intakepred_M2

Figure 21.   Inputs and outputs for the models to predict specific conductance at the intake.
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Figure 21.  Inputs and outputs for the models to predict specific conductance at the intake.

be generated to display two explanatory variables (streamflow 
at Clyo and specific conductance at I–95) with a response 
variable (specific conductance at the intake). The data for the 
response surface were computed by the ANN model across the 
full range of the displayed input variables. 

Response surfaces are a valuable tool for understanding 
the dynamics of riverine and estuarine systems as simulated 
by the ANN models and for projecting how the models will 
extrapolate hydrologic conditions beyond the range of data 
used to train the models. The upper right edge of the response 
surface for the ANN M1 model (fig. 23A) shows smaller 
increases in the specific conductance at the intake with 
increases in flow and specific conductance than the response 
surface for the ANN M2 model (fig. 23B). The bending of the 
response surface at these high chloride conditions (fig. 23A) 
is similar to the plateau effect seen in the 3D scatter plot of 
the data in figure 9. The response surface for the ANN M2 
(fig. 23B) does not show the bending surface at these high 
conditions. Extrapolations with the ANN M1 model will, 
therefore, result in smaller increases in specific conductance 
at the intake with decreases in Clyo streamflow and increases 
in I–95 specific conductance conditions; whereas, the ANN 
M2 model has greater increases in specific conductance at the 
intake. These differences in the response surfaces for these 
conditions are a result of truncating the specific conductance 
data at I–95 to include only the values below 175 µS/cm for 
the ANN M2 model.
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Figure 22.   Measured and simulated daily specific conductance at the City of
Savannah’s intake from the ANN M1 model and ANN M2 model for the period
February 1, 2000, to October 31, 2009.

Figure 22.  Measured and simulated specific conductance at the City of Savannah’s intake from 
the ANN M1 model and ANN M2 model for the period February 1, 2000, to October 31, 2009.

Table 5.  Model performance statistics for the specific conductance decorrelation model and the ANN M1 and ANN M2 models.

[R2, coefficient of determination; RMSE, root mean square error; µS/cm, microsiemens per centimeter]

Model
Hidden 
layer 

neurons

Training 
dataset 

(number of 
observations)

Testing  
dataset 

(number of 
observations)

R2  
(training/
testing)

RMSE 
(µS/cm; 
training/
testing)

Rangea of  
measured 

data  
(µS/cm)

Percent 
 model 
error

Specific conductance decorrelation 1 2,631 617 0.62/0.59 22/24 719 3.2
ANN M1 2 1,312 900 0.82/0.84 9.2/9.2 136 6.8
ANN M2 5 1,247 851 0.83/0.85 8.7/8.5 127 6.8

a Difference  in maximum and minimum measured values.
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Development of Extrapolated Specific 
Conductance Dataset

Preliminary simulations of a proposed deepening 
of the Savannah Harbor using the EFDC model showed 
increases in salinity concentrations at the I–95 gage 
more than three times as great as the historical maxi-
mum (fig. 24). The iQuest™ software used to develop 
the ANN model allows for some extrapolation beyond 
the historical range of the data but not to the extent 
necessary for this application. To accommodate this 
constraint, a synthetic dataset was generated to define 
how specific conductance at the intake would respond 
to specific conductance at I–95 above the historical 
maximums. The ANN M1 and ANN M2 models were 
used to generate a set of input-output vectors within 
the historical range of the data. From these data, linear 
extrapolations were generated by extending the line 
between model predictions at the endpoint of the 
extremes of the historical range of streamflow at Clyo 
and specific conductance at I–95. These extrapolated 
arrays of values were then used to retrain the ANN M1 
and ANN M2 models. Selecting the number of arrays 
to use was an iterative process to ensure that a smooth 
model surface was generated. The new “extrapolated” 
versions of the models are named ANN M1e and 
ANN M2e.

Figure 23.   Three dimensional response for the (A) ANN M1 model and (B) ANN M2 model.
Variables shown on figure 18.
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Figure 23.  Three-dimensional response surfaces for the (A) ANN M1 and (B) ANN M2 models. 
ANN M1 and ANN M2 architecture shown in figure 18.

0

0.2

0.4

0.6

0.8

1.0

1/14/2003 1/14/2004 1/14/2005 1/14/2006 1/14/2007 1/14/2008 1/14/2009

Sa
lin

ity
, i

n 
pr

ac
tic

al
 s

al
in

ity
 u

ni
ts

Simulated actual conditions

Simulated 6-foot deepening condition

EXPLANATION

Figure 24.   Salinity predictions at the I-95 Bridge for actual
conditions and a simulated 6-foot harbor deepening scenario
using the EFDC model.

Figure 24.  Salinity predictions at the I–95 bridge for actual conditions and 
a simulated 6-foot harbor deepening scenario using the EFDC model.
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The simulated specific conductance values for the water 
plant intake and the inputs of the 4-day average streamflow at 
Clyo and 2-day average specific conductance (decorrelated) at 
the I–95 gage are shown in 3D scatter plots in figure 25 for the 
ANN M1e and ANN M2e models. The points on the scatter 
plots are the simulated specific conductance values at the 
intake. Also shown are the points of the linear extrapolations 
of the specific conductance at the intake to changes in specific 
conductance at I–95 beyond the historical condition. 

For the ANN M1 model, the upper edge of the response 
surface (fig. 23) indicates an extrapolated model will capture 
the plateau effect shown in figures 9 and 10. For ANN M1e, 
only linear extrapolations were computed for the higher 
streamflow ranges (fig. 25A). For the ANN M2e model, linear 
extrapolation was generated for the higher streamflow ranges 
and also for a low-flow condition (fig. 25B). Figure 25 also 
shows the ANN model response surfaces generated from ANN 
models trained using the extrapolated dataset, ANN M1e and 
ANN M2e, respectively. The response surfaces in figure 25 are 
the extrapolations of the response surfaces shown in figure 23.

Figure 25.   Three dimensional scatter plots of 4-day average flow, 2-day average
specific conductance (decorrelated from flow), and predicted specific conductance
at the Intake, and linear extrapolations of flow and specific conductance beyond
the measured historical values for the (A) ANN M1e and (B) ANN M2e models.
Three dimensional response surfaces to the right show response surfaces using
the extrapolation models (A) ANN M1e model and (B) ANN M2e model.
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Figure 25.  Three-dimensional scatter plots of 4-day average flow, 2-day average specific 
conductance (decorrelated from flow), and predicted specific conductance at the intake, and linear 
extrapolations of flow and specific conductance beyond the measured historical values for the 
(A) ANN M1e and (B) ANN M2e models. Three-dimensional response surfaces to the right show 
response surfaces using the extrapolation models (A) ANN M1e and (B) ANN M2e.
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Chloride Models

The chloride model, like the specific conductance 
models, requires extrapolation to conditions greater than the 
historical range of the data. The linear regression model allows 
chloride concentrations to be predicted at highly extrapolated 
specific conductance values. The relation between specific 
conductance and chloride concentrations at the intake is linear 
(fig. 14); therefore, a linear regression model was used (eq. 1). 

predCh_Intake 0.0078 SC_Intake 1.639= ∗ +

where Ch_Intake is the chloride estimate at the intake, and 
SC_Intakepred is the estimated specific conductance value at 
the intake. Correlation analysis showed that the 3-day mov-
ing window average of predicted specific conductance from 
the ANN M1e and ANN M2e models had the highest Pearson 
coefficient to the daily chloride concentration at the intake. 
The measured and predicted chloride concentrations are 
shown in figure 26 as well as the residual error from the linear 
regression model.

To improve the chloride concentration predictions, an 
error correction model was developed to predict the residual 
error of the linear regression model (fig. 27). The final 
chloride concentration prediction is the summation of the 
prediction from the linear regression model and the error 
correction model. The chloride concentrations at the intake 

are correlated to streamflow, water color, and maximum daily 
water temperature, and these inputs are used in the error 
correction model. Water color is a measure of organic material 
in the water and is an indicator of source of the water at the 
intake, either freshwater upstream from the intake, tidal water 
from downstream from the intake, or a combination. Water 
color is correlated to streamflow and was decorrelated from 
streamflow using the same approach for decorrelation of 
specific conductance at I–95 from streamflow (fig. 19). Two 
inputs from the decorrelated water color variable were used 
as inputs to the error correction model—the 1-day lag and the 
1-day change in water color. 

The residual chloride error is at least partially and nonlin-
early dependent on the chloride concentrations at the intake. 
To determine the chloride concentration at the intake that is 
independent of streamflow (or decorrelated from streamflow), 
a linear regression to describe the chloride concentration 
attributable to streamflow was computed (eq. 2). 

Ch_Q 12.572 Q_Clyo_A6_Mod 20.481= − ∗ +

where Ch_Q is the chloride concentration independent of 
streamflow, and Q_Clyo_A6_Mod is transformation of the 
6-day moving window average Clyo streamflow (eq. 3). The 
streamflow input into the equation should be extrapolated to 
streamflow conditions beyond the historical range of condi-
tions. An inverse exponential function was used to transform 
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Figure 26.   Measured and predicted chloride concentrations at the intake and
the residual error.
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Figure 26.  Measured and predicted chloride concentrations at the intake and the residual error.
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streamflow values for input into the regression equation. The 
inverse exponential transformation can be extrapolated and 
captures the nonlinear relation between streamflow and chlo-
ride concentrations. 

Q_Clyo_A6_Mod 1 e (0.002 Q_Clyo_A6)∧= − ∗

where Q_Clyo_A6 is the 6-day moving window average of 
Clyo streamflow.

Similar to the decorrelation of specific conductance at 
I–95 from streamflow (fig. 19), the chloride concentrations 
predicted by streamflow are subtracted from the chloride 
predictions from the linear regression model of chloride 
concentrations as a function of specific conductance values at 
the intake. Figure 27 shows a schematic of the chloride and 
error correction models, and table 6 lists model performance 
statistics for the models used to make the final chloride 
concentration predictions.

The error correction model estimates the central tendency 
of the residual error from the chloride regression model 
(fig. 28) but does not predict the large variability in the error 
signal. The final chloride concentration predictions are slightly 
better than the linear regression model predictions (fig. 29). 
The error correction model increases R2 of the final chloride 
concentration predictions by 19 percent and decreases the 
percent model error by 31 percent (table 6). Although predic-
tions of the final chloride concentrations are improved, the 
final model predictions do not simulate the full range of the 
measured chloride concentrations.

Although the basic architecture of the chloride concentra-
tion model is a two-stage approach (fig. 16), there are many 
submodels to decorrelate input variables, simulate a subset of 
the specific conductance datasets, and correct chloride model 
error. A schematic of the overall model architecture with the 
inputs and outputs interaction is shown in figure 30. 

Chloride linear regression model
Cl_Intakepred

SC_Intakepred_M#e

Chloride model

Q_Clyo_A6

ANN error
correction

model  

Cl_IntakeerrorCOLORdecor_L1

TEMPmax_I-95_L2

Cl_Qdecor

Error correction model

Cl_Qindependent -

+

Final chloride
concentration

prediction  

COLORdecor_D1

Figure 27.   Schematic showing the model architecture for the chloride model
and error correction model. The dash and cross in the circles are subtraction
and addition signs, respectively. 

Figure 27.  The model architecture for the chloride model and error correction model  
The dash and cross in the circles are subtraction and addition signs, respectively.

(3)
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Figure 28.   Computed and predicted residual error from the chloride model.
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Figure 29.   Measured and predicted chloride concentrations at the City of
Savannah’s intake for the period January 14, 2003, to October 31, 2009.

Figure 28.  Computed and predicted residual error from the chloride model.

Figure 29.  Measured and predicted chloride concentrations at the City of Savannah’s 
intake for the period January 14, 2003, to October 31, 2009.



30    Simulation of Specific Conductance and Chloride Concentration in Abercorn Creek, Georgia, 2000–2009

SC_Intakepred_M1e

SC_Intakepred_M2e

Cl_Intakeerror

Cl_Intakepred_M1e

Cl_Intakepred_M2e

Cl_Intakedecor

Q_Clyo

TEMP

Colordecor

Q_Clyo

Q_Clyo

SC_I-95decor

SC_I-95decor

Final chloride
concentration

prediction from
M1e and M2e models  

Figure 30.   Specific conductance and chloride model architecture. 
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Figure 30.  Specific conductance and chloride model architecture. [µS/cm, microsiemens per centimeter]
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Development of a Decision Support 
System

Resource managers and stakeholders face difficult 
challenges when managing interactions between natural and 
manmade systems. At considerable cost, complex mechanistic 
models that are based on first principles physical equations, 
are developed and operated by scientists to evaluate options 
for using a resource while minimizing harm. However, varying 
technical abilities and financial constraints among stakeholders 
effectively restrict access to relevant scientific knowledge and 
analytical tools. Decision support system (DSS) technology 
can help meet the need to provide equal access to the knowl-
edge and tools required for informed decisionmaking. Even 
though the collective interests and computer skills within the 
community of managers, scientists, and other stakeholders are 
quite varied, equal access to the scientific knowledge is needed 
to make the best possible decisions. Dutta and others (1997) 
define DSSs as, “systems helping decision-makers to solve 
various semi-structured and unstructured problems involving 
multiple attributes, objectives, and goals… Historically, the 
majority of DSSs have been either computer implementations 
of mathematical models or extensions of database systems and 
traditional management information systems.” While there 
appears to be no strict criteria that distinguish a DSS from 
other types of programs, Dutta and others (1997) suggest that 
artificial intelligence (AI) is a characteristic of more advanced 
DSSs: “With the help of AI techniques DSSs have incorpo-
rated the heuristic models of decision makers and provided 
increasingly richer support for decision making. Artificial 
intelligence systems also have benefited from DSS research as 
they have scaled down their goal from replacing to supporting 
decision makers.” 

The authors of this report have previously developed 
four DSSs in South Carolina, Georgia, and Florida to evaluate 
(1) wastewater discharges and dissolved-oxygen concentra-
tion in the Beaufort River estuary (Roehl and others, 2006; 
Conrads and others, 2003); (2) salinity effects on freshwater 
tidal wetlands and a proposed deepening of the Savannah 
Harbor (Conrads and others, 2006); (3) the effect of controlled 
streamflow releases from reservoirs on the Pee Dee River 
in North Carolina and on salinity dynamics along the South 
Carolina coast (Conrads and Roehl, 2007); and, (4) the effect 
of controlled flow releases on the water levels, specific con-
ductance, and total phosphorus of the freshwater marsh of the 
Loxahatchee National Wildlife Refuge (Conrads and Roehl, 

2010). These DSSs are spreadsheet applications that provide 
predictive models with databases for ANN model simulation, 
graphical user interfaces, and displays of results. Additional 
features, including optimizers, integrations with other models 
and software tools, and color contouring of simulation output 
data, make the DSSs easily distributable and immediately 
usable by all resource managers and stakeholders. 

The development of a Savannah Chloride Model Deci-
sion Support System (SCM DSS) for Abercorn Creek required 
a number of steps, including: (1) merging all the data into 
a single comprehensive database; (2) developing specific-
conductance and chloride models; (3) incorporating output 
from the EFDC model; and (3) developing a Microsoft Office 
Excel® application that integrates the new database, submod-
els, model inputs and outputs, and visualization routines into a 
single package that is easy to use and disseminate. The user’s 
manual for the installation and operation of the SCM DSS is 
provided in appendix 1.

Architecture

The basic architectural elements of the SCM DSS are 
shown in figure 31. The DSS reads and writes files for the 
various run-time options that can be selected by the user 
through the system’s graphical user interface. A historical 
database, containing 7 years of hydrologic and water-quality 
data, is read into the simulator along with the linear regres-
sion and ANN submodels at the start of a simulation. By 
using graphical user interface controls, the user can evaluate 
scenarios for alternative flow, specific conductance, and harbor 
geometry changes (as simulated by EFDC). The outputs 
generated by the simulator are written to files for post process-
ing in Microsoft Office ExcelTM or other analysis software 
packages. The DSS also provides streaming graphics for each 
gage during simulations of specific conductance and chloride 
concentrations response for the models. 

Linking the 3D hydrodynamic EFDC model to the 
simulator is accomplished by loading in a file of simulated 
differences in specific conductance values for the gage at I–95. 
The simulated EFDC salinity values are converted to specific 
conductance values. The changes in specific conductance at 
I–95 reflect hypothetical channel geometry, and mitigation 
scenarios run in the hydrodynamic model are then used as 
inputs to the ANN M1e and ANN M2e models to simulate the 
specific conductance at the intake.
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Model Simulation Control and Streaming 
Graphics 

The simulator in the SCM DSS integrates the historical 
database with the ANN and linear regression models. The 
date/time controls on the user control panel (fig. 32) are 
used to adjust start and end dates and graphical and tabular 
output for a simulation. The simulator allows the user to run 
“what-if” simulations by varying the streamflow and specific 
conductance values from their historical values. The user has 
three simulation options for changing streamflow inputs and 
four options for changing specific conductance inputs: 

•	 as a percentage of historical streamflow or specific 
conductance values, 

•	 as constant streamflow or specific conductance values, 

•	 as user-defined time series of streamflow or specific 
conductance, and

•	 as specific conductance input from an EFDC model 
simulation output.

Explanations of how to use each of the options in the SCM 
DSS are provided in the user’s manual in appendix 1.

The top of the SCM DSS control panel (fig. 32) shows 
the simulation period, output options, the selected input 
options, and the measured value, simulated measured value, 
and simulated user-defined options values for the current 
time step. The SCM DSS also shows streaming graphics on 

the control panel while a simulation is running are shown. 
The graphs display the historical measured data, simulated 
historical conditions (to show model accuracy), and the 
simulated output using the input option set by the person using 
the graphical user interface controls or an input file. 

Application of the Savannah Chloride 
Model Decision Support System

The development of the ANN and linear regression and 
the SCM DSS application provides resource managers with a 
tool for evaluating specific conductance and chloride concen-
tration dynamics at the water plant intake in Abercorn Creek. 
The SCM DSS allows users to simulate various streamflow 
and specific conductance conditions and analyze the specific 
conductance and chloride concentration response at the intake. 
In the SCM DSS, the user is able to set Clyo streamflows as a 
constant flow, a percentage of historical flow, or as a user-
defined hydrograph. Specific conductance values at I–95 can 
be set by the user as constant values, a percentage of historical 
values, a user-defined time series, or as output from an EFDC 
model simulation. The following section describes applica-
tions of the SCM DSS to two management scenarios. The 
results from these scenarios are intended to demonstrate the 
utility of the SCM DSS and are not intended to be interpreted 
as proposed hydraulic operations or a regulatory application of 
the DSS.
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Figure 31.   Architectural elements of the Savannah Chloride Model Decision Support System.

Figure 31.  Architectural elements of the Savannah Chloride Model Decision Support System.
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Figure 32.   Screen capture showing the model simulator controls used to run a simulation in the Savannah Chloride
Model Decision Support System (SCM DSS).

User-Defined Hydrograph

One user-specified option is to input the Savannah River 
flow at Clyo with a user-defined hydrograph. With this option, 
a user-defined daily hydrograph is created outside of the 
SCM DSS. The simulation time period is selected, and the 
user-defined hydrograph is used as input. A scenario using 
this option was simulated to evaluate the effect of reducing 
controlled flow releases to the Savannah River in the winter 
during drought periods to store more water in upstream 
reservoirs. For the period October 1, 2006, to October 1, 2009, 
the January 1 to February 15 daily streamflows were reduced 
to 3,600 ft3/s (fig. 33). The largest streamflow reduction for the 

simulation period occurred in 2007 when average streamflow 
for the winter period was 8,500 ft3/s. The average streamflow 
periods for 2008 and 2009 were 6,590 and 5,420 ft3/s, respec-
tively. The measured streamflow conditions for the period and 
the user-defined streamflow conditions and the actual chloride 
concentrations are shown in figure 33. 

Results of the ANN M1e model are shown in figures 34 
and 35. Simulations indicated that decreasing the streamflows 
during winter periods had the effect of increasing the specific 
conductance and chloride concentration at the intake for 
those periods. The predicted maximum increase in specific 
conductance of 50 µS/cm occurred on February 13, 2007 
(fig. 34). The decreased streamflows and predicted increase in 

Figure 32.  The model simulator controls used to run a simulation in the Savannah Chloride Model Decision Support System.
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Figure 33.   Actual and user-defined flow conditions at Clyo
and actual chloride concentrations at the intake for the period
October 1, 2006, to October, 2009.
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Figure 34.   Simulated actual and user-defined specific conductance at the
intake for the period October 1, 2006, to October 1, 2009. The user-defined
flow conditions are shown in figure 33.

Figure 33.  Actual and user-defined flow conditions at  Clyo and actual chloride 
concentrations at the intake for the period October 1, 2006, to October 1, 2009.

Figure 34.  Simulated actual and user-defined specific conductance at the intake for 
the period October 1, 2006, to October 1, 2009. The user-defined flow conditions are 
shown in figure 33.
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specific conductance resulted in an average predicted increase 
in the chloride concentration at the intake of 2.4 mg/L for the 
January 1 to February 15 periods with a maximum increase of 
4.8 mg/L occurring on January 14, 2007 (fig. 35).

Inputs from Three-Dimensional Model Output

Another option for user-defined inputs to the SCM DSS 
is to use output from the 3D hydrodynamic EFDC model of 
the Savannah River estuary. Using this option, the differences 
between a historical baseline and alternative harbor geometry 
specific conductance simulations at the I–95 gage are used 
for input to the SCM DSS. A harbor deepening scenario was 
simulated for the period January 14, 2003, to October 31, 
2009, using the historical streamflow condition and the EFDC 
specific conductance inputs. Two simulations were generated 
with the EFDC model. The first was the actual historical 
conditions for the simulation period. The second simulation 
used the same boundary input conditions but a different 
channel geometry file. The change in channel geometry and 
configuration represented a 4-ft deepening of the harbor and 
implementation of mitigation actions to limit salinity increases 
in the Little Back and Middle Rivers (fig. 5). The differences 
between the two EFDC salinity simulations are post-processed 
and converted to specific conductance for the I–95 gage. 
The final specific conductance input for the ANN M1e and 

ANN M2e models is the summation of the measured specific 
conductance at I–95 and the EFDC predicted change in 
specific conductance at I–95. The measured specific conduc-
tance, EFDC model predicted change in specific conductance, 
and the specific conductance inputs to the ANN M1e and M2e 
models for a 4-ft harbor deepening and mitigation scenario for 
the period January 14, 2003, to October 31, 2009, are shown 
in figure 36. 

The two ANN models (M1e and M2e) were developed to 
extrapolate differently for the hypothetical conditions that are 
greater than the historical conditions. The specific conductance 
inputs for this scenario are much greater than the historical 
conditions. The average and maximum measured specific 
conductance values are 117 and 351 µS/cm, respectively, 
whereas the average and maximum EFDC simulated inputs 
are 203 and 1,140 µS/cm, respectively (fig. 36). The simulated 
chloride concentration values at the intake show the difference 
in the model extrapolations (fig. 37). The ANN M1e model, 
trained on the complete dataset, predicts a smaller change in 
the chloride concentration values than the ANN M2e model, 
which was trained on a subset of the complete dataset. The 
M1e model predicted a relative increase (difference between 
simulated measured conditions and user-defined conditions) in 
daily average chloride concentrations of 6.6 mg/L, whereas the 
M2e model predicted an increase of 26.3 mg/L.

The magnitude of chloride concentrations in source water 
is of concern to operators of municipal water treatment plants 
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Figure 35.   Simulated actual and user-defined chloride concentration at
the intake for the period October 1, 2006, to October 1, 2009. The user-
defined flow conditions are shown in figure 33.

Figure 35.  Simulated actual and user-defined chloride concentration at the intake 
for the period October 1, 2006, to October 1, 2009. The user-defined flow conditions 
are shown in figure 33.
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change in specific conductance at I-95, and the SCM DSS specific conductance
at I-95 input for a 4-foot harbor deepening and mitigation scenario for the period
January 14, 2003, to October 31, 2009.
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Figure 37.   Simulated actual and user-defined chloride concentrations
at the intake using the ANN M1e and ANN M2e models for the period
January 14, 2003, to October 31, 2009.

Figure 36.  Measured specific conductance, 
EFDC model predicted change in specific 
conductance at I–95, and the SCM DSS 
specific conductance input for a 4-foot 
harbor deepening and mitigation scenario for 
the period January 14, 2003, to October 31, 
2009.

Figure 37.  Simulated actual and user-defined 
chloride concentrations at the intake using the 
ANN M1e and ANN M2e models for the period 
January 14, 2003, to October 31, 2009.
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that supply water for industrial users, but 
the frequency and duration of high chloride 
concentrations in source water can be of 
greater concern. The cumulative frequency 
distribution of the chloride concentration 
response predicted by the two ANN models 
for the deepening scenario for the simulation 
period is shown in figure 38. Fifty percent 
of the time the relative difference between 
chloride concentrations for simulated histori-
cal conditions and the simulated conditions 
of harbor deepening is not large. The effect 
of the harbor deepening and the mitigation 
effort is evident in the cumulative percent 
differences above 50 percent where there is a 
divergence of the ANN M1e and M2e models 
from the simulated historical condition. As 
seen in the time series plot (fig. 37), the M2e 
model is predicting larger chloride concentra-
tion values than the M1e model for the 4-ft 
deepening scenario. The cumulative fre-
quency distribution shows that the M2e model 
predicts chloride concentrations of 21.0 mg/L 
or less 95 percent of the time, whereas the 
M1e model predicts chloride concentrations 
of less than 15.5 mg/L 95 percent of the time. 

The number of days that source water 
with high chloride concentration occurs is 
important for plant operations and planning. 
Table 7 lists the number of days that source 
water with a chloride concentration of 15 
mg/L or greater occurred during the simulation period. For 
historical (actual) conditions, there was only one occurrence 
when the concentrations were greater than 15 mg/L for 
3 consecutive days. The ANN models predicted increases in 
the frequency and duration of days with chloride concentration 
greater than 15 mg/L. For example, for chloride concentration 
of 15 mg/L or greater occurring for 7 consecutive days, the 
ANN M1e and ANN M2e models predicted that there would 
be 44 and 224 days, respectively, when these conditions occur. 
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Figure 38.   Frequency distribution of simulated actual and user-defined
chloride concentrations at the intake using the ANN M1e and ANN M2e
models for the period January 14, 2003, to October 31, 2009.

Table 7.  Number of days that chloride concentrations 
are at or greater than 15 milligrams per liter for 
measured conditions and simulated conditions by two 
ANN models at the City of Savannah’s water plant 
intake on Abercorn Creek.

[>, greater than]

Number of 
days

Measured ANN M1e ANN M2e 

>3 0 76 301
>7 0 44 224
>14 0 17 151
>30 0 0 71
>60 0 0 11
>120 0 0 0

Maximum 3 24 71

Figure 38.  Frequency distribution of simulated actual and user-defined chloride 
concentrations at the intake using the ANN M1e and ANN M2e models for the period 
January 14, 2003, to October 31, 2009.
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Summary and Conclusions
There is a concern that the proposed deepening of Savan-

nah Harbor could increase salinity and chloride concentrations 
in the upper reaches of the lower Savannah River estuary, 
including Abercorn Creek, where the City of Savannah oper-
ates an intake for their water treatment plant. Elevated chloride 
concentrations would require additional water treatment to 
meet the needs of their industrial customers. The U.S. Geo-
logical Survey and the U.S. Army Corps of Engineers–Savan-
nah District determined that an opportunity existed to develop 
an empirical model using data-mining techniques artificial 
neural network (ANN) models in order to simulate chloride 
concentrations at the City of Savannah’s water plant intake. 
Hydrologic and water-quality data have been collected in the 
lower Savannah River estuary for many years. Data character-
izing the hydrology of the system—streamflows, water levels, 
specific conductance (field measurement used for computing 
salinity), water temperature, dissolved oxygen, precipita-
tion—have been collected at numerous gaging stations in 
the Savannah River Basin since the mid-1990s. The City of 
Savannah has collected daily water-quality measurements at 
the water plant intake since the late 1980s. 

To evaluate the potential effects of the proposed deepen-
ing of Savannah Harbor, the U.S. Army Corps of Engineers 
funded the development of mechanistic and empirical 
modeling approaches to simulate chloride concentrations at 
the City of Savannah’s intake. Both modeling approaches used 
data from the U.S. Geological Survey real-time network and 
data collected by the City of Savannah at the intake for the 
period 2000–2009. One modeling approach (funded separately 
from this study) modified the mechanistic Environmental 
Fluid Dynamics Code (EFDC) model used for evaluating 
proposed harbor deepening effects for the Environmental 
Impact Statement. Chloride concentrations were modeled 
directly with EFDC as a conservative tracer. The EFDC model 
uses boundary input data of streamflow, riverine and harbor 
chloride concentrations, and coastal water levels. The empiri-
cal modeling approach (the study described in this report) 
developed models directly from available data using ANN and 
linear regression models that used streamflow at Clyo, specific 
conductance and temperature at I–95, and water color time 
series at the water intake for inputs. 

Few data points describe the relation between high 
specific conductance values at I–95 and the intake. Salinity 
simulations based on the EFDC model of proposed deepening 
scenario simulations predicted that the salinity concentration 
at I–95 could be three times the historical concentrations. 
The development of empirical models for predicting chloride 
concentrations at the intake required accommodation of large 
extrapolations from historical conditions. To accommodate 
these concerns, two ANN chloride models were developed 
for the intake. The first model (ANN M1) used all the data. 
The second model (ANN M2) only used data when specific 
conductance values at I–95 were less than 175 microsiemens 
per centimeter (µS/cm). The chloride simulations with ANN 

M1 have a low sensitivity to specific conductance (salinity) 
at I–95, whereas the chloride simulations with ANN M2 
have a high sensitivity to salinity at I–95. To accommodate 
the geometry changes in the harbor, the ANN models use the 
EFDC model-simulated salinity changes from a historical 
condition as input.

The specific conductance and chloride models, historical 
database, model simulation controls, streaming graphics, 
and model output were integrated into a decision support 
system named the Savannah Chloride Model Decision 
Support System (SCM DSS). The SCM DSS allows the 
user to manipulate the streamflow and specific conductance 
inputs to the system. Three options are available to the user in 
setting the streamflows or specific conductance: percentage of 
historical flow, constant flow, and a user-defined hydrograph. 
A fourth option is available for setting specific conductance by 
using output from an EFDC model simulation. Output from 
the SCM DSS includes tabular time series of predictions of the 
measured data and predictions of the user-specified conditions. 
The SCM DSS is a spreadsheet application that facilitates the 
dissemination and utility of the DSS.

Two scenarios were simulated with the SCM DSS to 
demonstrate different input options. One scenario increased 
winter streamflows to a constant streamflow for 45 days. 
Streamflows during the period January 1 to February 15 were 
set to a constant 3,600 cubic feet per second for the simula-
tion period of October 1, 2006, to October 1, 2009. These 
decreased winter streamflows resulted in simulated increases 
in specific conductance of as much as 50 µS/cm and chloride 
concentrations of as much as 4.8 milligrams per liter (mg/L) 
during the periods of decreased streamflows.

 The second scenario used EFDC generated output for 
a 4-foot (ft) deepening of the harbor. The 4-ft deepening 
scenario included changes in the channel and flow configura-
tion to mitigate for salinity increases in the vicinity of an 
extensive freshwater tidal marsh. A 4-ft harbor deepening 
scenario was simulated with the models for the 7-year period 
from January 2003 to October 2009. The ANN M2e model 
is more sensitive than the ANN M1e model to changes in 
specific conductance resulting from a 4-ft deepening and 
simulated chloride concentrations as high as 40 mg/L. The 
ANN M1e model, trained on all the data, is less sensitive than 
the ANN M2e model to the changes in specific conductance 
and simulated chloride concentrations greater than 20.3 mg/L.

The ANN models predicted increases in the frequency 
and duration of days with chloride concentration greater than 
15 mg/L. The ANN M1e and ANN M2e models predicted 44 
and 224 days, respectively, with concentrations greater than 
15 mg/L for the previous 7 days. For historical (actual) condi-
tions, there was only one occurrence when the concentrations 
were greater than 15 mg/L for 3 consecutive days.

The simulation of harbor deepening and mitigation 
scenarios is a large extrapolation of the salinity and chloride 
dynamics of the lower Savannah River estuary to conditions 
that have never been measured in the system. The extrapola-
tions are dependent on the sensitivity of the models to salinity/
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chloride dynamics at the intake to the flow and salinity dynam-
ics in the Savannah River. The historical data show a low 
sensitivity between salinity at I–95 and salinity at the intake. 
One of the models, ANN M1e, has a similar low sensitivity 
and a dampening of salinity intrusion in Abercorn Creek. If 
the dynamics of the system are maintained between a pre- and 
post-deepening, including background chloride and specific 
conductance conditions, the chloride response at the intake 
should be closer to that predicted by the ANN M1e model. If 
the deepening changes the intrusion dynamics between I–95 
and the intake and there is not a dampening of the intrusion 
in Abercorn Creek, the chloride response at the intake will be 
closer to predictions by the ANN M2e model. For either case, 
only detailed post-construction monitoring of salinity and 
chloride concentrations in Abercorn Creek will show how the 
system is responding to a deepening of Savannah Harbor.
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1. Introduction
This document describes how to install and operate the 

Savannah Chloride Model Decision Support System (SCM 
DSS) of Abercorn Creek. The SCM DSS is a decision support 
system (DSS) built around a suite of empirical hydrologic, 
specific conductance, and chloride models. 

2. SCM DSS Installation, Removal, and 
Technical Assistance

NOTE: SCM DSS will not run on 64-bit Windows XP® 
and Vista® operating systems because of incompatibility of 
the NNCALC32.xll Add-in with these operating systems. 
NNCALC32.xll is used to execute the Artificial Neural 
Network (ANN) models.

2.1 Installation

	 1.	 Create a folder called SCM at the top level of your C: 
drive.

	 2.	 Extract all files from the distributed SCM-yyyymmdd.
zip1 file. The zip file contains the following applica-
tion files:

•	 SCM-yyyymmdd.xls – a Microsoft (MS) Excel® 
spreadsheet application.

•	 6 files with an “enn” extension – these are the 
ANN files.

•	 NNCALC32.xll – a custom MS Excel add-in used 
to execute the *.enn files.

•	 SCMUserGuide-yyyymmdd.doc – the MS Word 
file that you are reading right now.

	 3.	 Open your copy of MS Excel for MS Office 2000®  
(or newer). Ensure that the standard Excel Add-ins 
listed below are installed and checked “available.” 

Analysis Toolpak
Analysis Toolpak – VBA

1 yyyymmdd is the version date of the SCM image to be installed.

		  Add-ins are accessed from Excel’s Tools menu. If any 
are missing, it may be necessary to install them from 
your MS Office CD-ROM.

	 4.	 Set the macro security level of Excel to either medium 
or low using Tools > Macro > Security. SCM DSS 
uses VBA macros for a variety of purposes and must 
be able to execute them to operate correctly.

	 5.	 Install the NNCALC32 Add-in that resides in the 
NNCALC folder described in Step 1. This may be 
accomplished by clicking on Tools > Add-ins > 
Browse, browse to the SCM folder you created, click 
on the NNCALC32 icon, then click OK.

	 6.	 Open the SCM-yyyymmdd.xls Excel spreadsheet 
application. When Excel asks if you want to run 
macros click “Enable Macros,” otherwise SCM DSS 
will not operate correctly.

Select the “Controls” worksheet (fig. A1). “Controls” is 
the worksheet that lets the user set up and run simulations. At 
the top-left corner of “Controls” is a text box labeled “Where 
Model Files Are Located.” The model files are the *.enn files 
of the ANNs. Type in the fully qualified path name of the 
folder setup in (1) above and save the Excel application using 
File > Save for the setup changes to be permanent.

To check that the models are connected and operating 
correctly, select the “Controls” worksheet (fig. A2). At upper 
right are fields with the row headers “SC M1 / M2” and “CH 
M1 / M2,” SC for specific conductivity and CH for chlorides. 
If these fields show numerical values and not an MS Excel or 
NNCALC32 error code, the application is properly configured 
and ready to use. If all of these fields show “?” or an error 
code then try exiting MS Excel and then reloading MS Excel 
and the SCM application.

An error code indicates that an ANN cannot execute 
because either the NNCALC32 Add-In is not installed per (4) 
or NNCALC32 cannot find *.enn files because the folder path 
name in the “Where model files are located” text box is incor-
rect. If you cannot get SCM to operate, re-check the configura-
tion items in (3)–(6) above. 

Appendix 1: User’s manual for the Savannah Chloride 
Model Decision Support System (SCM DSS)
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2.2 Removal

Simply delete the folder created to hold the SCM DSS 
files and its contents. Consider removing the Add-ins and 
reverting to the default MS Excel security settings.

2.3 Technical Assistance

Please contact Paul Conrads of the USGS at (803) 750–
6140, pconrads@usgs.gov, if you have questions or problems 
with SCM DSS.

3. SCM DSS Features and Operation
SCM DSS is opened like any standard Excel workbook. 

Simply open the SCM-yyyymmdd.xls file and begin. The 
SCM DSS and its graphical user interface (GUI) are made up 
of a number of worksheets that are detailed below.

3.1 “Info” Worksheet

The “Info” worksheet is automatically displayed when 
SCM is first loaded (fig. A3). It shows a map of the study area, 
and gives the application’s version date and the contact infor-
mation of its developers.

3.2 Variable Descriptions and “ReleaseNotes” 
Worksheet

SCM refers to many input and output variables in the 
form of row and column headers (fig. A4). Moving the mouse 
over a header marked with a red caret immediately above 
and to the right of the header will provide a description of the 
header variable. Descriptions of variables also are provided in 
the “ReleaseNotes” worksheet (fig. A5). This worksheet also 
describes SCM’s development history and any new features or 
changes.

Figure A1.  “Controls” worksheet screenshot.

Figure A2.  Upper portion of “Controls” worksheet showing “SC M1 / M2” and “CH M1 / M2” fields at upper right.
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Figure A3.  “Info” worksheet.

Figure A4.  Online description of variable SCp(u) on “Controls” worksheet.

Figure A5.  “ReleaseNotes” worksheet.
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3.3 “Controls” Worksheet

The “Controls”worksheet 
(fig. A2) is the GUI component 
that lets the user setup and run 
simulations. 

At the top is a text box 
labeled “Where Model Files Are 
Located” and is used to configure 
SCM when it is first installed on a 
user’s computer and is described 
further in Section 2.0. As shown 
in figure A6, “Start” and “End” dates for simulations can be 
set using the controls at upper left. The end date must be more 
recent than the start date. The “Sim Date” text box indicates 
the time stamp that is providing the current input values to 
SCM’s models. The “<<Step” and “Step>>” move the cur-
rent time stamp backwards or forwards one time step each 
time they are clicked. “Sim Time=Start” sets the current time 
stamp to the Simulation “Start” date. “RUN” will start and run 
a simulation between the dates indicated by the Simulation 
”Start” and “End” dates.

The “Controls” worksheet provides numerical and 
streaming graphical information that can be observed during 
simulations or when incrementally stepping through time. This 
allows the user to examine specific periods and behaviors of 
interest in detail. The SCM also will write inputs and output 
data to the “Output” worksheet. Because of the added compu-
tational load, simulations are slowed when streaming graphics 
and simulation output are generated. The “Graphs ON” and 
“Write Output” check boxes of the “Output” controls at the 
upper right in figure A6 allow the user to toggle the stream-
ing graphics “on” or “off”. The “Clear Output” button erases 
all data in the “Output” worksheet to allow data from a new 
simulation to be recorded.

A simulation may be stopped at any time during an 
execution by holding down the “Esc” key, after which a pop-
up window will appear like that shown in figure A7. Click on 
the “End” button to stop the simulation, then click the “Reset” 

button shown at lower right in figure A6. The “Reset” button 
activates MS Excel’s automatic calculation feature (autocalc). 
Because the model programmatically manipulates autocalc 
for performance reasons, aborting a simulation can sometimes 
leave the model in a state where autocalc is not activated. This 
is remedied by clicking the “Reset” button.

3.4 “Setpoints,” “UserInputSignals,” and “EFDC” 
Worksheets

Figure A8 shows the “Setpoints” worksheet. The input 
parameters that can be manipulated by the user are Q8500 and 
SC8840, and there are several options for doing so. The fol-
lowing Q8500 inputs options are selected using its “User Opt” 
control.

•	 “%” – percent of historical flow. The “% setpoint” 
control is used to set the percentage.

•	 “cfs” – fixed flow rate. The “cfs setpont” control is 
used to set the flow rate.

•	 usrSig – user-defined signal, which the user can 
paste into the “UserInputSignals” worksheet 
(fig. A8). The “Clear usrSigs” button clears the “user 
Q8500” and “User SC8840” fields.

The following SC8840 inputs options are selected using 
its “User Opt” control.

•	 “%” – percent of SC8840. The “% setpoint” control 
is used to set the percentage.

•	 “uS/cm” – fixed specific conductivity. The “uS/cm 
setpont” control is used to set the specific conductiv-
ity.

•	 usrSig – user-defined signal, which the user can 
paste into the “UserInputSignals” worksheet 
(fig. A8).

•	 “EFDC” – uses EFDC output data to bias the 
SC8840 historical data, which is then input to the 
models. The EFDC data is loaded into SCM as a 
comma separated value (CSV) file with a specified 
format. The EFDC data are loaded into the “EFDC” 
worksheet (fig. A9). The user must type the path-

Figure A6.  Simulation controls on “Controls” worksheet.

Figure A7.  Pop-up window that appears when a simulation is 
interrupted by using the “Esc” key.
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name of the EFDC file to be loaded into the “EFDC 
CSV File Path” text box. The “Load File Data” 
button loads the file, and the loaded data can be 
inspected in the cyan-colored fields of the work-
sheet. The “Clear File Data” button clears the data in 
the cyan fields. Note: only the data in the “SC8840-
EFDCp(m)” and “SC8840-EFDCp(u)” columns is 
used by SCM.

3.5 “Database” and “Output” Worksheets

The “Database” worksheet contains the time series data 
used by SCM to run simulations (fig. A10). These data are 
described in the “ReleaseNotes” worksheet, and are derived 
from the raw field measurements. They are augmented by 
calculated variables whose values are calculated on-the-fly by 
SCM’s computer code. The user should not alter data in the 
“Database” worksheet.

Figure A8.  “UserInputSignals” worksheet.

Figure A9.  “EFDC”worksheet. The “Clear usrSigs” button clears the “user Q8500” and “User SC8840” fields.
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The “Output” worksheet contains a record of key vari-
ables for a particular simulation (fig. A11). The “Write Out-
put” check box on the “Controls” worksheet must be checked 
for output to be written. The variables written to the “Output” 

worksheet are explained in “ReleaseNotes” worksheet. The 
user can copy output values into another MS Excel workbook 
for further analysis. 

Figure A10.  Example measured data from the “Database” worksheet.

Figure A11.  Example output from the “Output” worksheet.
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